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To support arange of behaviours, the brain must flexibly coordinate neural
activity across widespread brain regions. One potential mechanism for this
coordinationis atravelling wave, in which a neural oscillation propagates
across the brain while organizing the order and timing of activity across
regions. Although travelling waves are present across the brainin various
species, their potential functional relevance has remained unknown.

Here, using rare direct human brain recordings, we demonstrate a distinct
functional role for travelling waves of theta- and alpha-band (2-13 Hz)
oscillations in the cortex. Travelling waves propagate in different directions
during separate cognitive processes. In episodic memory, travelling waves
tended to propagate in a posterior-to-anterior direction during successful
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memory encoding and in an anterior-to-posterior direction during recall.
Because travelling waves of oscillations correspond to local neuronal
spiking, these patternsindicate that rhythmic pulses of activity move across
the brainin different directions for separate behaviours. More broadly,

our results suggest afundamental role for travelling waves and oscillations
in dynamically coordinating neural connectivity, by flexibly organizing

the timing and directionality of network interactions across the cortex to
support cognition and behaviour.

The brain supports a diverse range of behaviours, which requires the
coordination of neural activity between different sets of regions. How
does the brain support this flexibility? One potential mechanism for
flexibly organizing large-scale neuronal activity is a travelling wave (TW),
whichisaneural oscillation that propagates across the cortex*. TWs are
widespreadinthebrain, appearing across multiple regionsin animals®”’
and humans®°, at both small" ™ and large'**'® scales. Because TWs
correlate withlocal neuronal activity, their spatiotemporal organization
indicates which cortical regions are active and in which direction activity
is propagating at each moment*". Furthermore, due to TWs’ ability to
rapidly reorganize'’, they may support the brain’s ability to dynamically
adaptits processes to meet changing cognitive demands***. However,
despite these theoretical features and TWs’ widespread prevalence®”,
their behavioural importance is unknown. Our goal here was thus to
identify potential functional roles of TWs in human cognition.

A key property of TWs is their propagation direction. Asa TW
propagates, it reflects a moving wave of rhythmic neuronal activity
that causes neurons across neighbouring cortical regions to activate
sequentially according to the direction of wave propagation®”2. ATW’s
direction of propagation may thus indicate the sequence of activity
across neighbouring cortical regions, with direction changes signalling
areorganization of the underlying neural connectivity and computa-
tion. In this way, separate neural processes and their associated behav-
iours might be reflected by TWs propagating in different directions,
indicating the activation of different sequences of spatially organized
neural assemblies*>**, For example, during perception, TWs may propa-
gate in a posterior-to-anterior direction, which could indicate that
neuronal activity flows from posterior sensory regions to the frontal
lobe to support top-down processing” . Inversely, during internally
drivenbehaviours controlled by the frontal lobe, TWs may propagatein
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thereverse direction’*”. Thus, because TW propagation corresponds
to the spatial structure of neuronal activity®, the directional propaga-
tion of TWs can identify spatially organized neural assemblies and
reveal the order in which cortical regions communicate to support
different behaviours?.

We hypothesized that changes in the directions of TWs provide
amechanism to flexibly organize large-scale brain activity to sup-
port different behavioural processes. We tested this hypothesisin the
domain of human memory by measuring cortical TWs directly from
neurosurgical patients performing an episodic memory task. Spe-
cifically, we considered whether TWs propagate in different directions
during memory encoding and recall processes, given their reliance
on externally and internally generated neural processes. We found
that the brain’s spontaneous TWs propagated in opposite directions
during memory encoding and recall processes. These results dem-
onstrate that different human cognitive processes are supported by
large-scale patterns of oscillations that are TWs, with their propaga-
tion direction indicating the reorganization of cortical interactions
to supportbehaviour.

Results

Measuring travelling waves in the human cortex

To examine how the direction and timing of TWs in the human brain
relate to cognition, we examined electrocorticographic brainrecord-
ings from neurosurgical patients performing memory tasks. The data-
set consists of recordings from 93 participants performing 222 sessions
of an episodic memory task®®. During this task, the participants showed
neural oscillations at various frequencies across widespread brain
regions, consistent with earlier work?%.

We analysed these multichannel recordings using spectral analysis
and circular statistics to identify the neural oscillations that behaved
as TWs and to assess their functional role’*°. A prerequisite for iden-
tifyinga TWis that there must be an oscillation at the same frequency
across a contiguous region of cortex. Thus, to identify TWs, in each
patient we first identified the spatially contiguous clusters of five or
more electrodes that simultaneously showed oscillations at similar
frequencies, which we refer to as oscillation clusters. We then tested
whether each oscillation cluster showed a TW by measuring whether
the phase of these oscillations shifted progressively in space across
electrodes within the cluster. To statistically test each cluster foraTW,
we measured the instantaneous phase of the oscillation at each elec-
trode and identified consistent phase gradients across neighbouring
electrodes (Methods). A phase gradient across an oscillation cluster
indicates that a TW is present because it means that the cycles of one
oscillation are appearing with a progressive delay across neighbour-
ing regions of cortex (Fig. 1). To ensure accurate measurements, we
performed our analyses after excluding trials when it was challeng-
ing to accurately measure TW properties, such as when there was a
possibility of spatial aliasing or low oscillatory power (Methods and
Extended Data Figs.1-3).

Consistent with earlier work®”', TWs were widespread in this data-
set. We observed prominent oscillationsand TWs across all brain lobes,
in both hemispheres, at frequencies from 2 to 30 Hz. Overall, 73% of
electrodes on the surface of the cortex were part of at least one oscil-
lation cluster (Supplementary Table 1), and 83% of oscillation clusters
exhibited significant TWs (Extended Data Fig. 4). TWs were prominent
during the episodic memory tasks in 93 of the 160 participants that
were implanted with surface electrodes (Supplementary Table 2).
Figure laillustrates a TW at -8.9 Hz that appeared in one trial of the
episodicmemory taskina patient’s left temporal and frontal cortices.
This oscillationwas a TW becauseitsindividual cycles appeared witha
progressive delay across neighbouring electrodes. Each cycle of this
TW appeared firstoninferior electrodes and later on anterior-superior
electrodes, propagating with a phase velocity of -1 m s™ (Fig. 1b). We
measured the propagation of TWs throughout the task using circular

statistics tomodel the progression of phases across space (Fig.1cand
Methods). These phase gradients revealed the instantaneous direc-
tion, phase, phase velocity and strength (spatial consistency of the
phase gradient). We then tested these features for links to behaviour.

Toidentify how TWs correlated with cognitive processes, we com-
pared how TW features correlated with participants’ performanceinan
episodicmemory task. Inthistask, the participants learned and recalled
sequences of words. After viewing each list, following a delay, they tried
tofreely verbally recall as many words as possible (Fig. 2a). On average,
participants successfully recalled 27% of the viewed words. Because
the participants remembered only a subset of the presented words in
the task, we could test whether features of TWs differed according to
whether amemory was successfully or unsuccessfully encoded.

Figure 2b-jshows datafrom an oscillation cluster in the temporal
lobe of patient 34 with TWs at ~8.9 Hz during memory encoding and
recall. In one trial when the participant viewed a word that they suc-
cessfully encoded, the electrodes in this cluster showed a TW that
propagatedina posterior-to-anterior direction (Fig. 2b—d). Inversely,
later in that same list while the participant viewed a different word
that they did not successfully encode, there was instead a TW propa-
gating in the opposite, anterior-to-posterior direction (Fig. 2e-g; see
also Supplementary Videos 1and 2). Finally, during recall, before the
participant spoke the recalled word, this oscillation cluster showed a
TW propagating in an anterior-to-posterior direction (Fig. 2h-j). The
direction of TWs onthis cluster varied rapidly over time such thatacross
trials TWs most often propagated along a predominant axis towards the
anterior-superior direction or switched to the opposite direction. This
pattern of results—in which the direction of TW propagation shifted
accordingto the current memory process and performance—led us to
systematically test the link between different memory processes and
TW propagationdirection.

Travelling waves propagate anteriorly during successful
memory encoding
We examined the link between TW propagation direction and memory
encoding by comparing the properties of the TWsthatappeared during
the presentations of words that were later remembered versus those
that were forgotten. Toillustrate therelation between TW direction and
memory encoding, we first show results fromarepresentative example
participant inFig. 3a for the same oscillation cluster shown above. Here,
when the participant viewed words that they successfully encoded into
memory, TWsin the alpha frequency band (8-12 Hz) propagated ina
posterior-to-anterior direction (¢, = 5.471, P= 0.003, Rayleigh test).
When the participant viewed words they did not successfully remem-
ber,the TWs here propagated bidirectionally, ina posterior-to-anterior
direction on some trials and in an anterior-to-posterior direction on
other trials (Fig. 3a(ii), middle). There was thus asignificant difference
inthedistribution of directions of TW propagation between successful
and unsuccessful encoding, with predominantly posterior-to-anterior
propagation for successful memory encoding and bidirectional
propagation for unsuccessful encoding (Fig. 3a(ii), Nyccessru = 41,
Nynsuccesstul = 389, P< 0.001, Kuiper circular two-sample test).
Tomeasure therelation between propagation direction and mem-
oryencoding, wefirstidentified whether an oscillation cluster showed
bidirectional TW propagationacrosstrials (Extended DataFigs.5and 6).
We then measured the cluster’s ‘preferred encoding direction’, which
isthe propagation direction that was most closely associated with suc-
cessfulmemory encoding (Fig. 3a(iii) and Methods). We then labelled
the time points of each trial according to whether the TWs were propa-
gating in the cluster’s preferred encoding or recall direction. We next
tested, at eachtime point, the link between propagationdirection and
whether the participant successfully encoded the viewed word. Using
this procedure, in patient 34 we found areliable link between memory
encoding and TW direction, which was strongest 305 ms after word
presentation. At this time point, there wasa47%increase in propagation

Nature Human Behaviour | Volume 8 | June 2024 | 1124-1135

1125


http://www.nature.com/nathumbehav

Article

https://doi.org/10.1038/s41562-024-01838-3

Word on sc

180°

<
aseyd sAne)ay

-90°

-180°

5 04
Q —
EQ 0
<]
z
-0.4
3
(]
Filtered
T T T T T r
1,000 1100 1,200 1,300 1,400 1,500
Time (ms)

Fig.1|Example TW at 8.9 Hzin patient 34’s left hemisphere. a, Recording
from one trial of the memory task. Top, raw signal from five selected electrodes.
Middle, expanded view of the signals from the top panel. Bottom, the signals
from the middle panel after filtering at 8.9 + 1.3 Hz. The colours indicate relative
phase, measured at the time of the vertical black line. The red plus signs indicate
peak phases of oscillations occurring sequentially across electrodes ina-e.

b, Brain map indicating the TW in this trial’*'°°. The arrowheads indicate, for
eachelectrode, the local propagation direction. The arrow colour indicates
relative phase at the time indicated by the vertical black line in a. Normalized
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power spectra for each channelin the cluster were computed by removing the
1/fbackground signal from the power spectra. The red dots indicate the peak
frequency of each electrode. ¢, Illustration of the circular-linear regression
model for measuring the properties of TWs. This model estimates the spatial
phase gradient at each electrode on the basis of the phases from the nearby
electrodes’ filtered signals. The black dots indicate the measured phase oneach
electrode, the plane indicates the model fit and the black lines between the dots
and planeindicate residuals. The angle and slope of the fitted plane provide
estimates of the TW’s propagation direction and phase velocity, respectively.

towards the preferred encoding direction for successful versus unsuc-
cessfulencoding (Fig. 3a(iv); P < 0.05, permutation test, with two-sided
cluster-based correction for multiple comparisons). Here, when this
cluster showed a TW propagating in the preferred encoding direc-
tion (i.e., posterior-to-anterior), the odds that the participant would
remember the word were 3.2x greater than in trials when a TW was
propagating in the opposite direction (13% versus 4% respectively;
P<0.01, binomial test, Fig. 3a(iv)). Other participants also showed
similar patterns of bidirectional propagation, with significantly better
memory encoding when TWs propagated in the preferred encoding
direction (Fig. 3b and Extended Data Fig. 7).

We next examined across the entire dataset (458 clusters from
93 patients) whether TW propagation direction correlated with suc-
cessful memory encoding. Consistent with the examples described
above, the preferred encoding directions for TWs on individual theta
(2-8 Hz) and alpha (8-13 Hz) oscillation clusters were most often
posterior-to-anterior, while beta (13-30 Hz) oscillation clusters’ pre-
ferred encoding directions were more variable and differed between
regions (Fig. 4a, top left; t;;, = 8.856, P< 0.001, Rayleigh test; see also
Extended Data Fig. 8). In contrast, propagation directions during
unsuccessful memory encoding showed bidirectional distributions

of propagation directions, which was driven by significant increases
in propagation opposite to the preferred encoding direction (Fig. 4a,
topright; alln=171, P< 0.001, Kuiper circular test).

We found that the propagation of theta- and alpha-band TWs
correlated with memory encoding at distinct latencies during word
presentation. The odds of successful memory encoding increased
by ~-1.7x if theta TWs at ~250-800 ms after word presentation were
propagatingin the preferred encoding direction (Fig. 4b, left; P< 0.001,
two-sided cluster-based permutation tests; see also Supplementary.
Fig.1and Methods). Similarly, the odds of successful memory encoding
increased by ~1.4x if there was an alpha-band TW propagating in the
preferred direction—this effect began 72 ms before word presentation
(P<0.05, two-sided cluster-based permutation test; Fig. 4b, right).

Overall, it was common for clusters to exhibit TWs that switched
between propagating in two opposite directions over time, thus show-
ingbidirectional propagation (57% of all clusters; Extended Data Figs. 5
and 6aand Methods). Of these clusters that showed bidirectional propa-
gation patterns, 68% had one particular direction that was significantly
associated with successful memory encoding (all P < 0.05, binomial tests
corrected for false discovery rate (FDR); Methods and Supplementary
Table1). Thisindicates that the phenomenon of bidirectional TWs was
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Fig.2|Changes in TW direction across memory encoding and recall.

a, Timeline of one trial of the verbal memory task for patient 34. Words in
green were successfully encoded; black words were forgotten. b, Recordings
on five electrodes in one trial while the participant successfully encoded the
word ‘FARM’. The signals were filtered at 4.5 Hz, and the electrodes are ordered
from anterior (top) to posterior (bottom). The red ticks indicate peaks of

one oscillation cycle, which illustrates an example TW because there was a
progressive shift in the timing of these peaks across electrodes. ¢, Brain map
witharrowheads showing the direction of TW propagation for the time point
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labelled with the black line inb. d, Topography of this TW’s propagation across
a3 x6array of electrodes within the oscillation cluster from ¢ (the labelsaand b
indicate the corresponding electrodes). Each panel indicates the topography
of instantaneous phase at one of four sequential time points. The white arrows
atthe troughs of oscillations indicate the TW propagation direction.

e-g, Arepresentative TW measured during unsuccessful memory encoding
where the participant viewed the word ‘CLOWN’, with plots analogous to b-d.
h-j, Arepresentative TW measured prior to the recall of the word ‘FARM".

generally related to higher-level cognition and memory (Extended Data
Fig. 9 and Supplementary Fig. 2). This link between memory perfor-
mance and the direction of TW propagation was specifically present
at significant levels in the theta (2-8 Hz) and alpha bands (8-13 Hz)
in the frontal and temporal lobes and in beta bands in the frontal lobe
(Extended Data Figs. 8 and 9 and Supplementary Fig. 3; all P< 0.05,
binomial tests against 0). We found that clusters with bidirectional TWs
were smaller than clusters with unidirectional patterns (Kruskal-Wallis,
h=11.8,P=0.002), whichmayindicate that spontaneous wave direction
changes occur more locally than globally across the cortex.

We considered the possibility that this correlation with memory
could be more strongly driven by other features of TWs, such as the
power of ongoing oscillations, rather than propagation direction
specifically. However, we did not find a significant relation between
memory encoding and the power of ongoing oscillations or with the
phase velocity or strength of TWs (all P> 0.05; Supplementary Table
3 and Extended Data Fig. 2). Our results thus indicate that the link
between TWs and memory encoding was specific to the direction of
propagation. We also considered whether the presence of waves may
facilitate successful encoding; however, we did not find a significant
relationbetweenrecall rates and the presence of a TW during encoding

(for all regions and oscillatory ranges, P> 0.05, paired t-tests), thus
indicating that the direction rather than presence of a TW is most
important for predicting memory.

Travelling waves propagate posteriorly during memory recall

Immediately before the participant verbally recalls each word, they
are actively searching their memory*>*>, We hypothesized that a dif-
ferent pattern of TWs would be present during this search period. To
examine the propagation of TWs during memory recall, we examined
the same cluster of electrodes (example participant 34) during the
period prior to the patient speaking aloud the remembered item
(Fig.3a(i)-(v)).Here, rather than the posterior-to-anterior propagation
thatappeared duringencoding, TWstended to propagateinthereverse,
anterior-to-posterior direction (Fig. 3a(ii), right), which we refer to
as the cluster’s preferred recall direction. This cluster’s propagation
direction during recall was reliably different compared to successful
encoding (all n =41, P<0.05, Kuiper circular test) and was strongest
865 ms prior toword recall (Fig. 3a(v)). The direction of TW propagation
onthis cluster thus correlated with the current memory process, switch-
ing directions between successful encoding and recall. Similar patterns
were present in other participants (Fig. 3b and Extended Data Fig. 7).
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Fig.3|Example participants where TWs varied in propagation direction

with memory processing. a, (i) Brain map showing the mean directionand
frequencies of TWs measured in the left hemisphere of patient 34 during
successful memory encoding. The arrowheads indicate the mean propagation
direction for each electrode averaged across trials. Arrowhead size indicates
directional consistency. Raw and normalized power spectra for each channel
inthe cluster were computed by removing the 1/fbackground signal from the
power spectra. (ii) Distribution of TW propagation directions across trials,
averaged across the electrodes from a, during successful memory encoding
(left), unsuccessful encoding (middle) and recall (right). Predominant directional
clusters are indicated by black ellipses (Methods). (iii) Propagation directions of
TWsacross all encoding trials. The preferred encoding direction is marked with a
red dot; green and blue shading indicate the range of angles labelled as preferred
encoding and preferred recall directions, respectively. (iv) Time course of the link
between TW propagation direction and memory encoding. The line indicates the
difference in the percentages of TWs moving in the preferred encoding direction

between trials with successful memory encoding compared with unsuccessful
encoding. The vertical black line indicates the time of the maximal difference,
which corresponds to (i)-(iii). The horizontal black lines indicate time points
when directional shifts are statistically significant (¢, > 2.5, P < 0.05, two-sided
cluster-based permutation test). Positive values (shaded green) indicate agreater
percentage of waves propagating in the anterior-superior direction relative

to thebaseline. (v) The link between TW propagation direction and memory
recall. The line indicates the normalized percentage of trials propagating in the
preferred encoding direction prior to memory recall at time 0. The values are
normalized relative to the cluster’s baseline period. Negative values (shaded
blue) indicate a greater percentage of waves propagating in the posterior-
inferior direction relative to the baseline. The vertical black line indicates the
time point of the greatest propagation shift away from the preferred encoding
direction (which matches the right panel of (ii)). The horizontal black lines
indicate significant time points measured by binomial tests. b, Same as (i)-(v) for
patient155.

Across all participants, TWs on 52% of the oscillation clusters
with bidirectional propagation exhibited a significant pre-recall
direction shift. This usually involved increased anterior-to-posterior
propagation prior to recall (Fig. 4a, bottom, ¢,,; =5.952, P=0.002,

Rayleigh test). Prior to recall, there was a significant shift away from
the preferred encoding direction for theta- (16%) and alpha-band TWs
(17%), particularly in the frontal and temporal lobes (Fig. 4c, two-sided
cluster-based permutation testing one sample against zero; Extended
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Fig. 4 | Population analysis of TW direction shifts during memory encoding
andrecall. a, Distribution of clusters’ predominant propagation directions for
alltheta and alpha TWs measured on oscillation clusters primarily located in
the frontal, temporal and parietal/occipital regions during memory encoding
and recall at the time point of maximal memory-related effects. b, Time courses
of TW directional shifts during successful and unsuccessful memory encoding
averaged across all theta (left) and alpha (right) TWs measured on oscillation
clusters primarily located in the frontal, temporal and parietal/occipital
regions. The black vertical lines indicate the time point of peak propagationin
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the preferred direction. The horizontal black lines and green shading indicate
the timing of statistical significance at P < 0.05 using two-sided cluster-based
permutation testing, with the position at the top or bottom of the plotindicating
the direction of the effect. ¢, Time courses of TW directional shifts prior to
memory recall averaged across all theta (left) and alpha (right) TWs measured
onoscillation clusters primarily located in the frontal, temporal and parietal/
occipital regions. The black vertical lines indicate times of maximal propagation
away from the preferred encoding direction. The horizontal black lines and blue
shading indicate the timing of statistical signifiance.

DataFig. 9, binomial tests, all P < 0.05, FDR multiple comparisons cor-
rected; Supplementary Table 1, binomial tests, all P < 0.05, FDR multiple
comparisons corrected). Memory recall is thus associated with TWs
propagatingin an anterior-to-posterior direction, the opposite of the
directionformemory encoding, with this effect being most prominent
in the theta-band TWs in the frontal and temporal lobes and in the
alpha-band TWsin the temporal, parietal and occipital lobes.

Discussion

A persistent question over the past few decades has been how wide-
spread areas of the brain organize theirinteractions to support different
behaviours. TWs provide one answer to this question by propagating
in particular directions across the brain to coordinate neuronal activ-
ity with high temporal precision. Here we found that the TW direc-
tion correlates with memory encoding and recall, which suggests that
propagating neural oscillations support cognition by organizing the
spatiotemporal structure of neural activity.

Prior studies have shown that the theta and alpha oscillations that
comprise TWsare phase locked to neuronal spiking and high-frequency
oscillations via the phenomenon of phase-amplitude coupling®***.
With our findings, this suggests that the propagation of thetaand alpha
oscillations across the brainas TWsindicates whenand where the brain
is exhibiting discrete pulses, or ‘packets’, of neuronal activity moving
across the cortex®*, The propagation direction of theta and alpha
TWs may thusreveal the sequence in which neural representations are
communicated across brain regions. These findings have fundamen-
tal implications for explaining how different brain regions represent
information and interact to support behaviour®®. For information to

move from one cortical region to the next, discrete packets of spiking
activity may propagate between contiguous regions coordinated by
the phase of ongoing TWs***°,

The phase velocities of the TWs that we report are generally con-
sistent with axonal conduction velocities in unmyelinated axons, which
are common in superficial layers of the cortex**2, Although in some
cases TWs appear to propagate with slower phase velocities than axonal
conduction speeds, this may be expected because theoretical models
of TWs suggest that the propagation speed relies on many factors
beyond axonal conduction, including the local intrinsic oscillation fre-
quency ateachsite and coupling between oscillators. Thus, the phase
velocity of TWs may not directly reflect axonal conduction speed but
rather the phase lagsin the oscillations that are due to the heterogene-
ity of intrinsic oscillation frequencies. It is likely that the propagation of
these oscillations relies on acombination of synaptic and non-synaptic
electrical activity as well as the coupling function between oscillators,
whichis reflected in the range of phase velocities we observe*,

A key aspect of our results is identifying a link between distinct
directions of TW propagation and separate functional processes,
particularly memory encoding and recall. In conjunction with ear-
lier research?***~*¢ this suggests that a fundamental way in which the
brain’s functional connectivity transiently reorganizes is by chang-
ing the directional interactions between different brain regions.
Posterior-to-anterior TWs were associated with successful memory
encoding and anterior-to-posterior TWs were associated with memory
recall (Extended Data Fig. 10), suggesting that forming new episodic
memories involves the flow of neural activity from posterior regions
into the frontal lobe*. However, memory recall involves the flow of
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neural activity in the opposite direction from the frontal lobe, where
internally generated context is most strongly represented”***’, Our
finding that TWsreverse direction prior torecallis particularlyimpor-
tant because unlike prior studies that have shown shifts in propaga-
tion direction when comparing the presence and absence of visual
stimuli****, our study demonstrates anterior-to-posterior TWs during
anactive cognitive process of searching one’s memory for previously
encoded words. While the differences in TW direction between suc-
cessful and unsuccessful encoding may be influenced by perceptual
processing of the presented word and whether it was represented and
transferred into memory, itis unlikely that the directions of TWs prior
to recall in the absence of visual cues were modulated by perceptual
processing. Our findings thus provide substantial advancesin linking
TW direction to the process of memory retrieval.

One more general possibility is that posterior-to-anterior TWs
correspond to feedforward processing while anterior-to-posterior TWs
correspond to feedback processing®®*. Thisinterpretation builds on
earlier work showing that different patterns of neuronal oscillations
modulate feedforward networks during visual perception®>* and feed-
back processing during top-down control and prediction®. Consistent
withour results, thereis also other evidence of neural activity changing
direction for specific functional states****°°°, thus suggesting that
ourresults are part of abroader phenomenon.

Animportant questiongoing forward is to understand the mecha-
nisms underlying cortical TWs and, in particular, how TW propaga-
tion may shift to support different behaviours. Some work suggests
that TWs in the cortex are driven by underlying corticothalamic net-
works®? (but see Halgren et al.*®). Thus, one potential mechanism
by which the direction of TW propagation could change is by local
increasesin excitation at certain thalamic subregions. This excitation
could accelerate the frequency of cortical oscillations” and alter TW
propagation direction, as predicted by coupled-oscillator models of
TWs"?¢*. Computational models of TWs could thus be useful for assess-
ing the potential mechanisms underlying memory-related direction
shifts**°. Future work may also use direct electrical stimulation to
causally manipulate characteristics of spontaneous TWs to distinguish
functional mechanisms from epiphenomena.

A TW propagating in a particular direction may indicate that a
regionisuniquely engaged in a particular functional process. However,
afurther possibility is that the neural networks in individual regions
simultaneously support multiple directionally organized processes,
such as concurrent feedback and feedforward processing®. Following
this view, the propagation direction of TWs at each moment may be
informative about the current weighting, or attention, given to each
process. Consistent with this idea, prior work has demonstrated a
link between the amplitude of neuronal oscillations and the attention
given to specific neuronal representations®>°®, In the context of our
results, the presence of posterior-to-anterior TWs during successful
memory encoding may indicate that the brainis currently attending to
feedforward processing to represent the current stimulus and transfer
itto memory (Extended DataFig. 10). Inversely, the bidirectional pat-
terns during unsuccessful encoding may indicate that feedforward
processes were attended more weakly*”®’. Following this logic, the
increasesin anterior-to-posterior TWs before recall may correlate with
top-down processing related to memory search***°, We additionally
detected asmallsubset of clusters with multidirectional patterns, with
three or more main directions, which may be interesting to explorein
future work.

Our findings suggest that many TWs relevant to behaviour are
endogenous and ongoing in the brain, rather than being evoked by
task events. Thisis most notable for alpha-band TWs, whose direction
correlated with performance before word presentation during encod-
ing, indicating that the oscillations were present prior to stimulus
onset. This heightened relevance of alpha-band TWs prior to encod-
ing indicates a distinct role in priming relevant brain regions to be in

an optimal state for successfully encoding an item into memory®™",

In contrast to our alpha-band results at early time points, it is notable
that we found that theta-band TWs correlated with memory at later
time points, because this suggests that theta TWs have afundamentally
different functional role®®7* 7,

It might be considered surprising that some of our results were
notobserved previously, given that human brain oscillations have been
measured for decades. Itis possible that many previous studies report-
ing directional patternsinarange of behaviours were actually related
to TWs””77?, Our results relied on new analytical methods, which may
have been essential for our findings. In particular, one challenging
aspect of measuring TWsin humansis that there is substantial variation
in oscillation frequencies and propagation directions across partici-
pants and brain regions. Our analysis framework accommodated this
diversity by measuring each participant’s TWsina customized manner
rather than assumingidentical propagation and frequencies across all
participants. The fact that we observed substantial variability across
individuals emphasizes theimportance of analysing human brain data
inamanner thataccounts for electrophysiological differences between
participants® %2, Additionally, we detected many oscillation clusters
with contacts crossing sulci and gyri. We consider such contacts to
be part of the same oscillation cluster. Since anatomical geometries
probably impact spatiotemporal neural dynamics®, future work may
explore changes in directional patterns across sulci and gyri using an
inflated brain surface of the cortex model®*. In light of the analytical
challenges of measuring TWs in humans and the hints of similar pat-
ternsinprior literature, TWs may actually have amuchbroaderrolein
behaviour and cognition than previously appreciated.

TWs may be useful for practical purposes, beyond fundamental
research. Our findings have translational and clinical applications
because they suggest that measuring TWs could improve our abil-
ity to interface with the brain and diagnose neurological disorders.
For brain-computer interfacing, TWs might be a useful neural signal
for more effectively decoding the brain’s current state. In particular,
our direction results indicate that measuring TW propagation can
indicate whether the current brain state is well suited for memory
encoding. Going forward, it may be possible to use TWs to meas-
ure more advanced aspects of cognition, perhaps with the use of
improved recording methods, including high-density neural record-
ing arrays**%**¢ as well as non-invasive methods'**”*, Furthermore,
TWs could provide biomarkers for identifying neurological disorders
related to abnormal neural connectivity such as autism® or epilepsy .
Characterizing the directional propagation of TWs thus holds the
potential for new approaches to brain-computer interfacing and
disease diagnosis by revealing when the brain’s current communica-
tion state is abnormal. TWs may also be useful for guiding the clinical
use of brain stimulation, by providing atarget biomarker that reflects
neural connectivity.

Methods

Participants

The 93 participants who contributed datato our study by performing
an episodic memory task were pharmacoresistant epilepsy patients
surgically implanted with grids and strips of electrodes on the surface
of their cortex for the purpose of identifying epileptogenic regions.
The patients’ clinical teams determined electrode placement to best
monitor each patient’s epilepsy. Data for the episodic memory task
were collected at eight hospitals: Thomas Jefferson University Hos-
pital (Philadelphia, Pennsylvania), University of Texas Southwestern
Medical Center (Dallas, Texas), Emory University Hospital (Atlanta,
Georgia), Dartmouth-Hitchcock Medical Center (Lebanon, New
Hampshire), Hospital of the University of Pennsylvania (Philadelphia,
Pennsylvania), Mayo Clinic (Rochester, Minnesota), National Institutes
of Health (Bethesda, Maryland) and Columbia University Hospital
(New York, New York). Following approved institutional review board
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experimental protocols at each hospital, all participants provided
informed written consent.

Verbal memory task

In the episodic memory task, the participants performed a verbal
free-recall paradigm?®, in which they were asked to memorize a list
of 12 words sequentially presented as text on the computer screen.
Figure 2a presents the timeline of an example list. Each word was pre-
sented for1,600 ms, followed by ablank screen for 750-1,000 ms. The
lists consisted of high-frequency nouns (http://memory.psych.upenn.
edu/Word_Pools). After thelist, the participants were presented witha
20 smath distractor task prior torecall. During recall, the participants
were given 30 s to verbally recall the words in any order. We recorded
the verbal responses on a microphone and then manually scored the
recordings after the task.

Participants performed one or both versions of this task that dif-
feredinthe semantic categorization of the word lists. One version of the
task selected 300 words from the Toronto word pool with intermediate
recall performance. Lists of 12 words were constructed such that the
mean pairwise semantic similarity within list was relatively constant
across lists. For the categorized version of the free-recall task, the words
were selected from semantic categories rated by users using Amazon
Mechanical Turk and sequentially presented as categorical pairs of
words from the same category. Eachlist consisted of four words drawn
from each of the three categories such that two pairs drawn from the
same semantic category were never presented consecutively.

Electrocorticographic brainrecordings and referencing

During the tasks, data were recorded at 500, 1,000 or 1,600 Hz using
aclinical intracranial electroencephalographic recording system at
each hospital (Nihon Kohden EEG-1200, Natus XLTek EMU 128, Natus
Quantum EEG or Grass Aura-LTM64 systems). Subdural grid and strip
electrodes had adistance of 10 mmbetween contacts. Each electrode’s
signal was initially referenced to acommon contact placed intracrani-
ally, on the scalp or on the mastoid process. We filtered electrical line
noise using a fourth-order Butterworth notch filter at 58-62 Hz. We
identified the location of each electrode by co-registeringastructural
magnetic resonance image taken prior to surgery with a computed
tomography image after the electrodes were surgically implanted to
computeelectrode locationsinstandardized Talairach coordinates”.

Identifying TWs

We defined a TW as a single oscillation at one frequency that appears
acrossaregionof cortex withaprogressive phase shift. Toidentify TWs
in our data, we first used an algorithm to identify spatially clustered
groups of electrodes, or oscillation clusters, that showed oscillations
at approximately the same frequency. We then measured whether
the phase across these clusters showed the progressive phase shift
that characterizes TWs”*”. To find these oscillation clusters, we first
identified groups of at least five neighbouring surface electrodes that
showed narrowband oscillations within a 2 Hz window, while being
within 25 mm of at least one other electrode with a similar frequency
peak. We found the frequencies of these narrowband oscillations on
each electrode individually by identifying peaks in the normalized
power spectrum, which we measured at 200 frequencies logarithmi-
cally spaced from 2 to 40 Hz using Morlet wavelets. We removed the
1/fbackground ssignal and identified peaks that were local maxima that
were at least one standard deviation above the mean.

Next, building on methods from Zhang et al.’, we identified TWs
by identifying local plane waves across the electrodes in each oscilla-
tion cluster usinga circular-linear regression model*’. To measure the
instantaneous phase at each electrode, we first applied a Butterworth
filter to each electrode’s signal on each trial, with afilter bandwidth that
extended +15% around the electrode’s mean narrowband frequency.
We then measured the instantaneous phase of each electrode’sfiltered

signal using the Hilbert transform. At each time point, we converted
the phaseateach electrode toarelative phase shift by subtracting the
mean phase of the oscillations measured across all electrodes in the
oscillation cluster. We used circular statistics to manipulate all phase
values with the Python library PyCircStat toolbox™.

Measuring local propagation direction

Having computed therelative phase shift oneachelectrodeateachtime
point, we next tested for spatial propagation of the oscillation across
the cluster. Whereas our earlier work performed this task by fitting one
propagation direction for the entire cluster’, here we separately fit the
direction for each electrode individually. By allowing each electrode
to haveits own propagation direction, this method has improved sen-
sitivity to TWs with non-planar and complex propagation patterns, as
wellasto TWsthat were present at only asubset of the electrodesinthe
cluster, which could otherwise not be detected reliably with asingular
phase gradient across the entire oscillation cluster. Using this method,
we were able to able to capture complex, non-planar patterns where
asingular phase gradient for the entire cluster would not suffice (see
example clustersin Extended Data Fig. 7).

We fit the circular-linear model for each electrode individually,
onthebasis of the phase gradient measured on the nearby electrodes
(within25 mm) inthe cluster. We fit this model only for electrodes with
atleast three nearby contacts. This procedure measured the features of
the TW propagation around each electrode by quantifying the propa-
gation direction (an angle a € [0°,360°]) and the spatial frequency
(£ [0° mm™,18° mm™]). To compute these parameters that describe
thelocal TW ateach electrode i and time point, we fit the equation

; = (ax; + by; + 9 mod 360°

where a =§cos(a), b =Esin(a), and x and y are the electrode’s spatial
coordinates. Following earlier work®*°, we used a grid search to opti-
mize the values for aand b. This grid searchidentified the propagation
direction and spatial frequency for each TW by minimizing the differ-
encebetween the predicted phase (§) and actual () phase values across
the nearby electrodes. Phase velocity, or the distance a cycle of an
oscillation travels over time, was derived from spatial frequency and
oscillation frequency. We measured the statistical reliability of each
model fit by computing the circular correlation coefficient between
the predicted and actual phases and then adjusting for the number of
fitted parameters and data points (p,4)""*.

Applying this model to each electrode individually, we then used
two criteria tolabel an electrode cluster as exhibiting asignificant TW
onagiventrial.First, we required thateach cluster have areliable phase
gradient at the group level, as determined by averaging the adjusted
correlation coefficient fromall the electrodesin the cluster and ensur-
ing it was above 0.2 (that is, pgdj > 0.2). Second, we ensured that the
mean power spectrum across all electrodes exhibited a robust nar-
rowband peak. See Extended Data Fig. 3 for examples of trials without
significant TWs. Onthe basis of these criteria, weincluded in our analy-
ses oscillation clusters that had reliable TWs on at least 30 encoding
trials and at least 10 successful encoding trials with TWs.

Controlling for measurement inaccuracy from spatial aliasing
Thelcmdistance between cortical grid and strip electrodes withwhich
we recorded TWs leads to the theoretical possibility of incorrectly
estimating the directions and phase velocities of TWs due to inad-
equate spatial sampling (Extended Data Fig. 1a). Spatial aliasing, the
inadequate sampling of neural oscillations inspace across the cortex,
may occur when halfthe spatial wavelength of apropagating oscillation
islessthanthe distance betweenelectrodes. For1cmelectrode spacing,
this occurs when oscillations have a spatial frequency of greater than
n/2 cycles per centimetre, which is most common when high-frequency
oscillations propagate at slow phase velocities (Extended Data Fig. 1b).
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When spatial samplingisinadequate, itis theoretically possible for the
phases measured on adjacent electrodes to not reflect the same cycle
ofatravelling oscillationbut rather be fromthe previous or next cycles
(Extended DataFig.1a, middle). Inthese cases, the correct propagation
direction canbe determined with complete certainty only with greater
spatial sampling or higher-density electrode grids and strips (Extended
DataFig. 1a, right).

To control for thisissue, we implemented aframework to exclude
trials that could be susceptible to spatial aliasing (Extended Data
Fig. 1c-f). To identify these trials, we used a complementary method
for measuring wave propagation based on measuring the time-lagged
cross correlation between the raw signals measured onadjacent neigh-
bouring electrodes (Extended DataFig. 1c,d). This method s less sensi-
tivetoaliasing because it can take advantage of arange of frequencies
aswellas non-sinusoidal aspects of the signal besides phase to measure
propagation. If the time lag of maximum coupling measured from
cross correlation aligned with the phase differences measured from
narrowband oscillations, we could proceed in measuring TW direction
with certainty that spatial aliasing was not occurring (Extended Data
Fig.1le). When time-lagged cross correlation did not align with phase
measurements, particularly if the time lag corresponded with the
duration of one wavelength of the oscillation frequency in the posi-
tive or negative direction, itis possible that the propagation direction
measured with phase differences wasinaccurate due to spatial aliasing
(Extended Data Fig. 1f). When excluding these trials across all oscilla-
tion clusters, we found that 83% of trials were not susceptible to spatial
aliasing. We did not find evidence that smaller oscillation clusters may
be more susceptible to spatial aliasing (Spearman’s p = 0.22, P=0.99,
one-tailed test of negative correlation). We thusincluded in our study
only the trials where the measured wave propagation was consistent
between the time-lagged cross correlation and phase methods.

We performed asimulation with constructed TWs where we knew
the ground-truth propagation direction to measure the impact of
aliasing on the measurements of TW direction with actual human brain
signals. Because human brain signals are not perfectly sinusoidal, we
inferred that aliasing would be less likely with actual human brain sig-
nals (Extended Data Fig.1h-j). We found that the propagation direction
ofonly 56% of beta oscillation trials could be measured accurately with
perfect sine waves; however, when measuring this percentage using
real human brain signals, 73% of trials could be measured accurately
(Extended DataFig.1h,i), thusindicating that aliasing is less of aconcern
with human brain waves than with sine waves. Nonetheless, to be sure
that aliasing did not meaningfully impact our results, we applied an
additional procedure where we removed all trials that were potentially
susceptible to spatial aliasing as determined with the time-domain
method described above. Our simulation shows that excluding these
17% of trials across the dataset increased the accuracy of direction
measurement to 99% (Extended Data Fig. 1j).

Categorization of cluster directionality

Across oscillation clusters, we found TWs that exhibited wide-ranging
propagation patterns, including unimodal, bimodal and multimodal
distributions of directions. To characterize these diverse patterns, we
designed a method to quantify multimodal directional distributions
rather than only unimodal directional distributions.

To characterize these varying types of propagation patterns, we
fit a mixture of von Mises distributions® (the circular analogue to
Gaussian distributions) to the distribution of propagation directions
fromallencoding trials (Extended Data Fig. 5). We fit this pattern using
a non-parametric model-fitting procedure for circular data, which
modelled the overall direction distribution as amixture of multiple von
Mises distributions, each with a different angle and magnitude. In this
model, each individual fitted von Mises distribution reflects one par-
ticular directionin which the TWs on the cluster frequently propagate.
Distributions fitted with more than one von Mises distribution thus

showed multiple distinct propagation directions. We used aniterative
method to determine the best-fitting mixture of von Mises curves, as
the sum of the minimum number of von Mises curves (each centred at
adifferent direction) that would fit at least 99% of the variance in the
original distribution of propagation directions®””. We then labelled
each cluster as showing unidirectional or bidirectional propagation
on the basis of the directions and magnitudes of the mixture of indi-
vidualfitted von Mises curves. If at least 80% of a cluster’s propagation
directions were fit by a single von Mises curve, then we labelled it as
showing unidirectional propagation. Likewise, we labelled a cluster as
bidirectionaliftwo von Mises distributions (each representing 20-80%
of TW directions) were required to capture its propagation distribution.
We labelled a cluster as showing non-directional TW propagation if it
exhibited no consistent direction over trials (Rayleigh test, P> 0.05)
orifits propagation patterns could be accurately fit only by a mixture
ofthree or more von Mises distributions (this was required in 6% of all
clusters). We measured some oscillation clusters in the 2-3 Hz range,
and there seemed to be no distinct functional role between these
lower-frequency clusters and theta-alpha-band clusters; thus, we
grouped themin with theta-band clusters.

Determininga cluster’s preferred propagation direction

Next, for the clusters with bidirectional TW propagation, we tested
whether one of the two predominant directions was preferred for mem-
ory encoding. To do this, we followed the earlier fitting approach but
applieditjustto the trials where memory encoding was successful. We
labelled the cluster’s preferred direction as the angle of the von Mises
distribution fromthe overall model fit that was closest to the most prom-
inent propagation direction fit to the successful encoding trials. We
determined the preferred angle from the model fit to all trials because
thislarger dataset provided more precisionin categorizing propagation
directions as either towards or away from the preferred encoding direc-
tion. Onthebasis of these calculations, we then used the fitted angles to
label whether aTW on eachindividual trial propagated towards or away
fromthe cluster’s preferred encoding direction (Fig. 3c).

Calculating the relation between TW direction and memory
Tomeasure the timing of the link between a cluster’s propagation direc-
tionand memory encoding, we measured the prevalence of TWs mov-
ing towards or away from the preferred encoding direction at different
time offsets relative to stimulus presentation. We performed this cal-
culation separately for trials where the word was successfully encoded
and for trials where it was unsuccessfully encoded. We determined the
cluster’s preferred propagation direction on the basis of the time point
with the strongest difference in propagation direction between suc-
cessfuland unsuccessful memory encoding, and we thenrecalculated
theentire time course (2.6 s starting and ending 0.5 s before and after
word presentation) of difference scores for each cluster on the basis
ofthatidentified preferred encoding direction. We used permutation
tests to determine the statistical significance of the relation between
TW propagation and memory encoding (see below).

Formemoryrecall, we used arelated method toidentify the behav-
iouralrole of TW direction. At each time point relative to word recall, we
calculated the percentage of trials with TWs propagatingin the cluster’s
preferred encodingdirection, as determined duringencoding. We calcu-
lated this for the 3 s prior to word recall or from the time of the previously
spokenword ifwithin 3 s of each other. Because we wanted to measure
task-related changes, and individual clusters showed variability in their
overalllevel of TW propagation, we performed a baseline normalization
for eachcluster. For each cluster, we normalized the observed percent-
age of TWs propagating inthe preferred encoding directionrelative to
the cluster’snon-memory baseline. This baselineincluded task periods
with nostimulionscreen, including intertrial intervals.

To examine whether TWs moved in specific anatomical directions
for particular memory processes (Fig. 4), across all oscillation clusters
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we computed aweighted distribution of the anatomical directions of TW
propagation foreach memory process. The weighting for each cluster’s
directions was determined from the percentage of individual trials that
was captured by that direction’s underlying von Mises curve. This method
ensures that the shape of the overall circular histogramis representative
ofthe population’s proportion of waves propagating in each direction.

Statistical procedures

We used a cluster-based permutation procedure to assess whether the
directional patterns that distinguished successful versus unsuccess-
ful memory encoding were statistically reliable®. For each oscillation
cluster, we generated 100 random surrogate datasets by shuffling the
labels that indicated whether each item presentation was successfully
remembered or forgotten. Then, for each random surrogate dataset,
we recomputed the statistical procedure, thus providing a distribution
of surrogate test statistics. We tested the significance of the original
directional difference score by comparing its test statistic with the dis-
tribution of surrogate test statistics. This procedure adjusts for multiple
comparisons across time points because we summed the significant test
statistics for each trial across all potentially significant clusters of con-
tiguous time points that were individually significant at P < 0.05 (ref. 97).

We performed asimilar procedure to assess significance for recall,
except here we tested the statistical significance of pre-recall direc-
tion shifts using two-sided binomial tests. The tests compared the
prevalence of preferred encoding and preferred recall propagation
at each time point before recall relative to the level in the baseline
period for that cluster, correcting for multiple comparisons with the
FDR procedure®.

To test the reliability of memory-related direction changes
across all participants during both encoding and recall, we used a
non-parametric two-sided cluster-based permutation test of one sam-
ple against zero”. This method identified contiguous time periods
relative to the timing of behavioural events where TWs showed reli-
ableincreases or decreases in propagation towards or away from their
preferred encoding direction. This procedure assessed significance at
the group level for consecutive temporal intervals by comparing the
results with those found from applying the same procedure to 1,000
surrogate values from random shuffling, with correction for multiple
comparisons by calculating the test statistic using the maximum value
of the cluster-level summed statistics.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Therawelectrophysiological dataused in this study are available upon
request at https://memory.psych.upenn.edu/Data_Request.

Code availability
The custom code and analyses are available at https://github.com/
umarmohan/freerecall_travelingwaves.
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Extended Data Fig. 1| Exclusion of trials with potential inaccurate
measurement of propagation direction due to spatial aliasing. (A) Adequate
spatial sampling when low-frequency oscillations propagate propagate across 3
widely spaced electrodes(left). Inadequate spatial sampling for higher-frequency
oscillations propagating across 3 electrodes with the same spacing (middle).
Arrows indicate two possible propagation direction measurements. Higher
density electrode spacing would disambiguate the true propagation direction
(right). (B) Combinations of oscillation frequencies and phase velocities where
there is adequate and inadequate spatial ssmpling with 1 cm electrode spacing,
determined by whether half the spatial wavelength of a propagating oscillation
islessthan1cm, shownin green and red, respectively. (C) Example 1s of a trial
witha traveling wave propagating in space across five adjacent electrodes of
analpha oscillation cluster in patient 34. (D) Time-lagged cross correlation

for entire trial measured between adjacent electrodes (a) and (b) in oscillation
cluster. Time of maximum coupling measured at -11 msindicated by red star
showing signal on electrode (b) leads electrode (a). (E) Correlation between time
differences between electrodes (a) and (b) measured via phase differences with
the time-lag measured from cross-correlation for unsuccessful encoding trial
son the left and successful encoding trials on the right. Strong correlation along

unity linesindicates alignment between the two measurements such that no
trials were susceptible to spatial aliasing. (F) Correlation between phase-based
time differences and correlation-based time differences for a beta oscillation
cluster with 18% of trials showing an inconsistency between the two methods.
Red time lags measured via cross-correlation indicate that the true lag between
the signals on those trials was approximately a cycle forward or backwards
indicating the potential for spatial aliasing when measuring only using phase. (G)
When excluding trials with these inconsistencies across all clusters in the dataset,
approximately 83% of trials were not susceptible to spatial aliasing (right) across
all oscillation clusters (n=421). Error bars denote + 1SEM. (H) Percent of trialsin
which the correct direction could be measured using phase differences when
perfect sinusoidal signals were shifted across five simulated electrodes (n=421).
(I) Percent of trialsin which the correct direction could be measured using

phase differences when imperfect eeg signals were shifted across five simulated
electrodes (n=421). (J) Percent of trials in which the correct direction could be
measured using phase differences when real eeg signals were shifted across

five simulated electrodes after excluding trials that were susceptible to spatial
aliasing (n=421).

Nature Human Behaviour


http://www.nature.com/nathumbehav

Article

https://doi.org/10.1038/s41562-024-01838-3

A Frontal lobe Temporal lobe Parietal lobe

1.54
1.52

1.82

Theta
1.48

150 S e S N e R ——

1.48 WORD ON_SCREEN 1.74

1.40
-500 0 500 1000 1500 2100 -500 0 500 1000 1500 2100 -500 0 500 1000 1500 2100
by Alpha
5 §1.5o 162 1.54
R 1.58 150
== 1.45-M
=3 1.54 1.46
53 1.40
‘:g -500 0 500 1000 1500 2100 -500 0 500 1000 1500 2100 -500 0 500 1000 1500 2100
@©
c Beta
1.44
1.28 1.36
1.26W\ R e O BZW
1.24 136
' 1.28
-500 0 500 1000 1500 2100 -500 0 500 1000 1500 2100 -500 0 500 1000 1500 2100
time (ms)
B Frontal lobe Temporal lobe Parietal lobe
Theta Il Recalled
55 ... ..‘. . .': ->. 251 . . [ | Fcirgottgn
'-. o %, .-.-‘. '.' - - - -
20] ®& ¥, " e 2.0 1 N - - -
151 m .
1.04
0.5
Posterior Anterior Posterior Anterior Posterior Anterior
o . .Apha_ | . .
=25 - . - . 254 .. - . -r 251 & ..
8 8. L L] ‘e " . .:- ? - % - o -
Ng520{ &« o P
T <
g% 1.5
2510/
©
<05
Posterior Anterior Posterior Anterior Posterior Anterior
25 25 Beta o5l - . . .
= L7 e = -
2.04 20{ * -~ - - 204 .* H . e
1.5 154 . : 154
1.04 1.0 1 1.0
0.5 0.5 1 0.5 1
Posterior Anterior Posterior Anterior Posterior Anterior

Anatomical direction

Extended Data Fig. 2| Narrowband power at oscillation clusters that
showed traveling waves in the episodic memory task. (A) Mean normalized
narrowband power centered around each oscillation cluster’s peak frequency
across all 93 participants, calculated with the log-transformed amplitude of the
Hilbert transform prior to selecting trials with sufficient oscillatory power, wave
strength, and no potential for spatial aliasing. (B) Mean normalized narrowband

power for oscillation clusters that showed traveling waves averaged over time in
all 93 participants, separately calculated during time periods when TWs moved
posteriorly and anteriorly, during successful and unsuccessful encoding trials.
There were no significant differences in mean power across the clusters that
showed posterior and anterior propagation (all p’s > 0.05, two-sided ¢-test). Error
bars denote + 1SEM.
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34. (B) Timecourse of adjusted 72 across the cluster used to measure statistical
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Extended Data Fig. 4 | Characteristics of cortical traveling waves during
encoding and recall of episodic memory task. (A) Histogram of the peak
oscillation frequencies for clusters with TWs. All green histograms are properties
measured during encoding and blue during recall. (B) Histogram of the number
of electrodes in each cluster. (C) Histogram of the counts of clusters per patient
that showed TWs. Most participants had 2 to 4 clusters across different sets of
grid and strip electrodes or groups of electrodes with oscillations at different
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peak frequencies. A few patients had 5 or more. Patients with many clusters

often had multiple smaller clusters of 5-6 electrodes in different regions and
hemispheres. (D) Distribution of the percentage of single trials that show reliable
TWs for individual clusters. (E) Histogram of TW propagation phase velocities
across clusters. Black line indicates median. (F) Histogram of TW spatial
wavelength.
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Extended Data Fig. 6 | Population categorization of cluster direction
patternsinepisodic memory task. (A) Percent of TW clusters in each oscillatory
range identified as bidirectional, unidirectional, and nondirectional across

all 93 participants. (B) Mean percent recall rates across 93 participants that
showed a TW cluster with unidirectional, bidirectional, and nondirectional

TW propagation, by oscillatory frequency band (linear mixed effects

model, bidirectional vs. unidirectional clusters: p=0.062; bidirectional vs.

theta

alpha beta

nondirectional TW clusters:, p=0.002, Tukey contrast multiple comparisons
test). Error bars denote + 1SEM. (*p < 0.05, ** p < 0.01, two-sided ¢-test).

Overall, participants who showed bidirectional TW propagation showed a

5.8% higher rate of successful memory encoding compared to participants with
unidirectional and multidirectional patterns, indicating that bidirectional TW
propagation may be a feature of normal cognition.
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Extended Data Fig. 7 | Traveling waves in example participants who showed alink between TW direction and memory. (A) Example traveling wave in patient 89 at
7.8 Hz; format of individual plots follows Fig. 3. (B) Example traveling wave frontal cortex of patient 130 at 10.8 Hz.

Nature Human Behaviour


http://www.nature.com/nathumbehav

Article https://doi.org/10.1038/s41562-024-01838-3

A FRONTAL TEMPORAL PARIETAL/OCCIPITAL
Successful Encoding Unsuccessful Encoding Successful Encoding Unsuccessful Encoding Successful Encoding Unsuccessful Encoding
7 7 4 4 4 3
Y |
Recall Recall Recall
: : : : : 5 : :: 4

B Successful Encoding Unsuccessful Encoding Successful Encoding Unsuccessful Encoding Successful Encoding Unsuccessful Encoding

S~

f |

<

T

o

= Recall Recall Recall

C Successful Encoding Unsuccessful Encoding Successful Encoding Unsuccessful Encoding Successful Encoding Unsuccessful Encoding
@ | @ | @ |

<

w

o Recall Recall Recall
Extended Data Fig. 8 | Direction distributions during memory encoding of maximal memory-related effects. TW propagation directions were weighted
andrecall. (A) Distribution of clusters’ pre-dominant propagation directions by the proportion of trials with TWs propagating in each directions captured (see
for all theta TWs measured on oscillation clusters in the Frontal, Temporal, and Methods). (B) Same as (A) for alpha-band TWs (C) Same as (A) for beta-band TWs.
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Extended Data Fig. 9| Relation between TW directional shifts and memory
processing. (A) Normalized difference in the prevalence of TWs propagating in
the preferred encoding direction versus the opposite direction for successful
encodingrelative to the cluster’s natural bidirecitonal split (averaged across
word presentation intervals). Asterisks indicate specific regions and oscillatory
bands where the normalized percent of TWs traveling in preferred encoding
directions across clusters is significantly above a distribution of shuffled TW
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directions (p’s < 0.05, one-sided binomial tests against O, Cluster counts in
Suplementary Table 1). Error bars denote + 1SEM. (B) Normalized difference

of TWs propagating in preferred encoding versus preferred recall direction
averaged during 2 seconds prior to verbal recall. Asterisks indicate specific
regions and oscillatory bands where the normalized percent of TWs traveling in
preferred encoding directions across clustersis significantly below a distribution
of shuffled TW directions (p’s < 0.05, one-sided binomial tests).
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Extended Data Fig.10 | Hypothesized relations between traveling wave (TW) direction, characterized as the preferred recall direction. We hypothesize that
direction and memory processes. When presented with a list of words during preferred encoding and preferred recall TW propagation may reflect more

an episodic memory task, successful memory encoding more likely when waves general neural processes including feedforward and feedbackward cortical
propagated in the preferred encoding direction, as opposed to the opposite processing, respectively.

Nature Human Behaviour


http://www.nature.com/nathumbehav

nature portfolio

Corresponding author(s): Uma Mohan, PhD

Last updated by author(s): Jan 10, 2024

Reporting Summary
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
n/a | Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  Data recordings were performed using commercial software for clinical intracranial electroencephalographic recording systems at each
hospital (Nihon Kohden EEG-1200, Natus XLTek EMU 128, Natus Quantum EEG, or Grass Aura-LTM64 systems).

Data analysis Data were analyzed with Python 3.6.7 using its built-in functions as well as publicly available libraries Python Time Series Analysis Toolbox (v.
2.0.3, https://github.com/pennmem/ptsa), CMLReaders toolbox (v. 0.9.3, https://github.com/pennmem/cmlreaders), PyCircStat toolbox (v.
0.0.2), mne (v. 0.19.2), nilearn (v. 0.9.2), FOOOF (v. 1.0.0), and FreeSurfer (v. 7.1.1) . All traveling wave analyses were performed using custom
code (https://github.com/jacobslab/Traveling-wave-analysis, https://github.com/umarmohan/freerecall_travelingwaves).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The raw electrophysiological data used in this study are available at http://memory.psych.upenn.edu/RAM.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.
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Reporting on sex and gender Individual patients' sex is reported in the supplemental subject table.

Reporting on race, ethnicity, or Additionally, individual patients' age, handedness, clinical electrode coverage of surface grid and depth electrodes, and

other socially relevant locations of electrodes included in the analyses are reported in the supplemental subject table. Race and ethnicity of patients
groupings were collected
Population characteristics 48 patients were male and 45 patients were female. All patients in this study were adults with their ages ranging from 19 to

57. Additional data on handedness and clinical electrode coverage are reported in the supplemental subject table.

Recruitment Collaborating clinical teams at the following hospitals (Thomas Jefferson University Hospital (Philadelphia, PA); University of
Texas Southwestern Medical Center (Dallas, TX); Emory University Hospital (Atlanta, GA); Dartmouth—Hitchcock Medical
Center (Lebanon, NH); Hospital of the University of Pennsylvania (Philadelphia, PA); Mayo Clinic (Rochester, MN); National
Institutes of Health (Bethesda, MD); and Columbia University Hospital (New York, NY)) recruited subjects undergoing
treatment for pharmacoresistant epilepsy, and performed clinical duties associated with data collection including
neurosurgical procedures and patient monitoring. Data was drawn from this publicly available database, and active
recruitment was not a apart of this study.

Ethics oversight Prior to data collection, research protocols were approved by the Institutional Review Board at participating hospitals
(Thomas Jefferson University Hospital, University of Texas Southwestern Medical Center, Emory University Hospital,
Dartmouth—Hitchcock Medical Center, Hospital of the University of Pennsylvania, Mayo Clinic, National Institutes of Health,
Columbia University Hospital), and informed consent was obtained from each participant. Data acquisition and storage was
coordinated by the Data Coordinating Center (DCC) at the University of Pennsylvania (IRB protocol 820553).

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|X| Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size We analyzed data of 160 subjects (93 showing traveling waves) who were pharmacoresistant epilepsy patients surgically implanted with grids
and strips of electrodes on the surface of their cortex for the purpose of identifying epileptogenic regions. Patients performed an episodic-
memory task. No statistical methods were used to determine sample size in advance. All patients in the database who performed an episodic
memory task and had electrodes implanted on the surface of their cortex were studied.

Data exclusions  Data recording segments with epileptiform discharges or electrical artifact were excluded from analyses. A patient's data were excluded from
analyses if they did not show any clusters of at least 5 electrodes with oscillations at the same frequency or if the oscillations clusters did not
show reliable traveling waves on a sufficient number of trials. For patients with reliable traveling waves, trials were excluded if they did not
show oscillations or if the oscillations present were not spatially organized as traveling waves.

Replication The main findings were replicated by conducting analyses independently on all subjects with and without the addition of exclusion criteria for
specific segments of data. Repetition of permutation and subsampling control analyses further confirmed main findings. Our main findings
were replicable across multiple subjects as well as multiple sessions within subjects who performed multiple sessions of the task. Data are
publicly available enabling independent researchers to replicate these findings.
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Randomization  N/A since subjects were not grouped.

Blinding N/A since subjects were not grouped.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies [] chip-seq
Eukaryotic cell lines |:| Flow cytometry
Palaeontology and archaeology |:| |X| MRI-based neuroimaging

Animals and other organisms
Clinical data

Dual use research of concern

XXNXXNXXX s
OOoOoogod

Plants

Magnetic resonance imaging

Experimental design

Design type T1 and T2 weighted structural MRIs taken prior to patients being implanted with electrodes. MRIs were taken purely for
clinical purposes to indicate electrode locations and were not part of these analyses.

Design specifications N/A. MRIs were taken purely for clinical purposes to indicate electrode locations and were not part of these analyses.

Behavioral performance measures N/A. MRIs were taken purely for clinical purposes to indicate electrode locations and were not part of these analyses.

Acquisition

Imaging type(s) Structural MRl and CT

Field strength 3T MR prior to electrode implantation and 1.5 T MRI following

Sequence & imaging parameters Sequence & imaging parameters: Imaging parameters varied somewhat among institutions in this multisite study. In
general, sequences required for macroelectrode and microwire localization included 3D Tl-weighted with 1 mm or less
isotropic resolution, coronal fast spin echo T2-weighted with 0.4 x 0.4 mm in-plane resolution and 2 mm slice thickness,
and CT with less than 1 mm slice thickness. Representative examples are as follows: Pre-implant 3D Tl-weighted
MPRAGE (TR 1900 ms, TE 2.52 ms, flip angle 9, 1 mm isotropic resolution, 216 x 256 x 174 matrix), pre-implant coronal
FSE T2-weighted (TR 7200 ms, 76 ms, ETL 15, flip angle 139, 0.4 x 0.4 x 2 mm, 448 x 448 x 30), post-implant CT (0.5 x 0.5
x0.625 mm, 512 x 512 x 384)

Area of acquisition Tl - whole brain, T2 - temporal lobes spanning and oriented in the coronal plane

Diffusion MRI |:| Used Not used

Preprocessing

Preprocessing software Freesurfer’s automated cortical parcellation based on the Desikan-Killiany brain atlas

Normalization We identified the location of each electrode by co-registering a structural magnetic resonance image (MRI) taken prior to
surgery with a computed tomography (CT) image after electrodes were surgically implanted in order align the images to each
other using rigid registration based on mutual information with Advanced Normalization Tools (ANTS) software to compute
electrode locations in standardized Talairach coordinates

Normalization template Electrode locations normalized in Talairach coordinates.

Noise and artifact removal N/A. No noise or artifact removal was used. ;‘5
5

Volume censoring N/A. No volume censor was used. S




Statistical modeling & inference

Model type and settings N/A. No statistical modeling was used as MRIs were taken purely for clinical purposes to indicate electrode locations and
were not part of these analyses.

Effect(s) tested N/A. No effects tested as MRIs were taken purely for clinical purposes to indicate electrode locations and were not part of
these analyses.

Specify type of analysis: X whole brain | | ROI-based | | Both

Statistic type for inference N/A. No inference was performed as MRIs were taken purely for clinical purposes to indicate electrode locations and were

not part of these analyses.
(See Eklund et al. 2016)

Correction N/A. No correction was performed as MRIs were taken purely for clinical purposes to indicate electrode locations and were
not part of these analyses.
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Models & analysis

n/a | Involved in the study
IXI D Functional and/or effective connectivity

IXI D Graph analysis

IXI D Multivariate modeling or predictive analysis
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