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The direction of theta and alpha travelling 
waves modulates human memory processing

Uma R. Mohan    1, Honghui Zhang2, Bard Ermentrout    3 & Joshua Jacobs    4,5 

To support a range of behaviours, the brain must �exibly coordinate neural 

activity across widespread brain regions. One potential mechanism for this 

coordination is a travelling wave, in which a neural oscillation propagates 

across the brain while organizing the order and timing of activity across 

regions. Although travelling waves are present across the brain in various 

species, their potential functional relevance has remained unknown. 

Here, using rare direct human brain recordings, we demonstrate a distinct 

functional role for travelling waves of theta- and alpha-band (2–13 Hz) 

oscillations in the cortex. Travelling waves propagate in di�erent directions 

during separate cognitive processes. In episodic memory, travelling waves 

tended to propagate in a posterior-to-anterior direction during successful 

memory encoding and in an anterior-to-posterior direction during recall. 

Because travelling waves of oscillations correspond to local neuronal 

spiking, these patterns indicate that rhythmic pulses of activity move across 

the brain in di�erent directions for separate behaviours. More broadly, 

our results suggest a fundamental role for travelling waves and oscillations 

in dynamically coordinating neural connectivity, by �exibly organizing 

the timing and directionality of network interactions across the cortex to 

support cognition and behaviour.

The brain supports a diverse range of behaviours, which requires the 

coordination of neural activity between different sets of regions. How 

does the brain support this flexibility? One potential mechanism for 

flexibly organizing large-scale neuronal activity is a travelling wave (TW), 

which is a neural oscillation that propagates across the cortex1,2. TWs are 

widespread in the brain, appearing across multiple regions in animals3–7 

and humans8–10, at both small11–14 and large10,15–18 scales. Because TWs 

correlate with local neuronal activity, their spatiotemporal organization 

indicates which cortical regions are active and in which direction activity 

is propagating at each moment4,15. Furthermore, due to TWs’ ability to 

rapidly reorganize19, they may support the brain’s ability to dynamically 

adapt its processes to meet changing cognitive demands20,21. However, 

despite these theoretical features and TWs’ widespread prevalence2,15, 

their behavioural importance is unknown. Our goal here was thus to 

identify potential functional roles of TWs in human cognition.

A key property of TWs is their propagation direction. As a TW 

propagates, it reflects a moving wave of rhythmic neuronal activity 

that causes neurons across neighbouring cortical regions to activate 

sequentially according to the direction of wave propagation8,22. A TW’s 

direction of propagation may thus indicate the sequence of activity 

across neighbouring cortical regions, with direction changes signalling 

a reorganization of the underlying neural connectivity and computa-

tion. In this way, separate neural processes and their associated behav-

iours might be reflected by TWs propagating in different directions, 

indicating the activation of different sequences of spatially organized 

neural assemblies23,24. For example, during perception, TWs may propa-

gate in a posterior-to-anterior direction, which could indicate that 

neuronal activity flows from posterior sensory regions to the frontal 

lobe to support top-down processing23–25. Inversely, during internally 

driven behaviours controlled by the frontal lobe, TWs may propagate in 
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statistics to model the progression of phases across space (Fig. 1c and 

Methods). These phase gradients revealed the instantaneous direc-

tion, phase, phase velocity and strength (spatial consistency of the 

phase gradient). We then tested these features for links to behaviour.

To identify how TWs correlated with cognitive processes, we com-

pared how TW features correlated with participants’ performance in an 

episodic memory task. In this task, the participants learned and recalled 

sequences of words. After viewing each list, following a delay, they tried 

to freely verbally recall as many words as possible (Fig. 2a). On average, 

participants successfully recalled 27% of the viewed words. Because 

the participants remembered only a subset of the presented words in 

the task, we could test whether features of TWs differed according to 

whether a memory was successfully or unsuccessfully encoded.

Figure 2b–j shows data from an oscillation cluster in the temporal 

lobe of patient 34 with TWs at ~8.9 Hz during memory encoding and 

recall. In one trial when the participant viewed a word that they suc-

cessfully encoded, the electrodes in this cluster showed a TW that 

propagated in a posterior-to-anterior direction (Fig. 2b–d). Inversely, 

later in that same list while the participant viewed a different word 

that they did not successfully encode, there was instead a TW propa-

gating in the opposite, anterior-to-posterior direction (Fig. 2e–g; see 

also Supplementary Videos 1 and 2). Finally, during recall, before the 

participant spoke the recalled word, this oscillation cluster showed a 

TW propagating in an anterior-to-posterior direction (Fig. 2h–j). The 

direction of TWs on this cluster varied rapidly over time such that across 

trials TWs most often propagated along a predominant axis towards the 

anterior–superior direction or switched to the opposite direction. This 

pattern of results—in which the direction of TW propagation shifted 

according to the current memory process and performance—led us to 

systematically test the link between different memory processes and 

TW propagation direction.

Travelling waves propagate anteriorly during successful 
memory encoding
We examined the link between TW propagation direction and memory 

encoding by comparing the properties of the TWs that appeared during 

the presentations of words that were later remembered versus those 

that were forgotten. To illustrate the relation between TW direction and 

memory encoding, we first show results from a representative example 

participant in Fig. 3a for the same oscillation cluster shown above. Here, 

when the participant viewed words that they successfully encoded into 

memory, TWs in the alpha frequency band (8–12 Hz) propagated in a 

posterior-to-anterior direction (t41 = 5.471, P = 0.003, Rayleigh test). 

When the participant viewed words they did not successfully remem-

ber, the TWs here propagated bidirectionally, in a posterior-to-anterior 

direction on some trials and in an anterior-to-posterior direction on 

other trials (Fig. 3a(ii), middle). There was thus a significant difference 

in the distribution of directions of TW propagation between successful 

and unsuccessful encoding, with predominantly posterior-to-anterior 

propagation for successful memory encoding and bidirectional  

propagation for unsuccessful encoding (Fig. 3a(ii), nsuccessful = 41,  

nunsuccessful = 389, P < 0.001, Kuiper circular two-sample test).

To measure the relation between propagation direction and mem-

ory encoding, we first identified whether an oscillation cluster showed 

bidirectional TW propagation across trials (Extended Data Figs. 5 and 6).  

We then measured the cluster’s ‘preferred encoding direction’, which 

is the propagation direction that was most closely associated with suc-

cessful memory encoding (Fig. 3a(iii) and Methods). We then labelled 

the time points of each trial according to whether the TWs were propa-

gating in the cluster’s preferred encoding or recall direction. We next 

tested, at each time point, the link between propagation direction and 

whether the participant successfully encoded the viewed word. Using 

this procedure, in patient 34 we found a reliable link between memory 

encoding and TW direction, which was strongest 305 ms after word 

presentation. At this time point, there was a 47% increase in propagation 

the reverse direction26,27. Thus, because TW propagation corresponds 

to the spatial structure of neuronal activity8, the directional propaga-

tion of TWs can identify spatially organized neural assemblies and 

reveal the order in which cortical regions communicate to support 

different behaviours22.

We hypothesized that changes in the directions of TWs provide 

a mechanism to flexibly organize large-scale brain activity to sup-

port different behavioural processes. We tested this hypothesis in the 

domain of human memory by measuring cortical TWs directly from 

neurosurgical patients performing an episodic memory task. Spe-

cifically, we considered whether TWs propagate in different directions 

during memory encoding and recall processes, given their reliance 

on externally and internally generated neural processes. We found 

that the brain’s spontaneous TWs propagated in opposite directions 

during memory encoding and recall processes. These results dem-

onstrate that different human cognitive processes are supported by 

large-scale patterns of oscillations that are TWs, with their propaga-

tion direction indicating the reorganization of cortical interactions 

to support behaviour.

Results

Measuring travelling waves in the human cortex
To examine how the direction and timing of TWs in the human brain 

relate to cognition, we examined electrocorticographic brain record-

ings from neurosurgical patients performing memory tasks. The data-

set consists of recordings from 93 participants performing 222 sessions 

of an episodic memory task28. During this task, the participants showed 

neural oscillations at various frequencies across widespread brain 

regions, consistent with earlier work28,29.

We analysed these multichannel recordings using spectral analysis 

and circular statistics to identify the neural oscillations that behaved 

as TWs and to assess their functional role9,30. A prerequisite for iden-

tifying a TW is that there must be an oscillation at the same frequency 

across a contiguous region of cortex. Thus, to identify TWs, in each 

patient we first identified the spatially contiguous clusters of five or 

more electrodes that simultaneously showed oscillations at similar 

frequencies, which we refer to as oscillation clusters. We then tested 

whether each oscillation cluster showed a TW by measuring whether 

the phase of these oscillations shifted progressively in space across 

electrodes within the cluster. To statistically test each cluster for a TW, 

we measured the instantaneous phase of the oscillation at each elec-

trode and identified consistent phase gradients across neighbouring 

electrodes (Methods). A phase gradient across an oscillation cluster 

indicates that a TW is present because it means that the cycles of one 

oscillation are appearing with a progressive delay across neighbour-

ing regions of cortex (Fig. 1). To ensure accurate measurements, we 

performed our analyses after excluding trials when it was challeng-

ing to accurately measure TW properties, such as when there was a 

possibility of spatial aliasing or low oscillatory power (Methods and 

Extended Data Figs. 1–3).

Consistent with earlier work9,31, TWs were widespread in this data-

set. We observed prominent oscillations and TWs across all brain lobes, 

in both hemispheres, at frequencies from 2 to 30 Hz. Overall, 73% of 

electrodes on the surface of the cortex were part of at least one oscil-

lation cluster (Supplementary Table 1), and 83% of oscillation clusters 

exhibited significant TWs (Extended Data Fig. 4). TWs were prominent 

during the episodic memory tasks in 93 of the 160 participants that 

were implanted with surface electrodes (Supplementary Table 2). 

Figure 1a illustrates a TW at ~8.9 Hz that appeared in one trial of the 

episodic memory task in a patient’s left temporal and frontal cortices. 

This oscillation was a TW because its individual cycles appeared with a 

progressive delay across neighbouring electrodes. Each cycle of this 

TW appeared first on inferior electrodes and later on anterior–superior 

electrodes, propagating with a phase velocity of ~1 m s−1 (Fig. 1b). We 

measured the propagation of TWs throughout the task using circular 
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towards the preferred encoding direction for successful versus unsuc-

cessful encoding (Fig. 3a(iv); P < 0.05, permutation test, with two-sided 

cluster-based correction for multiple comparisons). Here, when this 

cluster showed a TW propagating in the preferred encoding direc-

tion (i.e., posterior-to-anterior), the odds that the participant would 

remember the word were 3.2× greater than in trials when a TW was 

propagating in the opposite direction (13% versus 4% respectively; 

P < 0.01, binomial test, Fig. 3a(iv)). Other participants also showed 

similar patterns of bidirectional propagation, with significantly better 

memory encoding when TWs propagated in the preferred encoding 

direction (Fig. 3b and Extended Data Fig. 7).

We next examined across the entire dataset (458 clusters from 

93 patients) whether TW propagation direction correlated with suc-

cessful memory encoding. Consistent with the examples described 

above, the preferred encoding directions for TWs on individual theta 

(238 Hz) and alpha (8313 Hz) oscillation clusters were most often 

posterior-to-anterior, while beta (13330 Hz) oscillation clusters9 pre-

ferred encoding directions were more variable and differed between 

regions (Fig. 4a, top left; t171 = 8.856, P < 0.001, Rayleigh test; see also 

Extended Data Fig. 8). In contrast, propagation directions during 

unsuccessful memory encoding showed bidirectional distributions 

of propagation directions, which was driven by significant increases 

in propagation opposite to the preferred encoding direction (Fig. 4a, 

top right; all n = 171, P < 0.001, Kuiper circular test).

We found that the propagation of theta- and alpha-band TWs 

correlated with memory encoding at distinct latencies during word 

presentation. The odds of successful memory encoding increased 

by ~1.7× if theta TWs at ~2503800 ms after word presentation were 

propagating in the preferred encoding direction (Fig. 4b, left; P < 0.001, 

two-sided cluster-based permutation tests; see also Supplementary. 

Fig. 1 and Methods). Similarly, the odds of successful memory encoding 

increased by ~1.4× if there was an alpha-band TW propagating in the 

preferred direction4this effect began 72 ms before word presentation 

(P < 0.05, two-sided cluster-based permutation test; Fig. 4b, right).

Overall, it was common for clusters to exhibit TWs that switched 

between propagating in two opposite directions over time, thus show-

ing bidirectional propagation (57% of all clusters; Extended Data Figs. 5 

and 6a and Methods). Of these clusters that showed bidirectional propa-

gation patterns, 68% had one particular direction that was significantly 

associated with successful memory encoding (all P < 0.05, binomial tests 

corrected for false discovery rate (FDR); Methods and Supplementary 

Table 1). This indicates that the phenomenon of bidirectional TWs was 
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Fig. 1 | Example TW at 8.9 Hz in patient 34’s left hemisphere. a, Recording 

from one trial of the memory task. Top, raw signal from five selected electrodes. 

Middle, expanded view of the signals from the top panel. Bottom, the signals 

from the middle panel after filtering at 8.9 ± 1.3 Hz. The colours indicate relative 

phase, measured at the time of the vertical black line. The red plus signs indicate 

peak phases of oscillations occurring sequentially across electrodes in a3e. 

b, Brain map indicating the TW in this trial99,100. The arrowheads indicate, for 

each electrode, the local propagation direction. The arrow colour indicates 

relative phase at the time indicated by the vertical black line in a. Normalized 

power spectra for each channel in the cluster were computed by removing the 

1/f background signal from the power spectra. The red dots indicate the peak 

frequency of each electrode. c, Illustration of the circular3linear regression 

model for measuring the properties of TWs. This model estimates the spatial 

phase gradient at each electrode on the basis of the phases from the nearby 

electrodes9 filtered signals. The black dots indicate the measured phase on each 

electrode, the plane indicates the model fit and the black lines between the dots 

and plane indicate residuals. The angle and slope of the fitted plane provide 

estimates of the TW9s propagation direction and phase velocity, respectively.
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generally related to higher-level cognition and memory (Extended Data 

Fig. 9 and Supplementary Fig. 2). This link between memory perfor-

mance and the direction of TW propagation was specifically present 

at significant levels in the theta (238 Hz) and alpha bands (8313 Hz) 

in the frontal and temporal lobes and in beta bands in the frontal lobe 

(Extended Data Figs. 8 and 9 and Supplementary Fig. 3; all P < 0.05, 

binomial tests against 0). We found that clusters with bidirectional TWs 

were smaller than clusters with unidirectional patterns (Kruskal3Wallis, 

h = 11.8, P = 0.002), which may indicate that spontaneous wave direction 

changes occur more locally than globally across the cortex.

We considered the possibility that this correlation with memory 

could be more strongly driven by other features of TWs, such as the 

power of ongoing oscillations, rather than propagation direction 

specifically. However, we did not find a significant relation between 

memory encoding and the power of ongoing oscillations or with the 

phase velocity or strength of TWs (all P > 0.05; Supplementary Table 

3 and Extended Data Fig. 2). Our results thus indicate that the link 

between TWs and memory encoding was specific to the direction of 

propagation. We also considered whether the presence of waves may 

facilitate successful encoding; however, we did not find a significant 

relation between recall rates and the presence of a TW during encoding 

(for all regions and oscillatory ranges, P > 0.05, paired t-tests), thus 

indicating that the direction rather than presence of a TW is most 

important for predicting memory.

Travelling waves propagate posteriorly during memory recall
Immediately before the participant verbally recalls each word, they 

are actively searching their memory32,33. We hypothesized that a dif-

ferent pattern of TWs would be present during this search period. To 

examine the propagation of TWs during memory recall, we examined 

the same cluster of electrodes (example participant 34) during the 

period prior to the patient speaking aloud the remembered item  

(Fig. 3a(i)3(v)). Here, rather than the posterior-to-anterior propagation 

that appeared during encoding, TWs tended to propagate in the reverse, 

anterior-to-posterior direction (Fig. 3a(ii), right), which we refer to 

as the cluster9s preferred recall direction. This cluster9s propagation 

direction during recall was reliably different compared to successful 

encoding (all n = 41, P < 0.05, Kuiper circular test) and was strongest 

865 ms prior to word recall (Fig. 3a(v)). The direction of TW propagation 

on this cluster thus correlated with the current memory process, switch-

ing directions between successful encoding and recall. Similar patterns 

were present in other participants (Fig. 3b and Extended Data Fig. 7).
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Fig. 2 | Changes in TW direction across memory encoding and recall.  

a, Timeline of one trial of the verbal memory task for patient 34. Words in 

green were successfully encoded; black words were forgotten. b, Recordings 

on five electrodes in one trial while the participant successfully encoded the 

word 8FARM9. The signals were filtered at 4.5 Hz, and the electrodes are ordered 

from anterior (top) to posterior (bottom). The red ticks indicate peaks of 

one oscillation cycle, which illustrates an example TW because there was a 

progressive shift in the timing of these peaks across electrodes. c, Brain map 

with arrowheads showing the direction of TW propagation for the time point 

labelled with the black line in b. d, Topography of this TW9s propagation across 

a 3 × 6 array of electrodes within the oscillation cluster from c (the labels a and b 

indicate the corresponding electrodes). Each panel indicates the topography  

of instantaneous phase at one of four sequential time points. The white arrows  

at the troughs of oscillations indicate the TW propagation direction.  

e3g, A representative TW measured during unsuccessful memory encoding 

where the participant viewed the word 8CLOWN9, with plots analogous to b3d. 

h3j, A representative TW measured prior to the recall of the word 8FARM9.
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Across all participants, TWs on 52% of the oscillation clusters 

with bidirectional propagation exhibited a significant pre-recall 

direction shift. This usually involved increased anterior-to-posterior 

propagation prior to recall (Fig. 4a, bottom, t171 = 5.952, P = 0.002, 

Rayleigh test). Prior to recall, there was a significant shift away from 

the preferred encoding direction for theta- (16%) and alpha-band TWs 

(17%), particularly in the frontal and temporal lobes (Fig. 4c, two-sided 

cluster-based permutation testing one sample against zero; Extended 
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Fig. 3 | Example participants where TWs varied in propagation direction 

with memory processing. a, (i) Brain map showing the mean direction and 

frequencies of TWs measured in the left hemisphere of patient 34 during 

successful memory encoding. The arrowheads indicate the mean propagation 

direction for each electrode averaged across trials. Arrowhead size indicates 

directional consistency. Raw and normalized power spectra for each channel 

in the cluster were computed by removing the 1/f background signal from the 

power spectra. (ii) Distribution of TW propagation directions across trials, 

averaged across the electrodes from a, during successful memory encoding 

(left), unsuccessful encoding (middle) and recall (right). Predominant directional 

clusters are indicated by black ellipses (Methods). (iii) Propagation directions of 

TWs across all encoding trials. The preferred encoding direction is marked with a 

red dot; green and blue shading indicate the range of angles labelled as preferred 

encoding and preferred recall directions, respectively. (iv) Time course of the link 

between TW propagation direction and memory encoding. The line indicates the 

difference in the percentages of TWs moving in the preferred encoding direction 

between trials with successful memory encoding compared with unsuccessful 

encoding. The vertical black line indicates the time of the maximal difference, 

which corresponds to (i)3(iii). The horizontal black lines indicate time points 

when directional shifts are statistically significant (t1 > 2.5, P < 0.05, two-sided 

cluster-based permutation test). Positive values (shaded green) indicate a greater 

percentage of waves propagating in the anterior3superior direction relative 

to the baseline. (v) The link between TW propagation direction and memory 

recall. The line indicates the normalized percentage of trials propagating in the 

preferred encoding direction prior to memory recall at time 0. The values are 

normalized relative to the cluster9s baseline period. Negative values (shaded 

blue) indicate a greater percentage of waves propagating in the posterior3

inferior direction relative to the baseline. The vertical black line indicates the 

time point of the greatest propagation shift away from the preferred encoding 

direction (which matches the right panel of (ii)). The horizontal black lines 

indicate significant time points measured by binomial tests. b, Same as (i)3(v) for 

patient 155.
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Data Fig. 9, binomial tests, all P < 0.05, FDR multiple comparisons cor-

rected; Supplementary Table 1, binomial tests, all P < 0.05, FDR multiple 

comparisons corrected). Memory recall is thus associated with TWs 

propagating in an anterior-to-posterior direction, the opposite of the 

direction for memory encoding, with this effect being most prominent 

in the theta-band TWs in the frontal and temporal lobes and in the 

alpha-band TWs in the temporal, parietal and occipital lobes.

Discussion
A persistent question over the past few decades has been how wide-

spread areas of the brain organize their interactions to support different 

behaviours. TWs provide one answer to this question by propagating 

in particular directions across the brain to coordinate neuronal activ-

ity with high temporal precision. Here we found that the TW direc-

tion correlates with memory encoding and recall, which suggests that 

propagating neural oscillations support cognition by organizing the 

spatiotemporal structure of neural activity.

Prior studies have shown that the theta and alpha oscillations that 

comprise TWs are phase locked to neuronal spiking and high-frequency 

oscillations via the phenomenon of phase3amplitude coupling8,34,35. 

With our findings, this suggests that the propagation of theta and alpha 

oscillations across the brain as TWs indicates when and where the brain 

is exhibiting discrete pulses, or 8packets9, of neuronal activity moving 

across the cortex36,37. The propagation direction of theta and alpha 

TWs may thus reveal the sequence in which neural representations are 

communicated across brain regions. These findings have fundamen-

tal implications for explaining how different brain regions represent 

information and interact to support behaviour38. For information to 

move from one cortical region to the next, discrete packets of spiking 

activity may propagate between contiguous regions coordinated by 

the phase of ongoing TWs39,40.

The phase velocities of the TWs that we report are generally con-

sistent with axonal conduction velocities in unmyelinated axons, which 

are common in superficial layers of the cortex1,41,42. Although in some 

cases TWs appear to propagate with slower phase velocities than axonal 

conduction speeds, this may be expected because theoretical models 

of TWs suggest that the propagation speed relies on many factors 

beyond axonal conduction, including the local intrinsic oscillation fre-

quency at each site and coupling between oscillators. Thus, the phase 

velocity of TWs may not directly reflect axonal conduction speed but 

rather the phase lags in the oscillations that are due to the heterogene-

ity of intrinsic oscillation frequencies. It is likely that the propagation of 

these oscillations relies on a combination of synaptic and non-synaptic 

electrical activity as well as the coupling function between oscillators, 

which is reflected in the range of phase velocities we observe1,43.

A key aspect of our results is identifying a link between distinct 

directions of TW propagation and separate functional processes, 

particularly memory encoding and recall. In conjunction with ear-

lier research24,44346, this suggests that a fundamental way in which the 

brain9s functional connectivity transiently reorganizes is by chang-

ing the directional interactions between different brain regions. 

Posterior-to-anterior TWs were associated with successful memory 

encoding and anterior-to-posterior TWs were associated with memory 

recall (Extended Data Fig. 10), suggesting that forming new episodic 

memories involves the flow of neural activity from posterior regions 

into the frontal lobe47. However, memory recall involves the flow of 
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Fig. 4 | Population analysis of TW direction shifts during memory encoding 

and recall. a, Distribution of clusters9 predominant propagation directions for 

all theta and alpha TWs measured on oscillation clusters primarily located in 

the frontal, temporal and parietal/occipital regions during memory encoding 

and recall at the time point of maximal memory-related effects. b, Time courses 

of TW directional shifts during successful and unsuccessful memory encoding 

averaged across all theta (left) and alpha (right) TWs measured on oscillation 

clusters primarily located in the frontal, temporal and parietal/occipital 

regions. The black vertical lines indicate the time point of peak propagation in 

the preferred direction. The horizontal black lines and green shading indicate 

the timing of statistical significance at P < 0.05 using two-sided cluster-based 

permutation testing, with the position at the top or bottom of the plot indicating 

the direction of the effect. c, Time courses of TW directional shifts prior to 

memory recall averaged across all theta (left) and alpha (right) TWs measured 

on oscillation clusters primarily located in the frontal, temporal and parietal/

occipital regions. The black vertical lines indicate times of maximal propagation 

away from the preferred encoding direction. The horizontal black lines and blue 

shading indicate the timing of statistical signifiance.
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neural activity in the opposite direction from the frontal lobe, where 

internally generated context is most strongly represented27,48,49. Our 

finding that TWs reverse direction prior to recall is particularly impor-

tant because unlike prior studies that have shown shifts in propaga-

tion direction when comparing the presence and absence of visual 

stimuli24,44, our study demonstrates anterior-to-posterior TWs during 

an active cognitive process of searching one9s memory for previously 

encoded words. While the differences in TW direction between suc-

cessful and unsuccessful encoding may be influenced by perceptual 

processing of the presented word and whether it was represented and 

transferred into memory, it is unlikely that the directions of TWs prior 

to recall in the absence of visual cues were modulated by perceptual 

processing. Our findings thus provide substantial advances in linking 

TW direction to the process of memory retrieval.

One more general possibility is that posterior-to-anterior TWs 

correspond to feedforward processing while anterior-to-posterior TWs 

correspond to feedback processing50354. This interpretation builds on 

earlier work showing that different patterns of neuronal oscillations 

modulate feedforward networks during visual perception52,55 and feed-

back processing during top-down control and prediction26. Consistent 

with our results, there is also other evidence of neural activity changing 

direction for specific functional states24,44,56360, thus suggesting that 

our results are part of a broader phenomenon.

An important question going forward is to understand the mecha-

nisms underlying cortical TWs and, in particular, how TW propaga-

tion may shift to support different behaviours. Some work suggests 

that TWs in the cortex are driven by underlying corticothalamic net-

works61,62 (but see Halgren et al.63). Thus, one potential mechanism 

by which the direction of TW propagation could change is by local 

increases in excitation at certain thalamic subregions. This excitation 

could accelerate the frequency of cortical oscillations19 and alter TW 

propagation direction, as predicted by coupled-oscillator models of 

TWs1,9,64. Computational models of TWs could thus be useful for assess-

ing the potential mechanisms underlying memory-related direction 

shifts2,39. Future work may also use direct electrical stimulation to 

causally manipulate characteristics of spontaneous TWs to distinguish 

functional mechanisms from epiphenomena.

A TW propagating in a particular direction may indicate that a 

region is uniquely engaged in a particular functional process. However, 

a further possibility is that the neural networks in individual regions 

simultaneously support multiple directionally organized processes, 

such as concurrent feedback and feedforward processing51. Following 

this view, the propagation direction of TWs at each moment may be 

informative about the current weighting, or attention, given to each 

process. Consistent with this idea, prior work has demonstrated a 

link between the amplitude of neuronal oscillations and the attention 

given to specific neuronal representations65,66. In the context of our 

results, the presence of posterior-to-anterior TWs during successful 

memory encoding may indicate that the brain is currently attending to 

feedforward processing to represent the current stimulus and transfer 

it to memory (Extended Data Fig. 10). Inversely, the bidirectional pat-

terns during unsuccessful encoding may indicate that feedforward 

processes were attended more weakly39,67. Following this logic, the 

increases in anterior-to-posterior TWs before recall may correlate with 

top-down processing related to memory search48,49. We additionally 

detected a small subset of clusters with multidirectional patterns, with 

three or more main directions, which may be interesting to explore in 

future work.

Our findings suggest that many TWs relevant to behaviour are 

endogenous and ongoing in the brain, rather than being evoked by 

task events. This is most notable for alpha-band TWs, whose direction 

correlated with performance before word presentation during encod-

ing, indicating that the oscillations were present prior to stimulus 

onset. This heightened relevance of alpha-band TWs prior to encod-

ing indicates a distinct role in priming relevant brain regions to be in 

an optimal state for successfully encoding an item into memory68373. 

In contrast to our alpha-band results at early time points, it is notable 

that we found that theta-band TWs correlated with memory at later 

time points, because this suggests that theta TWs have a fundamentally 

different functional role60,74376.

It might be considered surprising that some of our results were 

not observed previously, given that human brain oscillations have been 

measured for decades. It is possible that many previous studies report-

ing directional patterns in a range of behaviours were actually related 

to TWs75,77379. Our results relied on new analytical methods, which may 

have been essential for our findings. In particular, one challenging 

aspect of measuring TWs in humans is that there is substantial variation 

in oscillation frequencies and propagation directions across partici-

pants and brain regions. Our analysis framework accommodated this 

diversity by measuring each participant9s TWs in a customized manner 

rather than assuming identical propagation and frequencies across all 

participants. The fact that we observed substantial variability across 

individuals emphasizes the importance of analysing human brain data 

in a manner that accounts for electrophysiological differences between 

participants80382. Additionally, we detected many oscillation clusters 

with contacts crossing sulci and gyri. We consider such contacts to 

be part of the same oscillation cluster. Since anatomical geometries 

probably impact spatiotemporal neural dynamics83, future work may 

explore changes in directional patterns across sulci and gyri using an 

inflated brain surface of the cortex model84. In light of the analytical 

challenges of measuring TWs in humans and the hints of similar pat-

terns in prior literature, TWs may actually have a much broader role in 

behaviour and cognition than previously appreciated.

TWs may be useful for practical purposes, beyond fundamental 

research. Our findings have translational and clinical applications 

because they suggest that measuring TWs could improve our abil-

ity to interface with the brain and diagnose neurological disorders. 

For brain3computer interfacing, TWs might be a useful neural signal 

for more effectively decoding the brain9s current state. In particular, 

our direction results indicate that measuring TW propagation can 

indicate whether the current brain state is well suited for memory 

encoding. Going forward, it may be possible to use TWs to meas-

ure more advanced aspects of cognition, perhaps with the use of 

improved recording methods, including high-density neural record-

ing arrays44,85,86, as well as non-invasive methods16,87,88. Furthermore, 

TWs could provide biomarkers for identifying neurological disorders 

related to abnormal neural connectivity such as autism89 or epilepsy90. 

Characterizing the directional propagation of TWs thus holds the 

potential for new approaches to brain3computer interfacing and 

disease diagnosis by revealing when the brain9s current communica-

tion state is abnormal. TWs may also be useful for guiding the clinical 

use of brain stimulation, by providing a target biomarker that reflects 

neural connectivity.

Methods
Participants
The 93 participants who contributed data to our study by performing 

an episodic memory task were pharmacoresistant epilepsy patients 

surgically implanted with grids and strips of electrodes on the surface 

of their cortex for the purpose of identifying epileptogenic regions. 

The patients9 clinical teams determined electrode placement to best 

monitor each patient9s epilepsy. Data for the episodic memory task 

were collected at eight hospitals: Thomas Jefferson University Hos-

pital (Philadelphia, Pennsylvania), University of Texas Southwestern 

Medical Center (Dallas, Texas), Emory University Hospital (Atlanta, 

Georgia), Dartmouth3Hitchcock Medical Center (Lebanon, New 

Hampshire), Hospital of the University of Pennsylvania (Philadelphia, 

Pennsylvania), Mayo Clinic (Rochester, Minnesota), National Institutes 

of Health (Bethesda, Maryland) and Columbia University Hospital 

(New York, New York). Following approved institutional review board 
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experimental protocols at each hospital, all participants provided 

informed written consent.

Verbal memory task
In the episodic memory task, the participants performed a verbal 

free-recall paradigm28, in which they were asked to memorize a list 

of 12 words sequentially presented as text on the computer screen.  

Figure 2a presents the timeline of an example list. Each word was pre-

sented for 1,600 ms, followed by a blank screen for 75031,000 ms. The 

lists consisted of high-frequency nouns (http://memory.psych.upenn.

edu/Word_Pools). After the list, the participants were presented with a 

20 s math distractor task prior to recall. During recall, the participants 

were given 30 s to verbally recall the words in any order. We recorded 

the verbal responses on a microphone and then manually scored the 

recordings after the task.

Participants performed one or both versions of this task that dif-

fered in the semantic categorization of the word lists. One version of the 

task selected 300 words from the Toronto word pool with intermediate 

recall performance. Lists of 12 words were constructed such that the 

mean pairwise semantic similarity within list was relatively constant 

across lists. For the categorized version of the free-recall task, the words 

were selected from semantic categories rated by users using Amazon 

Mechanical Turk and sequentially presented as categorical pairs of 

words from the same category. Each list consisted of four words drawn 

from each of the three categories such that two pairs drawn from the 

same semantic category were never presented consecutively.

Electrocorticographic brain recordings and referencing
During the tasks, data were recorded at 500, 1,000 or 1,600 Hz using 

a clinical intracranial electroencephalographic recording system at 

each hospital (Nihon Kohden EEG-1200, Natus XLTek EMU 128, Natus 

Quantum EEG or Grass Aura-LTM64 systems). Subdural grid and strip 

electrodes had a distance of 10 mm between contacts. Each electrode9s 

signal was initially referenced to a common contact placed intracrani-

ally, on the scalp or on the mastoid process. We filtered electrical line 

noise using a fourth-order Butterworth notch filter at 58362 Hz. We 

identified the location of each electrode by co-registering a structural 

magnetic resonance image taken prior to surgery with a computed 

tomography image after the electrodes were surgically implanted to 

compute electrode locations in standardized Talairach coordinates91.

Identifying TWs
We defined a TW as a single oscillation at one frequency that appears 

across a region of cortex with a progressive phase shift. To identify TWs 

in our data, we first used an algorithm to identify spatially clustered 

groups of electrodes, or oscillation clusters, that showed oscillations 

at approximately the same frequency. We then measured whether 

the phase across these clusters showed the progressive phase shift 

that characterizes TWs9,92. To find these oscillation clusters, we first 

identified groups of at least five neighbouring surface electrodes that 

showed narrowband oscillations within a 2 Hz window, while being 

within 25 mm of at least one other electrode with a similar frequency 

peak. We found the frequencies of these narrowband oscillations on 

each electrode individually by identifying peaks in the normalized 

power spectrum, which we measured at 200 frequencies logarithmi-

cally spaced from 2 to 40 Hz using Morlet wavelets. We removed the 

1/f background signal and identified peaks that were local maxima that 

were at least one standard deviation above the mean.

Next, building on methods from Zhang et al.9, we identified TWs 

by identifying local plane waves across the electrodes in each oscilla-

tion cluster using a circular3linear regression model30. To measure the 

instantaneous phase at each electrode, we first applied a Butterworth 

filter to each electrode9s signal on each trial, with a filter bandwidth that 

extended ±15% around the electrode9s mean narrowband frequency. 

We then measured the instantaneous phase of each electrode9s filtered 

signal using the Hilbert transform. At each time point, we converted 

the phase at each electrode to a relative phase shift by subtracting the 

mean phase of the oscillations measured across all electrodes in the 

oscillation cluster. We used circular statistics to manipulate all phase 

values with the Python library PyCircStat toolbox93.

Measuring local propagation direction
Having computed the relative phase shift on each electrode at each time 

point, we next tested for spatial propagation of the oscillation across 

the cluster. Whereas our earlier work performed this task by fitting one 

propagation direction for the entire cluster9, here we separately fit the 

direction for each electrode individually. By allowing each electrode 

to have its own propagation direction, this method has improved sen-

sitivity to TWs with non-planar and complex propagation patterns, as 

well as to TWs that were present at only a subset of the electrodes in the 

cluster, which could otherwise not be detected reliably with a singular 

phase gradient across the entire oscillation cluster. Using this method, 

we were able to able to capture complex, non-planar patterns where 

a singular phase gradient for the entire cluster would not suffice (see 

example clusters in Extended Data Fig. 7).

We fit the circular3linear model for each electrode individually, 

on the basis of the phase gradient measured on the nearby electrodes 

(within 25 mm) in the cluster. We fit this model only for electrodes with 

at least three nearby contacts. This procedure measured the features of 

the TW propagation around each electrode by quantifying the propa-

gation direction (an angle α ∈ [0°, 360°]) and the spatial frequency 

(ξ ∈ [0° mm−1, 18° mm−1]). To compute these parameters that describe 

the local TW at each electrode i and time point, we fit the equation
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where a = ξcos(α), b = ξsin(α), and x and y are the electrode9s spatial 

coordinates. Following earlier work9,30, we used a grid search to opti-

mize the values for a and b. This grid search identified the propagation 

direction and spatial frequency for each TW by minimizing the differ-

ence between the predicted phase ( ̂

θ) and actual (θ) phase values across 

the nearby electrodes. Phase velocity, or the distance a cycle of an 

oscillation travels over time, was derived from spatial frequency and 

oscillation frequency. We measured the statistical reliability of each 

model fit by computing the circular correlation coefficient between 

the predicted and actual phases and then adjusting for the number of 

fitted parameters and data points (ρadj)
9,94.

Applying this model to each electrode individually, we then used 

two criteria to label an electrode cluster as exhibiting a significant TW 

on a given trial. First, we required that each cluster have a reliable phase 

gradient at the group level, as determined by averaging the adjusted 

correlation coefficient from all the electrodes in the cluster and ensur-

ing it was above 0.2 (that is, ρ2

adj

≥ 0.2). Second, we ensured that the 

mean power spectrum across all electrodes exhibited a robust nar-

rowband peak. See Extended Data Fig. 3 for examples of trials without 

significant TWs. On the basis of these criteria, we included in our analy-

ses oscillation clusters that had reliable TWs on at least 30 encoding 

trials and at least 10 successful encoding trials with TWs.

Controlling for measurement inaccuracy from spatial aliasing
The 1 cm distance between cortical grid and strip electrodes with which 

we recorded TWs leads to the theoretical possibility of incorrectly 

estimating the directions and phase velocities of TWs due to inad-

equate spatial sampling (Extended Data Fig. 1a). Spatial aliasing, the 

inadequate sampling of neural oscillations in space across the cortex, 

may occur when half the spatial wavelength of a propagating oscillation 

is less than the distance between electrodes. For 1 cm electrode spacing, 

this occurs when oscillations have a spatial frequency of greater than 

π/2 cycles per centimetre, which is most common when high-frequency 

oscillations propagate at slow phase velocities (Extended Data Fig. 1b). 
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When spatial sampling is inadequate, it is theoretically possible for the 

phases measured on adjacent electrodes to not reflect the same cycle 

of a travelling oscillation but rather be from the previous or next cycles 

(Extended Data Fig. 1a, middle). In these cases, the correct propagation 

direction can be determined with complete certainty only with greater 

spatial sampling or higher-density electrode grids and strips (Extended 

Data Fig. 1a, right).

To control for this issue, we implemented a framework to exclude 

trials that could be susceptible to spatial aliasing (Extended Data  

Fig. 1c3f). To identify these trials, we used a complementary method 

for measuring wave propagation based on measuring the time-lagged 

cross correlation between the raw signals measured on adjacent neigh-

bouring electrodes (Extended Data Fig. 1c,d). This method is less sensi-

tive to aliasing because it can take advantage of a range of frequencies 

as well as non-sinusoidal aspects of the signal besides phase to measure 

propagation. If the time lag of maximum coupling measured from 

cross correlation aligned with the phase differences measured from 

narrowband oscillations, we could proceed in measuring TW direction 

with certainty that spatial aliasing was not occurring (Extended Data 

Fig. 1e). When time-lagged cross correlation did not align with phase 

measurements, particularly if the time lag corresponded with the 

duration of one wavelength of the oscillation frequency in the posi-

tive or negative direction, it is possible that the propagation direction 

measured with phase differences was inaccurate due to spatial aliasing 

(Extended Data Fig. 1f). When excluding these trials across all oscilla-

tion clusters, we found that 83% of trials were not susceptible to spatial 

aliasing. We did not find evidence that smaller oscillation clusters may 

be more susceptible to spatial aliasing (Spearman9s ρ = 0.22, P = 0.99, 

one-tailed test of negative correlation). We thus included in our study 

only the trials where the measured wave propagation was consistent 

between the time-lagged cross correlation and phase methods.

We performed a simulation with constructed TWs where we knew 

the ground-truth propagation direction to measure the impact of 

aliasing on the measurements of TW direction with actual human brain 

signals. Because human brain signals are not perfectly sinusoidal, we 

inferred that aliasing would be less likely with actual human brain sig-

nals (Extended Data Fig. 1h3j). We found that the propagation direction 

of only 56% of beta oscillation trials could be measured accurately with 

perfect sine waves; however, when measuring this percentage using 

real human brain signals, 73% of trials could be measured accurately 

(Extended Data Fig. 1h,i), thus indicating that aliasing is less of a concern 

with human brain waves than with sine waves. Nonetheless, to be sure 

that aliasing did not meaningfully impact our results, we applied an 

additional procedure where we removed all trials that were potentially 

susceptible to spatial aliasing as determined with the time-domain 

method described above. Our simulation shows that excluding these 

17% of trials across the dataset increased the accuracy of direction 

measurement to 99% (Extended Data Fig. 1j).

Categorization of cluster directionality
Across oscillation clusters, we found TWs that exhibited wide-ranging 

propagation patterns, including unimodal, bimodal and multimodal 

distributions of directions. To characterize these diverse patterns, we 

designed a method to quantify multimodal directional distributions 

rather than only unimodal directional distributions.

To characterize these varying types of propagation patterns, we 

fit a mixture of von Mises distributions30 (the circular analogue to 

Gaussian distributions) to the distribution of propagation directions 

from all encoding trials (Extended Data Fig. 5). We fit this pattern using 

a non-parametric model-fitting procedure for circular data, which 

modelled the overall direction distribution as a mixture of multiple von 

Mises distributions, each with a different angle and magnitude. In this 

model, each individual fitted von Mises distribution reflects one par-

ticular direction in which the TWs on the cluster frequently propagate. 

Distributions fitted with more than one von Mises distribution thus 

showed multiple distinct propagation directions. We used an iterative 

method to determine the best-fitting mixture of von Mises curves, as 

the sum of the minimum number of von Mises curves (each centred at 

a different direction) that would fit at least 99% of the variance in the 

original distribution of propagation directions57,95. We then labelled 

each cluster as showing unidirectional or bidirectional propagation 

on the basis of the directions and magnitudes of the mixture of indi-

vidual fitted von Mises curves. If at least 80% of a cluster9s propagation 

directions were fit by a single von Mises curve, then we labelled it as 

showing unidirectional propagation. Likewise, we labelled a cluster as 

bidirectional if two von Mises distributions (each representing 20380% 

of TW directions) were required to capture its propagation distribution. 

We labelled a cluster as showing non-directional TW propagation if it 

exhibited no consistent direction over trials (Rayleigh test, P > 0.05) 

or if its propagation patterns could be accurately fit only by a mixture 

of three or more von Mises distributions (this was required in 6% of all 

clusters). We measured some oscillation clusters in the 233 Hz range, 

and there seemed to be no distinct functional role between these 

lower-frequency clusters and theta3alpha-band clusters; thus, we 

grouped them in with theta-band clusters.

Determining a cluster’s preferred propagation direction
Next, for the clusters with bidirectional TW propagation, we tested 

whether one of the two predominant directions was preferred for mem-

ory encoding. To do this, we followed the earlier fitting approach but 

applied it just to the trials where memory encoding was successful. We 

labelled the cluster9s preferred direction as the angle of the von Mises 

distribution from the overall model fit that was closest to the most prom-

inent propagation direction fit to the successful encoding trials. We 

determined the preferred angle from the model fit to all trials because 

this larger dataset provided more precision in categorizing propagation 

directions as either towards or away from the preferred encoding direc-

tion. On the basis of these calculations, we then used the fitted angles to 

label whether a TW on each individual trial propagated towards or away 

from the cluster9s preferred encoding direction (Fig. 3c).

Calculating the relation between TW direction and memory
To measure the timing of the link between a cluster9s propagation direc-

tion and memory encoding, we measured the prevalence of TWs mov-

ing towards or away from the preferred encoding direction at different 

time offsets relative to stimulus presentation. We performed this cal-

culation separately for trials where the word was successfully encoded 

and for trials where it was unsuccessfully encoded. We determined the 

cluster9s preferred propagation direction on the basis of the time point 

with the strongest difference in propagation direction between suc-

cessful and unsuccessful memory encoding, and we then recalculated 

the entire time course (2.6 s starting and ending 0.5 s before and after 

word presentation) of difference scores for each cluster on the basis 

of that identified preferred encoding direction. We used permutation 

tests to determine the statistical significance of the relation between 

TW propagation and memory encoding (see below).

For memory recall, we used a related method to identify the behav-

ioural role of TW direction. At each time point relative to word recall, we 

calculated the percentage of trials with TWs propagating in the cluster9s 

preferred encoding direction, as determined during encoding. We calcu-

lated this for the 3 s prior to word recall or from the time of the previously 

spoken word if within 3 s of each other. Because we wanted to measure 

task-related changes, and individual clusters showed variability in their 

overall level of TW propagation, we performed a baseline normalization 

for each cluster. For each cluster, we normalized the observed percent-

age of TWs propagating in the preferred encoding direction relative to 

the cluster9s non-memory baseline. This baseline included task periods 

with no stimuli on screen, including intertrial intervals.

To examine whether TWs moved in specific anatomical directions 

for particular memory processes (Fig. 4), across all oscillation clusters 
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we computed a weighted distribution of the anatomical directions of TW 

propagation for each memory process. The weighting for each cluster9s 

directions was determined from the percentage of individual trials that 

was captured by that direction9s underlying von Mises curve. This method 

ensures that the shape of the overall circular histogram is representative 

of the population9s proportion of waves propagating in each direction.

Statistical procedures
We used a cluster-based permutation procedure to assess whether the 

directional patterns that distinguished successful versus unsuccess-

ful memory encoding were statistically reliable96. For each oscillation 

cluster, we generated 100 random surrogate datasets by shuffling the 

labels that indicated whether each item presentation was successfully 

remembered or forgotten. Then, for each random surrogate dataset, 

we recomputed the statistical procedure, thus providing a distribution 

of surrogate test statistics. We tested the significance of the original 

directional difference score by comparing its test statistic with the dis-

tribution of surrogate test statistics. This procedure adjusts for multiple 

comparisons across time points because we summed the significant test 

statistics for each trial across all potentially significant clusters of con-

tiguous time points that were individually significant at P < 0.05 (ref. 97).

We performed a similar procedure to assess significance for recall, 

except here we tested the statistical significance of pre-recall direc-

tion shifts using two-sided binomial tests. The tests compared the 

prevalence of preferred encoding and preferred recall propagation 

at each time point before recall relative to the level in the baseline 

period for that cluster, correcting for multiple comparisons with the 

FDR procedure98.

To test the reliability of memory-related direction changes 

across all participants during both encoding and recall, we used a 

non-parametric two-sided cluster-based permutation test of one sam-

ple against zero96. This method identified contiguous time periods 

relative to the timing of behavioural events where TWs showed reli-

able increases or decreases in propagation towards or away from their 

preferred encoding direction. This procedure assessed significance at 

the group level for consecutive temporal intervals by comparing the 

results with those found from applying the same procedure to 1,000 

surrogate values from random shuffling, with correction for multiple 

comparisons by calculating the test statistic using the maximum value 

of the cluster-level summed statistics.

Reporting summary
Further information on research design is available in the Nature 

Portfolio Reporting Summary linked to this article.

Data availability
The raw electrophysiological data used in this study are available upon 

request at https://memory.psych.upenn.edu/Data_Request.

Code availability
The custom code and analyses are available at https://github.com/

umarmohan/freerecall_travelingwaves.
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Extended Data Fig. 1 | Exclusion of trials with potential inaccurate 

measurement of propagation direction due to spatial aliasing. (A) Adequate 

spatial sampling when low-frequency oscillations propagate propagate across 3 

widely spaced electrodes(left). Inadequate spatial sampling for higher-frequency 

oscillations propagating across 3 electrodes with the same spacing (middle). 

Arrows indicate two possible propagation direction measurements. Higher 

density electrode spacing would disambiguate the true propagation direction 

(right). (B) Combinations of oscillation frequencies and phase velocities where 

there is adequate and inadequate spatial sampling with 1 cm electrode spacing, 

determined by whether half the spatial wavelength of a propagating oscillation 

is less than 1 cm, shown in green and red, respectively. (C) Example 1 s of a trial 

with a traveling wave propagating in space across five adjacent electrodes of 

an alpha oscillation cluster in patient 34. (D) Time-lagged cross correlation 

for entire trial measured between adjacent electrodes (a) and (b) in oscillation 

cluster. Time of maximum coupling measured at -11 ms indicated by red star 

showing signal on electrode (b) leads electrode (a). (E) Correlation between time 

differences between electrodes (a) and (b) measured via phase differences with 

the time-lag measured from cross-correlation for unsuccessful encoding trial 

son the left and successful encoding trials on the right. Strong correlation along 

unity lines indicates alignment between the two measurements such that no 

trials were susceptible to spatial aliasing. (F) Correlation between phase-based 

time differences and correlation-based time differences for a beta oscillation 

cluster with 18% of trials showing an inconsistency between the two methods. 

Red time lags measured via cross-correlation indicate that the true lag between 

the signals on those trials was approximately a cycle forward or backwards 

indicating the potential for spatial aliasing when measuring only using phase. (G) 

When excluding trials with these inconsistencies across all clusters in the dataset, 

approximately 83% of trials were not susceptible to spatial aliasing (right) across 

all oscillation clusters (n=421). Error bars denote ± 1 SEM. (H) Percent of trials in 

which the correct direction could be measured using phase differences when 

perfect sinusoidal signals were shifted across five simulated electrodes (n=421). 

(I) Percent of trials in which the correct direction could be measured using 

phase differences when imperfect eeg signals were shifted across five simulated 

electrodes (n=421). ( J) Percent of trials in which the correct direction could be 

measured using phase differences when real eeg signals were shifted across 

five simulated electrodes after excluding trials that were susceptible to spatial 

aliasing (n=421).
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Extended Data Fig. 2 | Narrowband power at oscillation clusters that 

showed traveling waves in the episodic memory task. (A) Mean normalized 

narrowband power centered around each oscillation cluster9s peak frequency 

across all 93 participants, calculated with the log-transformed amplitude of the 

Hilbert transform prior to selecting trials with sufficient oscillatory power, wave 

strength, and no potential for spatial aliasing. (B) Mean normalized narrowband 

power for oscillation clusters that showed traveling waves averaged over time in 

all 93 participants, separately calculated during time periods when TWs moved 

posteriorly and anteriorly, during successful and unsuccessful encoding trials. 

There were no significant differences in mean power across the clusters that 

showed posterior and anterior propagation (all p9s > 0.05, two-sided t-test). Error 

bars denote ± 1 SEM.
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Extended Data Fig. 3 | Example data showing the absence of traveling waves. 

(A) Example trial where a traveling wave was not present on a cluster that often 

showed 8.9-Hz oscillations that propagated as TWs on other trials. Filtered 

signals from five channels during one trial of memory task from participant 

34. (B) Timecourse of adjusted τ2 across the cluster used to measure statistical 

reliability of circular-linear models fit to the phase gradients. (C) Brain map with 

arrows indicating, for each electrode, the calculated local propagation direction. 

Arrow color indicates relative phase at time indicated by black line in A. (D-F) 

Same as (A-C) for additional example trial.

http://www.nature.com/nathumbehav


Nature Human Behaviour

Article https://doi.org/10.1038/s41562-024-01838-3

Extended Data Fig. 4 | Characteristics of cortical traveling waves during 

encoding and recall of episodic memory task. (A) Histogram of the peak 

oscillation frequencies for clusters with TWs. All green histograms are properties 

measured during encoding and blue during recall. (B) Histogram of the number 

of electrodes in each cluster. (C) Histogram of the counts of clusters per patient 

that showed TWs. Most participants had 2 to 4 clusters across different sets of 

grid and strip electrodes or groups of electrodes with oscillations at different 

peak frequencies. A few patients had 5 or more. Patients with many clusters 

often had multiple smaller clusters of 5-6 electrodes in different regions and 

hemispheres. (D) Distribution of the percentage of single trials that show reliable 

TWs for individual clusters. (E) Histogram of TW propagation phase velocities 

across clusters. Black line indicates median. (F) Histogram of TW spatial 

wavelength.
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Extended Data Fig. 5 | Examples of clusters that showed traveling waves with different types of directional propagation patterns. Plots show example direction 

distribution for TWs we labeled as propagating in (A) unidirectional, (B) bidirectional, and (C) nondirectional fashions.
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Extended Data Fig. 6 | Population categorization of cluster direction 

patterns in episodic memory task. (A) Percent of TW clusters in each oscillatory 

range identified as bidirectional, unidirectional, and nondirectional across 

all 93 participants. (B) Mean percent recall rates across 93 participants that 

showed a TW cluster with unidirectional, bidirectional, and nondirectional 

TW propagation, by oscillatory frequency band (linear mixed effects 

model, bidirectional vs. unidirectional clusters: p=0.062; bidirectional vs. 

nondirectional TW clusters:, p=0.002, Tukey contrast multiple comparisons 

test). Error bars denote ± 1 SEM. (*p < 0.05, * * p < 0.01, two-sided t-test).  

Overall, participants who showed bidirectional TW propagation showed a  

5.8% higher rate of successful memory encoding compared to participants with 

unidirectional and multidirectional patterns, indicating that bidirectional TW 

propagation may be a feature of normal cognition.

http://www.nature.com/nathumbehav
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Extended Data Fig. 7 | Traveling waves in example participants who showed a link between TW direction and memory. (A) Example traveling wave in patient 89 at 

7.8 Hz; format of individual plots follows Fig. 3. (B) Example traveling wave frontal cortex of patient 130 at 10.8 Hz.
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Extended Data Fig. 8 | Direction distributions during memory encoding 

and recall. (A) Distribution of clusters’ pre-dominant propagation directions 

for all theta TWs measured on oscillation clusters in the Frontal, Temporal, and 

Parietal/Occipital regions during memory encoding and recall at the timepoint 

of maximal memory-related effects. TW propagation directions were weighted 

by the proportion of trials with TWs propagating in each directions captured (see 

Methods). (B) Same as (A) for alpha-band TWs (C) Same as (A) for beta-band TWs.
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Extended Data Fig. 9 | Relation between TW directional shifts and memory 

processing. (A) Normalized difference in the prevalence of TWs propagating in 

the preferred encoding direction versus the opposite direction for successful 

encoding relative to the cluster9s natural bidirecitonal split (averaged across 

word presentation intervals). Asterisks indicate specific regions and oscillatory 

bands where the normalized percent of TWs traveling in preferred encoding 

directions across clusters is significantly above a distribution of shuffled TW 

directions (p9s < 0.05, one-sided binomial tests against 0, Cluster counts in 

Suplementary Table 1). Error bars denote ± 1 SEM. (B) Normalized difference 

of TWs propagating in preferred encoding versus preferred recall direction 

averaged during 2 seconds prior to verbal recall. Asterisks indicate specific 

regions and oscillatory bands where the normalized percent of TWs traveling in 

preferred encoding directions across clusters is significantly below a distribution 

of shuffled TW directions (p9s < 0.05, one-sided binomial tests).
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Extended Data Fig. 10 | Hypothesized relations between traveling wave (TW) 

direction and memory processes. When presented with a list of words during 

an episodic memory task, successful memory encoding more likely when waves 

propagated in the preferred encoding direction, as opposed to the opposite 

direction, characterized as the preferred recall direction. We hypothesize that 

preferred encoding and preferred recall TW propagation may reflect more 

general neural processes including feedforward and feedbackward cortical 

processing, respectively.

http://www.nature.com/nathumbehav
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 

in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Data recordings were performed using commercial software for clinical intracranial electroencephalographic recording systems at each 

hospital (Nihon Kohden EEG-1200, Natus XLTek EMU 128, Natus Quantum EEG, or Grass Aura-LTM64 systems). 

Data analysis Data were analyzed with Python 3.6.7 using its built-in functions as well as publicly available libraries Python Time Series Analysis Toolbox (v. 

2.0.3, https://github.com/pennmem/ptsa), CMLReaders toolbox (v. 0.9.3, https://github.com/pennmem/cmlreaders), PyCircStat toolbox (v. 

0.0.2), mne (v. 0.19.2), nilearn (v. 0.9.2), FOOOF (v. 1.0.0), and FreeSurfer (v. 7.1.1) . All traveling wave analyses were performed using custom 

code (https://github.com/jacobslab/Traveling-wave-analysis, https://github.com/umarmohan/freerecall_travelingwaves). 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The raw electrophysiological data used in this study are available at http://memory.psych.upenn.edu/RAM.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 

and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Individual patients' sex is reported in the supplemental subject table. 

 

Reporting on race, ethnicity, or 

other socially relevant 

groupings

Additionally, individual patients' age, handedness, clinical electrode coverage of surface grid and depth electrodes, and 

locations of electrodes included in the analyses are reported in the supplemental subject table. Race and ethnicity of patients 

were collected

Population characteristics 48 patients were male and 45 patients were female. All patients in this study were adults with their ages ranging from 19 to 

57. Additional data on handedness and clinical electrode coverage are reported in the supplemental subject table. 

Recruitment Collaborating clinical teams at the following hospitals (Thomas Jefferson University Hospital (Philadelphia, PA); University of 

Texas Southwestern Medical Center (Dallas, TX); Emory University Hospital (Atlanta, GA); Dartmouth–Hitchcock Medical 

Center (Lebanon, NH); Hospital of the University of Pennsylvania (Philadelphia, PA); Mayo Clinic (Rochester, MN); National 

Institutes of Health (Bethesda, MD); and Columbia University Hospital (New York, NY)) recruited subjects undergoing 

treatment for pharmacoresistant epilepsy, and performed clinical duties associated with data collection including 

neurosurgical procedures and patient monitoring. Data was drawn from this publicly available database, and active 

recruitment was not a apart of this study. 

Ethics oversight Prior to data collection, research protocols were approved by the Institutional Review Board at participating hospitals 

(Thomas Jefferson University Hospital, University of Texas Southwestern Medical Center, Emory University Hospital, 

Dartmouth–Hitchcock Medical Center, Hospital of the University of Pennsylvania, Mayo Clinic, National Institutes of Health, 

Columbia University Hospital), and informed consent was obtained from each participant. Data acquisition and storage was 

coordinated by the Data Coordinating Center (DCC) at the University of Pennsylvania (IRB protocol 820553).

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size We analyzed data of 160 subjects (93 showing traveling waves) who were pharmacoresistant epilepsy patients surgically implanted with grids 

and strips of electrodes on the surface of their cortex for the purpose of identifying epileptogenic regions. Patients performed an episodic-

memory task. No statistical methods were used to determine sample size in advance. All patients in the database who performed an episodic 

memory task and had electrodes implanted on the surface of their cortex were studied. 

Data exclusions Data recording segments with epileptiform discharges or electrical artifact were excluded from analyses. A patient's data were excluded from 

analyses if they did not show any clusters of at least 5 electrodes with oscillations at the same frequency or if the oscillations clusters did not 

show reliable traveling waves on a sufficient number of trials. For patients with reliable traveling waves, trials were excluded if they did not 

show oscillations or if the oscillations present were not spatially organized as traveling waves. 

Replication The main findings were replicated by conducting analyses independently on all subjects with and without the addition of exclusion criteria for 

specific segments of data. Repetition of permutation and subsampling control analyses further confirmed main findings. Our main findings 

were replicable across multiple subjects as well as multiple sessions within subjects who performed multiple sessions of the task. Data are 

publicly available enabling independent researchers to replicate these findings.
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Randomization N/A since subjects were not grouped. 

Blinding N/A since subjects were not grouped. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Magnetic resonance imaging

Experimental design

Design type T1 and T2 weighted structural MRIs taken prior to patients being implanted with electrodes. MRIs were taken purely for 

clinical purposes to indicate electrode locations and were not part of these analyses. 

Design specifications N/A. MRIs were taken purely for clinical purposes to indicate electrode locations and were not part of these analyses. 

Behavioral performance measures N/A. MRIs were taken purely for clinical purposes to indicate electrode locations and were not part of these analyses. 

Acquisition

Imaging type(s) Structural MRI and CT

Field strength 3T MRI prior to electrode implantation and 1.5 T MRI following

Sequence & imaging parameters Sequence & imaging parameters: Imaging parameters varied somewhat among institutions in this multisite study. In 

general, sequences required for macroelectrode and microwire localization included 3D Tl-weighted with 1 mm or less 

isotropic resolution, coronal fast spin echo T2-weighted with 0.4 x 0.4 mm in-plane resolution and 2 mm slice thickness, 

and CT with less than 1 mm slice thickness. Representative examples are as follows: Pre-implant 3D Tl-weighted 

MPRAGE (TR 1900 ms, TE 2.52 ms, flip angle 9, 1 mm isotropic resolution, 216 x 256 x 174 matrix), pre-implant coronal 

FSE T2-weighted (TR 7200 ms, 76 ms, ETL 15, flip angle 139, 0.4 x 0.4 x 2 mm, 448 x 448 x 30), post-implant CT (0.5 x 0.5 

x 0.625 mm, 512 x 512 x 384) 

Area of acquisition Tl - whole brain, T2 - temporal lobes spanning and oriented in the coronal plane

Diffusion MRI Used Not used

Preprocessing

Preprocessing software Freesurfer’s automated cortical parcellation based on the Desikan-Killiany brain atlas 

Normalization We identified the location of each electrode by co-registering a structural magnetic resonance image (MRI) taken prior to 

surgery with a computed tomography (CT) image after electrodes were surgically implanted in order align the images to each 

other using rigid registration based on mutual information with Advanced Normalization Tools (ANTS) software to compute 

electrode locations in standardized Talairach coordinates

Normalization template Electrode locations normalized in Talairach coordinates. 

Noise and artifact removal N/A. No noise or artifact removal was used. 

Volume censoring N/A. No volume censor was used. 
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Statistical modeling & inference

Model type and settings N/A. No statistical modeling was used as MRIs were taken purely for clinical purposes to indicate electrode locations and 

were not part of these analyses. 

Effect(s) tested N/A. No effects tested as MRIs were taken purely for clinical purposes to indicate electrode locations and were not part of 

these analyses. 

Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference

(See Eklund et al. 2016)

N/A. No inference was performed as MRIs were taken purely for clinical purposes to indicate electrode locations and were 

not part of these analyses. 

Correction N/A. No correction was performed as MRIs were taken purely for clinical purposes to indicate electrode locations and were 

not part of these analyses. 

Models & analysis

n/a Involved in the study

Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis


