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Geometric transitions between Calabi-Yau manifolds have proven to be a powerful tool in exploring the
intricate and interconnected vacuum structure of string compactifications. However, their role in A = 1,
four-dimensional string compactifications remains relatively unexplored. In this work we present a novel
proposal for transitioning the background geometry (including NS5-branes and holomorphic, slope-stable
vector bundles) of four-dimensional, A = 1 heterotic string compactifications through a conifold transition
connecting Calabi-Yau threefolds. Our proposal is geometric in nature but informed by the heterotic
effective theory. Central to this study is a description of how the cotangent bundles of the deformation and
resolution manifolds in the conifold can be connected by an apparent small instanton transition with a
5-brane wrapping the small resolution curves. We show that by a “pair creation” process 5-branes can be
generated simultaneously in the gauge and gravitational sectors and used to describe a coupled minimal
change in the manifold and gauge sector. This observation leads us to propose dualities for 5-branes and
gauge bundles in heterotic conifolds which we then confirm at the level of spectrum in large classes of
examples. While the 5-brane duality is novel, we observe that the bundle correspondence has appeared
before in the target space duality exhibited by (0, 2) gauged linear sigma models. Thus our work provides a
geometric explanation of (0, 2) target space duality.

DOI: 10.1103/PhysRevD.108.106018

I. INTRODUCTION

Geometric transitions [1-7] connecting topologically dis-
tinct background geometries of string theory have long played
a key role in the study of the string landscape and string
effective field theories in diverse dimensions. In the
best understood examples of Calabi-Yau threefold (CY3)
compactifications, such transitions consist of (1) conifold
transitions—in which the complex structure of one CY3
manifold is tuned to a singular limit and then a new smooth
manifold can be obtained via a small resolution, and (2) flop
transitions—in which two CY3s are different small resolu-
tions of the same nodal variety. In the case of CY3 manifolds
[and more generally manifolds of SU(3) structure], it has been
conjectured that all such topologically distinct manifolds can
be connected by geometric transitions [8].

The most robust examples of such transitions being
understood field theoretically have arisen in N =2
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theories in four dimensions (see e.g. [9,10]). In contrast,
geometric transitions in four-dimensional theories exhibit-
ing N' =1 supersymmetry have proven much harder to
study both field theoretically and geometrically. For exam-
ple, in heterotic string theory, the background consists not
only of a compact manifold, X, but also a nontrivial gauge
bundle over it (more precisely a holomorphic, slope-stable
vector bundle V) and possibly other nonperturbative
elements such as NS5-branes. Thus, in a conifold tran-
sition, not only must the singular geometry of X
be addressed, but also the question of what happens to
the bundle V (or 5-branes) on this singular geometry.
Moreover, singularities arising in the bundle in heterotic
theories are known to sometimes lie outside the limits of
ordinary field theory. A key example of this is the so-called
“small instanton transitions” [11] involving NS5-branes
and singular limits of the bundle which are known to lead to
tensionless, noncritical strings [12]. Despite some explora-
tion [13], it remains an open question whether geometric
transitions can controllably be described in heterotic
theories at all, or whether the presence of gauge fields/5-
branes in heterotic theories could physically obstruct such a
topology changing transition from taking place.

In this paper we will explore these questions in the
context of conifold transitions in heterotic theories. In
particular, we will outline a novel proposal for how the full
heterotic background can naturally and consistently be
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taken through a conifold transition, and provide substantial
evidence that this proposal is correct.

Our approach is for the most part geometric in nature,
though guided/informed by field theory. It is important to
note that some limitations are forced on any would-be,
purely field-theoretic analysis in the A =1 heterotic
context, since key information about the heterotic moduli
space remains unknown. These missing ingredients include
an explicit/analytic description of the matter field
Kéhler potential, and hence the full moduli space metric
(see [14-21] for some recent progress), as well as the fact
that field theory alone (as opposed to tensionless string
limits, superconformal sectors, etc.) is likely not sufficient
to describe the relevant singularities in the manifold/bundle
(as described above for small instantons). It should also be
noted that since our analysis is based primarily in geometry,
our results are relevant a priori only for the perturbative
theory in the large volume, weakly coupled limit. It is clear
that higher order string coupling and « effects, as well as
nonperturbative effects, could play a significant role in the
ultimate physical process. That being said, as we will
demonstrate below, unlike in type II theories, there is some
evidence that the heterotic conifold transition may be a
smoother process than expected in the heterotic moduli
space. For the moment however, we leave these questions
about higher order effects and nonperturbative corrections
to future work and will restrict our focus to the supergravity
(i.e. perturbative, large volume/geometric) limit.

One powerful constraint in heterotic compactifications
arises from the mixed gauge/gravitational anomalies whose
cancellation requires that

ex(Tx) = o(V) +[Cl, (1.1)
where C is an effective curve in the CY3, wrapped by a
5-brane. Across a conifold transition X — X, the second
Chern character of the CY3 manifold changes as
chy(Tx) = chy(Tx) + [P's], (1.2)
where X and X are respectively the deformation and
resolution manifolds of the conifold transition, and [P's]
is the class of the small resolution curves. From this
formula and (1.1) it is clear that if anomalies are to be
canceled consistently on each side of a conifold transition,
the bundle (or 5-brane) must also change and “‘compensate”
for the change in the second Chern character of the
geometry seen in (1.2). That is, the bundle/brane back-
ground must dynamically play a very nontrivial role in a
heterotic conifold transition. This is in contrast to some
early studies of heterotic bundles in conifold transitions
which focused on so-called “‘spectator” bundles which
changed as little as possible through the transition (and
in particular had an unchanged second Chern charac-
ter) [13].

In the following sections we will outline a proposal for
how such a coupled change to manifold and bundle (or
brane) occurs via a kind of pair creation process (in the
singular limit) in which 5-branes are created in both the
gauge and gravitational sectors of the theory simultane-
ously before being “absorbed” back into the holomorphic
cotangent bundle and the background gauge bundle (or
brane configuration), respectively. Written on the resolu-
tion side of the conifold, this pair creation contributes to the
anomaly cancellation condition as

& (Ty) + [Pls] = eo(V) + (€] + [P's]. (1.3)
where V, C are respectively a vector bundle and effective
curve in X. Viewing this as an addition of charges, we see
the pair creation process cancels out of the anomaly due to
the opposite signs arising in the gravitational vs gauge
sectors of the theory. In order to connect this observation to
conifold transitions, we make note of the fact that geo-
metrically the cotangent bundles of the manifolds X and X
are connected via the absorption of a 5-brane (i.e. a small
instanton) wrapping the class [P's] as

0 - 7" (Qy) » Q¢ = Opi(-2) = 0, (1.4)
where X is the singular (i.e. nodal) variety, and 7: X — X
the small contraction (see Fig. 1). As we will review in
Sec. II B, the form of this short exact sequence is exactly
that of a so-called “Hecke transform,” which mirrors
geometrically the way that 5-branes can be absorbed into
bundles during a heterotic small instanton transition. This
process effects a part of the conifold transition (bringing the
resolution geometry to the nodal limit), and thus we can ask
what happens in the gauge sector.

The answer to this latter question is a similar small
instanton (i.e. 5-brane) absorption into the gauge sector, but
here the geometry of the curves is more rich/subtle and
involves curves which play a key role in the conifold
geometry; in particular, curves in X and X which enhance to
Weil non-Cartier divisors in the nodal limit. To elucidate
the geometric details of this process we approach it in
two steps.

(1) We identify special curves from the point of view of

a conifold pair of CY3 manifolds (X, X) which allow
a 5-brane wrapped on them to move through the
conifold transition in an anomaly-consistent manner
[absorbing the required [P's] from (1.3)].

(2) Once these curves are identified it is possible to
merge them consistently into a variety of bundles via
small instanton transitions (i.e. Hecke transforms).
This allows us to extend the correspondence found
for 5-branes to one of vector bundles.

As part of the pure S5-brane study of the transition

enumerated in (1) above, we find that the total massless
degrees of freedom of the theory (including the vector and
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chiral multiplets) are preserved across the conifold tran-
sition. In particular, the massless singlets of the 5-brane-
only theory as counted by

RN(X) + h2(X) + hO(C. N ¢)

= M (X) + R (X) + BO(C, N (1.5)
agree perfectly (despite the fact that the Hodge numbers of
the CY3 are changing). In the above formula C C X and

CcX and N and Ny are their respective normal
bundles. This complete matching of the low energy
effective theory provides evidence that we have uncovered
a new form of heterotic 5-brane duality. We study the
geometry of these curves and their role in the conifold
transition.

Furthermore, with this new heterotic 5-brane duality in
hand, we can extend our observations back into the
perturbative limit by performing small instanton transitions
(i.e. Hecke transforms) to extrapolate a duality for heterotic
gauge bundles. Once again we find pairs of theories for
which the complete massless spectrum is identical. At this
point, it is intriguing to note that the perturbative duality we
find is not wholly new. Upon forming our geometric results
on bundles/conifolds, we find that we are able to reproduce
the geometry of another known (conjectural) duality of
heterotic theories—the “target space duality” (TSD) of
(0, 2) gauged linear sigma models (GLSMs) [22-26]. This
matching provides a deep and nontrivial confirmation of
the validity of our approach. In heterotic TSD two (0, 2)
GLSMs share a nongeometric phase (i.e. a Landau-
Ginzburg or hybrid phase made identical by a nontrivial
relabeling of fields). Upon extending each GLSM back to a
geometric phase it can be observed that two very different
two-dimensional theories appear to give rise to four-
dimensional N =1 heterotic theories with identical
charged and uncharged massless spectra. In particular, in
terms of singletsl

RUY(X) + B> (X) + A (X, Endy(V))

= h(X) + h>(X) + k' (X, Endy(V)).  (1.6)
Although target space duality has been observed in the
GLSM literature for several decades, it was unclear why
conifold singularities of the CY3 manifolds in the geo-
metric phase were arising and an open question as to why
the target space spectrum [including (1.6)] was identical.
Our work provides the first answers to these questions from
a geometric/target space point of view. Furthermore, we
have found that every example of target space duality that

"The counting given here is at lowest order in the theory and
D-/F-term contributions to the A/ = 1 potential can and do lift
degrees of freedom. Interestingly this lifting has also been shown
to match across target space duality in all known examples [27].

we have studied consists of a single transition of the type
we discuss in this paper, or a chain of such processes. This
detailed structure, revealed to be underlying TSD, provides
considerable evidence for our proposal.

Unlike in mirror symmetry where a pair of type II
theories lead to the same physics, in our examples and
target space duality, whole chains of heterotic manifolds/
bundles can be found connected by conifold transitions
which lead to the same spectrum. Moreover, recent work
has indicated that the form of nontrivial scalar potentials
also matches across such chains [27]. This gives hope that
this geometric correspondence may underlie some deeper
true duality of heterotic theories.

Importantly, we find that not all bundles on CY3s can
traverse a conifold transition (beginning from either the
deformation or resolution side) in this manner. Instead, only
those with special properties (which we outline) can be
taken across consistently. In a heterotic theory it remains an
open question just how much manifold/bundle topology
determines the moduli space of the heterotic theory and this
work could shed light on how such moduli spaces can be
extended through the whole interconnected web of CY3s
[or more generally SU(3) structure manifolds]. We will
return to such broader moduli space questions in future
work [28].

It should be noted that the mathematical questions/
results underpinning this analysis are by necessity intricate
since we are studying not only singular limits of CY
threefolds and holomorphic, slope-stable vector bundles
over them, but also extrapolating such structures across
conifold transitions. We have explored this geometry in a
multitude of examples and have provided proofs in as much
generality as possible. However, due to the complexity
above, for some results it is beyond the scope of this work
to prove them in complete generality for any threefold/
bundle and we restrict ourselves to certain classes of
examples (i.e. toric complete intersection threefolds,
etc.). We have tried to be clear throughout this work about
the level of generality of each result.

The structure of this paper is as follows. In Sec. II we
review necessary background material on the geometry of
conifold transitions in CY3s and then provide a novel
interpretation of the change in the cotangent bundle in
terms of gravitational/gauge sector pair creation in the
theory. In a series of subsections we provide brief descrip-
tions of the geometric “rules” for carrying both 5-branes
and bundle backgrounds through conifold transitions and
illustrate these with a simple, explicit example. In Sec. III
we explore the 5-brane duality in more detail including
providing arguments for why the spectrum of the theory is
preserved across the transition. In Sec. IV we detail the
correspondence of the full theories for heterotic bundles
across conifold transitions including spectrum/moduli
matching. Moreover, we explore in detail the relationship
between our results and (0, 2) heterotic target space duality.
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The Appendixes provide a number of useful technical
results. In particular, in the process of describing how
bundles can be “transitioned” through a conifold, we
provide the first general description/count of how moduli
change for a heterotic small instanton transition which is a
useful addition to the literature (see Appendix D).

II. BUNDLES AND BRANES THROUGH
CONIFOLD TRANSITIONS

A. Conifold transitions

Conifold transitions between smooth CY3s can be
described in the following manner. Beginning with an
initially smooth variety X, referred to as the deformation
side of the transition, the complex structure is tuned until
singularities appear at a number of isolated points. We shall
refer to the singular CY3 thus obtained as the nodal variety,
X. The singular points are then replaced with P's (in what
is called a “small resolution”) whose volumes are con-
trolled by one or more new Kiher moduli. Upon perform-
ing this small resolution one arrives at a new smooth CY3
which is referred to as the resolution side of the transition,
X. One can also consider the transition in the other
direction, performing first a small contraction on X and
then deforming the complex structure of the resulting A" to
generic values, thus arriving at X. This process is depicted
schematically in Fig. 1. The collection of P! curves which
are involved in the small resolution are referred to as the
exceptional locus. We note that in this paper we will only
consider conifold transitions where the normal bundle to
the exceptional locus, restricted to those curves, takes the
form O(-1) & O(-1).

Despite being arguably the simplest example of a
topological transition, a conifold transition nonetheless
has rather drastic consequences for a number of topological
invariants, including many which are important in the
context of compactifications of the heterotic string. In

Complex
structure
deformation

FIG. 1.

the remainder of this subsection we discuss some of these
changes, as well as their importance.

Perhaps the most obviously important topological quan-
tities in the context of compactifying the heterotic string are
the Hodge numbers and the second Chern character of the
manifold. The change in the Hodge numbers is most clearly
seen by first considering the simpler quantity of the Euler
characteristic. Since the Euler characteristic y(X) of a
manifold X is additive under surgery, and since y(P') = 2,
we have

x(X) = x(X) = 2#(P's), (2.1)

where #(P's) is the number of resolution P's in the
transition, or equivalently the number of singular points
on X. The Euler characteristic of a smooth CY3 Y is related
to the Hodge numbers by y(Y) = 2(h"1(Y) - h>!(Y)).
Moreover, since during a conifold transition a number of
complex structure moduli become frozen at special values,
while new Kihler moduli appear, the Hodge numbers 4>!
and h'! must be altered as

AU LX) =R (X)+A(RYY), R H(X) =R (X) - A(RM).

(2.2)
Hence, using (2.1), we have that

A(RY) = #(P's) — A(h). (2.3)

In the context of compactifying the heterotic string, the
importance of this change is that the number of Kéhler and
complex structure moduli in the theory is then altered,
using (2.2), as

Small
contraction

A schematic depiction of a conifold transition between CY3s, as described in the text.
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RN (X)) +h2H(X) = hUH(X) + R2 (X)) —#(P's) +2A(RM).
(2.4)

In a conifold transition, the second Chern character
ch, (X) of the manifold grows a contribution exactly equal
to the Poincaré dual of the curve class of the exceptional
locus of the resolution. By a slight abuse of notation we can
write this in the following manner’:

chy (X) = chy(X) + [P's]. (2.5)
In terms of second Chern classes, this condition reads as
follows:

(X)) = c2(X) = [P's]. (2.6)
The importance of this change, in the context of compac-
tifying the heterotic string, comes in considering the
gravitational contribution to the anomaly cancellation
condition,

e2(X) = (V) + [C]. (2.7)
In this expression, V is the gauge bundle and [C] is the
Poincaré dual to the curve class wrapped by any 5-branes
present in the background. Since the gravitational contri-
bution to (2.7) is altered in the transition as in (2.6), the
gauge sector of the theory will also have to be altered to
counteract this new contribution and so preserve anomaly
cancellation.

1. Example

Throughout this paper, we will illustrate our discussion
with a simple and explicit example. In this section we will
describe the CY3 geometries involved in this case, while
the associated gauge and 5-brane structures will be pre-
sented as they are introduced in later subsections. To
describe the conifold transition underlying our example,
we will describe the smooth CY3s involved and then
perform a small contraction and complex structure defor-
mation respectively to illustrate how they meet at a nodal
variety.

*More precisely, we should say that ch,(X) = z*(ch, (X)) +
[P's] where # is the small contraction map. This relation can
easily be derived from the cotangent sequence (2.19) that we will
introduce in Sec. II B, using the fact that chy (Opi,(=2)) = [P's].
For the Chern character of the nodal variety we should more
properly refer to the relevant Chern-Schwarz-Macpherson
(“CSM”) class, but this subtlety does not affect the discussion
of this paper. In addition, the “second Chern class” of X derived
from the CSM class of the nodal variety is the same as the second
Chern class ¢, (X) of the deformation geometry in every case we
have checked. The code [29] was used in checking these
examples.

Let us start with the resolution variety. For this purpose,
we will consider the following CY3, which is a complete
intersection in a product of projective spaces, or “CICY"”:

11

1 4|
This description of the manifold, which has the identifier
7885 in the exhaustive list of CICY threefolds first
described in [30,31],3 is called a configuration matrix.
Each row corresponds to one of the projective spaces in the
product making up the ambient space, while each column
contains the multidegrees of one of the equations which
describe the manifold as a complete intersection in that
ambient space. In the present example, this means that the

geometry is described by two equations inside P! x P4,
namely,

|]:[)1

o (2.8)

X :X7885 = l

X7gss 1 {(x. y) €Px] x P*[y]|xolo(y) + x11;(y) =0 and
x0q0(y) +x19:(y) = 0}. (2.9)

Here, the /; and the g, are respectively arbitrary degree-one
and degree-four polynomials in the homogeneous coordi-
nates yy, ..., y4 of the ambient P*, while x, and x, are the
homogeneous coordinates of the ambient P'.

Considered as equations in x with coefficients which
vary as one moves around in y, these two equations
generically have no solution, except when the following
determinant vanishes:

logy — 11go = 0. (2.10)
Therefore, this equation is satisfied at all points on the CY3.
Additionally, if all four polynomials vanish,
ly=1=qy=9 =0, (2.11)
then x is unconstrained. This means that over each such
point in P* there is an entire P'. Hence, the geometry
of X435 can be described as the hypersurface
{y €eP*[y]lloq, — l,go = O} inside P* with the addition
of Pls at the 16 points where [, = I, = gy = ¢, = 0. The
hypersurface (2.10) in P*[y] is singular at precisely these
points since all of the derivatives of the equation vanish
there, and hence X;g45 is the small resolution X of this
nodal hypersurface, which we refer to as X
To obtain the deformation side of the transition, one can
simply deform the Eq. (2.10) of the nodal hypersurface in
P*[y] to a generic polynomial of the same degree. This
gives rise to a smooth manifold X described by a quintic
polynomial inside P*, which can also be described by a

3Closely related datasets can be found here [32-35].
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configuration matrix, having identifier 7890 in the list of
CICY threefolds:
X = Xogop = [P“ | 5] (2.12)
The process of shrinking the P's inside X545 to give a
nodal hypersurface before deforming to give Xrg9), Or
indeed the reverse process, is manifestly a conifold tran-
sition. Such a description of a conifold transition between
CICYs is typically known as a “P! split” [5,30], since the
ambient space in going from X to X is altered by the
introduction of a P! factor, and the degree of a defining
polynomial of X is split across multiple defining poly-
nomials of X.

It will turn out to be useful to describe the quintic X in a
somewhat redundant fashion as follows:

P! 1 0
X = .
1o

The linear equation associated to the first numerical column
of this matrix can simply be solved to obtain a point in P!,
Thus, this matrix describes the direct product of a point
with the quintic, that is the quintic manifold itself. The
advantage of this description is that (2.13) and (2.9) are
now described in terms of the same ambient space. This
will be practically expedient in future discussions.

Let us connect this example with the topological proper-
ties discussed earlier in this section. As noted above, this
conifold transition involves 16 nodal points, or equivalently
16 exceptional P's. The Euler characteristics and Hodge
numbers on either side of the transition are

(2.13)

7(X)=-168,  y(X) = -200,
W (X) =2, h>1(X) = 86, LX) =1,
1 (X) = 101. (2.14)

The second Chern classes of the two geometries are as
follows:
ey (X) = 5JoJ, +6J3, o(X)=1072. (2.15)
Here, J, and J, are respectively the Kihler forms of the
ambient P! and P* factors, restricted to X, and in a slight
abuse of notation we also write J; in the case of the
restriction of the Kihler form of P* to X in the description
(2.13). We also note the class of the set of exceptional P's,
[PIS] = —5.]0.]1 +4J% (216)
[This can be established directly from the normal bundle of
the exceptional set, which we determine in (2.23) below.]

From the above results we see that the claimed general
relationships (2.3), (2.4), and (2.6) do indeed hold in this
example.

Although the discussion of this section does indeed
convey the structure of a conifold transition correctly, it is
useful to view the process in a different manner. By viewing
the transition as corresponding to a certain modification of
the cotangent bundle of the variety, the way is opened to an
understanding of how gauge bundles can be consistently
taken through the conifold. It is to this reinterpretation of
conifold transitions, as a small instanton transition in the
cotangent bundle, that we now turn.

B. The conifold as a gravitational small instanton
transition

In understanding how gauge field backgrounds behave
during conifold transitions it will turn out to be useful to
view the geometry of these processes in terms of the
dynamics of the cotangent bundle of the manifolds.
However, describing the change in the cotangent bundle
is inherently difficult because not only the bundle but also
the base geometry over which it is defined is altered during
the transition. This is in contrast to the simpler case of
describing changes in a gauge bundle in a standard small
instanton transition or Higgsing process. In those cases,
since the geometry on which the bundle lives is fixed, such
a change can typically be described using the formalism of
an exact sequence, in which two of the terms are the old and
the new gauge bundles, while the other terms, as well as the
maps between them, give a reasonably explicit and well-
controlled description of how these two are related.

As an example of the simpler situation, consider the case
of a small instanton transition in the gauge bundle
[11,36,37]. Here, beginning with some gauge bundle V,
a 5-brane wrapping a curve locus C is absorbed into the
bundle, and as a result a new sheaf V is produced (which
may then be smoothed to give a final gauge bundle). This
absorption of a small instanton is an example of a change
which is described by a short exact sequence, namely,

0-V->V-sFe-0. (2.17)
Here F( is a sheaf with support precisely on the locus C
which the 5-brane wraps. This is the appropriate description
of the 5-brane for this context. The short exact sequence
(2.17) is referred to as a Hecke transform in [36]. It is worth
noting, for later sections of this paper, that while the small
instanton transition described by a Hecke transform of the
form (2.17) will be rank preserving, rk(V) = rk(V), one
can modify the short exact sequence to obtain more general
results. For example, if one were to obtain V via the
following Hecke transform instead [36],

0-VosVOO—sFe—0, (2.18)
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one would obtain a V whose rank is one greater than that of
V. This will be important in later sections where we will
indeed encounter such transitions.

Sequences such as (2.17) and (2.18) are defined over a
single base geometry. This is the origin of the difficulty of
finding such a description of the change in the cotangent
bundle during a conifold transition, since the cotangent
bundles Qy and Qg of the deformation and resolution
manifolds respectively are defined over different spaces.
One possible solution to this difficulty would be to find a
way to capture Qy as a bundle or sheaf on the resolution
geometry X. The object obtained in this fashion would no
longer bear the intimate connection with the geometry that
a cotangent bundle would. However, it could still, in a
precise way, encode the structure of X thus providing all of
the information required. If such a sheaf could be found
then one may hope to be able to write down a single exact
sequence which describes the change in the cotangent
bundle during the conifold transition.

In fact, such a description arises entirely naturally in the
present case of the conifold transition. One can show, in a
class of examples that will be described below, that there
exists the following “relative cotangent sequence’” between
the resolution and nodal geometries4:

0 - 75(Qy) = Qz » Opi(-2) = 0.  (2.19)
Here, 7:X — X is the small contraction map, Qy is the
cotangent sheaf of the nodal variety (a sheaf since X is
singular), and Opi(—2) is a sheaf with support on the
exceptional P's, given by taking the pushforward of
the line bundle O(—2) under each embedding P' < X.
The first term in the relative cotangent sequence, being
simply a pullback of the cotangent sheaf of the nodal
variety, contains all of the geometric information about Q y,
but represents this in an object on the resolution geometry.
Hence, this sequence captures the relationship between the
cotangent sheaf of the nodal variety and the cotangent
bundle of the resolution manifold.

The particularly striking feature of the short exact
sequence (2.19) is that the first two objects have support
over the entire manifold, while the third object has support
only over a curve. In other words, this short exact sequence
is precisely what one would interpret as the Hecke trans-
form describing a small instanton transition, were it to

‘A sequence such as this always exists for any two varieties
with a morphism between them, however, it is not always short
exact on the left. While we have not attempted a general proof of
(2.19) for an arbitrary conifold transition, we have been able to
prove it for large classes of constructions, such as all P! splits of
CICYs, for example. In addition, even in the general case,
evidence can be provided for (2.19) by showing that any extra
term on the left of the sequence would have to consist of a sheaf
which has both entirely vanishing cohomology and Chern
classes.

occur in the gauge sector. Although the sequence (2.19) is
defined entirely on X the transition only really occurs when
the system goes through the nodal point in moduli space. At
this stage, the object z*(Qy) truly becomes the cotangent
sheaf of the variety over which it is defined and the
transition then completes via a smoothing of the nodal
variety to obtain X. This smoothing is exactly analogous to
the manner in which V is smoothed out into a gauge bundle
in a standard small instanton transition. The complete
process is depicted schematically in Fig. 2.

We see, therefore, that a conifold transition is precisely
described by what we could call a small instanton transition
in the gravitational sector. A different, less concise but
somewhat more explicit, description of this transition to
(2.19) is detailed in Appendix A. In the context of the
present paper, this transition between cotangent bundles
will be particularly important in that it will guide us
towards a proposal for how the gauge bundle and 5-branes
should behave during a conifold transition in order to
correctly interact with the changes in the gravitational
sector throughout the transition. It is to this topic that we
will turn, after illustrating the preceding discussion with an
example.

1. Example
In our example of a conifold transition, as described in
Sec. I A, we have the following two descriptions of the
cotangent bundles of the resolution and nodal varieties:

0-00,-5) - Qp: > 7°(Qy) >0 (2.20)

0-0(-1,-1)® O(-1,-4) = Qp & Qps+ - Qy — 0.
(2.21)

In these expressions Qp: and Qps are the cotangent bundles
of the indicated projective spaces, which in the notation of
this example have the following Euler sequence resolu-
tions:

0-Qp - 01,0092 > 0 -0

0— Qp: » 0(0,1)® -5 0 - 0. (2.22)

The normal bundle to the exceptional locus in X is
O(-1,1) & O(-1,4) in this example. To see this one may
write out so-called “gCICY” representatives of general
examples of the global sections of these line bundles [38].
Given defining relations of the form given in (2.9) these are
as follows:

lh 1 3
2~ eHYX,0(-1,1
el (X, 0(-1,1))
I ! 3
do Jo Dy g%, 0(-1,4). (2.23)

X1 X1 X0 X0
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FIG. 2. The conifold transition as a small instanton transition in the gravitational sector. As explained in the text, from the resolution
side X, small instantons Op1,(—2) with support on the exceptional P's are produced and absorbed into the cotangent bundle Qg to give
the cotangent sheaf Q of the singular geometry, which is then smoothed to give the cotangent bundle Qy of the deformation geometry.

In these expressions, ¢ is a general cubic in the homo-
geneous coordinates of P*. Clearly these sections vanish iff
lo =1} = go = q; = 0, which is precisely the exceptional
locus in X.

Given that the normal bundle takes this form, one can
write the following twisted Koszul resolution of Opi,(—2):

0 — 0(0,-5) - O(—1,-1) @ O(~1,-4)

- O0(-2,0) = Opi(-2) = 0. (2.24)

Given the above, one can form a commuting grid of
sequences which has (2.19) as a top row, and the reso-
lutions of the objects in that sequence as given in (2.20),
(2.21), and (2.24) arrayed vertically underneath it. Diagram
chasing this grid and using what is essentially the nine
lemma [39], one can indeed prove that the sequence (2.19)
is well defined and short exact as claimed.

C. The heterotic conifold as gauge-gravity pair creation

In the previous subsection we have seen that the
cotangent bundles of two varieties linked by a conifold
transition are related by a specific small instanton tran-
sition. During this transition a sheaf, supported on the
exceptional curves of the conifold, is absorbed into
the cotangent bundle of the resolution side variety to form
the cotangent bundle of the variety on the deformation side.
This small instanton transition occurs as the manifold
transitions through the nodal variety which is shared in
the moduli space of the two geometries.

The obvious question that occurs in a physical setting is
where did the curve-supported sheaf involved in this
transition come from? Consider the heterotic anomaly
cancellation condition. We start on the resolution geometry

X with a condition (2.7) that can be rewritten in the
following form:

2(Qg) = e2(V) + [C]. (2.25)
In this expression ¢,(€2y) is more commonly rewritten as
¢>(T). These two quantities are equal, however, and given
that the small instanton transition just discussed is most
naturally presented in terms of the cotangent bundle we
chose to write (2.25) in this manner. The other quantities
in (2.25) are a gauge bundle V and a potentially nontrivial
class [C] which is wrapped by 5-branes.

In order to perform the transition to the deformation side
manifold, we must add a class [P's] to the left-hand side
of (2.25), so that the associated sheaf Opi(—2), whose
second Chern character is given by this class, can then be
absorbed via a small instanton transition to obtain the new
cotangent bundle. If this process is to be consistent with
anomaly cancellation, we must add the same class to the
right-hand side as well:

c2(Qg) + [P's] = c»(V) + [C] + [P's]. (2.26)
This would appear to be a process in which 5-branes are
created in both the gauge and gravitational sectors of the
theory simultaneously, before being reabsorbed into other
objects as we have already discussed for the cotangent
bundle and will discuss shortly for the gauge sector of the
transition. Below we will somewhat loosely refer to this as
a pair creation (note that this is not to be interpreted as a
quantum pair creation). Since this transition happens at a
singular point in the geometry of both sectors, it is hard to
maintain calculational control to prove conclusively that
such a process does take place. Nevertheless, in this paper
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FIG. 3. The conjectured description of the heterotic conifold as
a process of gauge-gravity pair creation of small instantons
Opi(—2), which are depicted schematically by their support.
Absorption and smoothing of the gravitational small instantons
performs the geometric conifold transition X — X, while the
gauge small instantons allow the gauge sector transition V — V,
as we describe in the text below.

we will provide a substantial amount of evidence that this
pair creation process indeed does occur in heterotic string
theory. A schematic depiction of this process is given
in Fig. 3.

As a first point, by analogy we should consider the usual
rules for pair creation of branes. Such processes are usually
thought to be present in a quantum theory if they are not
explicitly forbidden by some selection effect such as charge
conservation. For example, brane/antibrane creation is well
understood and occurs because the two objects have
opposite charges, meaning that there is nothing to forbid
the process. The same is true for the process we are
proposing here. Indeed, this is precisely what (2.26) states.

A difference between standard brane/antibrane creation
and what we are proposing is seen when one considers
supersymmetry. In order to ensure charge conservation, in a
standard brane/antibrane pair nucleation process the two
extended objects involved must preserve complementary
supersymmetries. Thus the process breaks supersymmetry
completely. The same is not true for the process we are
proposing here. Because supersymmetric objects in the
gravitational and gauge sectors of heterotic string theory
appear with opposite signs of charge in (2.26) the pair
creation process allowed by charge conservation consid-
erations preserves supersymmetry.

Although, given the above, a pair creation process such
as that we propose here may seem reasonable, the real

evidence for its existence will follow from the structure we
present in the rest of this paper. There are a vast number of
existing examples of “transitions,” and indeed dual theo-
ries, where adding [P's] to the gauge sector as in (2.26)
does indeed lead precisely to known structure. For exam-
ple, this sheaf can be combined, via a process we will
describe in detail, with the gauge sector of the theory to
yield exactly the gauge sector which is expected on the
deformation side of the transition. The presence of this
detailed structure, present across a huge number of known
examples, would have to be pure coincidence if the pair
creation process presented in this section is not physically
realized. The authors find such a possibility, while logically
possible, hard to believe.

As a final comment, one could wonder why such pair
creation processes do not simply continue, with more and
more sheaves being nucleated. There are several effects
which terminate this process. For example, it should be
remembered that each pair creation event, and subsequent
small instanton transition, is associated with a singular
transition in the geometry such that the cotangent bundle
can change topologically (e.g. h'! goes down upon
absorption of the P's). The set of such geometric tran-
sitions where the geometries on either side of the process
preserve supersymmetry are, of course, extremely limited.
If one nucleated too many sheaves, or indeed sheaves in the
gravitational sector of the wrong form, then such a process
would not be supersymmetric in nature.

1. Absorption into the gauge sector?

Above we have proposed that the correct understanding
of a conifold transition in heterotic string theory is as a kind
of pair creation process between the gravitational and
gauge sectors, in which both a gravitational and a gauge
small instanton are produced simultaneously on the same
sublocus. In going from the resolution to the deformation
side of a conifold the gravitational small instanton on the
exceptional P's is absorbed into the cotangent bundle. The
gauge small instanton on the exceptional P's allows the
gauge sector to continue to balance the gravitational
contribution to the 5-brane charge after the transition in
order to maintain an anomaly-free theory.

While we have an explicit description in (2.19) of how
the gravitational small instanton is absorbed, we still must
describe the fate of the gauge small instanton. Of course,
the very natural guess is that it is absorbed into the gauge
bundle by an exactly analogous process, described by a
Hecke transform given by a short exact sequence

0V —oV o Op(=2)—0. (2.27)
Here, V is the bundle or sheaf produced as a result
of this absorption (which it may subsequently be possible
to smooth). However, what one finds is that whenever V is a
bundle which one might reasonably expect to be a candidate
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to be taken through a conifold transition, the map V —
Op1,(—2) vanishes.” That is, H*(X, V¥ @ Opi,(-2)) =0,
so that this absorption process does not exist. These
examples of bundles which one “might expect” could be
taken through a conifold transition will be associated to
target space dual theories, and we will discuss these at length
in Sec. IV.

In fact, the impossibility of the absorption process (2.27)
can also be seen from very general considerations. In the
literature® [13], it has been noted that that if the connection
on a bundle is to be taken through a conifold transition with
minimal change, one way that can be accomplished is if the
bundle restricts trivially to the exceptional P's to give Og{; ,
for some power n. Hence, for any such candidate bundle
V, the map V — Opi,(—2) restricts on the P's to a map
(’)ue]’?,”g — Opi(—=2). However, in the present case, such a

map does not exist, due to the negative twist in the target
line bundle, and thus the above Hecke transform does not
exist either.

Given that this small instanton can seemingly not be
absorbed into the gauge bundle in a simple fashion, a
second natural approach would be to attempt to leave it as a
5-brane wrapped on the P's, and to carry this object
through the conifold transition directly. However, in the
small contraction limit, the exceptional P's shrink to zero
volume, so that the volume of the wrapped 5-brane would
also go to zero, giving rise in the limit to a tensionless
spacetime-filling brane. What we will seek to show in what
follows is that there exists a much smoother process by
which the gauge sector can traverse the conifold transition,
which will allow the compactified theory to pass through
without any such drastic change.

We will see that an absorption process is possible for the
above gauge small instanton, but it is more complicated
than a process that is captured simply by a single Hecke
transform. Essentially, a brane recombination process
occurs, after which the desired small instanton transition
does indeed exist. Alternatively, after this brane recombi-
nation process, it will be possible to leave the small
instanton as a new 5-brane which is better behaved through
the conifold. In terms of exposition, it will be most
straightforward to consider this latter possibility first,
and hence this will be the subject of the next subsection.
This will ultimately also lead us quite directly to the correct
description of the small instanton absorption process into
the gauge bundle, which we will then treat in Sec. II E.

>Strictly speaking we should evaluate whether or not this map
exists on the nodal variety X where this transition actually takes
place. Doing so does not change any of the conclusions presented
here.

®Note also that examples have been studied (see [40,41] and
references therein) for which the bundle restricts nontrivially to
the exceptional P's, for example in transitions taking tangent
bundles to tangent bundles which result in a more dramatic
change to the effective theory.

D. Branes through the conifold transition

We would like to describe a way in which 5-branes
wrapping the exceptional P's in the resolution side of a
conifold transition might be combined with another 5-brane
to give an object which traverses the conifold transition
smoothly, unlike the 5-branes wrapped on the P's alone,
which would produce in the contraction limit a tensionless
spacetime-filling brane.

Describing such a process would provide a 5-brane theory
on the resolution side and a 5-brane theory on the deforma-
tion side which are (according to our proposal of the
description of a conifold transition as a gauge-gravity pair
creation process) connected through the conifold transition.
With this in mind, we will in fact find it most natural to begin
the discussion by searching for such candidate pairs of
5-brane theories, and then subsequently showing that indeed
these 5-brane theories are such that they can be matched
on the nodal variety precisely through a recombining of
the brane on the resolution side with branes wrapping the
exceptional P's. Further evidence that these theories
are indeed connected through the conifold transition, and
hence also evidence for our general proposal of a gauge-
gravity pair creation description of the conifold, will
be provided in Sec. III below, where we will argue that
these 5-brane theories are in fact dual theories, strongly
suggesting that they are indeed connected by a smooth
transition.

To collect the objects that we will need in order to
describe the candidate pairs of 5-brane theories, and the
brane recombination process through the conifold transi-
tion, it is necessary to pause to understand better the
geometry of the conifold, and in particular the presence of
certain curves and divisors whose existence is directly
related to the nature of this transition.

1. Objects canonically associated to a conifold transition

A characteristic property of a conifold transition is that,
as the deformation manifold is tuned to become a nodal
variety, there are certain curves which jump in dimension to
become divisors. This process of producing new divisors is
directly linked to the fact that additional divisors must
appear to generate the change in the Picard number,
RUN(X) = k"1 (X) + 1. We will call the primitive divisor
which appears in this fashion D. This divisor in X" can be
lifted to two distinct divisors on the small resolution: its
pullback z*(D) and its proper transform P(D). This
situation is depicted schematically in Fig. 4.

Let us examine this structure in more concrete detail in
terms of the illustrative example which we first introduced
in Sec. II A 1. In this case, the deformation geometry X is
described by a configuration matrix,

X:[[P"‘ | 5}, (2.28)
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FIG. 4. A Weil non-Cartier divisor on the nodal variety becomes a curve on the deformation branch, while on the resolution branch one

can consider either the pullback or the proper transform divisor.

i.e. by a generic quintic polynomial Q(y) inside P*[y]. The
nodal geometry & is reached when this quintic is tuned to a
form Io(y)q1(¥) = 11 (¥)o(y) = 0. where the [; and ¢; are
respectively degree 1 and degree 4 polynomials. Consider
here the example of a curve C which is described on X by

C:H{ly=qy=0}nX~{ly=qo=0=0}CcP* (2.29)
As the generic quintic equation of X is tuned to the nodal one
of X, the two defining equations of this curve become no
longer independent of the defining equation of the geometry,
and in particular automatically satisfy the nodal quintic.
Hence, this curve jumps in dimension to a divisor D,
(One could also have considered for example the curve
defined by {/; = ¢; = 0} N X, or any linear combinations
of these two curves.) We note that the divisors D which arise
in this way are Weil but non-Cartier divisors, and it is clear
that their existence is intimately linked to the geometry of the
conifold transition.

Under the small resolution along 7:X - X, these
objects D naturally remain divisors, since the resolution
is an isomorphism except at the nodal points. However, as
mentioned above, there are two distinct objects to which the
divisor can be lifted: the pullback z*(D) and the proper
transform P(D). The loci of these two objects differ in that
the pullback contains the exceptional P's, while the proper
transform P(D) intersects these transversely and in a
single point.

In our example, the resolution geometry X is described
by a configuration matrix,

X = Pl (2.31)
et o4 '

i.e. by the following two generic equations of multidegrees
(1, 1) and (1, 4) inside P' x P*:

X:{(x,y) €P'[x] x P*[yllxolo(y) +x1/1(y) =0 and

x0qo(y) +x141(y) = 0}. (2.32)
The pullback divisor z*(D) is described by
(D) :{ly=qy =0} n X, (2.33)

which is a locus that manifestly contains the exceptional
P's, since these sit over the points [, = [, = gy = q; = 0.
The proper transform divisor is described by

P(D):{x; =0} nX, (2.34)
and manifestly intersects each exceptional P! transversely
in a point. Looking at the defining equations of X, it is clear
that the locus of z*(D) is indeed simply that of P(D) plus
the exceptional P's, since imposing [, = g, = 0 in those
equations gives xoly(y) = xoqo(y) = 0, which has these
two components as solutions.

2. Candidates for 5-brane transition

The reason we have introduced the above objects—the
Weil non-Cartier divisors on the nodal variety—is that they
lead almost directly to the description of a pair of a 5-brane
theory on the resolution side and a 5-brane theory on the
deformation side which are clear candidates to be contin-
uously connected through the conifold transition. Let us
make this explicit.

We have already seen that a Weil non-Cartier divisor
gives rise immediately to a curve C on the deformation
side. The 5-brane theory we will define on the deforma-
tion geometry is of a 5-brane wrapped on this curve, plus a
set of additional essentially arbitrary 5-branes which
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saturate the remainder of the anomaly cancellation con-
dition. These will turn out to have unimportant, trivial
behavior as mere “spectators,” as we will discuss in
detail below.

In contrast we have seen that in passing to the resolution
geometry the Weil non-Cartier divisor gives rise only to a
divisor, which we will take to be the proper transform
divisor P(D).” We now take an intersection of this divisor
with an additional hypersurface to define a curve.
Specifically, we intersect with a hypersurface of the same
form, denoted by H, as that involved in the deformation of
the geometry on the other side of the conifold transition. In
our canonical P'-split example, this means intersecting
with the zero locus of a generic quintic polynomial for
example.

The reason to define curves C and C in this way is that
the “difference” between the classes of C and C is exactly
the same as the “difference” between the second Chern
classes of the deformation and resolution geometries. That
is, upon wrapping S-branes on these curves, the remaining
parts of the anomaly cancellation conditions, c,(X) — [C]
and ¢,(X) — [C], are “identical,” in the precise sense that
this remaining discrepancy can now be trivially made up by
the addition of the spectator branes which we mentioned
above. Hence, the curve pairing of C and C does the “hard
work” in allowing the pair of 5-brane theories to both be
anomaly consistent.

Below we illustrate this in our specific example.
Additionally, we collect in Appendix E the analogous
explicit results for the much more general case of any
[P" split of a toric complete intersection.

Recall the P!-split conifold transition that we have been
using as our canonical example. In this case, the two curves
C and C are described by

C:H{ly=qy=0}nX,

C:{xo=0=0}nX, (2.35)

and hence the classes of the two curves within the two
geometries X and X are

[C] :‘]l X4J1 :4.]%,
[C] :JO X5J1 :5.]0.]1. (236)
Recalling the class of the exceptional P's inside the
resolution geometry X in this conifold example,

Pls] = =5JoJ, +4J2, 2.37
1

Mt is this choice, not 7*(D), that will turn out to correctly link
two well-defined 5-brane theories across the transition as we will
show in the following.

we see manifestly that the difference between the two curve
classes above is indeed identical® to this class which, as
seen in (2.5), is the difference in the Chern characters of the
two manifolds on either side of the conifold transition.
Hence, more explicitly, if we wrap 5-branes on these curves
on the geometry on each side of the conifold transition, the
piece left in the anomaly cancellation condition is exactly
identical,

c,(X) - [C] = 6J2, (X)) —[C)=6J2. (2.38)

If one includes an additional spectator brane, meaning a
brane which trivially traverses the conifold transition by
simply remaining far from the singular points that appear
on the intermediate nodal variety, its contributions to the
anomaly cancellation condition on the two geometries are
also naturally identical. Hence, if we are able to show the
continuous matching across the conifold transition of the
above pair of 5-branes, this remaining part of the story of
the 5-brane theory traversing the transition is trivial to
complete.

We will describe in detail below these spectator branes,
and show that they indeed behave and contribute to the
anomaly condition as just described. However, first we
consider the more critical question of whether the above
pair of 5-branes is indeed connected continuously across
the conifold transition.

3. Brane recombination and the transition

We wish to show that the 5-branes just described on
either side of the conifold transition can be made to
continuously meet in some specific sense at the nodal
variety. Said differently, we want to show that each of these
5-branes can be taken through the conifold transition,
becoming the other during the process.

By construction of the curve C, when the deformation
geometry is tuned to become the nodal variety, this curve
enhances into a Weil non-Cartier divisor D. In contrast, the
curve C simply remains a curve as the resolution geometry
shrinks to the nodal variety. This behavior can be modified,
however. The curve C is defined as an intersection of two
divisors, specifically the intersection between the proper
transform P(D) and the zero locus of a divisor in some class
H. But the nodal geometry too is described by the
vanishing of a series of polynomials, one of which is also
the zero locus of a divisor in class H. Hence, if we tune this
defining relation of the curve so that in the nodal limit it
becomes to equal the defining equation of the nodal
geometry, this equation in the curve’s definition will be

$We recall that by abuse of notation “J,” means the restriction
of the Kihler form of the common ambient P* to either of X or X.
Hence, it is only as the two geometries limit to the nodal variety at
the middle of the conifold transition that these objects become
identical (and indeed comparable at all).
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trivially satisfied and the curve will jump to become the
proper transform divisor P(D). In the nodal limit, the locus
of this divisor becomes precisely that of the Weil non-
Cartier divisor D. Hence, there exists a special tuning of the
curve C which, if performed at the same time as the
resolution geometry shrinks to the nodal variety, allows this
curve to limit to the same locus as the curve C limits to from
the deformation side.” We will return to discuss the curious
fact that the curves that the 5-branes are wrapping limit to
higher-dimensional cycles on the nodal geometry at the end
of this subsection.

We have now seen that (with a bit of tuning) the
curves that the 5-branes on the deformation and resolution
sides wrap become coincident objects when those two geo-
metries meet as the intermediate singular variety. However,
the proper mathematical description of these 5-branes that
we are employing is in terms of sheaves. The curves we
have been discussing are just those cycles over which these
sheaves have support. The 5-brane on the resolution side of
the transition is described by a sheaf Og. This becomes
Op(p) in the limit which has support only over the limit of
P(D). The 5-brane on the deformation side of the transition
is described by a sheaf Oc. This becomes O, (p) in the
nodal limit which only has support on D. These two
sheaves do not match in the nodal limit. Rather, it is at this
stage that the gauge small instanton Opi(—2) that was
created during the gravitational/gauge pair creation process
comes into play.

Naively, it would be desirable if a brane recombination
process could occur to take the sheaf Opi(—2) that was
generated during the pair creation process and combine this
with O to produce the sheaf O that is expected after the
transition. If we first consider a case where we do not tune
C such that it becomes a divisor in the nodal limit [simply
by taking a general element of its curve class rather than a
tuned example such as (2.35)], a natural way in which one
might try to combine two sheaves in this way would be via
a short exact extension sequence, of the following form'":

%It is notable that the meeting of the two 5-brane theories from
the two sides of the conifold transition requires a geometric
tuning in coming from the deformation side and a tuning in the
gauge/5-brane theory coming from the resolution side. Moreover,
despite these tunings having drastically different physical inter-
pretations, they are of precisely the same mathematical form, both
involving tuning a quintic in our canonical case for example. It is
hence natural to guess that these two theories are not only
connected, but in fact dual. This will be the subject of a detailed
discussion in Sec. III below. Further, this exchange of geometric
and gauge degrees of freedom is precisely what is seen in
examples of (0, 2) target space duality of the heterotic string,
and we will discuss the very concrete connections between this
and the present discussion in Sec. IV below.

‘We have shown explicitly that the statements we make about
the following sequences hold in the classes of examples we
discuss in this paper. While we are not aware of a general proof,
examination of examples that are not of the form we consider here
lead us to expect this to hold much more widely.

0 - Opi(-2) - On*(C) - O — 0. (2.39)
This sequence is not correct however, as it suffers from
several problems. First, this sequence as stated leads to an
incorrect relationship between the Chern classes involved.
To obtain the correct relationship, the central object of the
extension has to be twisted as follows:

0- Opi(-2)—> Or(0)® O3 (-P(D)) > Oz —0. (2.40)
We will address the meaning of the twisting of the central
term above by Oy (—P(D)) shortly. Before addressing that
feature however, there is another problem that means that
the sequence (2.40) is not correct. The issue is that the
extension class associated to that sequence, written as it is
on the resolution manifold, vanishes. No such nontrivial
recombination of the sheaves involved exists. This, how-
ever, is an artifact of our trick of describing the physics of
the transition in terms of objects pulled back to the
resolution variety. If one now takes C to be the tuned
curve which becomes a divisor in the nodal limit (and
similarly for C) and then tries to form such an extension of
divisor supported sheaves on the nodal variety, the relevant
extension class does exist. This requirement of properly
going to the nodal geometry is perhaps not surprising at this
stage as, after all, the entire process really takes place as the
singular geometry is traversed.

The easiest way in which to see that the extension class
does indeed become nonvanishing in this limit where the
curves become divisors is to still use the trick of working on
the resolution manifold, but to take C to be the divisor D
and to tune the hypersurface H appearing in the definition
of C to be the relevant defining equation of the nodal
variety. This mimics the structure of the relevant curves
blowing up into divisors and leads to the following,
now finally correct, short exact sequence of brane recom-
bination:

0 = Opiy(=2) = Opp) ® Ox(=P(D)) = Opp) — 0.
(2.41)

This sequence essentially says that the two sheaves,
Op14(=2) describing the pair-created brane and Opp)
describing the limit of the 5-brane on the resolution
manifold, recombine to a sheaf O, p) ® Ox(-P(D))
describing the limit of the 5-brane from the deformation
variety. Since this brane recombination process only
produces the 5-brane configuration we require from the
deformation side up to a twist by Ox(—P(D)), we must
now discuss the origin of this seemingly additional
structure.

For any two varieties X; and X,, the following short
exact sequence holds:
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O = OX]UX2 = OXI @ OXZ g OX]OXZ i 0 (242)
For the case at hand we shall take X, =P(D) and
X, = P's. We then have that X, UX, = z*(D) and
X; N X, = pts, a set of points where the proper transform
divisor intersects the exceptional locus. The sequence
(2.42) then becomes the following:

0—- O,,*(D) - OP(D) &) O[P"s - Opts - 0. (243)
If we twist this sequence up by Ox(—P(D)) we obtain the
following:

0= O p) ® Ox(=P(D)) = Opp) ® Op1, ® Ox(—=P(D))

= Ops = 0. (2.44)
Here we have used the fact that the twisting does not affect
the sheaves that are supported only over points or the sheaf
whose support strikes the exceptional locus at points.
Pushing this sequence forward to the nodal variety and
using the fact that 7, (Opi, ® O (—P(D))) = 0 we arrive
at the following:

0 > 7.(0p(p) ® O (—P(D))) -5 Op 5 0. (2.45)

The map f in the above sequence is nonzero precisely
because the points over which the last sheaf has support lie
within D. Now consider deforming the nodal Calabi-Yau
manifold to return to the smooth manifold X. Such a
deformation removes the singular points from D, rendering
the map f vanishing. The map ¢ in (2.45) then becomes an
isomorphism. This shows that upon deforming to the
smooth deformation manifold, the unwanted twist in the
central sheaf of (2.41) goes away. Indeed, the Weil
non-Cartier divisor D even becomes an (untwisted) curve
under this deformation.

The final upshot of the lengthy preceding discussion is
that the gauge small instanton Opi,(—2), produced in our
conjectured gauge-gravity pair creation process, iS pre-
cisely what is required to combine with a 5-brane wrapping
C on the resolution geometry to become the limit of the
5-brane wrapping C from the deformation geometry when
the common point in moduli space is approached.

Let us look at all of this structure in the context of the
illustrative example we have been employing throughout
this section. In this case we have from (2.34) that
Ox(P(D)) = Ox(1,0). Given this, the sequence (2.41)
becomes the following in this example:

00— OPIS(—z) g O”x(D)(—l,O) d OP(D) - 0. (246)

It is easy to show that this sequence is indeed correct in this
case. The extension class Ext' (Op(p), Opi,(=2)) = CH®'S),
which is not vanishing and thus there is some object

appearing in the central position in (2.46) which is not just a
direct sum. This object has support over z*(D). That it is
O+ (p)(=1,0) can then be ascertained by demanding that
the Chern classes and line bundle cohomologies of the
central object agree with what is implied by the short exact
sequence.

The sequence (2.45) becomes the following in this
example:

0 - Op(—1,0) » Op - O, (2.47)

pts*
In the nodal limit Op(—1,0) and Op are indeed different
and the above sequence is nontrivial. However, as we
deform away from the nodal point, the divisor by which one
twists Op to obtain Op(—1,0) disappears, and so the two
sheaves indeed become the same object (in addition to D
transitioning to become C).

Finally, we return to the fact that the objects to which the
5-branes limit on the nodal variety appear, somewhat
surprisingly, to be described by divisors, rather than curves.
It is certainly clear that the sheaf which describes the small
instanton in the gauge theory undergoes this radical change
as the geometry limits from either side to the nodal variety.
However, it is not clear whether this change is purely an
effect in the small instanton limit, or a physically important
change in the case of true 5-branes as well. The correct
conditions to impose on the dimensionality of extended
objects in such a singular limit of heterotic string
theory, where those objects intersect the singularities, is
not known and thus such a “dimension jumping” effect
could be real. It would certainly be interesting to investigate
this effect, in addition to the pair creation process we have
described earlier, in a simpler, noncompact, setting where
one might have more direct control of such a process. In
this paper, however, we will concentrate on the compact
setting where one obtains a vast amount of indirect
evidence that the process we have described here does
occur from the highly constrained structure of heterotic
compactifications.

4. Spectator branes

It remains to complete the above pair of 5-brane theories
with the addition of spectator branes, which, unlike the
special 5-branes above, traverse the conifold transition
essentially trivially, staying far from the singularities or
equivalently the exceptional P's, and hence remaining
“ignorant” of the transition, so that they simply make up the
identical remaining part of the anomaly cancellation con-
dition on each side of the transition.

Note that any generic curve will be an example of a
spectator, since any generic curve as it passes through the
nodal variety will miss the singular points. Hence, the
existence of spectator branes and thus the final piece
required to complete the connection of a pair of 5-brane
theories across a conifold transition is guaranteed.
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We illustrate this in an example. Recall our standard
conifold transition example, in which the deformation X
and resolution geometries X are CICYs described by the
configuration matrices

- P! 11
X:[IP"‘ | 5}, X = . (248)
p* 1 4
meaning they are described by complete intersections
inside P* and P! x P* as

X:{(y)eP*hllQ(y) =0},
X:A{(x.y) €P'[x] x PHy]|xolo(y) +x141(y) = 0 and

xoq0(y) + x1q1(y) = 0}, (2.49)
where Q, the /;, and the ¢g; are (generic) polynomials of
degrees 1, 4, and 5 respectively, and for which the nodal
geometry X is given by tuning the quintic polynomial Q to
the special choice

XAG) €P D)1 (y) = i(¥)go(y) = 0} (2.50)
This example provides a simple case in which we can track
spectator curves through the transition and compute the
curve classes on each geometry. In particular, it is easy to
track a curve through the transition due to the fact that these
P!-split (or more generally P"-split) examples of conifold
transitions have the convenient property that the ambient
space of the deformation geometry X continues on to
naturally form part of the ambient space of the resolution
geometry X. Hence, we can define a spectator curve by
using only the coordinates of the ambient space of X.
Explicitly in our example, we can define a curve in the
geometry at any point during the transition by taking the
intersection of the geometry with the common zero locus of
two generic polynomials P, (y) and P,(y), and then we can
track how the curve behaves through the transition simply
by continuing to take this intersection with the geometry at
each stage. That is, explicitly, the curve at each stage is
described by

Co X cPy]
Co ¢ ={P1(y)=P2(y)=0}n< X CP*y|
Co X cP'[x] xP*y]

(2.51)

We note that since P; and P, are generic the curve C,
misses the singularities on the nodal geometry so that this is
indeed a spectator curve. The classes of the curves Cy C X
and C,) C X are now simple to compute. Setting the degrees
of the polynomials P; and P, to be d; and d,, these classes
are simply

[Co] = (d1dy)J7, [Co) = (didy)J7,  (2.52)
i.e. they are identical. Hence, by wrapping an additional
5-brane on such a spectator curve, the above pair of theories
on the deformation and resolution geometries can be made
anomaly consistent, specifically in this example by any

choice of spectator curve for which d;d, = 6.

E. Bundles through the conifold transition

In this section we will demonstrate that the process of
mapping a 5-brane through a conifold transition (as out-
lined above) leads naturally to a way to follow a vector
bundle through the transition via a heterotic small instanton
transition (see e.g. [11,36,37]).

As first described in [36,37], and reviewed in Sec. II B,
the mathematical process of absorbing a 5-brane into a
vector bundle proceeds in several steps. Consider a 5-brane
wrapping a curve C inside a CY threefold X. In the limit
that the 5-brane starts to dissolve onto an Ejy fixed plane (in
the language of heterotic M-theory), the subsequent “small
instanton” can be described via a skyscraper sheaf sup-
ported over C [36,37] or equivalently via an ideal sheaf of
C [42].11 Then as outlined already in Sec. II B, the correct
description of its “merging” into a preexisting vector
bundle V,, is given by a so-called Hecke transform [36]

0=V o Vy—o Fe oo, (2.53)

where F ¢ is arank 1 vector bundle'? on C. Because C is a
codimension 2 object in X, V is in general singular (and
hence a sheaf rather than a vector bundle) as it appears in
(2.53) and must be further deformed into a smooth bundle.
The key operation in (2.53) is the surjective morphism
denoted by f which “weaves” together the fibers of V, with
those of F over the locus where they overlap. It is
straightforward to show that
& (V) = ex(V) +[C] (2.54)
(for any choice of F) as expected by a 5-brane absorption.
As noted in Sec. II B, it should be observed that this type
of process can occur either as a rank-changing transition for
the bundle or as a rank-preserving one. In the former case,
if the initial bundle V,, is of the form V, = U @ Oy then

""The relationship between these two descriptions in the
context of a small instanton transition is rather evident in the
case of a Hecke transform of the form given in (2.59). In this case,
before deformation to a smooth bundle, one can either think of
the process as a Hecke transform involving the skyscraper sheaf
Og as written, or simply as adding the ideal sheaf Z( to the
bundle V,.

"“Note that F, c 1s physically determined by the cycle which the
5-brane wraps and the choice of form-field backgrounds on that
extended object.
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tk(V) = tk(U) + 1. The fact that rk(V) > rk(U) implies
that the gauge group of the four-dimensional theory is
broken to a subgroup. In contrast, for generic V, the
transition will be rank preserving (and hence generically
gauge-group preserving). Such transitions can also change
the chiral index of the theory [36,43,44].

In the present context, we can extend the discussion of
S5-brane transitions from the previous section to bundles by
considering a bundle V which can “emit” a 5-brane in the
special classes defined in Sec. IID [i.e. C and C as
in (2.35)] and leave the remaining part of the bundle as
a spectator in the conifold process (akin to the spectator
branes of Sec. II D 4).

Before outlining this process in more detail, it is important
to clarify in what way we expect a bundle to be a spectator to
a conifold transition. As in the case of 5-branes described
above, intuitively it makes sense that if the crucial defining
data of the bundle misses the conifold points (respectively
P's), then this stands a chance of leading to a good bundle on
both sides of the transition. More precisely, we wish to
parametrically define a pair (X, V;) denoting a vector bundle
on the deformation side of the conifold which can be tuned to
the nodal limit of the CY3 geometry and then pulled back to
the resolution manifold X to produce a smooth vector bundle
Vo. These rather rough intuitive notions can be made
somewhat more precise by studying the form of the con-
nection at the singularities (respectively the P's) and
interesting work has been done on special aspects of this
question (see [13]). As mentioned previously, one simple
condition placed on bundles defined over the resolution
geometry X that can possibly be extended onto the defor-
mation manifold X is that the restriction of V,, to the P's is
trivial (i.e. Volpi = Opi®* V) [40].

As a toy example of a spectator bundle, suppose that
Ox(D) is aline bundle on X. Then as proved in [45], O3 (D)
is a line bundle on X with the same cohomology and Chern
classes as it had on X (since the Kéahler cone of X is simply
extended, never reduced, in moving to that of X). Thus,
bundles built as kernels, cokernels or extensions of line
bundles of this form, can all potentially serve as spectators.
Note that line bundles of the form shown above have the
property that Oy (D)|p1 = Op: as described above.

It should be noted however, that even if a spectator
bundle can be carried simply through the conifold tran-
sition, spectators do not in general have the right behavior
for a physical heterotic theory to pass through the tran-
sition, in that the end result of a bundle on X trivially
extended onto X will in general not satisfy anomalies (or
slope stability) on X. To have a chance at a physically
consistent transition, we need to employ the ideas of the
previous subsections. Returning to this goal, suppose that
V, constitutes a vector bundle on X whose second Chern
class is of the form ¢,(V() = ¢,(Tx) — [C]. Then consider
a rank-changing small instanton transition of the form

0->VoVy® Oy - Op - 0. (2.55)
Next, let V, be the trivial extension of V, to X and on this
manifold, consider absorbing the small instanton associated
to C into Vy @ Oy as
0—>\£/—>\70€9(’)X—>(’)C—>O. (2.56)
In this process we have absorbed the 5-branes paired by the

transition described earlier in this section into effectively
the “same” spectator bundle on both sides of the transition.

If both V and V can be deformed to smooth bundles, V, V,
then we have a pair for which ¢,(V) = c¢,(Tx) and
c,(V) = ¢,(Tg). Thus, we would have extended the
5-brane transition of the previous section into a transition
of vector bundles as shown in Fig. 5. As we will
demonstrate in future sections, both the 5-brane and bundle
transitions detailed here lead to a matching of the charged
and uncharged massless matter spectra of the resulting
N = 1 four-dimensional theories. In other words, they lead
to apparently dual theories. In the case of the bundles, this
will be a known duality [arising from (0, 2) GLSMs].

To conclude this section it should be noted that, while the
small instanton process above was described as the
absorption of the special 5-branes in Sec. I D, it is equally
natural to describe this process as an emission of that
5-brane, which then can traverse the conifold. For example,
beginning with a smooth bundle V which can be tuned to a
singular limit of the form

Vo V=V,®Z, (2.57)

it then naturally fits into the short exact sequence

0>V ->Vy®Ox - Op -0, (2.58)
where the exactness follows from the Koszul sequence of Z ..
This sequence implies that via a small instanton transition
such a bundle V can emit an instanton supported on the curve
C. Then if we allow the 5-brane wrapping C to transition
through the conifold to the dual 5-brane/curve C, we can
“reabsorb” the new curve into V, (if we bring the spectator
bundle V, passively through the conifold transition) via

0->Vo®Zz— Vy®dOx - Op — 0. (2.59)
Asafinal step, this singular bundle V, @ Z ¢ can be deformed
back into a smooth vector bundle V on X. Thus, the pair V, 1%
has been linked across the conifold transition.

1. Example

As an example of the phenomenon above, let us consider
the 5-brane transition involving a conifold of the quintic
used previously in this section. In this case, the relevant
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Beginning at the top right: the path of the heterotic gauge bundle through a conifold transition, as described in the text. The

result is the target space dual of the original theory, as we discuss in Sec. IV.

curve class on the quintic was [C] = 4D? with explicit
polynomial description given by [y = gq = 0 as in (2.35).
Recall that the skyscraper (O) and ideal sheaves (Z ) of
such a curve on the quintic are defined by the Koszul
sequence as

0->0(-5-0(-1)0O(-4)>Z—>0 (2.60)

0>Zc—> Ox - O - 0. (2.61)
Let us define the following bundle on the quintic
threefold as a spectator (in the sense above) to this conifold
transition:
0->0(-4) > 0(-1)% > Vv, —>0. (2.62)
Over a smooth quintic threefold, this bundle can be
combined with a 5-brane wrapping C via a Hecke transform
as in (2.55) as a rank-changing transition
0-VoVi®0O - Oc—0. (2.63)
The bundle V has ¢, (V) = 6D? and as aresult, can correctly
pair with C given above to exactly saturate the anomaly
cancellation condition of ¢,(Ty) = 10D? = ¢, (V) + [C].
In this case, by direct computation, we find that the space
of morphisms, Hom(V,, O¢) is trivial and as a result
V =V, @ Z. Fortunately, however, the cokernel descrip-
tions of both our spectator bundle in (2.62) as well as the

ideal sheaf in (2.60) lead to a natural addition of the short
exact sequences as

0= O(=5) @ O(=4) 5 O(=4) ® O(=1) ® O(=1)%*
S>Ve®ZIc—0 (2.64)

which, for a block-diagonal map, fT, leads to a unified
cokernel description of V, @ Z . If we deform the map fT
away from a block diagonal form' this amounts to an
appropriate smoothing of the sheaf V back to a smooth
bundle."* The resulting bundle is a familiar one on the quintic

05 0O(=5) = O(=1P5 >V —=0.  (2.65)

V is a rank 4 holomorphic deformation of the cotangent
bundle of the quintic (i.e. essentially a deformation of the so-
called “standard embedding” on the quintic).
On the resolution side of the conifold given by the CICY
threefold in (2.31) likewise we begin with the spectator
0— 00,-4) - 0(0,-1)® - V; - 0 (2.66)
on this CY3 geometry and combine this object with C from
(2.35) after the 5-brane transition. The curve C is in the
class 5D D, and its ideal sheaf is given by

0-0(-1,-5) > O(-1,0) ® O(0,-5) > Zz -0
(2.67)

In the bundle moduli space of the Hecke transform V., such a
deformation is of so-called “non-Hecke” type. See Appendix D.

"“Note that in this case the repeated entries of O(—4) in the first
and second terms in the sequence can be eliminated without
changing the cokernel.

106018-17



ANDERSON, BRODIE, and GRAY

PHYS. REV. D 108, 106018 (2023)

0-Zz = Ox = O — 0. (2.68)
As above, we can combine the sequences for V and Z to
obtain

0 = 0(0,~4) @ O(—1,-5) 1= (0, —1)®*

®O-1,00® O00,-5) - Vo ®Iz—0. (2.69)
This singular sheaf once again can be deformed into a
smooth bundle V on X from (2.31) by tuning the map f'
away from block-diagonal form. Thus, we have constructed
a dual pair of bundles in the sense of Sec. IID in V and V in
(2.65) and (2.69) with general maps. As we will see in later
sections, the language of “duality” is justified in describing
these connected bundles as they lead to apparently identical
four-dimensional theories (with perfect matching of their
massless spectra) across the conifold transition.

III. 5-BRANE DUALITY

It transpires that the 5-brane transitions described in the
previous section link compactified theories which appear to
be dual. In this section, we provide proofs and general
arguments of the matching for the various parts of the
spectrum, and exhibit this 5-brane duality through examples.
Indeed, in this section, we move beyond the single example
with which we have illustrated our discussion so far and in
Sec. III Awe provide a large class of pairs of 5-brane theories
connected by the transitions of the previous section. We then
turn to the discussion of duality in Sec. III B.

A. A simple class of 5-brane theory pairs

The construction of Sec. IID details a prescription for
continuously taking a 5-brane theory across a conifold
transition. A very large class of examples in which this can
be conveniently and explicitly described is that of conifold
transitions described by P" splits of toric complete inter-
sections, and for any such case we have collected all of the
relevant expressions in Appendix E. A subclass of these for
which it is less cumbersome to illustrate the construction is
that of conifold transitions described by P! splits between
CICYs, and hence we consider these below.

Consider a pair of CICY manifolds X and X which are
related by a conifold associated to a P! split:

[pl
A

1 10

=X. 3.1
Vo V1 R ( )

X= [.A ‘ Vo + V) R] <

Here A is a product of N projective spaces, v, and v; are
vectors of length N and R is an N x (K + 1) matrix where
K = dim(A) — 5. It will be useful in what follows to use
the following, equivalent, description of X:

FIG. 6. A graphical depiction of the construction of dual
5-brane theories for the special case of a P! split. The CICYs
related by the P! split, X and X, can be embedded in the same
ambient space, and the 5-branes playing a crucial role in the
construction are then given by the curve ¢ on which these two
manifolds intersect.

[pl
A

1 0 0
0 V0+V] R

X = (3.2)

On these two manifolds we will consider a 5-brane stack
wrapping a curve ¢ which is the intersection of X in (3.1)
and X in (3.2) in their shared ambient space:

(3.3)

A 0 vo+v

P! 1 0 0o 1 1
CcC =
R Vo Vi

This situation is depicted schematically in Fig. 6. One can
then complete these constructions by adding a spectator
5-brane stack, or indeed a spectator bundle, to each configu-
ration in order to saturate the heterotic anomaly cancellation
condition. Our statement is that these two theories are dual to
each other': they give the same low energy spectrum.

The curve ¢ has a different normal bundle considered as
a complete intersection, C or C respectively, in the two
manifolds X and X:
NC:O(V())@O(V]), N@ZO(I,())@O(O,VO—'—V])

(3.4)

The classes of these 5-branes, as appearing in the anomaly
cancellation condition, are as follows:

[Cl= M- D(Vi-J)

[C] :Jo(V0+V1>J (35)

In the above, J, is the Kéhler form of the P! involved in the
split, restricted to the CY3 X and J is a vector of the Kihler

There is one small class of apparent exceptions to this
duality, namely those where the resolution manifold is isomor-
phic to the Schon manifold. We discuss this in some detail below.
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forms of the projective factors in A restricted to the relevant
CY3 manifolds. Note that these objects are precisely the
distinguished curves associated to the transition that were
discussed in Sec. II D.

We can compute the second Chern characters of X and X
to find the following:

chy (Ty) =chy(Ty) —%((Vo +v;)-J)?

ch (Ty) =cha(Ty) = Jo(¥o+ 1) J =3 (%o 3V =3 (v )2
(3.6)

In these expressions we have defined ¥ = [A|R]. Thus, we
see that

chy(Tx) — chy(Tx) = [C] - [C]. (3.7)

Given that these two 5-branes account for the difference
in second Chern class between the two manifolds, a
spectator bundle or 5-brane stack can be added to complete
the model and make it anomaly free as claimed above. This
spectator 5-brane stack wraps a curve in the class

[Col = [Col =5 (Vo - 3)* + (v - J)?) = chy(Ty) (3.8)

N[ =

on both sides of the duality. Notice that this class has no
contributions involving J,. In the case of completion by a
spectator bundle, (3.8) is the second Chern class of that object.

B. Moduli matching across 5-brane duality

In the compactified theory of a Calabi-Yau threefold X
containing only a 5-brane wrapped on a single curve C,
there are the following massless multiplets (see for
example [46]) in the supergravity limit:

(1) h"Y(X) + h*'(X) chiral multiplets;

(i1) gc vector multiplets, where g is the genus of the

curve C; and

(iti) h°(C,N¢) chiral multiplets,'® where N is the

normal bundle of C inside X.

There is also an additional universal chiral multiplet for
each 5-brane. If there are multiple 5-branes wrapped on
various curves C; inside X, then one has a contribution g,
and a contribution h°(C;, N'¢,) from each. In our con-
struction above, in the theory on X (respectively X) there is
a 5-brane wrapped on the curve C (C), as well as a spectator
5-brane wrapped on a curve C, (C,), so there are two
contributions to consider from the 5-brane sector.

For these pairs of 5-brane theories resulting from our
construction the above massless spectra match, and in this
section we provide general arguments for this.

1A derivation that this is indeed the correct enumeration of
brane moduli is given in Appendix B.

Consider first the massless vector multiplets. Since these
are given by the genera of the curves on which the 5-branes
are wrapped, the matching of the vector multiplets across
the pair of 5-brane theories will follow immediately if one
can establish the isomorphisms Cy = C, and C = C.

In the case of the spectator curves Cy, and Cjy, this is clear.
This is because these curves are related by smooth passage
through the conifold transition, staying far from the
singular/exceptional loci. That this is also true for the
curves C = C can be seen manifestly in the P'-split class of
examples in Sec. III A above, since the curves C and C are
simply different embeddings of the same curve ¢ into the
two geometries X and X. For a more general argument of
the isomorphism C = C in our construction, we refer the
reader to Appendix C.

Consider next the chiral multiplet moduli. In the case of
the spectator branes, we expect that the contributions
precisely match, h%(Co, N¢,) = h°(C.N¢,). and indeed,
we provide in Appendix C a proof that this is the case for
any P" split between CICYs. By contrast, the moduli of the
5-brane stacks wrapping C and C do differ in the two
theories. Indeed, these contributions must compensate for
the difference in geometric moduli across the conifold
transition, i.e.

W(C,N¢) + 'Y (X) + h*1(X)

=h(C,Ng) +h N (X)+r>(X).  (3.9)

For the large class of examples of conifold transitions
described by P" splits of toric complete intersections, for
which we explicitly perform the construction of the 5-brane
theory pairs in Appendix E, the descriptions of the
geometry and the 5-branes are sufficiently explicit that
one can determine in any particular case the above
cohomologies, and hence verify that the above equality
indeed holds.

We have performed this check in many explicit examples,
including many cases where 4'"! changes by more than one,
or where the complete intersection description is nonfav-
orable, providing a wealth of evidence for the general
result.'” Moreover, in Appendix C, we outline a proof of

"There is however one small class of exceptions to this. In the
few cases in which the resolution geometry is isomorphic to the
Schon manifold, which appear also to be precisely the cases
where the Weil non-Cartier divisor D on the singular variety is
isomorphic to 7%, the moduli matching fails. The most obvious
qualitative difference in these cases is the appearance of a
nonzero h'(D,Op). An understanding of the role of this
contribution may provide an explanation for why the moduli
fail to match in these cases, and it would be interesting to
understand the unique features of this special case further.
However, if one considers cases where the Weil non-Cartier
divisor is not isomorphic to T*, then one may hope for a general
proof of moduli matching, along the lines of the argument in
Appendix C.
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this in the most tractable case, of a conifold transition which
changes h''! by only one, and which can be described as a P!
split between CICYs. Given that the result has been verified
in a large variety of examples beyond this simple case, we
also expect a more widely applicable proof to be possible
along similar lines.

Clearly, when coupled with the preceding result con-
cerning the moduli of the spectator 5-brane stacks, such a
result guarantees that the total number of moduli, coming
from 5-branes, complex structure moduli, Kihler moduli
and the dilaton, will always match across the dual theories.

As a final comment for this section, we believe that the
5-brane duality described here is a true duality, and not just
an accidental matching at the level of spectrum. In
particular, we expect other properties of the dual configu-
rations, such as the potentials in their low energy effective
theories, should also match. To see why this is expected to
be so, we must discuss the relationship between the
physical process we have been describing in this paper
and the phenomenon of (0, 2) target space duality. It is to
this topic that we turn in Sec. IV.

1. Example

Let us consider the case of the following P! split of the
quintic:

P! 1 1 -
X =|p* 5 = X. 3.10
In this case we have
Ne=0(1)®04), Ng=0(1,0000(0,5). (3.11)

One should of course complete this example by providing
either a spectator bundle or a spectator 5-brane which will
saturate the anomaly cancellation condition. If we opt for the
latter possibility, one can choose to include such objects on
curves with the following normal bundles on the two sides:
N, =002)003), Ng=0(02)80(0,3). (3.12)

Counting the chiral multiplet moduli on both sides of the
transition, we arrive at the following:

hO(Nge) | BYNG, 6,) | WX/ X) | B2H(X/X) | Total
Deformation 38 30 1 101 170 (3.13)
Resolution 52 30 2 86 170

Thus we see that these moduli match as claimed. One also
finds that gc = g¢ = 51 and g¢, = g¢, = 76, so that the
vector multiplet moduli also match.

As was pointed out above, one could have completed
this model with a spectator bundle rather than a spectator
5-brane stack. The following bundles are suitable,
having the correct Chern classes to saturate anomaly
cancellation:

0->0(-4) > O(-1)* >V, -0

0— 0(0,-4) - O0,-1)* - Vy = 0. (3.14)

A short computation shows that the spectra of these two
bundles, both singlet and charged, match on the two sides
of the transition.

As aside note, we also note that V, restricts trivially to the
exceptional locus in X as was predicted in Sec. Il E. A simple
Koszul sequence computation, using the fact that the normal
bundle of the exceptional locus is O(—1,1) @ O(-1,4),
reveals that O(0,—1) and O(0, —4) restrict to the trivial
bundle on those P's. The restriction of the sequence defining

V,, then immediately tells us that this does indeed restrict to a
trivial bundle.

IV. HETEROTIC CONIFOLD TRANSITIONS AND
TARGET SPACE DUALITY

In this section we consider the simple extension of the
duality outlined above for 5-branes to a duality involving
gauge bundles (via heterotic small instanton transitions
[11,36,37]). As we will demonstrate below, in terms of the
effective four-dimensional ' =1 theory, the correspon-
dence we derive is not new, but rather provides a geometric
explanation of a known phenomenon arising in heterotic (0,
2) GLSMs—so-called (0, 2) target space duality [22-26].

A. Moduli matching for transitioning bundles

Let us describe how the degrees of freedom match for
bundles connected across the conifolds as described in
Sec. ITE. We begin by considering the moduli of the
sheaves described by two Hecke transforms of the form
(2.59), one on each side of the transition, which describe
5-branes and spectator bundles on the point of being
recombined into a smooth higher rank object.
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The degrees of freedom of these Hecke transform
sheaves, while they are still in the form (2.59) with a
separated ideal sheaf, are derived in Appendix D. There it is
shown that the moduli [i.e. H'(X,V x V¥)] are given by'®

H' (Vi ® V) @Ext! (V. Z¢s) ®Ext! (Z¢, Vo) ®HO(N¢le).
(4.1)

Although it may not be apparent at first, the first three of
these terms are the same on both sides of the transition.
From the discussions of Sec. III B this is clear for the
spectator bundle moduli H'(Vy ® V). For the extension
groups, this follows from the following two expressions,
which hold for the case at hand:

Bx! (Vo T¢) = ker (H'(V§) = H'(V§le))  (42)

Eth (IC, ‘70)
— H'(V,) @ ker (Extz(O@,Vo) S Ex(O, Vo)). (4.3)

These quantities only involve V, and quantities intrinsic to
the curves, which are identical on the two sides of the
duality.

The last term in (4.1) does not match on the two sides
of the duality but is exactly the 5-brane moduli from
Sec. III B. As described in that section, these moduli differ
by exactly the same number of degrees of freedom required
to account for the difference in Hodge numbers and so
geometrical moduli of the underlying manifolds.

Given the above discussion, we see that the moduli on
the resolution and deformation sides of the duality match
before the smoothing is performed to turn the Hecke
transforms of the form (2.59) into smooth bundles. In
deforming to the smooth bundle situation, moduli are lost.
In every case we have examined the two bundles change
their moduli by the same number. As might be expected,
this is often a change of a single modulus, as is the case in
our canonical example that was used throughout Sec. II.

A similar, but simpler analysis holds for the charged
matter of the system. Starting with the Hecke sequence
(2.59), one can work out the charged matter, associated to
cohomology groups such as H' (V) and H'(V), in terms of
properties of the spectator bundles and properties intrinsic
to the curves C and C. These match on the two sides of the
transition and, in this case, are generically unchanged in
deforming to the smooth point in bundle moduli space in
examples we have seen.

The real evidence that the final moduli and matter counts
do always match on the two sides of the transition,

"Note that, although here we have given the expressions for
the resolution side, an identical form would hold for the
deformation geometry.

however, is given by linking the process we are describing
here to a well-known duality that has already been
discussed at length in the literature. It is to this that we
turn in the next subsection.

B. Connections to (0, 2) GLSM target space duality

In (0, 2) target space duality (TSD), two (0, 2) heterotic
GLSMs are found to share a nongeometric branch of their
vacuum space (either a Landau-Ginzburg phase or a more
general hybrid phase) and the subsequent pair of GLSMs
reveals four-dimensional N/ = 1 theories that appear to be
dual in the sense that their total massless spectrum for both
charged and uncharged fields is identical. In particular, the
number of uncharged singlets (in the large volume, weakly
coupled limit), as counted by

R Y(X) + (X)) + h' (X, Endy(V)), (4.4)
is preserved across the pair. This is true despite the fact that
the underlying CY3 manifolds are topologically distinct
(with different Hodge numbers), as are the vector bundles
over them. Moreover, subsequent work [27] demonstrated
that even when D- or F-term contributions to the scalar
potential “lift” some of these flat directions in the vacuum
space, the true number of singlets remaining matches
across the TSD paired theories.

Since the primary focus of the present paper is on the
geometry of the heterotic manifold/bundle and the asso-
ciated four-dimensional field theory, we will not provide a
detailed review of target space duality as it arises in two-
dimensional (0, 2) GLSMs here, but instead summarize its
effective action on a monad bundle over a complete
intersection CY3 manifold inside a toric variety [the
geometry that naturally arises in (0, 2) GLSMs].

In the context of a (0, 2) GLSM, we are given a bundle V
defined as the kernel' [V =ker(F)] of a morphism
between sums of line bundles,

0-V— Powm, = @ Oe) =0, (4.5)

over a CY3 manifold defined as a complete intersection [of
polynomials G;(x,) =0] with normal bundle N =
,0(s;) and a set of homogeneous coordinates x; with
weights q; [where the boldface quantities are vectors
running over h''!'(X) components]. In this notation, the
Calabi-Yau condition is satisfied if };q; =) _;s;, and
c1(V)=01leadsto >, b, = >, ¢; (for each component of
the vectors).

In this notation, the monad is defined as the kernel of a
holomorphic map,

“In the interests of simplicity, we will for now exclude
fermionic gauge symmetries which can lead to more general
monads.
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Fi(x,) € H(X. O(c; = b,)). (4.6)
while the manifold is defined by the vanishing of a set of
holomorphic functions,

G;(x,) €H(X,O(s))). (4.7)
In the appropriate circumstances, target space duality

simply involves the observation that in a nongeometric
vacuum of the (0, 2) GLSM, a pair (or more) of functions

F!(x,) and G,(x,) can be interchanged without changing
the Landau-Ginzburg or hybrid theory in that phase. If this
apparent symmetry is used to relabel GLSM fields in that
limit and then one moves back to a geometric phase of the
theory, this interchange of ' <> G has effectively defined a
new monad bundle and CY3 manifold.

In the present discussion we will consider pairs of F <>
G interchanges which will be labeled without loss of
generality by fixing / = 1 and considering a = 1, 2, thus
focusing on the bundle maps F} and F}. If the multidegrees
of the polynomials match such that

then a target space dual geometry can exist?’ in which

Fl < G, and F)< G, (4.9)

leading to a new (0, 2) GLSM, i.e. a new manifold/
bundle pair.

To make contact with previous literature involving
bundles constructed as monads (see for example [47-51])
and the (0, 2) GLSM literature on target space duality
[22-26], we will allow the GLSM charge matrix data to
determine the multidegrees of the line bundles (4.5) via the
following dictionary:

b, =A,,

¢ = |p Al (410)

while the normal bundle of the CY3 manifold is determined
by s; = |T;.

We turn now to an example and consider the following
manifold and bundle pair (given in terms of GLSM charge
data), originally presented in [26]. An SU(3) bundle V, given

2¢;=b;=by =5, +s5, (48) " in monad form, over a manifold X is presented as follows:
|
ZT; Fj A® Pl
0001111 -2 =2 0210 -3 (4.11)
1112 2 20 -4 =5 1 6 01| -8
The massless singlet spectrum of this theory is counted by
RY(X) + h2N(X) + A (X, Endy(V)) = 2 + 68 + 322 = 392 (4.12)
and the charged matter is given by ny; = 120, nz = 0.
As shown in [26], (4.11) is linked by target space duality to the following manifold bundle pair (X, V):
€X; rJ A? bi
0001111 -3 -1 1110 -3 |, (4.13)
11122 20| -7 =2 4 3 01| -8
where the maps that were interchanged as in (4.9) to produce (4.13) are here of multidegree
G =(Flpsy  G=(F)ps (4.14)
G =(Fan G =(Fi)u) (4.15)

Interestingly, we may without loss of generality, choose the bidegree (1, 2) defining equation of X to consist of a single
weight (1, 2) coordinate x; (by choice of coordinates) and hence, the description can be reduced to a single hypersurface:

20Subject to verifying that an appropriate hybrid phase vacuum actually exists with the appropriate vacuum expectation value,

(p1) #0.
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T v A® ”
0001171 -3 1 1 01 -3 (4.16)
1112 20 -7 4 3 10 —8
This removal of a “redundant” constraint equation (with the p! 1 0
same multidegree as a coordinate) can be consistently [ . ‘ ] (4.18)
realized in the GLSM by integrating out a massive pair of P 05

fields (i.e. x, and I'?).
As expected of target space duality, the massless spec-
trum remains the same, though distributed differently,

B () + B2 (X) + B (X, Endg(V))

=2+4+95+295 =392 (4.17)
with the same Eg gauge group and charged matter spectrum
as before. Note that in this example, in moving from (X, V)
to (X, V) some of the complex structure and bundle moduli
were interchanged, while the number of Kihler moduli
remained the same. In general, it was observed in [23,25]
that target space dual pairs can involve a mixing of all three
types of geometric moduli by using similar “redundancies”
to the one observed in the defining equations of the
example above, only using them in reverse. In particular,
by introducing a redundant description of X which involves
more C* actions, the Kéhler moduli can be nontrivially
included in the process. The general procedure for this
redundancy and then subsequent construction of the target
space dual is laid out in detail in [25]. Here we will simply
summarize the approach by means of an example.
Consider the quintic hypersurface P4[5]. A simple redun-
dant description of this Calabi-Yau threefold is given by
|

The two manifolds are equivalent for the same reasons as in
the example above. Here the geometry of redundancy is
especially simple as the linear constraint picks out a single
point in the P! ambient space (and clearly as a manifold,
X = X x {pt}). However, beginning with this redundant
description as a starting point leads to novel target space
dual pairs.

As an example, we will take the same bundle which has
appeared in prior sections of this work, namely the rank 4
deformation of the tangent bundle of the quintic CY3:

0-V->001)% - 0(5)-0. (4.19)
The manifold redundancy mentioned above can be
extended in a similar manner to the bundle (as first noted
in [27]) and we will choose here to add a repeated entry to
the second and third terms of this sequence as

0>V ->01)%@04) - 05)®d04) -0. (4.20)

Presenting this bundle and the redundant quintic in (4.18)
in GLSM charge matrix notation we find

Yo Y1 Y2 Y3 Y4 X0 X | ror | AN N AN A ‘ P1 P2
0O 0 0o 0 0 1 1 -1 0 O 0 o0 o0 o0 O -1 0 (4.21)
11 1 1 1 0 O 0 -5 4 1 1 1 1 1 -5 -4

Note that in this redundant description it naively seems that c¢;(X) # 0 and ¢;(V) # 0. However, due to the simple
geometric nature of the redundancy this is not actually the case. In the GLSM the anomalies are canceled by the condition
that the net sum of charges is vanishing [i.e. ¢;(X) + ¢;(V) = 0] which still holds. Explicitly we choose defining

equations in (4.21) to be

)C():O

ps(y) =0.

(4.22)

(4.23)

For the geometry described by (4.21), the algorithm of [27] leads us to a new manifold/bundle pair
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Yo Y1 Y2 Y3 Y4 KXo X | rror | AN A AN A ‘ Pr D2
0O 0o 0 o0 O 1 1 -1 -1 1 0 0 0o 0 O -1 0 (4.24)

1 111 1 0 O | -1 -4 o 5 1 1 1 1 | -5 -4

I

Here the defining equations are given by the conifold transition connecting the CY3 manifolds has
remained a mystery from the point of view of the heterotic
lo(y)xo + i (y)x1 =0 (4.25) backgrounds®' (X, V) and (X, V). In the remainder of this
section, we will argue that at least in the case of X and X
qo(¥)x0 + q1(y)x; = 0. (4.26) connected by conifold transitions, the gauge/gravitational

These manifold/bundle pairs are of course the canonical
example that we have studied throughout Sec. II. In examples
of this kind in target space duality, the fact that the base CY3
manifolds, X, X, are related by a conifold transition is a
consequence of the redundant description used. Here a linear
hypersurface constraint in P! as in (4.18) led to a P! split,
while in general n linear constraints in P” used as a
redundancy leads to a conifold realized as a P" split.

In this case the singlet spectrum of (X, V) is given by

RU(X) + K21 (X) + B (X, Endy(V))

=1+ 101 + 325 = 427 (4.27)
while in the target space dual geometry
hUY(X) + B2 (X) + h' (X, Endy(V))
=2+ 86+ 339 =427 (4.28)

and for both theories ny; = 100 and nz; = 0 as expected. In
addition, it was shown in [25] that for every anomaly-
consistent geometry (X, V) that generates a target space
dual, (X , ‘7), via this redundant ambient space procedure,
the dual geometry is guaranteed to also satisfy anomalies.

Note that in this case, the interchange of CY3 defining
equations and monad maps takes the form

G, =Fl =x G, =F} = ps (4.29)
Gy =F} =1y(y)xo + 1, (y)x,
Gy = F} = qo(y)x0 + q:(y)x, (4.30)

and for TSD to hold, these defining equations/polynomial
maps must be held equal (and all other bundle maps which
remain unchanged are also chosen to agree). Note that this
effectively provides a map from a point in the moduli space
of (X, V) to a point in the moduli space of (X, V).

At a naive first pass, the TSD procedure implemented
above seems to indicate that in some sense in the complete
geometry, components of a manifold/bundle [i.e. a pair
G(x;), F(x;) as in (4.30)] have been interchanged in order
to construct a new stable bundle/CY3 manifold. The exact
geometric nature of this interchange and any direct links to

instanton transition described in previous sections provides
such an explanation.

To begin this exploration, note that for the given
polynomials exchanged in (4.30), much of the bundle
effectively carries through the transition trivially. We can
exploit this fact by moving to a point in moduli space where
the monad map becomes block diagonal (and hence the
bundle itself becomes a direct sum). This allows us to
divide the bundle into two pieces—one that changes and
one that does not (we will refer to this latter piece as V). In
the dual (cokernel) bundle description we can write each
bundle as Vo, @ Z (respectively V, @ 7). Here the
unchanging parts (i.e. the spectators) are given as

0-0(-4) - O(-1)®* 5 V; -0 (4.31)

0— 00,-4) - 0(0,-1)® - V; - 0 (4.32)
which are familiar from (3.14) in Sec. Il E, while the pieces
of the bundles that actually change under the target space
duality procedure are

0->0(-5-0-1)d0O(-4) -7 -0 (4.33)

0-0O(=1,-5)=>0(0,-5)®O(-1,0) T —0. (4.34)
Of course the suggestively named objects Z,7 are ideal
sheaves and the ideal sheaves of very special curves that we
have seen already arising in previous sections. In particular,
7 is the ideal sheaf of a curve C (familiar from Sec. II D) in
the class 4D? in the quintic manifold X defined by the
vanishing of the polynomials

(4.35)

while 7 is the ideal sheaf of a curve in the class 5D, D, in X
given by

xo = ps(y) =0, (4.36)

*'The link to conifold transitions is also mysterious from the
point of view of the GLSM since the matching of vacuum spaces
typically happens deep in a nongeometric phase.
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where [;(x),q,(x) and ps(x) are defined as in (4.23),
(4.25), and (4.26). Note that in order to maintain target
space duality, the defining equations of these curves are
toggled to the defining equations of the dual manifold as in
(4.24). For generic choices of the quintic defining equation,
the loci supporting the sheaves Z, 7 are codimension 2
(i.e. curves). However, for this correlated system of mani-
folds/curves in the limit that the quintic is tuned to the
conifold (i.e. nodal) point,
rs = lq, — l1qo, (4.37)
they are precisely the Weil non-Cartier divisors described in
Sec. II D and whose role in 5-brane physics was explored in
Secs. I and I1I. More precisely, as described in Sec. II E, the
ideal sheaf given in (2.60) can be removed from the bundle V
via a small instanton transition [described by a Hecke
transform of the form given in (2.59) in Sec. 11 E]
0-Ve®ZI->VedO->0Or—0. (4.38)
Finally, and most importantly, as described in Sec. II D, the
fact that the bundle decompositions exist of the form Vy @ Z
above means that the arguments of Secs. IID and III
guarantee that the observed matching of the massless moduli
and charged across this TSD pair follows from the dis-
cussions of Secs. [T E, IV A, and Appendix D. Thus, we have
understood the moduli matching of TSD from a geometric
point of view.

The results provided above are for a single pair of
manifolds/bundles. However, we expect these arguments to
hold for all TSD pairs involving conifolds (and all toric "
splits) and have verified this in a large number of examples.
Indeed, as can be noted from previous sections, the
majority of our results hold for generic conifold transitions
in toric complete intersections. Moreover, although
required from the GLSM viewpoint our proofs do not rely
on the monad construction of vector bundles and hence, in
that sense (in addition to the sense in which they include the
purely 5-brane duality) are more general than the setting
of TSD.

One exhaustive playground in which to test the ubiquity
of the correspondences above—i.e., the explanation of
target space duality via gauge/gravitational pair creation—
is to consider all stable monad bundles on the quintic with
¢, (V) = ¢,(TX). The list of such bundles was first found
in [49] (see also [50,51] for a description of systematic
enumerations of monads with particular ¢, (V), c3(V), etc.).

|

For each vector bundle in the list with ¢, (V) = 10D? we
can ask the following questions:

(i) Can this bundle be linked to some other vector
bundle V on the manifold in (4.24) by TSD?

(i1)) Does this bundle admit a nontrivial Hecke transform
surjection V — O¢ — 0 for C the curve defined in
(4.35)? (That is, can the necessary small instanton
transition be performed that effectively partitions the
dual monad bundle into V, and Z~ as above?)

In each case we find that the answer to the first question is
positive if and only if the second is also true. That is, the
existence of a target space dual pair and an appropriate
gauge/gravitational instanton transition across the conifold
is one to one for this set. Moreover, the questions posed
above for the single conifold transition linking the quintic
to the CICY threefold given in (4.24) can be repeated for
every conifold transition beginning on the quintic that
increases h'! by 1. There are 18 such manifolds whose
second Chern classes take the form

¢ =(10=n)D3 + -, (4.39)
where D3 is the direction in the Mori cone of the resolved
CY3 manifold that “carries through the conifold” from the
original quintic threefold. Conifold transitions can be found
for each integer value of n in (4.39) (note that in the
example presented above, n = 4) and these come in pairs
consisting of a CY3 threefold and its flop in the new (i.e.
P!) direction associated with the small resolution. In each
case, we find that the target space duality can be performed
if and only if the appropriate ideal sheaf to a special curve
(in the sense of Sec. II D) can be identified inside V.

To conclude this section we note that in the arguments
above and those regarding Hecke transforms and small
instantons given in Sec. IIE we considered the fully
decomposed, direct sum limit of the (dual) vector bundle
into “spectator + ideal sheaf” in order to explain the
transition and continuity of moduli. However, in some
examples of target space duality, it seems that such a
complete direct sum decomposition is more than is required
to follow the bundle through the conifold transition (or
equivalently perform the TSD). Instead, in some cases only
the weaker condition itemized above that there exists a map
V — O¢ — 0 seems to be required. As an example of this,
we can consider the flop of the CY3 geometry given in
(4.24). The same deformation of the tangent bundle of the
quintic in (4.19) can be written with a different redundant
description as

Yo Y1 Y2 Y3 Y4 KXo X | r

2| AL A A AN p

o 0 0 0 0 1 1 | -1
1 1.1 1 1 3 0 | -3

0‘00000 -1, (4.40)

=5 1 1 1 1 1 -5
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which is TSD to this manifold/bundle pair,

Yo Y1 Y2 Y3 Y4 X X | r

2| A AN AN p

O 0 0o 0 0 1 1 | -1
1 1.1 1 1 3 0 | -4

—1|1 0o 0 0 0 | -l (4.41)

—4 0 2 1 1 1 -5

The toric complete intersection threefold is the flop of that
given in (4.24). Note that in this case, the relevant curve in
X which controls the transition [in the sense of (4.33) and
(4.35)] is given by

q90=4¢1 =0 (4.42)
which lies in the class 16D?. This class is manifestly too
large to support a 5-brane in an anomaly-consistent manner.

As a result, the picture of a 5-brane through conifold
|

I

transition followed by a Hecke transform as outlined in
Secs. IID and ITE is unclear. However, without fully
removing this 5-brane from the bundle, but instead moving
to a tuned limit where a Hecke sequence such as (2.18) can
be defined, the general process can still be completed and a
bundle transitioned along with the manifold through the
conifold transition. Finally, it is worth noting that in this
particular example, the same manifold and bundle can be
found via target space duality beginning with a different
redundant description, namely,

Yo Y1 Y2 Y3 ya Xo x| TP TP

AN A AN N AN py

o o o o0 o 1 1 | -1 0
1 1 1 1 1 3 O 0 -5

0O 0 0 o0 0 O -1 0 |
2 1 1 1 1 1 -5 =5

(4.43)

which is associated to the key curve in the class D?
given by

(4.44)

which can be fully removed from V as a 5-brane in an
anomaly-consistent way. In the case of this particular
conifold transition there are four Weil non-Cartier divisors
in the nodal limit given by (4.37). These consist of two
curves in the class 4D? (given by [, = g, = O and [, = ¢,
respectively) which both connect the quintic to the three-
fold given in (4.24) and those described above in the classes
D? and 16D? [both of which lead to the CY3 manifold in
(4.41)]. Of these only the one class (16D?) is incompatible
with a complete 5-brane transition in X. We leave as an
open question whether every conifold pair has at least one
anomaly-consistent curve connecting the CY3s in the sense
of Sec. IIl. This has certainly been the case for every
example we have studied.

V. DISCUSSION AND OUTLOOK

A key motivation of this work is the question of whether
and how a compactification of heterotic string theory on a
Calabi-Yau threefold may be able to consistently traverse a
topological transition of the compactification geometry.

|

That is, we have aimed to explore in the heterotic case an
analog of the story which is well known for the type II
string (e.g. [9]). This question has remained open in the
N =1 heterotic case due (in part) to the added compli-
cation of a gauge sector background, whose behavior
across the topological transition has historically presented
a stumbling block. A broader goal for this undertaking is to
determine which theories on distinct compactification
topologies might secretly be smoothly connected, to hence
illuminate the true structure of the moduli space of heterotic
compactifications.

Separately, we have also been motivated by the phe-
nomenon of heterotic (0, 2) target space duality. While still
at the level of an intriguing observation, through the rich
structure of gauged linear sigma models there is by now
significant evidence of pairs, or even whole chains of
heterotic compactifications, which have distinct topologies
and distinct gauge sector backgrounds, but which none-
theless appear to give rise to the same physical four-
dimensional N' =1 theory. In our context, we have in
particular considered this as suggestive of the existence of
consistent physical transitions between distinct compacti-
fication backgrounds, so that (0, 2) target space duality
would be merely a symptom of the possibility of this
traversal process.
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In summary then, this work has attempted to unite the two
themes above and has provided a geometric process by
which a compactification of the heterotic string can traverse
a conifold transition. Moreover, we find that this procedure
reproduces the known dual geometries connected by (0, 2)
target space duality in GLSMs (and indeed pairs connected
by a new 5-brane duality as discussed in Sec. III). As
mentioned in previous sections, our results are primarily a
geometric prescription (albeit heavily informed by heterotic
effective theories). It remains an open question exactly how
“smooth” these conifold transitions are in the full heterotic
moduli space or whether the tools of ordinary field theory are
sufficient to describe them. The development of the con-
jectural dual pairs outlined in previous sections has involved
combining a number of disparate elements, necessarily
leaving open a number of intriguing questions. The answers
to these questions will be the subject of future work, and in
particular, this includes the following important tasks.

First, it is natural to ask whether there exists a simple
field-theoretic description of the gauge-gravity pair creation
process outlined in Sec. II C. This process has arisen as a
key component in our conifold traversal proposal, and
while the compactified context has the advantage of
providing significant nontrivial consistency checks, it also
has arisen in an intrinsically intricate setting involving
multiple aspects of heterotic bundles/branes. Hence, an
interesting area of further investigation would be to study
simple “toy models” of this process in isolation and try to
provide more detailed field-theoretic descriptions.

A related question would be to more deeply understand
the significance of the apparent jump in dimension of the
essential curves (wrapped by S-branes) in the nodal limit
described in Sec. IID. We have seen that this jump in
dimension is crucial for the brane recombination process
which facilitates the traversal of the gauge sector across the
conifold transition. However, a physical interpretation is
difficult, because this effect occurs only in the singular
limit, and while it is clear that the supporting loci of the
skyscraper sheaves in the gauge sector jump, it is not clear
whether an interpretation exists as a genuine extended
object in string theory, or whether this is only an effect
arising in a small instanton limit. One avenue which may
provide hints for the appropriate description is a detailed
comparison with the data of the corresponding hybrid
phase of the gauged linear sigma model (see e.g. [52] for an
analysis similar in spirit). It would also be interesting to see
if realizations of 5-brane limits in GLSMs similar to those
in [53,54] could make contact with our proposed 5-brane
duality.

A further important point to note is that this work appears
to hint at some deeper duality of the heterotic string. It would
be interesting to pursue this more directly from a heterotic
non-linear sigma model viewpoint and to also ask what its
consequences might be for other theories under string
dualities. Some initial steps in the latter direction were

taken in [55] in the context of heterotic/F-theory duality. The
analysis undertaken there however was complicated by the
fact that all known examples of (0, 2) target space duality
involved the monad construction of vector bundles. In
[55,56] it was shown that under a Fourier-Mukai transform
such bundles lead to reducible/nonreduced spectral covers
and hence lead to inclusion of T-brane solutions [57-59] in
the dual F-theory compactification, which are necessarily
complicated in nature. However, in the present work we have
outlined a geometric prescription that is independent of
GLSMs/the monad construction. As a result, it would be
interesting to revisit the question of F-theory duals in simpler
contexts and to understand the nature of these conjectural
dualities for such theories (including any links to the more
general heterotic/F-theory dual pairs in [60]).

Finally, we hope to use this work as a starting point to
develop a clearer picture of how a heterotic compactifica-
tion might traverse other topological transitions more
generally (including flop transitions). In particular, natural
questions arise as to whether or not portions of the full
heterotic moduli space (defined by a particular manifold/
bundle as background) can be “extended” into another that
is connected by a topological transition. It is believed that
geometric transitions can connect all known Calabi-Yau
threefolds [8], and in particular the manifold resulting from
a flop may be reached instead through a sequence of two
conifold transitions. However, analogous to the type II
story, we expect that it is possible to pass directly through
the flop without ever moving to the deformation branch. In
this case, we can expect, and indeed have seen evidence
that, the description of the traversal of the gauge sector is
qualitatively different to the conifold case. As a particular
example, one can expect that the phenomenon of a jumping
dimension of the gauge sector objects will no longer be
present, since it arises chiefly from the behavior of curves
which become divisors in going from the deformation to
the resolution branch. Hence, the understanding of the
traversal process in the flop case may be expected to
involve qualitatively different phenomena and so to provide
distinct insights. We hope to return to these questions in
future work.
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APPENDIX A: GRAVITATIONAL SMALL
INSTANTON TRANSITIONS FROM SEQUENCE
RECOMBINATION

There are a variety of 7different ways to describe the
recombination of cotangent and skyscraper sheaves,
embodied by the Hecke transform (2.19), which underlies
the gravitational small instanton transition described in
Sec. II B. As one example of this, if one has appropriate
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resolutions of the sheaves involved, one can study this
process explicitly in terms of manipulations of these
sequences. Here we will illustrate this using the canonical
example that we have used throughout the main text.

For our example, the cotangent sheaf of the nodal variety
admits a resolution of the following form:

0 - O(0,-5) - Qp: » 7" (Qy) = 0. (A1)

Note that while the tangent bundle is not described as a
short exact sequence in this limit, the cotangent sheaf is.
This sequence is the dual of the, nonshort exact, adjunction
sequence associated to X. In (A1) we have used the fact
that the normal bundle to X is O(5).

The sheaf Opi (-2, 0) admits the following free Koszul
resolution, given that it is a complete intersection with
normal bundle O(—1,4) & O(-1,1):

0= 0(0,-5) = O(=1,~1) ® O(-1,-4)

- 0(=2,0) = Opi,(=2,0) — 0. (A2)

The sequences (A1) and (A2) can be combined, simply
by adding their entries together. In doing so, we keep the
maps to be the same as in the original two sequences with
no additional components added. In other words, the maps
are “block diagonal” and descend precisely from the
structures of (A1) and (A2):

0-0(0,-5)->0(-1,-1)® O(-1,-4)® O(0,-5)

- 0(-2,0)®Qp: = Opi(-2,0) 7" (Qy) >0. (A3)
This sequence is one description of the split locus in moduli
space of the central object of the Hecke transform (2.19),
which we reproduce here:

0—-7"(Qy) > Q; > Opi(=2) » 0. (A4)
viewed as an extension.

By generalizing the maps in (A3) away from the block
diagonal structure inherited from (A1) and (A2), we can
obtain an explicit description of how the two sheaves
recombine into Qg. The first thing to note is that, once the
maps are generalized, the two copies of O(0,-5) in
consecutive terms in the sequence can be canceled without
changing the object being resolved:

0 > OO—=5T > O(-1,-1) ® O(—1,-4) ® OB-=5T
= 0(=2,0) ® Qp — F — 0. (A5)

Note that here we have renamed Opi,(—2,0) @ 7*(Qy) to
indicate that we are no longer describing the direct sum but
rather some sheaf F whose nature we wish to elucidate.

Next we note that, because for the P! factor in the
resolution ambient space Qpi = O(-2,0), the sequence
can be written as follows:

00— O(—l,—l) D 0(—1,—4) - Qﬂ:pl (%3] Qp4 - F = 0.
(A6)

This sequence is simply the dual of the adjunction sequence
associated to the description of X as a complete intersection
in P! x P*:

0—TX > TP' xTP* - O(1,1) ® O(1,4) - 0. (A7)
We can thus identify F = Qj as expected. This analysis
therefore gives a different, and in some senses more
explicit, description of the small instanton in the gravita-
tional sector that connects Qy and Q.

APPENDIX B: BRANE MODULI

For a 5-brane to preserve supersymmetry it must wrap a
holomorphic curve in the Calabi-Yau threefold. In terms of
an embedding, the holomorphic spacetime coordinates

X“(y',y') of points on the brane must be a holomorphic

function of the world volume coordinates (y', 7):
;X = 0. (B1)

By using projectors we can rewrite this condition in
terms of real coordinates

70;(M5X8) = 0. (B2)
In this expression we have
1
=5 (11 +i7), (B3)

where J(©) is the complex structure tensor on the world
volume of the brane, and
V(o
H1—§<11_1j1 )’ (B4)
where 7 is the complex structure tensor on the space-
time manifold.

Starting by assuming that we have a solution to (B2) we
can vary the embedding X* and the two complex structure
tensors. Substituting such a variation into (B2) and using
that the unperturbed configuration is a solution, we then

arrive at the following constraint on the fluctuations if they
are to preserve supersymmetry:

1 1
567170, (X") + 7o, (— Y gX)AXB>
+ 70, (TI46XP) = 0. (BS)

To analyze things further it is useful to consider (BY),
component by component, in terms of the original,
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unperturbed, complex coordinates. In doing so we find that
the (I,A) = (i,a) and (I,A) = (i,a) components of the
equation are trivially satisfied. The (I,A) = (i,a) and
(I,A) = (i,a) components however are not. The first of
these reduces to the following condition:

%w;c”ajxa = -0, (5X“ - %wﬁf”ﬂ). (B6)

From this expression we see that 6.7 ;C)j corresponds to a
modulus iff 6.7 gc)j 0 jX“ is exact. In other words, the subset

of 6T %C)J that corresponds to moduli are those in the kernel
of the map H'(TC) — H'(TX|.). There are two types of
fluctuation 6X¢ which can solve (B6). First, any
56X € H(TX|.) satisfies the equation in isolation and
so is a modulus. Second, there are fluctuations which
are paired to fluctuations of the threefold complex structure
which ensure that the bracket on the right-hand side of (B6)
remains closed. Note that such a compensating 6X¢ exists

for any possible fluctuation 6.7 éx)”. _

How do these allowed fluctuations of 6.7 gc)_/ and 6X¢
combine into something familiar. Recall the following short
exact sequence:

0—-TC—-TX|c— Nc—0. (B7)
Taking the associated long exact sequence in cohomology
we arrive at the following result if H(TC) = 0:
HO(No)=H(TX|;) @ker(H' (TC)— H'(TX|.)). (B8)
This is exactly the set of moduli we obtained from the
differential analysis above. In all of our examples
H°(TC) =0 and indeed this holds for any curve with
genus g > 1. B

The above analysis leaves us with just the (I,A) = (i, a)
component of (D9) to examine. This component takes the
following form:

(0:679")xb = 0. (B9)

This is a constraint on the complex structure variation of the
threefold which is necessary if the cycle the brane is

wrapping is to be able to deform in order to remain
supersymmetric.

APPENDIX C: MODULI MATCHING FOR
THE 5-BRANE THEORIES

In Sec. IID we specified a special pair of heterotic
5-brane theories, one on the resolution and one on the
deformation side of conifold transitions between CY3s.
We have argued that these 5-brane theories are continu-
ously connected across the transition. We have also

illustrated the construction explicitly in a simple example.
(Additionally we summarize in Appendix E the explicit
construction for any of the large class of (effective) P"
splits of toric complete intersections.)

Further, we have argued that this construction produces
two theories which are not only continuously connected but
are in fact dual. In particular, this is strongly evidenced by
the direct connection between this construction and target
space duality, as discussed in detail in Sec. IV.

In the simple example treated in the main text we also
showed, in Sec. III, that the two 5-brane theories have
matching numbers of moduli, providing further evidence
for the duality in this example. In this appendix, we
consider more general cases and attempt to provide proofs
of the matching.

We first briefly consider vector multiplet moduli, before
turning to the matching of the chiral multiplet moduli. In
this latter case, to make the computations tractable, we
focus on conifold transitions described by [P" splits
between CICYs. We first provide a proof that the chiral
multiplets from the spectator 5-branes match across the pair
of 5-brane theories. By contrast, the contributions from the
nontrivial part of the 5-brane pairing, of the 5-branes
wrapped on the special curves C and C which are intimately
linked to the conifold geometry, are more difficult, and
indeed should differ precisely by the difference in geo-
metric moduli across the conifold transition. Below we
outline a proof in the simplest case, of conifold transitions
in which 2!-! changes by one and which are described by a
P! split between CICYs.

1. Vector multiplet moduli

As discussed in Sec. III, there are g- vector multiplet
moduli coming from a 5-brane wrapped on a curve C with
genus gc. Hence, the matching of the vector multiplet
moduli across the pair of 5-brane theories depends on the
isomorphisms of the spectator curves, C, = Cy, and of the
nontrivially transitioning curves, C & C. The spectator
curves were discussed in Sec. III, but we now give a
general argument for the isomorphism C = C.

Recall that both curves are defined beginning from the
same Weil non-Cartier divisor D on the nodal variety.
When the nodal variety is deformed X — X, the equation
describing D becomes independent of the equation describ-
ing the geometry, and hence the curve C arises from the
intersection of D with the zero locus of the equation
describing the deformation. On the resolution side on
the other hand, the curve C is explicitly defined by
intersecting the proper transform P(D) with the zero locus
of an equation of the same form as describes the deforma-
tion X — X. Notably, this intersection takes place far from
the nodal points, so the small resolution taking D to P(D) is
irrelevant. Hence, the descriptions of the two curves are
identical, so that they are indeed isomorphic.

106018-29



ANDERSON, BRODIE, and GRAY

PHYS. REV. D 108, 106018 (2023)

2. Chiral multiplet moduli: Spectator part

We now consider the chiral multiplets coming from the
spectator brane, in the case of a P! split between CICYs.
In analyzing this situation the following lemma, derived
in [45], is key.

Lemma. Let X and X be two CICY threefolds related
by a “splitting transition” of the type described in (3.1).7
Suppose that £ = O(a) is a line bundle corresponding
to a divisor D C X such that D is the restriction of a divisor
in the ambient space A (a “favorable” line bundle on X). If
we define £ = O(0,a) then h'(X,L) = hi(X,L£)V i, on
the common “determinantal locus” in moduli space.

To apply this Lemma to the case at hand, let us assume
that the spectator 5-brane stacks on X and X are described
as complete intersections. Then their normal bundles,
thanks to the class [Co] = [Cy] having no contributions
involving J, [see (3.8) or more generally (E20)], are sums
of line bundles of the form N = O(a) @ O(b) and
Ne, = 0(0,2) ® O(0,b) on X and X respectively.

The cohomologies of these normal bundles evaluated
on the respective 5-brane curves can be obtained by using
their associated Koszul sequences. For the curve Cy C X
this is

O_)/\ZNé()@NCo_)Néo@NCO_)NCU

—>/\/co|c0 -0, (C1)
and analogously for C, C X. Decomposing these long exact
sequences into two short exact sequences and taking the
associated long exact sequences in cohomology, one can
compute the cohomologies h%(Cy. N,) and h°(Co. N¢, )
of interest [where h%(Cy,N¢,) =h"(Co.N¢,le,) etel.
The above Lemma shows that all of the cohomologies on
the CY 3 that will be involved in this computation will be the
same on the deformation and resolution side of the tran-
sition, at the common determinantal locus in moduli space.
As such the two cohomologies will agree in this limit. As
long as the tuning to the determinantal locus is not too
special, this limit will share its cohomology with the generic
point in moduli space. Indeed, we find this to be the case in
every example we have examined.

An analogous argument shows that the spectrum of
spectator bundles, constructed using line bundles of the
form given in the above Lemma, will also match on the two
sides of the duality. For example consider spectator bundles
Vo which are two term dual monads of the form

0->C—->B—->V,—-0, (C2)

*In fact the obvious generalization of this Lemma holds for
CICYs related by an arbitrary number of general P” splits.

where B and C are sums of line bundles of the form given in
the Lemma. We see using the Lemma that the cohomol-
ogies of B and C will match in the singular limit, and so too,
therefore, will the cohomology of V| and various asso-
ciated bundles. As in the 5-brane case, as long as the tuning
to the determinantal locus is not too special, the cohomol-
ogy of V, will be the same at a generic point in moduli
space as it is in that limit, leading to a matching on the two
sides of the duality.

3. Chiral multiplet moduli: Nontrivial part

The matching of the total number of chiral multiplet
moduli requires that the change in 5-brane deformation
moduli across the transition must balance the change in
geometric deformation moduli. Since the deformation
moduli match for the spectator 5-branes, this compensating
change must come from the 5-branes wrapped on the
curves C and C,

W (R) + B (X) 4+ hO(C N )

= RU(X) + R2NX) FR(CNG).  (C3)
where Nz and A are the normal bundles of C C X and
C C X. Recalling from Sec. IT A that in a conifold transition
the Hodge numbers change as

ht(X) (X) + AR,

— hl’l
h21(X) = h2H(X) — #(P's) + A(h1Y),  (C4)
for some A(h!'!) >0, we see that the relation that is
required to hold amongst the 5-brane moduli is

9

WO(C,Ng) = h0(C, N¢) +2A(RN) —#(P's) =0.  (C5)

a. Proof outline in a tractable case

While we do not have a proof of the above relation in the
general case, we here outline a proof in a particularly
tractable case, namely of conifold transitions for which A'!
changes only by one, and which can be described as P!
splits between CICYs.

Before assuming that A(h'!) =1, consider a general
P! split. In this case the resolution geometry X has a
configuration matrix of the form

=14 ] (Co)

- = 1 1 0 --- O
Vo Vi Iy -+ Iy

and the deformation geometry X has configuration
matrix

X:[A ‘ (Vo+vi) 1o - I'K] (C7)
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Here, A is a product of N projective spaces, and Vo, Vi, and ry...rg are vectors of length N, where K = dim(A) - 5.
Recalling the discussion in Sec. II D, the curves C C X and C C X on which we wish to wrap 5-branes can be described

by configuration matrices

where the dashed lines separate the equations defining the
geometry from the additional equations describing the
curve. Now note that the three equations of bidegree
(1,vy), (1,v;), (1,0) in the definition of C are straight-
forwardly equivalent to ones of bidegree (0,vy), (0,v;),
(1,0). With this rewriting, the descriptions of the two
curves become essentially identical (which also makes
clear their isomorphism, C = 0),

- P!
C=
[A

E{A ‘ (vo+vy) 19

o o0 o0 -- 01 O

-

Vo Vi Ip rg 0 (vo+vy)

5C, (C9)

'y Vo Vi

so that, defining O¢(w) := O 4(W)|c, the normal bundles of
C and C are clearly given by

Nele =2 Oc @ Oc(vy + vy),

Nele 2 Oc(vo) ® Oc(vy). (C10)
We wish to compute the zeroth cohomology of each of
the above bundles. In the case of h%(C,N¢) this is
straightforward. For example, noting from the configura-
tion matrix describing C that the canonical bundle of C is
Kc = O¢(vg + v;), and hence that the two line bundles in
N ¢|¢ are Serre dual, and also noting that h°(C, O¢) = 1, it
follows after a small amount of algebra that
h(C,N¢) ==ind(C,0¢) +2 =1+ gc, (C11)
where g is the genus of the curve.

In contrast, it is more difficult to give a general
expression for h°(C, N¢), and indeed we expect this to
differ from the cohomology h°(C,N¢) above, which
depends only on the intrinsic topology of the curve, by
a piece that depends on the change in Hodge numbers
across the conifold transition. To proceed, we make two
assumptions.

(1) Assume that D is not isomorphic to T*.

(2) Restrict to cases for which A(h"!) =1, and for

which Op(vy), Op(vy), and Op(vy+ v,) have
vanishing higher cohomologies.

(C8)

We explain these assumptions below. Here D is the Weil
non-Cartier divisor on the nodal variety which we used to
construct the two 5-brane curves, as discussed in Sec. II D,
and which in the present case is given by

D= |:A ’ Vo Vi | 1)) rK:|. (C12)
Noting that from the degrees of the defining equations this
surface is CY, we see that D is hence isomorphic to either a
T* or a K3 surface. We have also defined in the second
assumption Op(w) := O 4(W)|p.

As discussed in Sec. III above, the first assumption
explicitly removes that small subset of cases with a nonzero
h'(D, Op), which appears to present a genuine obstruction
to moduli matching.

The second assumption explicitly restricts to the simplest
case of conifold transitions, where the change in A'! is
minimal. It also restricts however to the case where a number
of cohomologies vanish. In practice, one finds in fact that
these vanishings always accompany the restriction
A(h%") =1, so that these are in fact no further restriction
at all. Nonetheless, we have not proven this link, and so
strictly this should be considered as an additional assumption.

With the above two assumptions we can now straight-
forwardly prove the moduli matching result. First, note
that the curve C is the intersection of the divisor D inside

A with the hypersurface [.A ‘ (Vo +vy) ], so that the
Koszul resolution of C inside D is a short exact sequence,

00— OD(—V() - Vl) d OD g OC - 0. (C13)

If we now tensor this with Op(vy) & Op(v,), we have

0 = Op(=vy) ® Op(—vy) = Op(vy) & Op(vy)

— Oc(vo) ® Oc(vy) — 0. (C14)
The third object is one whose zeroth cohomology we wish
to compute. Noting that the canonical bundle of D is trivial,
we see that the first two bundles are Serre dual. Hence,
since by assumption the higher cohomologies of the second
bundle vanish, we have in the long exact sequence in
cohomology the following pattern of zeroes:
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Op(=vo) ® Op(—v)

7o 0
0

]’ll

h? ?

and hence we can compute the required zeroth cohomology
as an index on D,

hY(C.N¢) = h°(C, Oc(vy) ® Oc(vy))

= ind(D, Op(vy) ® Op(vy)). (C16)

Next, we note that we can also rewrite 1°(C, ) in terms
of an index on D. Tensoring the Koszul resolution of C
inside D with Op(vy + v;), we have

0— Op = Op(vo + Vi) = Oc(vo +vi) = 0. (C17)

By our first assumption, D is isomorphic to a K3 surface, so
h°(D,0p) =1 and h'(D,Op) =0, and by our second
assumption, the higher cohomologies of the second bundle
vanish. Hence, we have

h(C.Ng) =h(C.0c ® Oc(vy +vy))
= h0(C, O¢) + h*(Oc(vo + V1))
=1+ (ind(D, Op(vy +V1>) - 1)

= ind(D, Op(vy + v1)). (C18)

Hence, we have expressed both cohomologies h°(C, N ()
and h°(C,N¢) as indices of bundles on D. Why is
this useful? Consider the Koszul resolution of D - D inside D:

0 — Op(=vy = V;) = Op(=vy) ® Op(-vy) = Op

— Opp — 0. (C19)
If we tensor this with Op(vy + Vg), we have
0 — Op = Op(v1) & Op(vo) = Op(vo + V1)

Notably, from the definition of the surface D, we see that its
self-intersection D - D inside Y, where Y is defined by

v=[a | r e | (c21)
equals the number of exceptional P's in the conifold
transition,

Oc(vo) ® Oc(v1)

Op(vg) ® Op(vy)

(C15)

D-D= ﬁcl (Oy(v9))?c1 (Oy(v)))? = #(P's).  (C22)

(See for example the discussion in Appendix E.) Hence, if we
take the index on the above four-term exact sequence, we get

0 = ind(D, Op) — ind(D, Op(vy) & Op(vy))

+ind(D, Op(vy + vy)) — #(P's), (C23)
so that if we note that, since D is a K3 surface,
ind(D, Op) = 2, and if we recall that two indices in this
expression are the required zeroth cohomologies, we find
finally

0=2-h'(C,N¢)+h(C,N¢) —#(P's), (C24)
which is the relation we set out to prove, namely (C5) in the
case that A(h!) = 1.

APPENDIX D: HECKE MODULI

Consider a Hecke transform of the following form:

0>V oV, Foo, (DI1)
where F is a sheaf supported on a curve and V|, is a bundle.
If V is stable then the Zariski tangent space to the moduli
space is given by Ext!(V,V). We will compute this
quantity, first in general and then in a special case relevant
to this work.

We begin by reviewing some properties of Ext groups
which will play a central role. Applying Ext*(_, V) to a
short exact sequences of sheaves 0 = A - B —- C — 0,
one obtains

0 - Ext"(C,V) - Ext°(B, V) — Ext"(A, V)

- Ext!(C,V) - --- (D2)
and similarly for Ext*(V, ),
0 — Ext°(V,A) - Ext°(V,B) - Ext°(V, C)
- Ext!(V,A) — --- (D3)
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In addition to these properties we will use Serre duality,
applied to our case where the dualizing sheaf is the trivial
bundle on X,

Ext/(E, Oy) = H"/(E)*, (D4)

where 7 is the dimension of X. Finally, we will use the fact
that Ext'(A ® B, C) = Ext/(B,AY ® C) if A is locally free
and Ext'(Oyx,A) = H'(X, A).

Combining all of the properties of the previous para-
graph, one can compute Ext!(V, V) for (D1) in terms of its
component objects. One finds the following:

coker (Ext’(F, F) — (coker(Ext’(V,, Vo) — Ext(V, F))))

@

ker (Ext!(Vy, V) = Ext!(V,, F))

Ext!(V,V) =

@ (D5)

ker (Ext!(F, F) — coker(Ext! (V,, Vy) — Ext!(V,, F)))

@

ker (ker (Ext?(F, Vy) — Ext(F, F)) — Ext?(Vy. Vy)).

In deriving this result we used the fact that F is only
supported on a curve. Obviously, the result in (DY) is still
somewhat involved, but some structure can be observed. In
particular, the first line details contributions associated to
some elements of Ext’(V, F), which is the space of
possible maps f in (D1). The second line in (D5) is
associated to some elements of Ext!'(V, V), the bundle
moduli of V(. The third line is associated to elements of
Ext!(F, F), moduli of the sheaf F. Finally, the fourth line
of (D5) encodes moduli which do not fall in the previous
three classes, and so we would expect them to corres-
pond to those deformations which do not preserve the
form (D1). These are precisely the moduli which can be
used to smooth V from a sheaf into a bundle. Despite
this coarse separation of moduli types, the structure of (D5)
is unpleasant to deal with, and so we will impose
some additional properties of (D1) which are relevant to
our case.

In the cases of interest in this work, V, takes the
special form V = V, @ O, where V, is a stable holomor-
phic bundle. In addition, we also have that F = O, for some
curve c. Finally, V is stable on restriction to ¢ and as such
Ext’(V,,0,) = H'(Vy ® O,) = 0. Note in such an in-
stance we have from (D1) that V = 170 @ Z,. from the
special structure imposed on the map f by the above
conditions and the defining sequence of an ideal sheaf:

0-Z,-0-0,-0. (D6)
Using the properties of this special case, one can simplify
(D5) greatly to give the following™:

SNote that although we have split up this expression into
separate lines for convenience, in the following discussion these
lines are not in one—one correspondence with those in (D5).

H' (Vi ®Vy)
®
ker (H' (V)= H'(V{|.))

Ext!(V,V)= (&)
H'(V,) @ker (Ex(0,., V) = Ext(0,Vy))

(<)

H(N,).

(D7)

Here, N\ is the normal bundle associated to the curve ¢ and
we have assumed that this curve is a complete intersection
and thus admits a Koszul resolution of the following form:

0" NY S NY -0 -0, - 0. (D8)
The middle two lines in (D7) can be simplified in appearance
greatly by using the properties of Exts and of our special
case described above, as well as (D6). These allow us to
show that Ext'(V,,Z,) = ker (H' (V) — H'(V{|.)) and
Ext'(Z,.Vy)=H"(V,) ®ker (Ext?(O.,V,) = Ext?(O,V,))
giving us our final result:

Ext'(V,V) = H'(V§ ® V,) @ Ext' (V,,Z.)

® Ext'(Z,.Vy) @ HOW,). (DY)

In terms of applying the above results to the examples in
the main text, it is worth noting that the first three terms
in (D9) will be the same on both sides of the conifold
transition. This is due to the nature of the spectator bundle
V,, on the two sides together with the fact that the curve c is
in the same class, viewed as a variety in the ambient space,
on both the deformation and resolution geometries.
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That the middle two terms match in this manner is easiest to
see from the form (D7) and the simple behavior of
cohomology under Leray.

As a check we can examine this result in the case of our
canonical example based upon a P! split of the quintic. In
this example h' (Vy ® V) = 124, ext'(V,,Z.) = 32 and
ext!(Z.,V,) = 132 with these numbers indeed matching on
both sides of the transition. The quantity H°(N|c) = 38 on
the deformation side and 52 on the resolution side of the
conifold. These numbers lead to totals for the Hecke moduli
on the two sides of the transition of 326 and 340 respectively,
with both numbers being one larger than the bundle moduli
of the smooth gauge bundles that are obtained as smooth
deformations of the Hecke sheaves V as expected.

APPENDIX E: EXPRESSIONS FOR A GENERAL
P SPLIT

In the main text, as our prototypical example of a conifold
transition between CY 3s, we have considered a deformation
geometry X and resolution geometry X which are related by
a “p! split” of a CICY, as introduced in Sec. Il A.

More generally, any P” split of a CICY, which involves
the addition of an ambient P space, will describe a
conifold transition (as long as the splitting is “effective,”
meaning that the shrinking of this ambient P corresponds
to a wall of the Kihler cone). For a detailed discussion of
the geometry of the associated conifold transitions, we refer
the reader to [61], and we also refer the reader to the
original works on splittings [2,3,30].

Even more generally, one can consider P” splits of toric
complete intersections, which (if again the splitting is
effective) also correspond to conifold transitions. These
[P" splits of toric complete intersections are the broadest
natural generalizations of the simple P!-split setting in
which we have constructed pairs of 5-brane theories across
conifold transitions as described in the main text.

In particular, by following precisely the same logic as for
the simple CICY P'-split example in Sec. II D, in this general
setting too one can straightforwardly construct the curves C
and C which will always be such that the anomaly cancella-
tion condition is ensured on both sides of the transition (up to
the addition of spectator branes, as discussed in Sec. 11 D).
Additionally, the description of gauge-gravity pair creation,
and the brane recombination allowing the 5-brane theory to
traverse the transition, is entirely analogous in this very large
class of examples to the discussion of that simple CICY P!-
split example. This, hence, provides a large class of examples
in which one can perform the same procedure as in the main
text to describe the traversal of a 5-brane theory through a
conifold transition between CY3s.

In this appendix, we simply collect the relevant formulas
and results for this general case of P" splits of toric
complete intersections.

1. The deformation and resolution geometries

We consider the situation where the deformation geom-
etry X is a complete intersection inside a smooth, compact
toric variety A. If one of the defining equations is tuned until
it can be expressed as the determinant of some (n + 1) x
(n + 1) matrix M, the resulting variety X will have a set of
nodal points where the rank of the matrix dropston — 1, and
a small resolution can be performed on these nodal points by
fibering an additional P"[x] over the ambient space A, and
replacing the determinantal equation with the set of equa-
tions Mx = 0, to give a resolved geometry X.

Let us make this explicit. Take any choice Q of the defining
polynomials of X, which is some section of some line bundle
L. Now, for any n > 1, choose any set of 2(n + 1) effective
line bundles U, and V,, where [ =0, 1,2, ..., n, such that
L = det(d) & det(V), where we have defined

u=pu, v=ev.
=0 =0

Then, this defining polynomial Q can be tuned to equal

(E1)

the determinant of an (n+1)x (n+1) matrix of
sections M,
Q — det(M) where M;;eT(V; ®U;). (E2)

This produces a variety X which is singular at the set of points
where rank(M) < n — 1. Then, a small resolution of this
nodal variety can be described by a P” split, which consists of
replacing this determinantal equation by the set of equations
Mx = 0, where X = (xo, ..., x,)T, which are accommodated
by introducing into the ambient space an additional ", whose
coordinates x; have scalings under the weight system of A
chosen to balance those of the entries of M. Explicitly,
defining the quantities u; and v; by

U; = Oy(u;), Vi = 04(v)), (E3)

as well as their sums U and V,

n n
U= E u,, V= E \JB
1=0 =0

the deformation and resolution geometries X and X can be
described as

(E4)

y_|
X: ES
O | U+V x ry (E5)
A Ay |
X4 1 1 0 1 1 0 0
—ug —u, 0| v v, T Iy
(E6)

106018-34



BRANES AND BUNDLES THROUGH CONIFOLD TRANSITIONS ...

PHYS. REV. D 108, 106018 (2023)

where we have schematically written y for all the coordinates
on A, and [ for the weight system of .4, and we have also
written r( through rx for the weights of the remaining
defining equations of X. One can check that the weight
system of the ambient space of X“ is indeed such that the
defining equations MxY = 0 are consistent. Additionally
however, it is clear that we could have made a different
consistent choice, namely

x(‘)j N x}/l} y |
V.1 -1 0 1 0 0
_VO N _Vn |:| uo N un rO o rK
(E7)

which corresponds to introducing equations MTx” =0
instead of Mx" = 0. These two possibilities reflect that there
are two (generically) inequivalent ways to perform the small
resolution. The two manifolds X and XV are (generically)
not isomorphic, and are in fact related by a flop, as discussed
in detail in [61]. Hence, for a given deformation geometry,
there are two possible resolution geometries associated with
the same nodal tuning, and both paths are conifold transitions.
Below we will only consider X since the discussion is
entirely analogous for XV, involving just the replacement
U < V. For convenience, we also define

K

R=EP Our).

=0

(E8)

The second Chern classes of the deformation and
resolution geometries can be shown to be?

(X) =3 V) 43U+ e U)e (V)

+chy(R) —chy(A),
&>(X4) = (0)+ (Joler @) 1 (V)

+ (chy (V) —chy (U) +chy(R) —chy(A)),  (E9)
where in the second line we have grouped terms according
to whether they have two, one, or no powers of the
hyperplane class J, of the ambient P". The curve class
of the exceptional P's inside X¥ is

[Pls] = =Jo(c1(U) + 1 (V) + (c2(V) = 2 (U)
+ A U) + ciU)e (V).

which we note equals the difference between the two
second Chern characters (where here and below we make a
slight abuse of notation, made precise in footnote 2),

(E10)

**Here and below we abuse notation slightly by continuing to
write U etc. for the pullbacks of these line bundles from A to the
ambient space of X¥.

chy (XY) = chy (X) = [P's]. (E11)
As an aside we also note that the number #(P's) of
exceptional P's, or equivalently the number of nodal points
on X, is given in general by

##' 9= [ [(@0-am)?

- (Cl(u) —Cl(V)) (03(7/{) —03(V))
—ciU)er (V) (e2(U) + (V)

+a VP +aUPa)| e (R). (EL2)

(This can be derived with the aid of the Thom-Porteous
formula, as discussed below.)

2. The pair of 5-brane theories

In the main text we have discussed how, as the
deformation geometry is tuned to become the nodal variety,
certain curves jump to become divisors, which fill out the
new directions in the larger Picard group of the resolved
geometry. (We note that these divisors on the nodal variety
are special in that they are Weil but non-Cartier.) For a
general P" split, these divisors are naturally described in
terms of the matrix whose determinant describes the tuned
nodal variety.

We can see this explicitly as follows. Define the matrices
M;, and M, as the n x (n+ 1) and (n + 1) x n matrices
resulting from removing the ith row or jth column from the
matrix M defined in (E2). In each case the locus where the
rank of such a matrix drops below n describes a divisor on
the nodal variety X,

D; :{rank(M; ) <n-—1} C X,

Dy, {rank(Méj) <n-1}cCcaX. (E13)
Moving to the deformation geometry, these defining
equations become independent of the equations describing
the complete intersection, and so these divisors fall in
dimension to become curves inside the deformation
geometry X.

Analogously to the main text, we now construct a natural
pair of 5-brane theories on the deformation and resolution
geometries. In particular, entirely analogously, we define
the curves inside X and X“ on which the 5-branes are
wrapped by beginning from one of the divisors Dej

. . . 25 .
associated with removing a column™ from the matrix M.

“If we instead constructed a pair of curves from one of
the divisors D;j, we would find that the pair of 5-brane theories
did not have the property that the remaining contributions to the
anomaly cancellation conditions could be captured by spectator
branes. Indeed, the divisors D?j are instead the appropriate
starting point to form a natural pair of 5-brane theories associated
with the conifold transition X — XV.
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The curve C; on the deformation geometry naturally
arises from the divisor D@j as the geometry is

deformed,

Cj:{rank(M; ) <n-1} C X. (E14)

In contrast, the object D - remains a divisor as the small
resolution is performed. In particular, we are interested in
considering the proper transform P(D@i). It is straightfor-
ward to check that this object is described simply and
naturally as the zero locus of a particular corresponding

coordinate in the ambient P" of XY,

. _ U
P(Dz,j).{xljl =0} c X“. (E15)
To construct the curve on which we wish to wrap a
5-brane, we take the intersection of this object with the
zero locus of a polynomial Q of the same form that
describes the deformation on the other side of the conifold
transition, i.e., a section of the line bundle det(U/ @ V).
Hence,
Cii({ =0} n{0=0}) c X (E16)
Though the definition of the curve C'j is the more
involved, its class is easier to write down. It is simply

[Ci]l=({o—c1U))) - (c;

where we have noted that the class of the divisor with locus
{¥f =0} c X" is Jo—c;(U;). On the other hand, the
curve C; is defined as a noncomplete intersection, making
its class more difficult to compute. However, this compu-
tation is made possible by the Thom-Porteous formula. We
explain this formula and perform the computation below.
The result is that

U) +c1(V), (E17)

[Ci] = ex(V) = e2(Uh) + e1(U)ey (V) + 1 (U)

1
—aU)(erU) + e (V). (E18)
Hence, analogously to what we saw in the simple example
in the main text, recalling the expression for the class of the
exceptional P's inside X/, we see that this pairing of curves
precisely captures the difference in the second Chern classes
of the deformation and resolution geometries,
)] - )] = P!

s] = 2(X) = ea(X¥).  (E19)

Said differently, wrapping 5-branes on C; and C ; inside X
and X" leaves in the anomaly cancellation conditions only a

spectator piece which can be trivially made up with spectator
branes, namely

e (X) = [C)] = (X)) = [C)]
= chy(V) = chy(U) + ¢ (U;) (¢1 U) + ¢, (V)
+ chy(R) — chy(A). (E20)

We see that the remaining difference depends on the index j,
which is on the Weil non-Cartier divisor D@/_ we used to

construct the two 5-brane curves.

3. The Thom-Porteous formula

It remains to compute the class [C;] of the curve on the
deformation side, which is described as a noncomplete
intersection, C;: {rank(M; ) <n—1} C X.

For this purpose we can make use of the Thom-Porteous
formula. Consider a morphism U — V between vector
bundles on a smooth variety. The kth degeneracy locus
(k < min(rkU, rkV)) of this morphism is the locus of
points over which it has rank at most k. If all components
of the degeneracy locus have the expected codimension
(tkU — k)(rkV — k), then the Thom-Porteous formula tells
us that the fundamental class of the degeneracy locus is
given by the determinant of the (rkU — k) x (rkU — k)
matrix whose (a, 3) entry is

Crev—irap(V/U). (E21)

The (n+1)x(n+1) matrix M defined in (E2)
can be viewed as a map between line bundle sums,
namely

(E22)

The (n+1) xn matrix M, resulting from deleting a
column from M can then be viewed as a map

n

@ u' -

T =012

@:

V. (E23)

—
Il

0

Hence, defining for ease of notation U~ = @;’Zou;l, the
class of the curve C; C X is given simply by

Note that here we implicitly take c¢()) etc. to be
their restrictions to X. After some algebra, noting in

(E24)
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particular that ch(/~) = chy(U) — chy (U) + chy (U) — - - -,
we find

[Cj] = c2(V) = ea(U) + 1 U) e, (V) + i)

= U))(c1U) + e (V). (E25)

As an aside we note that the computation of the number
#(P's) of exceptional P's, or equivalently the number
of nodal points on X, can also be performed using the

Thom-Porteous formula. In particular, these points corre-
spond to the locus where rank(M) < n — 1, so that

#(P's) = /A (e (VU)? = s (VIU)es(VIU)ex o (R).
(E26)

(or equivalently with U/ <> V) which gives upon expansion
the expression in (E12).
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