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Geometric transitions between Calabi-Yau manifolds have proven to be a powerful tool in exploring the
intricate and interconnected vacuum structure of string compactifications. However, their role in N ¼ 1,
four-dimensional string compactifications remains relatively unexplored. In this work we present a novel
proposal for transitioning the background geometry (including NS5-branes and holomorphic, slope-stable
vector bundles) of four-dimensional,N ¼ 1 heterotic string compactifications through a conifold transition
connecting Calabi-Yau threefolds. Our proposal is geometric in nature but informed by the heterotic
effective theory. Central to this study is a description of how the cotangent bundles of the deformation and
resolution manifolds in the conifold can be connected by an apparent small instanton transition with a
5-brane wrapping the small resolution curves. We show that by a “pair creation” process 5-branes can be
generated simultaneously in the gauge and gravitational sectors and used to describe a coupled minimal
change in the manifold and gauge sector. This observation leads us to propose dualities for 5-branes and
gauge bundles in heterotic conifolds which we then confirm at the level of spectrum in large classes of
examples. While the 5-brane duality is novel, we observe that the bundle correspondence has appeared
before in the target space duality exhibited by (0, 2) gauged linear sigma models. Thus our work provides a
geometric explanation of (0, 2) target space duality.

DOI: 10.1103/PhysRevD.108.106018

I. INTRODUCTION

Geometric transitions [1–7] connecting topologically dis-
tinct backgroundgeometries of string theory have long played
a key role in the study of the string landscape and string
effective field theories in diverse dimensions. In the
best understood examples of Calabi-Yau threefold (CY3)
compactifications, such transitions consist of (1) conifold
transitions—in which the complex structure of one CY3
manifold is tuned to a singular limit and then a new smooth
manifold can be obtained via a small resolution, and (2) flop
transitions—in which two CY3s are different small resolu-
tions of the same nodal variety. In the case of CY3 manifolds
[andmoregenerallymanifolds of SU(3) structure], it has been
conjectured that all such topologically distinct manifolds can
be connected by geometric transitions [8].
The most robust examples of such transitions being

understood field theoretically have arisen in N ¼ 2

theories in four dimensions (see e.g. [9,10]). In contrast,
geometric transitions in four-dimensional theories exhibit-
ing N ¼ 1 supersymmetry have proven much harder to
study both field theoretically and geometrically. For exam-
ple, in heterotic string theory, the background consists not
only of a compact manifold, X, but also a nontrivial gauge
bundle over it (more precisely a holomorphic, slope-stable
vector bundle V) and possibly other nonperturbative
elements such as NS5-branes. Thus, in a conifold tran-
sition, not only must the singular geometry of X
be addressed, but also the question of what happens to
the bundle V (or 5-branes) on this singular geometry.
Moreover, singularities arising in the bundle in heterotic
theories are known to sometimes lie outside the limits of
ordinary field theory. A key example of this is the so-called
“small instanton transitions” [11] involving NS5-branes
and singular limits of the bundle which are known to lead to
tensionless, noncritical strings [12]. Despite some explora-
tion [13], it remains an open question whether geometric
transitions can controllably be described in heterotic
theories at all, or whether the presence of gauge fields/5-
branes in heterotic theories could physically obstruct such a
topology changing transition from taking place.
In this paper we will explore these questions in the

context of conifold transitions in heterotic theories. In
particular, we will outline a novel proposal for how the full
heterotic background can naturally and consistently be
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taken through a conifold transition, and provide substantial
evidence that this proposal is correct.
Our approach is for the most part geometric in nature,

though guided/informed by field theory. It is important to
note that some limitations are forced on any would-be,
purely field-theoretic analysis in the N ¼ 1 heterotic
context, since key information about the heterotic moduli
space remains unknown. These missing ingredients include
an explicit/analytic description of the matter field
Kähler potential, and hence the full moduli space metric
(see [14–21] for some recent progress), as well as the fact
that field theory alone (as opposed to tensionless string
limits, superconformal sectors, etc.) is likely not sufficient
to describe the relevant singularities in the manifold/bundle
(as described above for small instantons). It should also be
noted that since our analysis is based primarily in geometry,
our results are relevant a priori only for the perturbative
theory in the large volume, weakly coupled limit. It is clear
that higher order string coupling and α0 effects, as well as
nonperturbative effects, could play a significant role in the
ultimate physical process. That being said, as we will
demonstrate below, unlike in type II theories, there is some
evidence that the heterotic conifold transition may be a
smoother process than expected in the heterotic moduli
space. For the moment however, we leave these questions
about higher order effects and nonperturbative corrections
to future work and will restrict our focus to the supergravity
(i.e. perturbative, large volume/geometric) limit.
One powerful constraint in heterotic compactifications

arises from the mixed gauge/gravitational anomalies whose
cancellation requires that

c2ðTXÞ ¼ c2ðVÞ þ ½C�; ð1:1Þ

where C is an effective curve in the CY3, wrapped by a
5-brane. Across a conifold transition X → X̃, the second
Chern character of the CY3 manifold changes as

ch2ðTX̃Þ ¼ ch2ðTXÞ þ ½P1s�; ð1:2Þ

where X and X̃ are respectively the deformation and
resolution manifolds of the conifold transition, and ½P1s�
is the class of the small resolution curves. From this
formula and (1.1) it is clear that if anomalies are to be
canceled consistently on each side of a conifold transition,
the bundle (or 5-brane) must also change and “compensate”
for the change in the second Chern character of the
geometry seen in (1.2). That is, the bundle/brane back-
ground must dynamically play a very nontrivial role in a
heterotic conifold transition. This is in contrast to some
early studies of heterotic bundles in conifold transitions
which focused on so-called “spectator” bundles which
changed as little as possible through the transition (and
in particular had an unchanged second Chern charac-
ter) [13].

In the following sections we will outline a proposal for
how such a coupled change to manifold and bundle (or
brane) occurs via a kind of pair creation process (in the
singular limit) in which 5-branes are created in both the
gauge and gravitational sectors of the theory simultane-
ously before being “absorbed” back into the holomorphic
cotangent bundle and the background gauge bundle (or
brane configuration), respectively. Written on the resolu-
tion side of the conifold, this pair creation contributes to the
anomaly cancellation condition as

c2ðTX̃Þ þ ½P1s� ¼ c2ðṼÞ þ ½C̃� þ ½P1s�; ð1:3Þ

where Ṽ; C̃ are respectively a vector bundle and effective
curve in X̃. Viewing this as an addition of charges, we see
the pair creation process cancels out of the anomaly due to
the opposite signs arising in the gravitational vs gauge
sectors of the theory. In order to connect this observation to
conifold transitions, we make note of the fact that geo-
metrically the cotangent bundles of the manifolds X and X̃
are connected via the absorption of a 5-brane (i.e. a small
instanton) wrapping the class ½P1s� as

0 → π�ðΩX Þ → ΩX̃ → OP1sð−2Þ → 0; ð1:4Þ

where X is the singular (i.e. nodal) variety, and π∶X̃ → X
the small contraction (see Fig. 1). As we will review in
Sec. II B, the form of this short exact sequence is exactly
that of a so-called “Hecke transform,” which mirrors
geometrically the way that 5-branes can be absorbed into
bundles during a heterotic small instanton transition. This
process effects a part of the conifold transition (bringing the
resolution geometry to the nodal limit), and thus we can ask
what happens in the gauge sector.
The answer to this latter question is a similar small

instanton (i.e. 5-brane) absorption into the gauge sector, but
here the geometry of the curves is more rich/subtle and
involves curves which play a key role in the conifold
geometry; in particular, curves inX and X̃ which enhance to
Weil non-Cartier divisors in the nodal limit. To elucidate
the geometric details of this process we approach it in
two steps.
(1) We identify special curves from the point of view of

a conifold pair of CY3 manifolds (X; X̃) which allow
a 5-brane wrapped on them to move through the
conifold transition in an anomaly-consistent manner
[absorbing the required ½P1s� from (1.3)].

(2) Once these curves are identified it is possible to
merge them consistently into a variety of bundles via
small instanton transitions (i.e. Hecke transforms).
This allows us to extend the correspondence found
for 5-branes to one of vector bundles.

As part of the pure 5-brane study of the transition
enumerated in (1) above, we find that the total massless
degrees of freedom of the theory (including the vector and
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chiral multiplets) are preserved across the conifold tran-
sition. In particular, the massless singlets of the 5-brane-
only theory as counted by

h1;1ðXÞ þ h2;1ðXÞ þ h0ðC;N CÞ
¼ h1;1ðX̃Þ þ h2;1ðX̃Þ þ h0ðC̃; Ñ C̃Þ ð1:5Þ

agree perfectly (despite the fact that the Hodge numbers of
the CY3 are changing). In the above formula C ⊂ X and
C̃ ⊂ X̃ and N C and Ñ C̃ are their respective normal
bundles. This complete matching of the low energy
effective theory provides evidence that we have uncovered
a new form of heterotic 5-brane duality. We study the
geometry of these curves and their role in the conifold
transition.
Furthermore, with this new heterotic 5-brane duality in

hand, we can extend our observations back into the
perturbative limit by performing small instanton transitions
(i.e. Hecke transforms) to extrapolate a duality for heterotic
gauge bundles. Once again we find pairs of theories for
which the complete massless spectrum is identical. At this
point, it is intriguing to note that the perturbative duality we
find is not wholly new. Upon forming our geometric results
on bundles/conifolds, we find that we are able to reproduce
the geometry of another known (conjectural) duality of
heterotic theories—the “target space duality” (TSD) of
(0, 2) gauged linear sigma models (GLSMs) [22–26]. This
matching provides a deep and nontrivial confirmation of
the validity of our approach. In heterotic TSD two (0, 2)
GLSMs share a nongeometric phase (i.e. a Landau-
Ginzburg or hybrid phase made identical by a nontrivial
relabeling of fields). Upon extending each GLSM back to a
geometric phase it can be observed that two very different
two-dimensional theories appear to give rise to four-
dimensional N ¼ 1 heterotic theories with identical
charged and uncharged massless spectra. In particular, in
terms of singlets1

h1;1ðXÞ þ h2;1ðXÞ þ h1ðX;End0ðVÞÞ
¼ h1;1ðX̃Þ þ h2;1ðX̃Þ þ h1ðX̃;End0ðṼÞÞ: ð1:6Þ

Although target space duality has been observed in the
GLSM literature for several decades, it was unclear why
conifold singularities of the CY3 manifolds in the geo-
metric phase were arising and an open question as to why
the target space spectrum [including (1.6)] was identical.
Our work provides the first answers to these questions from
a geometric/target space point of view. Furthermore, we
have found that every example of target space duality that

we have studied consists of a single transition of the type
we discuss in this paper, or a chain of such processes. This
detailed structure, revealed to be underlying TSD, provides
considerable evidence for our proposal.
Unlike in mirror symmetry where a pair of type II

theories lead to the same physics, in our examples and
target space duality, whole chains of heterotic manifolds/
bundles can be found connected by conifold transitions
which lead to the same spectrum. Moreover, recent work
has indicated that the form of nontrivial scalar potentials
also matches across such chains [27]. This gives hope that
this geometric correspondence may underlie some deeper
true duality of heterotic theories.
Importantly, we find that not all bundles on CY3s can

traverse a conifold transition (beginning from either the
deformation or resolution side) in this manner. Instead, only
those with special properties (which we outline) can be
taken across consistently. In a heterotic theory it remains an
open question just how much manifold/bundle topology
determines the moduli space of the heterotic theory and this
work could shed light on how such moduli spaces can be
extended through the whole interconnected web of CY3s
[or more generally SU(3) structure manifolds]. We will
return to such broader moduli space questions in future
work [28].
It should be noted that the mathematical questions/

results underpinning this analysis are by necessity intricate
since we are studying not only singular limits of CY
threefolds and holomorphic, slope-stable vector bundles
over them, but also extrapolating such structures across
conifold transitions. We have explored this geometry in a
multitude of examples and have provided proofs in as much
generality as possible. However, due to the complexity
above, for some results it is beyond the scope of this work
to prove them in complete generality for any threefold/
bundle and we restrict ourselves to certain classes of
examples (i.e. toric complete intersection threefolds,
etc.). We have tried to be clear throughout this work about
the level of generality of each result.
The structure of this paper is as follows. In Sec. II we

review necessary background material on the geometry of
conifold transitions in CY3s and then provide a novel
interpretation of the change in the cotangent bundle in
terms of gravitational/gauge sector pair creation in the
theory. In a series of subsections we provide brief descrip-
tions of the geometric “rules” for carrying both 5-branes
and bundle backgrounds through conifold transitions and
illustrate these with a simple, explicit example. In Sec. III
we explore the 5-brane duality in more detail including
providing arguments for why the spectrum of the theory is
preserved across the transition. In Sec. IV we detail the
correspondence of the full theories for heterotic bundles
across conifold transitions including spectrum/moduli
matching. Moreover, we explore in detail the relationship
between our results and (0, 2) heterotic target space duality.

1The counting given here is at lowest order in the theory and
D-/F-term contributions to the N ¼ 1 potential can and do lift
degrees of freedom. Interestingly this lifting has also been shown
to match across target space duality in all known examples [27].
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The Appendixes provide a number of useful technical
results. In particular, in the process of describing how
bundles can be “transitioned” through a conifold, we
provide the first general description/count of how moduli
change for a heterotic small instanton transition which is a
useful addition to the literature (see Appendix D).

II. BUNDLES AND BRANES THROUGH
CONIFOLD TRANSITIONS

A. Conifold transitions

Conifold transitions between smooth CY3s can be
described in the following manner. Beginning with an
initially smooth variety X, referred to as the deformation
side of the transition, the complex structure is tuned until
singularities appear at a number of isolated points. We shall
refer to the singular CY3 thus obtained as the nodal variety,
X . The singular points are then replaced with P1s (in what
is called a “small resolution”) whose volumes are con-
trolled by one or more new Käher moduli. Upon perform-
ing this small resolution one arrives at a new smooth CY3
which is referred to as the resolution side of the transition,
X̃. One can also consider the transition in the other
direction, performing first a small contraction on X̃ and
then deforming the complex structure of the resulting X to
generic values, thus arriving at X. This process is depicted
schematically in Fig. 1. The collection of P1 curves which
are involved in the small resolution are referred to as the
exceptional locus. We note that in this paper we will only
consider conifold transitions where the normal bundle to
the exceptional locus, restricted to those curves, takes the
form Oð−1Þ ⊕ Oð−1Þ.
Despite being arguably the simplest example of a

topological transition, a conifold transition nonetheless
has rather drastic consequences for a number of topological
invariants, including many which are important in the
context of compactifications of the heterotic string. In

the remainder of this subsection we discuss some of these
changes, as well as their importance.
Perhaps the most obviously important topological quan-

tities in the context of compactifying the heterotic string are
the Hodge numbers and the second Chern character of the
manifold. The change in the Hodge numbers is most clearly
seen by first considering the simpler quantity of the Euler
characteristic. Since the Euler characteristic χðXÞ of a
manifold X is additive under surgery, and since χðP1Þ ¼ 2,
we have

χðX̃Þ − χðXÞ ¼ 2#ðP1sÞ; ð2:1Þ

where #ðP1sÞ is the number of resolution P1s in the
transition, or equivalently the number of singular points
onX . The Euler characteristic of a smooth CY3 Y is related
to the Hodge numbers by χðYÞ ¼ 2ðh1;1ðYÞ − h2;1ðYÞÞ.
Moreover, since during a conifold transition a number of
complex structure moduli become frozen at special values,
while new Kähler moduli appear, the Hodge numbers h2;1

and h1;1 must be altered as

h1;1ðX̃Þ¼h1;1ðXÞþΔðh1;1Þ; h2;1ðX̃Þ¼h2;1ðXÞ−Δðh2;1Þ:
ð2:2Þ

Hence, using (2.1), we have that

Δðh2;1Þ ¼ #ðP1sÞ − Δðh1;1Þ: ð2:3Þ

In the context of compactifying the heterotic string, the
importance of this change is that the number of Kähler and
complex structure moduli in the theory is then altered,
using (2.2), as

FIG. 1. A schematic depiction of a conifold transition between CY3s, as described in the text.
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h1;1ðX̃Þþh2;1ðX̃Þ¼h1;1ðXÞþh2;1ðXÞ−#ðP1sÞþ2Δðh1;1Þ:
ð2:4Þ

In a conifold transition, the second Chern character
ch2ðXÞ of the manifold grows a contribution exactly equal
to the Poincaré dual of the curve class of the exceptional
locus of the resolution. By a slight abuse of notation we can
write this in the following manner2:

ch2ðX̃Þ ¼ ch2ðXÞ þ ½P1s�: ð2:5Þ

In terms of second Chern classes, this condition reads as
follows:

c2ðX̃Þ ¼ c2ðXÞ − ½P1s�: ð2:6Þ

The importance of this change, in the context of compac-
tifying the heterotic string, comes in considering the
gravitational contribution to the anomaly cancellation
condition,

c2ðXÞ ¼ c2ðVÞ þ ½C�: ð2:7Þ

In this expression, V is the gauge bundle and [C] is the
Poincaré dual to the curve class wrapped by any 5-branes
present in the background. Since the gravitational contri-
bution to (2.7) is altered in the transition as in (2.6), the
gauge sector of the theory will also have to be altered to
counteract this new contribution and so preserve anomaly
cancellation.

1. Example

Throughout this paper, we will illustrate our discussion
with a simple and explicit example. In this section we will
describe the CY3 geometries involved in this case, while
the associated gauge and 5-brane structures will be pre-
sented as they are introduced in later subsections. To
describe the conifold transition underlying our example,
we will describe the smooth CY3s involved and then
perform a small contraction and complex structure defor-
mation respectively to illustrate how they meet at a nodal
variety.

Let us start with the resolution variety. For this purpose,
we will consider the following CY3, which is a complete
intersection in a product of projective spaces, or “CICY”:

X̃ ¼ X7885 ¼
"
P1 1 1

P4 1 4

#
: ð2:8Þ

This description of the manifold, which has the identifier
7885 in the exhaustive list of CICY threefolds first
described in [30,31],3 is called a configuration matrix.
Each row corresponds to one of the projective spaces in the
product making up the ambient space, while each column
contains the multidegrees of one of the equations which
describe the manifold as a complete intersection in that
ambient space. In the present example, this means that the
geometry is described by two equations inside P1 × P4,
namely,

X7885∶fðx; yÞ∈P1½x� × P4½y�jx0l0ðyÞ þ x1l1ðyÞ ¼ 0 and

x0q0ðyÞ þ x1q1ðyÞ ¼ 0g: ð2:9Þ

Here, the li and the qi are respectively arbitrary degree-one
and degree-four polynomials in the homogeneous coordi-
nates y0;…; y4 of the ambient P4, while x0 and x1 are the
homogeneous coordinates of the ambient P1.
Considered as equations in x with coefficients which

vary as one moves around in y, these two equations
generically have no solution, except when the following
determinant vanishes:

l0q1 − l1q0 ¼ 0: ð2:10Þ

Therefore, this equation is satisfied at all points on the CY3.
Additionally, if all four polynomials vanish,

l0 ¼ l1 ¼ q0 ¼ q1 ¼ 0; ð2:11Þ

then x is unconstrained. This means that over each such
point in P4 there is an entire P1. Hence, the geometry
of X7885 can be described as the hypersurface
fy∈P4½y�jl0q1 − l1q0 ¼ 0g inside P4 with the addition
of P1s at the 16 points where l0 ¼ l1 ¼ q0 ¼ q1 ¼ 0. The
hypersurface (2.10) in P4½y� is singular at precisely these
points since all of the derivatives of the equation vanish
there, and hence X7885 is the small resolution X̃ of this
nodal hypersurface, which we refer to as X .
To obtain the deformation side of the transition, one can

simply deform the Eq. (2.10) of the nodal hypersurface in
P4½y� to a generic polynomial of the same degree. This
gives rise to a smooth manifold X described by a quintic
polynomial inside P4, which can also be described by a

2More precisely, we should say that ch2ðX̃Þ ¼ π�ðch2ðXÞÞ þ
½P1s� where π is the small contraction map. This relation can
easily be derived from the cotangent sequence (2.19) that we will
introduce in Sec. II B, using the fact that ch2ðOP1sð−2ÞÞ ¼ ½P1s�.
For the Chern character of the nodal variety we should more
properly refer to the relevant Chern-Schwarz-Macpherson
(“CSM”) class, but this subtlety does not affect the discussion
of this paper. In addition, the “second Chern class” of X derived
from the CSM class of the nodal variety is the same as the second
Chern class c2ðXÞ of the deformation geometry in every case we
have checked. The code [29] was used in checking these
examples. 3Closely related datasets can be found here [32–35].
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configuration matrix, having identifier 7890 in the list of
CICY threefolds:

X ¼ X7890 ¼
h
P4 5

i
: ð2:12Þ

The process of shrinking the P1s inside X7885 to give a
nodal hypersurface before deforming to give X7890, or
indeed the reverse process, is manifestly a conifold tran-
sition. Such a description of a conifold transition between
CICYs is typically known as a “P1 split” [5,30], since the
ambient space in going from X to X̃ is altered by the
introduction of a P1 factor, and the degree of a defining
polynomial of X is split across multiple defining poly-
nomials of X̃.
It will turn out to be useful to describe the quintic X in a

somewhat redundant fashion as follows:

X ¼
"
P1 1 0

P4 0 5

#
: ð2:13Þ

The linear equation associated to the first numerical column
of this matrix can simply be solved to obtain a point in P1.
Thus, this matrix describes the direct product of a point
with the quintic, that is the quintic manifold itself. The
advantage of this description is that (2.13) and (2.9) are
now described in terms of the same ambient space. This
will be practically expedient in future discussions.
Let us connect this example with the topological proper-

ties discussed earlier in this section. As noted above, this
conifold transition involves 16 nodal points, or equivalently
16 exceptional P1s. The Euler characteristics and Hodge
numbers on either side of the transition are

χðX̃Þ ¼ −168; χðXÞ ¼ −200;

h1;1ðX̃Þ ¼ 2; h2;1ðX̃Þ ¼ 86; h1;1ðXÞ ¼ 1;

h2;1ðXÞ ¼ 101: ð2:14Þ

The second Chern classes of the two geometries are as
follows:

c2ðX̃Þ ¼ 5J0J1 þ 6J21; c2ðXÞ ¼ 10J21: ð2:15Þ

Here, J0 and J1 are respectively the Kähler forms of the
ambient P1 and P4 factors, restricted to X̃, and in a slight
abuse of notation we also write J1 in the case of the
restriction of the Kähler form of P4 to X in the description
(2.13). We also note the class of the set of exceptional P1s,

½P1s� ¼ −5J0J1 þ 4J21: ð2:16Þ

[This can be established directly from the normal bundle of
the exceptional set, which we determine in (2.23) below.]

From the above results we see that the claimed general
relationships (2.3), (2.4), and (2.6) do indeed hold in this
example.
Although the discussion of this section does indeed

convey the structure of a conifold transition correctly, it is
useful to view the process in a different manner. By viewing
the transition as corresponding to a certain modification of
the cotangent bundle of the variety, the way is opened to an
understanding of how gauge bundles can be consistently
taken through the conifold. It is to this reinterpretation of
conifold transitions, as a small instanton transition in the
cotangent bundle, that we now turn.

B. The conifold as a gravitational small instanton
transition

In understanding how gauge field backgrounds behave
during conifold transitions it will turn out to be useful to
view the geometry of these processes in terms of the
dynamics of the cotangent bundle of the manifolds.
However, describing the change in the cotangent bundle
is inherently difficult because not only the bundle but also
the base geometry over which it is defined is altered during
the transition. This is in contrast to the simpler case of
describing changes in a gauge bundle in a standard small
instanton transition or Higgsing process. In those cases,
since the geometry on which the bundle lives is fixed, such
a change can typically be described using the formalism of
an exact sequence, in which two of the terms are the old and
the new gauge bundles, while the other terms, as well as the
maps between them, give a reasonably explicit and well-
controlled description of how these two are related.
As an example of the simpler situation, consider the case

of a small instanton transition in the gauge bundle
[11,36,37]. Here, beginning with some gauge bundle V,
a 5-brane wrapping a curve locus C is absorbed into the
bundle, and as a result a new sheaf V̂ is produced (which
may then be smoothed to give a final gauge bundle). This
absorption of a small instanton is an example of a change
which is described by a short exact sequence, namely,

0 → V̂ → V → FC → 0: ð2:17Þ

Here FC is a sheaf with support precisely on the locus C
which the 5-brane wraps. This is the appropriate description
of the 5-brane for this context. The short exact sequence
(2.17) is referred to as a Hecke transform in [36]. It is worth
noting, for later sections of this paper, that while the small
instanton transition described by a Hecke transform of the
form (2.17) will be rank preserving, rkðVÞ ¼ rkðV̂Þ, one
can modify the short exact sequence to obtain more general
results. For example, if one were to obtain V̂ via the
following Hecke transform instead [36],

0 → V̂ → V ⊕ O → FC → 0; ð2:18Þ
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one would obtain a V̂ whose rank is one greater than that of
V. This will be important in later sections where we will
indeed encounter such transitions.
Sequences such as (2.17) and (2.18) are defined over a

single base geometry. This is the origin of the difficulty of
finding such a description of the change in the cotangent
bundle during a conifold transition, since the cotangent
bundles ΩX and ΩX̃ of the deformation and resolution
manifolds respectively are defined over different spaces.
One possible solution to this difficulty would be to find a
way to capture ΩX as a bundle or sheaf on the resolution
geometry X̃. The object obtained in this fashion would no
longer bear the intimate connection with the geometry that
a cotangent bundle would. However, it could still, in a
precise way, encode the structure of X thus providing all of
the information required. If such a sheaf could be found
then one may hope to be able to write down a single exact
sequence which describes the change in the cotangent
bundle during the conifold transition.
In fact, such a description arises entirely naturally in the

present case of the conifold transition. One can show, in a
class of examples that will be described below, that there
exists the following “relative cotangent sequence” between
the resolution and nodal geometries4:

0 → π�ðΩX Þ → ΩX̃ → OP1sð−2Þ → 0: ð2:19Þ

Here, π∶X̃ → X is the small contraction map, ΩX is the
cotangent sheaf of the nodal variety (a sheaf since X is
singular), and OP1sð−2Þ is a sheaf with support on the
exceptional P1s, given by taking the pushforward of
the line bundle Oð−2Þ under each embedding P1 ↪ X̃.
The first term in the relative cotangent sequence, being
simply a pullback of the cotangent sheaf of the nodal
variety, contains all of the geometric information aboutΩX ,
but represents this in an object on the resolution geometry.
Hence, this sequence captures the relationship between the
cotangent sheaf of the nodal variety and the cotangent
bundle of the resolution manifold.
The particularly striking feature of the short exact

sequence (2.19) is that the first two objects have support
over the entire manifold, while the third object has support
only over a curve. In other words, this short exact sequence
is precisely what one would interpret as the Hecke trans-
form describing a small instanton transition, were it to

occur in the gauge sector. Although the sequence (2.19) is
defined entirely on X̃ the transition only really occurs when
the system goes through the nodal point in moduli space. At
this stage, the object π�ðΩX Þ truly becomes the cotangent
sheaf of the variety over which it is defined and the
transition then completes via a smoothing of the nodal
variety to obtain X. This smoothing is exactly analogous to
the manner in which V̂ is smoothed out into a gauge bundle
in a standard small instanton transition. The complete
process is depicted schematically in Fig. 2.
We see, therefore, that a conifold transition is precisely

described by what we could call a small instanton transition
in the gravitational sector. A different, less concise but
somewhat more explicit, description of this transition to
(2.19) is detailed in Appendix A. In the context of the
present paper, this transition between cotangent bundles
will be particularly important in that it will guide us
towards a proposal for how the gauge bundle and 5-branes
should behave during a conifold transition in order to
correctly interact with the changes in the gravitational
sector throughout the transition. It is to this topic that we
will turn, after illustrating the preceding discussion with an
example.

1. Example

In our example of a conifold transition, as described in
Sec. II A, we have the following two descriptions of the
cotangent bundles of the resolution and nodal varieties:

0 → Oð0;−5Þ → ΩP4 → π�ðΩX Þ → 0 ð2:20Þ

0 → Oð−1;−1Þ ⊕ Oð−1;−4Þ → ΩP1 ⊕ ΩP4 → ΩX̃ → 0:

ð2:21Þ

In these expressionsΩP1 andΩP4 are the cotangent bundles
of the indicated projective spaces, which in the notation of
this example have the following Euler sequence resolu-
tions:

0 → ΩP1 → Oð1; 0Þ⊕2 → O → 0

0 → ΩP4 → Oð0; 1Þ⊕4 → O → 0: ð2:22Þ

The normal bundle to the exceptional locus in X̃ is
Oð−1; 1Þ ⊕ Oð−1; 4Þ in this example. To see this one may
write out so-called “gCICY” representatives of general
examples of the global sections of these line bundles [38].
Given defining relations of the form given in (2.9) these are
as follows:

l0
x1

∼ −
l1
x0

∈H0ðX̃;Oð−1; 1ÞÞ
q0
x1

þ c
l0
x1

∼ −
q1
x0

þ c
l1
x0

∈H1ðX̃;Oð−1; 4ÞÞ: ð2:23Þ

4A sequence such as this always exists for any two varieties
with a morphism between them, however, it is not always short
exact on the left. While we have not attempted a general proof of
(2.19) for an arbitrary conifold transition, we have been able to
prove it for large classes of constructions, such as all P1 splits of
CICYs, for example. In addition, even in the general case,
evidence can be provided for (2.19) by showing that any extra
term on the left of the sequence would have to consist of a sheaf
which has both entirely vanishing cohomology and Chern
classes.
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In these expressions, c is a general cubic in the homo-
geneous coordinates of P4. Clearly these sections vanish iff
l0 ¼ l1 ¼ q0 ¼ q1 ¼ 0, which is precisely the exceptional
locus in X̃.
Given that the normal bundle takes this form, one can

write the following twisted Koszul resolution of OP1sð−2Þ:

0 → Oð0;−5Þ → Oð−1;−1Þ ⊕ Oð−1;−4Þ
→ Oð−2; 0Þ → OP1sð−2Þ → 0: ð2:24Þ

Given the above, one can form a commuting grid of
sequences which has (2.19) as a top row, and the reso-
lutions of the objects in that sequence as given in (2.20),
(2.21), and (2.24) arrayed vertically underneath it. Diagram
chasing this grid and using what is essentially the nine
lemma [39], one can indeed prove that the sequence (2.19)
is well defined and short exact as claimed.

C. The heterotic conifold as gauge-gravity pair creation

In the previous subsection we have seen that the
cotangent bundles of two varieties linked by a conifold
transition are related by a specific small instanton tran-
sition. During this transition a sheaf, supported on the
exceptional curves of the conifold, is absorbed into
the cotangent bundle of the resolution side variety to form
the cotangent bundle of the variety on the deformation side.
This small instanton transition occurs as the manifold
transitions through the nodal variety which is shared in
the moduli space of the two geometries.
The obvious question that occurs in a physical setting is

where did the curve-supported sheaf involved in this
transition come from? Consider the heterotic anomaly
cancellation condition. We start on the resolution geometry

X̃ with a condition (2.7) that can be rewritten in the
following form:

c2ðΩX̃Þ ¼ c2ðṼÞ þ ½C̃�: ð2:25Þ

In this expression c2ðΩX̃Þ is more commonly rewritten as
c2ðTX̃Þ. These two quantities are equal, however, and given
that the small instanton transition just discussed is most
naturally presented in terms of the cotangent bundle we
chose to write (2.25) in this manner. The other quantities
in (2.25) are a gauge bundle Ṽ and a potentially nontrivial
class ½C̃� which is wrapped by 5-branes.
In order to perform the transition to the deformation side

manifold, we must add a class ½P1s� to the left-hand side
of (2.25), so that the associated sheaf OP1sð−2Þ, whose
second Chern character is given by this class, can then be
absorbed via a small instanton transition to obtain the new
cotangent bundle. If this process is to be consistent with
anomaly cancellation, we must add the same class to the
right-hand side as well:

c2ðΩX̃Þ þ ½P1s� ¼ c2ðṼÞ þ ½C̃� þ ½P1s�: ð2:26Þ

This would appear to be a process in which 5-branes are
created in both the gauge and gravitational sectors of the
theory simultaneously, before being reabsorbed into other
objects as we have already discussed for the cotangent
bundle and will discuss shortly for the gauge sector of the
transition. Below we will somewhat loosely refer to this as
a pair creation (note that this is not to be interpreted as a
quantum pair creation). Since this transition happens at a
singular point in the geometry of both sectors, it is hard to
maintain calculational control to prove conclusively that
such a process does take place. Nevertheless, in this paper

FIG. 2. The conifold transition as a small instanton transition in the gravitational sector. As explained in the text, from the resolution
side X̃, small instantons OP1sð−2Þ with support on the exceptional P1s are produced and absorbed into the cotangent bundle ΩX̃ to give
the cotangent sheaf ΩX of the singular geometry, which is then smoothed to give the cotangent bundle ΩX of the deformation geometry.
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we will provide a substantial amount of evidence that this
pair creation process indeed does occur in heterotic string
theory. A schematic depiction of this process is given
in Fig. 3.
As a first point, by analogy we should consider the usual

rules for pair creation of branes. Such processes are usually
thought to be present in a quantum theory if they are not
explicitly forbidden by some selection effect such as charge
conservation. For example, brane/antibrane creation is well
understood and occurs because the two objects have
opposite charges, meaning that there is nothing to forbid
the process. The same is true for the process we are
proposing here. Indeed, this is precisely what (2.26) states.
A difference between standard brane/antibrane creation

and what we are proposing is seen when one considers
supersymmetry. In order to ensure charge conservation, in a
standard brane/antibrane pair nucleation process the two
extended objects involved must preserve complementary
supersymmetries. Thus the process breaks supersymmetry
completely. The same is not true for the process we are
proposing here. Because supersymmetric objects in the
gravitational and gauge sectors of heterotic string theory
appear with opposite signs of charge in (2.26) the pair
creation process allowed by charge conservation consid-
erations preserves supersymmetry.
Although, given the above, a pair creation process such

as that we propose here may seem reasonable, the real

evidence for its existence will follow from the structure we
present in the rest of this paper. There are a vast number of
existing examples of “transitions,” and indeed dual theo-
ries, where adding ½P1s� to the gauge sector as in (2.26)
does indeed lead precisely to known structure. For exam-
ple, this sheaf can be combined, via a process we will
describe in detail, with the gauge sector of the theory to
yield exactly the gauge sector which is expected on the
deformation side of the transition. The presence of this
detailed structure, present across a huge number of known
examples, would have to be pure coincidence if the pair
creation process presented in this section is not physically
realized. The authors find such a possibility, while logically
possible, hard to believe.
As a final comment, one could wonder why such pair

creation processes do not simply continue, with more and
more sheaves being nucleated. There are several effects
which terminate this process. For example, it should be
remembered that each pair creation event, and subsequent
small instanton transition, is associated with a singular
transition in the geometry such that the cotangent bundle
can change topologically (e.g. h1;1 goes down upon
absorption of the P1s). The set of such geometric tran-
sitions where the geometries on either side of the process
preserve supersymmetry are, of course, extremely limited.
If one nucleated too many sheaves, or indeed sheaves in the
gravitational sector of the wrong form, then such a process
would not be supersymmetric in nature.

1. Absorption into the gauge sector?

Above we have proposed that the correct understanding
of a conifold transition in heterotic string theory is as a kind
of pair creation process between the gravitational and
gauge sectors, in which both a gravitational and a gauge
small instanton are produced simultaneously on the same
sublocus. In going from the resolution to the deformation
side of a conifold the gravitational small instanton on the
exceptional P1s is absorbed into the cotangent bundle. The
gauge small instanton on the exceptional P1s allows the
gauge sector to continue to balance the gravitational
contribution to the 5-brane charge after the transition in
order to maintain an anomaly-free theory.
While we have an explicit description in (2.19) of how

the gravitational small instanton is absorbed, we still must
describe the fate of the gauge small instanton. Of course,
the very natural guess is that it is absorbed into the gauge
bundle by an exactly analogous process, described by a
Hecke transform given by a short exact sequence

0 → V̂ → Ṽ → OP1sð−2Þ → 0: ð2:27Þ

Here, V̂ is the bundle or sheaf produced as a result
of this absorption (which it may subsequently be possible
to smooth). However, what one finds is that whenever Ṽ is a
bundlewhich one might reasonably expect to be a candidate

FIG. 3. The conjectured description of the heterotic conifold as
a process of gauge-gravity pair creation of small instantons
OP1sð−2Þ, which are depicted schematically by their support.
Absorption and smoothing of the gravitational small instantons
performs the geometric conifold transition X̃ → X, while the
gauge small instantons allow the gauge sector transition Ṽ → V,
as we describe in the text below.
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to be taken through a conifold transition, the map Ṽ →
OP1sð−2Þ vanishes.5 That is, H0ðX̃; Ṽ∨ ⊗ OP1sð−2ÞÞ ¼ 0,
so that this absorption process does not exist. These
examples of bundles which one “might expect” could be
taken through a conifold transition will be associated to
target space dual theories, andwewill discuss these at length
in Sec. IV.
In fact, the impossibility of the absorption process (2.27)

can also be seen from very general considerations. In the
literature6 [13], it has been noted that that if the connection
on a bundle is to be taken through a conifold transition with
minimal change, one way that can be accomplished is if the
bundle restricts trivially to the exceptional P1s to giveO⊕n

P1s
,

for some power n. Hence, for any such candidate bundle
Ṽ, the map Ṽ → OP1sð−2Þ restricts on the P1s to a map
O⊕n

P1s → OP1sð−2Þ. However, in the present case, such a
map does not exist, due to the negative twist in the target
line bundle, and thus the above Hecke transform does not
exist either.
Given that this small instanton can seemingly not be

absorbed into the gauge bundle in a simple fashion, a
second natural approach would be to attempt to leave it as a
5-brane wrapped on the P1s, and to carry this object
through the conifold transition directly. However, in the
small contraction limit, the exceptional P1s shrink to zero
volume, so that the volume of the wrapped 5-brane would
also go to zero, giving rise in the limit to a tensionless
spacetime-filling brane. What we will seek to show in what
follows is that there exists a much smoother process by
which the gauge sector can traverse the conifold transition,
which will allow the compactified theory to pass through
without any such drastic change.
We will see that an absorption process is possible for the

above gauge small instanton, but it is more complicated
than a process that is captured simply by a single Hecke
transform. Essentially, a brane recombination process
occurs, after which the desired small instanton transition
does indeed exist. Alternatively, after this brane recombi-
nation process, it will be possible to leave the small
instanton as a new 5-brane which is better behaved through
the conifold. In terms of exposition, it will be most
straightforward to consider this latter possibility first,
and hence this will be the subject of the next subsection.
This will ultimately also lead us quite directly to the correct
description of the small instanton absorption process into
the gauge bundle, which we will then treat in Sec. II E.

D. Branes through the conifold transition

We would like to describe a way in which 5-branes
wrapping the exceptional P1s in the resolution side of a
conifold transition might be combined with another 5-brane
to give an object which traverses the conifold transition
smoothly, unlike the 5-branes wrapped on the P1s alone,
which would produce in the contraction limit a tensionless
spacetime-filling brane.
Describing such a processwould provide a 5-brane theory

on the resolution side and a 5-brane theory on the deforma-
tion side which are (according to our proposal of the
description of a conifold transition as a gauge-gravity pair
creation process) connected through the conifold transition.
With this inmind, wewill in fact find it most natural to begin
the discussion by searching for such candidate pairs of
5-brane theories, and then subsequently showing that indeed
these 5-brane theories are such that they can be matched
on the nodal variety precisely through a recombining of
the brane on the resolution side with branes wrapping the
exceptional P1s. Further evidence that these theories
are indeed connected through the conifold transition, and
hence also evidence for our general proposal of a gauge-
gravity pair creation description of the conifold, will
be provided in Sec. III below, where we will argue that
these 5-brane theories are in fact dual theories, strongly
suggesting that they are indeed connected by a smooth
transition.
To collect the objects that we will need in order to

describe the candidate pairs of 5-brane theories, and the
brane recombination process through the conifold transi-
tion, it is necessary to pause to understand better the
geometry of the conifold, and in particular the presence of
certain curves and divisors whose existence is directly
related to the nature of this transition.

1. Objects canonically associated to a conifold transition

A characteristic property of a conifold transition is that,
as the deformation manifold is tuned to become a nodal
variety, there are certain curves which jump in dimension to
become divisors. This process of producing new divisors is
directly linked to the fact that additional divisors must
appear to generate the change in the Picard number,
h1;1ðX̃Þ ¼ h1;1ðXÞ þ 1. We will call the primitive divisor
which appears in this fashion D. This divisor in X can be
lifted to two distinct divisors on the small resolution: its
pullback π�ðDÞ and its proper transform PðDÞ. This
situation is depicted schematically in Fig. 4.
Let us examine this structure in more concrete detail in

terms of the illustrative example which we first introduced
in Sec. II A 1. In this case, the deformation geometry X is
described by a configuration matrix,

X ¼
h
P4 5

i
; ð2:28Þ

5Strictly speaking we should evaluate whether or not this map
exists on the nodal variety X where this transition actually takes
place. Doing so does not change any of the conclusions presented
here.

6Note also that examples have been studied (see [40,41] and
references therein) for which the bundle restricts nontrivially to
the exceptional P1s, for example in transitions taking tangent
bundles to tangent bundles which result in a more dramatic
change to the effective theory.
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i.e. by a generic quintic polynomial QðyÞ inside P4½y�. The
nodal geometry X is reached when this quintic is tuned to a
form l0ðyÞq1ðyÞ − l1ðyÞq0ðyÞ ¼ 0, where the li and qi are
respectively degree 1 and degree 4 polynomials. Consider
here the example of a curve C which is described on X by

C∶fl0¼q0¼0g∩X∼fl0¼q0¼Q¼0g⊂P4: ð2:29Þ

As the generic quintic equation ofX is tuned to the nodal one
of X, the two defining equations of this curve become no
longer independent of the defining equation of the geometry,
and in particular automatically satisfy the nodal quintic.
Hence, this curve jumps in dimension to a divisor D,

D∶fl0 ¼ q0 ¼ 0g ∩ X ∼ fl0 ¼ q0 ¼ 0g ⊂ P4: ð2:30Þ

(One could also have considered for example the curve
defined by fl1 ¼ q1 ¼ 0g ∩ X, or any linear combinations
of these two curves.)We note that the divisorsDwhich arise
in this way are Weil but non-Cartier divisors, and it is clear
that their existence is intimately linked to the geometry of the
conifold transition.
Under the small resolution along π∶X̃ → X , these

objects D naturally remain divisors, since the resolution
is an isomorphism except at the nodal points. However, as
mentioned above, there are two distinct objects to which the
divisor can be lifted: the pullback π�ðDÞ and the proper
transform PðDÞ. The loci of these two objects differ in that
the pullback contains the exceptional P1s, while the proper
transform PðDÞ intersects these transversely and in a
single point.
In our example, the resolution geometry X̃ is described

by a configuration matrix,

X̃ ¼
"
P1 1 1

P4 1 4

#
; ð2:31Þ

i.e. by the following two generic equations of multidegrees
(1, 1) and (1, 4) inside P1 × P4:

X̃∶fðx; yÞ∈P1½x� × P4½y�jx0l0ðyÞ þ x1l1ðyÞ ¼ 0 and

x0q0ðyÞ þ x1q1ðyÞ ¼ 0g: ð2:32Þ

The pullback divisor π�ðDÞ is described by

π�ðDÞ∶fl0 ¼ q0 ¼ 0g ∩ X̃; ð2:33Þ

which is a locus that manifestly contains the exceptional
P1s, since these sit over the points l0 ¼ l1 ¼ q0 ¼ q1 ¼ 0.
The proper transform divisor is described by

PðDÞ∶fx1 ¼ 0g ∩ X̃; ð2:34Þ

and manifestly intersects each exceptional P1 transversely
in a point. Looking at the defining equations of X̃, it is clear
that the locus of π�ðDÞ is indeed simply that of PðDÞ plus
the exceptional P1s, since imposing l0 ¼ q0 ¼ 0 in those
equations gives x0l0ðyÞ ¼ x0q0ðyÞ ¼ 0, which has these
two components as solutions.

2. Candidates for 5-brane transition

The reason we have introduced the above objects—the
Weil non-Cartier divisors on the nodal variety—is that they
lead almost directly to the description of a pair of a 5-brane
theory on the resolution side and a 5-brane theory on the
deformation side which are clear candidates to be contin-
uously connected through the conifold transition. Let us
make this explicit.
We have already seen that a Weil non-Cartier divisor

gives rise immediately to a curve C on the deformation
side. The 5-brane theory we will define on the deforma-
tion geometry is of a 5-brane wrapped on this curve, plus a
set of additional essentially arbitrary 5-branes which

FIG. 4. AWeil non-Cartier divisor on the nodal variety becomes a curve on the deformation branch, while on the resolution branch one
can consider either the pullback or the proper transform divisor.
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saturate the remainder of the anomaly cancellation con-
dition. These will turn out to have unimportant, trivial
behavior as mere “spectators,” as we will discuss in
detail below.
In contrast we have seen that in passing to the resolution

geometry the Weil non-Cartier divisor gives rise only to a
divisor, which we will take to be the proper transform
divisor PðDÞ.7 We now take an intersection of this divisor
with an additional hypersurface to define a curve.
Specifically, we intersect with a hypersurface of the same
form, denoted by H, as that involved in the deformation of
the geometry on the other side of the conifold transition. In
our canonical P1-split example, this means intersecting
with the zero locus of a generic quintic polynomial for
example.
The reason to define curves C and C̃ in this way is that

the “difference” between the classes of C̃ and C is exactly
the same as the “difference” between the second Chern
classes of the deformation and resolution geometries. That
is, upon wrapping 5-branes on these curves, the remaining
parts of the anomaly cancellation conditions, c2ðX̃Þ − ½C̃�
and c2ðXÞ − ½C�, are “identical,” in the precise sense that
this remaining discrepancy can now be trivially made up by
the addition of the spectator branes which we mentioned
above. Hence, the curve pairing of C and C̃ does the “hard
work” in allowing the pair of 5-brane theories to both be
anomaly consistent.
Below we illustrate this in our specific example.

Additionally, we collect in Appendix E the analogous
explicit results for the much more general case of any
Pn split of a toric complete intersection.
Recall the P1-split conifold transition that we have been

using as our canonical example. In this case, the two curves
C and C̃ are described by

C∶fl0 ¼ q0 ¼ 0g ∩ X;

C̃∶fx0 ¼ Q ¼ 0g ∩ X̃; ð2:35Þ

and hence the classes of the two curves within the two
geometries X and X̃ are

½C� ¼ J1 × 4J1 ¼ 4J21;

½C̃� ¼ J0 × 5J1 ¼ 5J0J1: ð2:36Þ

Recalling the class of the exceptional P1s inside the
resolution geometry X̃ in this conifold example,

½P1s� ¼ −5J0J1 þ 4J21; ð2:37Þ

we see manifestly that the difference between the two curve
classes above is indeed identical8 to this class which, as
seen in (2.5), is the difference in the Chern characters of the
two manifolds on either side of the conifold transition.
Hence, more explicitly, if we wrap 5-branes on these curves
on the geometry on each side of the conifold transition, the
piece left in the anomaly cancellation condition is exactly
identical,

c2ðXÞ − ½C� ¼ 6J21; c2ðX̃Þ − ½C̃� ¼ 6J21: ð2:38Þ

If one includes an additional spectator brane, meaning a
brane which trivially traverses the conifold transition by
simply remaining far from the singular points that appear
on the intermediate nodal variety, its contributions to the
anomaly cancellation condition on the two geometries are
also naturally identical. Hence, if we are able to show the
continuous matching across the conifold transition of the
above pair of 5-branes, this remaining part of the story of
the 5-brane theory traversing the transition is trivial to
complete.
We will describe in detail below these spectator branes,

and show that they indeed behave and contribute to the
anomaly condition as just described. However, first we
consider the more critical question of whether the above
pair of 5-branes is indeed connected continuously across
the conifold transition.

3. Brane recombination and the transition

We wish to show that the 5-branes just described on
either side of the conifold transition can be made to
continuously meet in some specific sense at the nodal
variety. Said differently, we want to show that each of these
5-branes can be taken through the conifold transition,
becoming the other during the process.
By construction of the curve C, when the deformation

geometry is tuned to become the nodal variety, this curve
enhances into a Weil non-Cartier divisor D. In contrast, the
curve C̃ simply remains a curve as the resolution geometry
shrinks to the nodal variety. This behavior can be modified,
however. The curve C̃ is defined as an intersection of two
divisors, specifically the intersection between the proper
transform PðDÞ and the zero locus of a divisor in some class
H. But the nodal geometry too is described by the
vanishing of a series of polynomials, one of which is also
the zero locus of a divisor in classH. Hence, if we tune this
defining relation of the curve so that in the nodal limit it
becomes to equal the defining equation of the nodal
geometry, this equation in the curve’s definition will be

7It is this choice, not π�ðDÞ, that will turn out to correctly link
two well-defined 5-brane theories across the transition as we will
show in the following.

8We recall that by abuse of notation “J1” means the restriction
of the Kähler form of the common ambient P4 to either of X or X̃.
Hence, it is only as the two geometries limit to the nodal variety at
the middle of the conifold transition that these objects become
identical (and indeed comparable at all).
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trivially satisfied and the curve will jump to become the
proper transform divisor PðDÞ. In the nodal limit, the locus
of this divisor becomes precisely that of the Weil non-
Cartier divisorD. Hence, there exists a special tuning of the
curve C̃ which, if performed at the same time as the
resolution geometry shrinks to the nodal variety, allows this
curve to limit to the same locus as the curveC limits to from
the deformation side.9 We will return to discuss the curious
fact that the curves that the 5-branes are wrapping limit to
higher-dimensional cycles on the nodal geometry at the end
of this subsection.
We have now seen that (with a bit of tuning) the

curves that the 5-branes on the deformation and resolution
sides wrap become coincident objects when those two geo-
metries meet as the intermediate singular variety. However,
the proper mathematical description of these 5-branes that
we are employing is in terms of sheaves. The curves we
have been discussing are just those cycles over which these
sheaves have support. The 5-brane on the resolution side of
the transition is described by a sheaf OC̃. This becomes
OPðDÞ in the limit which has support only over the limit of
PðDÞ. The 5-brane on the deformation side of the transition
is described by a sheaf OC. This becomes Oπ�ðDÞ in the
nodal limit which only has support on D. These two
sheaves do not match in the nodal limit. Rather, it is at this
stage that the gauge small instanton OP1sð−2Þ that was
created during the gravitational/gauge pair creation process
comes into play.
Naively, it would be desirable if a brane recombination

process could occur to take the sheaf OP1sð−2Þ that was
generated during the pair creation process and combine this
with OC̃ to produce the sheaf OC that is expected after the
transition. If we first consider a case where we do not tune
C such that it becomes a divisor in the nodal limit [simply
by taking a general element of its curve class rather than a
tuned example such as (2.35)], a natural way in which one
might try to combine two sheaves in this way would be via
a short exact extension sequence, of the following form10:

0 → OP1sð−2Þ → Oπ�ðCÞ → OC̃ → 0: ð2:39Þ

This sequence is not correct however, as it suffers from
several problems. First, this sequence as stated leads to an
incorrect relationship between the Chern classes involved.
To obtain the correct relationship, the central object of the
extension has to be twisted as follows:

0→OP1sð−2Þ→Oπ�ðCÞ⊗OX̃ð−PðDÞÞ→OC̃→0: ð2:40Þ

We will address the meaning of the twisting of the central
term above by OX̃ð−PðDÞÞ shortly. Before addressing that
feature however, there is another problem that means that
the sequence (2.40) is not correct. The issue is that the
extension class associated to that sequence, written as it is
on the resolution manifold, vanishes. No such nontrivial
recombination of the sheaves involved exists. This, how-
ever, is an artifact of our trick of describing the physics of
the transition in terms of objects pulled back to the
resolution variety. If one now takes C to be the tuned
curve which becomes a divisor in the nodal limit (and
similarly for C̃) and then tries to form such an extension of
divisor supported sheaves on the nodal variety, the relevant
extension class does exist. This requirement of properly
going to the nodal geometry is perhaps not surprising at this
stage as, after all, the entire process really takes place as the
singular geometry is traversed.
The easiest way in which to see that the extension class

does indeed become nonvanishing in this limit where the
curves become divisors is to still use the trick of working on
the resolution manifold, but to take C to be the divisor D
and to tune the hypersurface H appearing in the definition
of C̃ to be the relevant defining equation of the nodal
variety. This mimics the structure of the relevant curves
blowing up into divisors and leads to the following,
now finally correct, short exact sequence of brane recom-
bination:

0 → OP1sð−2Þ → Oπ�ðDÞ ⊗ OX̃ð−PðDÞÞ → OPðDÞ → 0:

ð2:41Þ

This sequence essentially says that the two sheaves,
OP1sð−2Þ describing the pair-created brane and OPðDÞ
describing the limit of the 5-brane on the resolution
manifold, recombine to a sheaf Oπ�ðDÞ ⊗ OX̃ð−PðDÞÞ
describing the limit of the 5-brane from the deformation
variety. Since this brane recombination process only
produces the 5-brane configuration we require from the
deformation side up to a twist by OX̃ð−PðDÞÞ, we must
now discuss the origin of this seemingly additional
structure.
For any two varieties X1 and X2, the following short

exact sequence holds:

9It is notable that the meeting of the two 5-brane theories from
the two sides of the conifold transition requires a geometric
tuning in coming from the deformation side and a tuning in the
gauge/5-brane theory coming from the resolution side. Moreover,
despite these tunings having drastically different physical inter-
pretations, they are of precisely the same mathematical form, both
involving tuning a quintic in our canonical case for example. It is
hence natural to guess that these two theories are not only
connected, but in fact dual. This will be the subject of a detailed
discussion in Sec. III below. Further, this exchange of geometric
and gauge degrees of freedom is precisely what is seen in
examples of (0, 2) target space duality of the heterotic string,
and we will discuss the very concrete connections between this
and the present discussion in Sec. IV below.

10We have shown explicitly that the statements we make about
the following sequences hold in the classes of examples we
discuss in this paper. While we are not aware of a general proof,
examination of examples that are not of the form we consider here
lead us to expect this to hold much more widely.
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0 → OX1∪X2
→ OX1

⊕ OX2
→ OX1∩X2

→ 0: ð2:42Þ

For the case at hand we shall take X1 ¼ PðDÞ and
X2 ¼ P1s. We then have that X1 ∪ X2 ¼ π�ðDÞ and
X1 ∩ X2 ¼ pts, a set of points where the proper transform
divisor intersects the exceptional locus. The sequence
(2.42) then becomes the following:

0 → Oπ�ðDÞ → OPðDÞ ⊕ OP1s → Opts → 0: ð2:43Þ

If we twist this sequence up by OX̃ð−PðDÞÞ we obtain the
following:

0→Oπ�ðDÞ ⊗OX̃ð−PðDÞÞ→OPðDÞ ⊕OP1s ⊗OX̃ð−PðDÞÞ
→Opts → 0: ð2:44Þ

Here we have used the fact that the twisting does not affect
the sheaves that are supported only over points or the sheaf
whose support strikes the exceptional locus at points.
Pushing this sequence forward to the nodal variety and
using the fact that π�ðOP1s ⊗ OX̃ð−PðDÞÞÞ ¼ 0 we arrive
at the following:

0 → π�ðOπ�ðDÞ ⊗ OX̃ð−PðDÞÞÞ⟶g
OD ⟶

f
Opts: ð2:45Þ

The map f in the above sequence is nonzero precisely
because the points over which the last sheaf has support lie
within D. Now consider deforming the nodal Calabi-Yau
manifold to return to the smooth manifold X. Such a
deformation removes the singular points from D, rendering
the map f vanishing. The map g in (2.45) then becomes an
isomorphism. This shows that upon deforming to the
smooth deformation manifold, the unwanted twist in the
central sheaf of (2.41) goes away. Indeed, the Weil
non-Cartier divisor D even becomes an (untwisted) curve
under this deformation.
The final upshot of the lengthy preceding discussion is

that the gauge small instanton OP1sð−2Þ, produced in our
conjectured gauge-gravity pair creation process, is pre-
cisely what is required to combine with a 5-brane wrapping
C̃ on the resolution geometry to become the limit of the
5-brane wrapping C from the deformation geometry when
the common point in moduli space is approached.
Let us look at all of this structure in the context of the

illustrative example we have been employing throughout
this section. In this case we have from (2.34) that
OX̃ðPðDÞÞ ¼ OX̃ð1; 0Þ. Given this, the sequence (2.41)
becomes the following in this example:

0 → OP1sð−2Þ → Oπ�ðDÞð−1; 0Þ → OPðDÞ → 0: ð2:46Þ

It is easy to show that this sequence is indeed correct in this
case. The extension class Ext1ðOPðDÞ;OP1sð−2ÞÞ ¼ C#ðP1sÞ,
which is not vanishing and thus there is some object

appearing in the central position in (2.46) which is not just a
direct sum. This object has support over π�ðDÞ. That it is
Oπ�ðDÞð−1; 0Þ can then be ascertained by demanding that
the Chern classes and line bundle cohomologies of the
central object agree with what is implied by the short exact
sequence.
The sequence (2.45) becomes the following in this

example:

0 → ODð−1; 0Þ → OD → Opts: ð2:47Þ

In the nodal limit ODð−1; 0Þ and OD are indeed different
and the above sequence is nontrivial. However, as we
deform away from the nodal point, the divisor by which one
twists OD to obtain ODð−1; 0Þ disappears, and so the two
sheaves indeed become the same object (in addition to D
transitioning to become C).
Finally, we return to the fact that the objects to which the

5-branes limit on the nodal variety appear, somewhat
surprisingly, to be described by divisors, rather than curves.
It is certainly clear that the sheaf which describes the small
instanton in the gauge theory undergoes this radical change
as the geometry limits from either side to the nodal variety.
However, it is not clear whether this change is purely an
effect in the small instanton limit, or a physically important
change in the case of true 5-branes as well. The correct
conditions to impose on the dimensionality of extended
objects in such a singular limit of heterotic string
theory, where those objects intersect the singularities, is
not known and thus such a “dimension jumping” effect
could be real. It would certainly be interesting to investigate
this effect, in addition to the pair creation process we have
described earlier, in a simpler, noncompact, setting where
one might have more direct control of such a process. In
this paper, however, we will concentrate on the compact
setting where one obtains a vast amount of indirect
evidence that the process we have described here does
occur from the highly constrained structure of heterotic
compactifications.

4. Spectator branes

It remains to complete the above pair of 5-brane theories
with the addition of spectator branes, which, unlike the
special 5-branes above, traverse the conifold transition
essentially trivially, staying far from the singularities or
equivalently the exceptional P1s, and hence remaining
“ignorant” of the transition, so that they simply make up the
identical remaining part of the anomaly cancellation con-
dition on each side of the transition.
Note that any generic curve will be an example of a

spectator, since any generic curve as it passes through the
nodal variety will miss the singular points. Hence, the
existence of spectator branes and thus the final piece
required to complete the connection of a pair of 5-brane
theories across a conifold transition is guaranteed.
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We illustrate this in an example. Recall our standard
conifold transition example, in which the deformation X
and resolution geometries X̃ are CICYs described by the
configuration matrices

X ¼
h
P4 5

i
; X̃ ¼

"
P1 1 1

P4 1 4

#
; ð2:48Þ

meaning they are described by complete intersections
inside P4 and P1 × P4 as

X∶fðyÞ∈P4½y�jQðyÞ ¼ 0g;
X̃∶fðx; yÞ∈P1½x� × P4½y�jx0l0ðyÞ þ x1l1ðyÞ ¼ 0 and

x0q0ðyÞ þ x1q1ðyÞ ¼ 0g; ð2:49Þ

where Q, the li, and the qi are (generic) polynomials of
degrees 1, 4, and 5 respectively, and for which the nodal
geometry X is given by tuning the quintic polynomial Q to
the special choice

X∶fðyÞ∈P4½y�jl0ðyÞq1ðyÞ − l1ðyÞq0ðyÞ ¼ 0g: ð2:50Þ

This example provides a simple case in which we can track
spectator curves through the transition and compute the
curve classes on each geometry. In particular, it is easy to
track a curve through the transition due to the fact that these
P1-split (or more generally Pn-split) examples of conifold
transitions have the convenient property that the ambient
space of the deformation geometry X continues on to
naturally form part of the ambient space of the resolution
geometry X̃. Hence, we can define a spectator curve by
using only the coordinates of the ambient space of X.
Explicitly in our example, we can define a curve in the
geometry at any point during the transition by taking the
intersection of the geometry with the common zero locus of
two generic polynomials P1ðyÞ and P2ðyÞ, and then we can
track how the curve behaves through the transition simply
by continuing to take this intersection with the geometry at
each stage. That is, explicitly, the curve at each stage is
described by8>><
>>:
C0

C0
C̃0

9>>=
>>;¼fP1ðyÞ¼P2ðyÞ¼ 0g∩

8>><
>>:
X ⊂P4½y�
X ⊂P4½y�
X̃ ⊂P1½x�×P4½y�

9>>=
>>;:

ð2:51Þ
We note that since P1 and P2 are generic the curve C0

misses the singularities on the nodal geometry so that this is
indeed a spectator curve. The classes of the curves C0 ⊂ X
and C̃0 ⊂ X̃ are now simple to compute. Setting the degrees
of the polynomials P1 and P2 to be d1 and d2, these classes
are simply

½C0� ¼ ðd1d2ÞJ21; ½C̃0� ¼ ðd1d2ÞJ21; ð2:52Þ

i.e. they are identical. Hence, by wrapping an additional
5-brane on such a spectator curve, the above pair of theories
on the deformation and resolution geometries can be made
anomaly consistent, specifically in this example by any
choice of spectator curve for which d1d2 ¼ 6.

E. Bundles through the conifold transition

In this section we will demonstrate that the process of
mapping a 5-brane through a conifold transition (as out-
lined above) leads naturally to a way to follow a vector
bundle through the transition via a heterotic small instanton
transition (see e.g. [11,36,37]).
As first described in [36,37], and reviewed in Sec. II B,

the mathematical process of absorbing a 5-brane into a
vector bundle proceeds in several steps. Consider a 5-brane
wrapping a curve C inside a CY threefold X. In the limit
that the 5-brane starts to dissolve onto an E8 fixed plane (in
the language of heterotic M-theory), the subsequent “small
instanton” can be described via a skyscraper sheaf sup-
ported over C [36,37] or equivalently via an ideal sheaf of
C [42].11 Then as outlined already in Sec. II B, the correct
description of its “merging” into a preexisting vector
bundle V0 is given by a so-called Hecke transform [36]

0 → V̂ → V0 ⟶
f

FC → 0; ð2:53Þ

where FC is a rank 1 vector bundle12 on C. Because C is a
codimension 2 object in X, V̂ is in general singular (and
hence a sheaf rather than a vector bundle) as it appears in
(2.53) and must be further deformed into a smooth bundle.
The key operation in (2.53) is the surjective morphism
denoted by f which “weaves” together the fibers of V0 with
those of F over the locus where they overlap. It is
straightforward to show that

c2ðV̂Þ ¼ c2ðV0Þ þ ½C� ð2:54Þ

(for any choice of F ) as expected by a 5-brane absorption.
As noted in Sec. II B, it should be observed that this type

of process can occur either as a rank-changing transition for
the bundle or as a rank-preserving one. In the former case,
if the initial bundle V0 is of the form V0 ¼ U ⊕ OX then

11The relationship between these two descriptions in the
context of a small instanton transition is rather evident in the
case of a Hecke transform of the form given in (2.59). In this case,
before deformation to a smooth bundle, one can either think of
the process as a Hecke transform involving the skyscraper sheaf
OC̃ as written, or simply as adding the ideal sheaf I C̃ to the
bundle Ṽ0.

12Note that FC is physically determined by the cycle which the
5-brane wraps and the choice of form-field backgrounds on that
extended object.
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rkðV̂Þ ¼ rkðUÞ þ 1. The fact that rkðV̂Þ > rkðUÞ implies
that the gauge group of the four-dimensional theory is
broken to a subgroup. In contrast, for generic V0, the
transition will be rank preserving (and hence generically
gauge-group preserving). Such transitions can also change
the chiral index of the theory [36,43,44].
In the present context, we can extend the discussion of

5-brane transitions from the previous section to bundles by
considering a bundle V which can “emit” a 5-brane in the
special classes defined in Sec. II D [i.e. C and C̃ as
in (2.35)] and leave the remaining part of the bundle as
a spectator in the conifold process (akin to the spectator
branes of Sec. II D 4).

Before outlining this process inmore detail, it is important
to clarify in what waywe expect a bundle to be a spectator to
a conifold transition. As in the case of 5-branes described
above, intuitively it makes sense that if the crucial defining
data of the bundle misses the conifold points (respectively
P1s), then this stands a chance of leading to a good bundle on
both sides of the transition. More precisely, we wish to
parametrically define a pair ðX; V0Þdenoting avector bundle
on the deformation side of the conifoldwhich can be tuned to
the nodal limit of the CY3 geometry and then pulled back to
the resolutionmanifold X̃ to produce a smooth vector bundle
Ṽ0. These rather rough intuitive notions can be made
somewhat more precise by studying the form of the con-
nection at the singularities (respectively the P1s) and
interesting work has been done on special aspects of this
question (see [13]). As mentioned previously, one simple
condition placed on bundles defined over the resolution
geometry X̃ that can possibly be extended onto the defor-
mation manifold X is that the restriction of Ṽ0 to the P1s is
trivial (i.e. Ṽ0jP1 ¼ OP1

⊕rkðṼÞ) [40].
As a toy example of a spectator bundle, suppose that

OXðDÞ is a line bundle onX. Then as proved in [45],OX̃ðDÞ
is a line bundle on X̃ with the same cohomology and Chern
classes as it had on X (since the Kähler cone of X is simply
extended, never reduced, in moving to that of X̃). Thus,
bundles built as kernels, cokernels or extensions of line
bundles of this form, can all potentially serve as spectators.
Note that line bundles of the form shown above have the
property that OX̃ðDÞjP1 ¼ OP1 as described above.
It should be noted however, that even if a spectator

bundle can be carried simply through the conifold tran-
sition, spectators do not in general have the right behavior
for a physical heterotic theory to pass through the tran-
sition, in that the end result of a bundle on X trivially
extended onto X̃ will in general not satisfy anomalies (or
slope stability) on X̃. To have a chance at a physically
consistent transition, we need to employ the ideas of the
previous subsections. Returning to this goal, suppose that
V0 constitutes a vector bundle on X whose second Chern
class is of the form c2ðV0Þ ¼ c2ðTXÞ − ½C�. Then consider
a rank-changing small instanton transition of the form

0 → V̂ → V0 ⊕ OX → OC → 0: ð2:55Þ

Next, let Ṽ0 be the trivial extension of V0 to X̃ and on this
manifold, consider absorbing the small instanton associated
to C̃ into Ṽ0 ⊕ OX̃ as

0 → ˆ̃V → Ṽ0 ⊕ OX → OC̃ → 0: ð2:56Þ

In this process we have absorbed the 5-branes paired by the
transition described earlier in this section into effectively
the “same” spectator bundle on both sides of the transition.

If both V̂ and ˆ̃V can be deformed to smooth bundles, V, Ṽ,
then we have a pair for which c2ðVÞ ¼ c2ðTXÞ and
c2ðṼÞ ¼ c2ðTX̃Þ. Thus, we would have extended the
5-brane transition of the previous section into a transition
of vector bundles as shown in Fig. 5. As we will
demonstrate in future sections, both the 5-brane and bundle
transitions detailed here lead to a matching of the charged
and uncharged massless matter spectra of the resulting
N ¼ 1 four-dimensional theories. In other words, they lead
to apparently dual theories. In the case of the bundles, this
will be a known duality [arising from (0, 2) GLSMs].
To conclude this section it should be noted that, while the

small instanton process above was described as the
absorption of the special 5-branes in Sec. II D, it is equally
natural to describe this process as an emission of that
5-brane, which then can traverse the conifold. For example,
beginning with a smooth bundle V which can be tuned to a
singular limit of the form

V → V̂ ¼ V0 ⊕ IC; ð2:57Þ

it then naturally fits into the short exact sequence

0 → V̂ → V0 ⊕ OX → OC → 0; ð2:58Þ

where the exactness follows from the Koszul sequence of IC.
This sequence implies that via a small instanton transition
such a bundleV can emit an instanton supported on the curve
C. Then if we allow the 5-brane wrapping C to transition
through the conifold to the dual 5-brane/curve C̃, we can
“reabsorb” the new curve into Ṽ0 (if we bring the spectator
bundle V0 passively through the conifold transition) via

0 → Ṽ0 ⊕ I C̃ → Ṽ0 ⊕ OX → OC̃ → 0: ð2:59Þ

Asa final step, this singular bundle Ṽ0 ⊕ I C̃ can be deformed
back into a smooth vector bundle Ṽ on X̃. Thus, the pairV, Ṽ
has been linked across the conifold transition.

1. Example

As an example of the phenomenon above, let us consider
the 5-brane transition involving a conifold of the quintic
used previously in this section. In this case, the relevant
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curve class on the quintic was ½C� ¼ 4D2 with explicit
polynomial description given by l0 ¼ q0 ¼ 0 as in (2.35).
Recall that the skyscraper (OC) and ideal sheaves (IC) of
such a curve on the quintic are defined by the Koszul
sequence as

0 → Oð−5Þ → Oð−1Þ ⊕ Oð−4Þ → IC → 0 ð2:60Þ

0 → IC → OX → OC → 0: ð2:61Þ

Let us define the following bundle on the quintic
threefold as a spectator (in the sense above) to this conifold
transition:

0 → Oð−4Þ → Oð−1Þ⊕4 → V0 → 0: ð2:62Þ

Over a smooth quintic threefold, this bundle can be
combined with a 5-brane wrappingC via a Hecke transform
as in (2.55) as a rank-changing transition

0 → V̂ → V0 ⊕ O → OC → 0: ð2:63Þ

ThebundleV0 hasc2ðV0Þ ¼ 6D2 andas a result, can correctly
pair with C given above to exactly saturate the anomaly
cancellation condition of c2ðTXÞ ¼ 10D2 ¼ c2ðVÞ þ ½C�.
In this case, by direct computation, we find that the space

of morphisms, HomðV0;OCÞ is trivial and as a result
V̂ ¼ V0 ⊕ IC. Fortunately, however, the cokernel descrip-
tions of both our spectator bundle in (2.62) as well as the
ideal sheaf in (2.60) lead to a natural addition of the short
exact sequences as

0 → Oð−5Þ ⊕ Oð−4Þ⟶f
T

Oð−4Þ ⊕ Oð−1Þ ⊕ Oð−1Þ⊕4

→ V0 ⊕ IC → 0 ð2:64Þ

which, for a block-diagonal map, fT, leads to a unified
cokernel description of V0 ⊕ IC. If we deform the map fT

away from a block diagonal form13 this amounts to an
appropriate smoothing of the sheaf V̂ back to a smooth
bundle.14 The resulting bundle is a familiar one on the quintic

0 → Oð−5Þ → Oð−1Þ5 → V → 0: ð2:65Þ
V is a rank 4 holomorphic deformation of the cotangent
bundle of the quintic (i.e. essentially a deformation of the so-
called “standard embedding” on the quintic).
On the resolution side of the conifold given by the CICY

threefold in (2.31) likewise we begin with the spectator

0 → Oð0;−4Þ → Oð0;−1Þ⊕4 → Ṽ0 → 0 ð2:66Þ

on this CY3 geometry and combine this object with C̃ from
(2.35) after the 5-brane transition. The curve C̃ is in the
class 5D1D2 and its ideal sheaf is given by

0 → Oð−1;−5Þ → Oð−1; 0Þ ⊕ Oð0;−5Þ → I C̃ → 0

ð2:67Þ

FIG. 5. Beginning at the top right: the path of the heterotic gauge bundle through a conifold transition, as described in the text. The
result is the target space dual of the original theory, as we discuss in Sec. IV.

13In the bundle moduli space of the Hecke transform V̂, such a
deformation is of so-called “non-Hecke” type. See Appendix D.

14Note that in this case the repeated entries ofOð−4Þ in the first
and second terms in the sequence can be eliminated without
changing the cokernel.
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0 → I C̃ → OX → OC̃ → 0: ð2:68Þ

As above, we can combine the sequences for Ṽ0 and I C̃ to
obtain

0 → Oð0;−4Þ ⊕ Oð−1;−5Þ⟶f̃
T

Oð0;−1Þ⊕4

⊕ Oð−1; 0Þ ⊕ Oð0;−5Þ → Ṽ0 ⊕ I C̃ → 0: ð2:69Þ

This singular sheaf once again can be deformed into a
smooth bundle Ṽ on X̃ from (2.31) by tuning the map f̃T

away from block-diagonal form. Thus, we have constructed
a dual pair of bundles in the sense of Sec. II D in V and Ṽ in
(2.65) and (2.69) with general maps. As we will see in later
sections, the language of “duality” is justified in describing
these connected bundles as they lead to apparently identical
four-dimensional theories (with perfect matching of their
massless spectra) across the conifold transition.

III. 5-BRANE DUALITY

It transpires that the 5-brane transitions described in the
previous section link compactified theories which appear to
be dual. In this section, we provide proofs and general
arguments of the matching for the various parts of the
spectrum, and exhibit this 5-brane duality through examples.
Indeed, in this section, we move beyond the single example
with which we have illustrated our discussion so far and in
Sec. III Aweprovide a large class of pairs of 5-brane theories
connected by the transitions of the previous section.We then
turn to the discussion of duality in Sec. III B.

A. A simple class of 5-brane theory pairs

The construction of Sec. II D details a prescription for
continuously taking a 5-brane theory across a conifold
transition. A very large class of examples in which this can
be conveniently and explicitly described is that of conifold
transitions described by Pn splits of toric complete inter-
sections, and for any such case we have collected all of the
relevant expressions in Appendix E. A subclass of these for
which it is less cumbersome to illustrate the construction is
that of conifold transitions described by P1 splits between
CICYs, and hence we consider these below.
Consider a pair of CICY manifolds X and X̃ which are

related by a conifold associated to a P1 split:

X¼
h
A v0þv1 R

i
↔

"
P1 1 1 0

A v0 v1 R

#
¼ X̃: ð3:1Þ

Here A is a product of N projective spaces, v0 and v1 are
vectors of length N and R is an N × ðK þ 1Þ matrix where
K ¼ dimðAÞ − 5. It will be useful in what follows to use
the following, equivalent, description of X:

X ¼
"
P1 1 0 0

A 0 v0 þ v1 R

#
: ð3:2Þ

On these two manifolds we will consider a 5-brane stack
wrapping a curve c which is the intersection of X̃ in (3.1)
and X in (3.2) in their shared ambient space:

c ¼
"
P1 1 0 0 1 1

A 0 v0 þ v1 R v0 v1

#
: ð3:3Þ

This situation is depicted schematically in Fig. 6. One can
then complete these constructions by adding a spectator
5-brane stack, or indeed a spectator bundle, to each configu-
ration in order to saturate the heterotic anomaly cancellation
condition. Our statement is that these two theories are dual to
each other15: they give the same low energy spectrum.
The curve c has a different normal bundle considered as

a complete intersection, C or C̃ respectively, in the two
manifolds X and X̃:

N C¼Oðv0Þ⊕Oðv1Þ; N C̃¼Oð1;0Þ⊕Oð0;v0þv1Þ:
ð3:4Þ

The classes of these 5-branes, as appearing in the anomaly
cancellation condition, are as follows:

½C� ¼ ðv0 · JÞðv1 · JÞ
½C̃� ¼ J0ðv0 þ v1Þ · J: ð3:5Þ

In the above, J0 is the Kähler form of the P1 involved in the
split, restricted to the CY3 X̃ and J is a vector of the Kähler

FIG. 6. A graphical depiction of the construction of dual
5-brane theories for the special case of a P1 split. The CICYs
related by the P1 split, X and X̃, can be embedded in the same
ambient space, and the 5-branes playing a crucial role in the
construction are then given by the curve c on which these two
manifolds intersect.

15There is one small class of apparent exceptions to this
duality, namely those where the resolution manifold is isomor-
phic to the Schön manifold. We discuss this in some detail below.
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forms of the projective factors inA restricted to the relevant
CY3 manifolds. Note that these objects are precisely the
distinguished curves associated to the transition that were
discussed in Sec. II D.
We can compute the second Chern characters of X and X̃

to find the following:

ch2ðTXÞ¼ ch2ðTYÞ−
1

2
ððv0þv1Þ ·JÞ2

ch2ðTX̃Þ¼ ch2ðTYÞ−J0ðv0þv1Þ ·J−
1

2
ðv0 ·JÞ2−

1

2
ðv1 ·JÞ2:

ð3:6Þ
In these expressions we have defined Y ¼ ½AjR�. Thus, we
see that

ch2ðTXÞ − ch2ðTX̃Þ ¼ ½C̃� − ½C�: ð3:7Þ
Given that these two 5-branes account for the difference

in second Chern class between the two manifolds, a
spectator bundle or 5-brane stack can be added to complete
the model and make it anomaly free as claimed above. This
spectator 5-brane stack wraps a curve in the class

½C0� ¼ ½C̃0� ¼
1

2
ððv0 · JÞ2 þ ðv1 · JÞ2Þ − ch2ðTYÞ ð3:8Þ

on both sides of the duality. Notice that this class has no
contributions involving J0. In the case of completion by a
spectator bundle, (3.8) is the secondChern class of that object.

B. Moduli matching across 5-brane duality

In the compactified theory of a Calabi-Yau threefold X
containing only a 5-brane wrapped on a single curve C,
there are the following massless multiplets (see for
example [46]) in the supergravity limit:

(i) h1;1ðXÞ þ h2;1ðXÞ chiral multiplets;
(ii) gC vector multiplets, where gC is the genus of the

curve C; and
(iii) h0ðC;N CÞ chiral multiplets,16 where N C is the

normal bundle of C inside X.
There is also an additional universal chiral multiplet for
each 5-brane. If there are multiple 5-branes wrapped on
various curves Ci inside X, then one has a contribution gCi

and a contribution h0ðCi;N Ci
Þ from each. In our con-

struction above, in the theory on X (respectively X̃) there is
a 5-brane wrapped on the curve C (C̃), as well as a spectator
5-brane wrapped on a curve C0 (C̃0), so there are two
contributions to consider from the 5-brane sector.
For these pairs of 5-brane theories resulting from our

construction the above massless spectra match, and in this
section we provide general arguments for this.

Consider first the massless vector multiplets. Since these
are given by the genera of the curves on which the 5-branes
are wrapped, the matching of the vector multiplets across
the pair of 5-brane theories will follow immediately if one
can establish the isomorphisms C0 ≅ C̃0 and C ≅ C̃.
In the case of the spectator curvesC0 and C̃0, this is clear.

This is because these curves are related by smooth passage
through the conifold transition, staying far from the
singular/exceptional loci. That this is also true for the
curves C ≅ C̃ can be seen manifestly in the P1-split class of
examples in Sec. III A above, since the curves C and C̃ are
simply different embeddings of the same curve c into the
two geometries X and X̃. For a more general argument of
the isomorphism C ≅ C̃ in our construction, we refer the
reader to Appendix C.
Consider next the chiral multiplet moduli. In the case of

the spectator branes, we expect that the contributions
precisely match, h0ðC0;N C0

Þ ¼ h0ðC̃;N C̃0
Þ, and indeed,

we provide in Appendix C a proof that this is the case for
any Pn split between CICYs. By contrast, the moduli of the
5-brane stacks wrapping C and C̃ do differ in the two
theories. Indeed, these contributions must compensate for
the difference in geometric moduli across the conifold
transition, i.e.

h0ðC;N CÞ þ h1;1ðXÞ þ h2;1ðXÞ
¼ h0ðC̃;N C̃Þ þ h1;1ðX̃Þ þ h2;1ðX̃Þ: ð3:9Þ

For the large class of examples of conifold transitions
described by Pn splits of toric complete intersections, for
which we explicitly perform the construction of the 5-brane
theory pairs in Appendix E, the descriptions of the
geometry and the 5-branes are sufficiently explicit that
one can determine in any particular case the above
cohomologies, and hence verify that the above equality
indeed holds.
We have performed this check in many explicit examples,

including many cases where h1;1 changes by more than one,
or where the complete intersection description is nonfav-
orable, providing a wealth of evidence for the general
result.17 Moreover, in Appendix C, we outline a proof of

16A derivation that this is indeed the correct enumeration of
brane moduli is given in Appendix B.

17There is however one small class of exceptions to this. In the
few cases in which the resolution geometry is isomorphic to the
Schön manifold, which appear also to be precisely the cases
where the Weil non-Cartier divisor D on the singular variety is
isomorphic to T4, the moduli matching fails. The most obvious
qualitative difference in these cases is the appearance of a
nonzero h1ðD;ODÞ. An understanding of the role of this
contribution may provide an explanation for why the moduli
fail to match in these cases, and it would be interesting to
understand the unique features of this special case further.
However, if one considers cases where the Weil non-Cartier
divisor is not isomorphic to T4, then one may hope for a general
proof of moduli matching, along the lines of the argument in
Appendix C.
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this in the most tractable case, of a conifold transition which
changesh1;1 by only one, andwhich can be described as aP1

split between CICYs. Given that the result has been verified
in a large variety of examples beyond this simple case, we
also expect a more widely applicable proof to be possible
along similar lines.
Clearly, when coupled with the preceding result con-

cerning the moduli of the spectator 5-brane stacks, such a
result guarantees that the total number of moduli, coming
from 5-branes, complex structure moduli, Kähler moduli
and the dilaton, will always match across the dual theories.
As a final comment for this section, we believe that the

5-brane duality described here is a true duality, and not just
an accidental matching at the level of spectrum. In
particular, we expect other properties of the dual configu-
rations, such as the potentials in their low energy effective
theories, should also match. To see why this is expected to
be so, we must discuss the relationship between the
physical process we have been describing in this paper
and the phenomenon of (0, 2) target space duality. It is to
this topic that we turn in Sec. IV.

1. Example

Let us consider the case of the following P1 split of the
quintic:

X ¼
h
P4 5

i
↔

"
P1 1 1

P4 1 4

#
¼ X̃: ð3:10Þ

In this case we have

N C¼Oð1Þ⊕Oð4Þ; N C̃ ¼Oð1;0Þ⊕Oð0;5Þ: ð3:11Þ
One should of course complete this example by providing
either a spectator bundle or a spectator 5-brane which will
saturate the anomaly cancellation condition. If we opt for the
latter possibility, one can choose to include such objects on
curves with the following normal bundles on the two sides:

N C0
¼Oð2Þ⊕Oð3Þ; N C̃0

¼Oð0;2Þ⊕Oð0;3Þ: ð3:12Þ

Counting the chiral multiplet moduli on both sides of the
transition, we arrive at the following:

ð3:13Þ

Thus we see that these moduli match as claimed. One also
finds that gC ¼ gC̃ ¼ 51 and gC0

¼ gC̃0
¼ 76, so that the

vector multiplet moduli also match.
As was pointed out above, one could have completed

this model with a spectator bundle rather than a spectator
5-brane stack. The following bundles are suitable,
having the correct Chern classes to saturate anomaly
cancellation:

0 → Oð−4Þ → Oð−1Þ4 → V0 → 0

0 → Oð0;−4Þ → Oð0;−1Þ4 → Ṽ0 → 0: ð3:14Þ

A short computation shows that the spectra of these two
bundles, both singlet and charged, match on the two sides
of the transition.
As a side note, we also note that Ṽ0 restricts trivially to the

exceptional locus in X̃ aswas predicted in Sec. II E.A simple
Koszul sequence computation, using the fact that the normal
bundle of the exceptional locus is Oð−1; 1Þ ⊕ Oð−1; 4Þ,
reveals that Oð0;−1Þ and Oð0;−4Þ restrict to the trivial
bundle on thoseP1s. The restriction of the sequence defining

Ṽ0 then immediately tells us that this does indeed restrict to a
trivial bundle.

IV. HETEROTIC CONIFOLD TRANSITIONS AND
TARGET SPACE DUALITY

In this section we consider the simple extension of the
duality outlined above for 5-branes to a duality involving
gauge bundles (via heterotic small instanton transitions
[11,36,37]). As we will demonstrate below, in terms of the
effective four-dimensional N ¼ 1 theory, the correspon-
dence we derive is not new, but rather provides a geometric
explanation of a known phenomenon arising in heterotic (0,
2) GLSMs—so-called (0, 2) target space duality [22–26].

A. Moduli matching for transitioning bundles

Let us describe how the degrees of freedom match for
bundles connected across the conifolds as described in
Sec. II E. We begin by considering the moduli of the
sheaves described by two Hecke transforms of the form
(2.59), one on each side of the transition, which describe
5-branes and spectator bundles on the point of being
recombined into a smooth higher rank object.
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The degrees of freedom of these Hecke transform
sheaves, while they are still in the form (2.59) with a
separated ideal sheaf, are derived in Appendix D. There it is
shown that the moduli [i.e. H1ðX; V × V∨Þ] are given by18

H1ðṼ∨
0 ⊗ Ṽ0Þ⊕Ext1ðṼ0;I C̃Þ⊕Ext1ðI C̃;Ṽ0Þ⊕H0ðN C̃jC̃Þ:

ð4:1Þ

Although it may not be apparent at first, the first three of
these terms are the same on both sides of the transition.
From the discussions of Sec. III B this is clear for the
spectator bundle moduli H1ðṼ∨

0 ⊗ Ṽ0Þ. For the extension
groups, this follows from the following two expressions,
which hold for the case at hand:

Ext1ðṼ0; I C̃Þ ¼ ker
�
H1ðṼ∨

0 Þ → H1ðṼ∨
0 jC̃Þ

�
ð4:2Þ

Ext1ðI C̃; Ṽ0Þ
¼H1ðṼ0Þ⊕ ker

�
Ext2ðOC̃; Ṽ0Þ→Ext2ðO; Ṽ0Þ

�
: ð4:3Þ

These quantities only involve Ṽ0 and quantities intrinsic to
the curves, which are identical on the two sides of the
duality.
The last term in (4.1) does not match on the two sides

of the duality but is exactly the 5-brane moduli from
Sec. III B. As described in that section, these moduli differ
by exactly the same number of degrees of freedom required
to account for the difference in Hodge numbers and so
geometrical moduli of the underlying manifolds.
Given the above discussion, we see that the moduli on

the resolution and deformation sides of the duality match
before the smoothing is performed to turn the Hecke
transforms of the form (2.59) into smooth bundles. In
deforming to the smooth bundle situation, moduli are lost.
In every case we have examined the two bundles change
their moduli by the same number. As might be expected,
this is often a change of a single modulus, as is the case in
our canonical example that was used throughout Sec. II.
A similar, but simpler analysis holds for the charged

matter of the system. Starting with the Hecke sequence
(2.59), one can work out the charged matter, associated to
cohomology groups such as H1ðVÞ and H1ðṼÞ, in terms of
properties of the spectator bundles and properties intrinsic
to the curves C and C̃. These match on the two sides of the
transition and, in this case, are generically unchanged in
deforming to the smooth point in bundle moduli space in
examples we have seen.
The real evidence that the final moduli and matter counts

do always match on the two sides of the transition,

however, is given by linking the process we are describing
here to a well-known duality that has already been
discussed at length in the literature. It is to this that we
turn in the next subsection.

B. Connections to (0, 2) GLSM target space duality

In (0, 2) target space duality (TSD), two (0, 2) heterotic
GLSMs are found to share a nongeometric branch of their
vacuum space (either a Landau-Ginzburg phase or a more
general hybrid phase) and the subsequent pair of GLSMs
reveals four-dimensional N ¼ 1 theories that appear to be
dual in the sense that their total massless spectrum for both
charged and uncharged fields is identical. In particular, the
number of uncharged singlets (in the large volume, weakly
coupled limit), as counted by

h1;1ðXÞ þ h2;1ðXÞ þ h1ðX;End0ðVÞÞ; ð4:4Þ

is preserved across the pair. This is true despite the fact that
the underlying CY3 manifolds are topologically distinct
(with different Hodge numbers), as are the vector bundles
over them. Moreover, subsequent work [27] demonstrated
that even when D- or F-term contributions to the scalar
potential “lift” some of these flat directions in the vacuum
space, the true number of singlets remaining matches
across the TSD paired theories.
Since the primary focus of the present paper is on the

geometry of the heterotic manifold/bundle and the asso-
ciated four-dimensional field theory, we will not provide a
detailed review of target space duality as it arises in two-
dimensional (0, 2) GLSMs here, but instead summarize its
effective action on a monad bundle over a complete
intersection CY3 manifold inside a toric variety [the
geometry that naturally arises in (0, 2) GLSMs].
In the context of a (0, 2) GLSM, we are given a bundle V

defined as the kernel19 [V ¼ kerðFÞ] of a morphism
between sums of line bundles,

0 → V → ⨁
a

OðbaÞ ⟶
F ⨁

l
OðclÞ → 0; ð4:5Þ

over a CY3 manifold defined as a complete intersection [of
polynomials GjðxαÞ ¼ 0] with normal bundle N ¼
⨁jOðsiÞ and a set of homogeneous coordinates xi with
weights qi [where the boldface quantities are vectors
running over h1;1ðXÞ components]. In this notation, the
Calabi-Yau condition is satisfied if

P
i qi ¼

P
j sj, and

c1ðVÞ ¼ 0 leads to
P

a ba ¼
P

l cl (for each component of
the vectors).
In this notation, the monad is defined as the kernel of a

holomorphic map,

18Note that, although here we have given the expressions for
the resolution side, an identical form would hold for the
deformation geometry.

19In the interests of simplicity, we will for now exclude
fermionic gauge symmetries which can lead to more general
monads.
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Fl
aðxαÞ∈H0ðX;Oðcl − baÞÞ; ð4:6Þ

while the manifold is defined by the vanishing of a set of
holomorphic functions,

GjðxαÞ∈H0ðX;OðsjÞÞ: ð4:7Þ

In the appropriate circumstances, target space duality
simply involves the observation that in a nongeometric
vacuum of the (0, 2) GLSM, a pair (or more) of functions
Fj
iðxαÞ and GrðxαÞ can be interchanged without changing

the Landau-Ginzburg or hybrid theory in that phase. If this
apparent symmetry is used to relabel GLSM fields in that
limit and then one moves back to a geometric phase of the
theory, this interchange of F ↔ G has effectively defined a
new monad bundle and CY3 manifold.
In the present discussion we will consider pairs of F ↔

G interchanges which will be labeled without loss of
generality by fixing l ¼ 1 and considering a ¼ 1, 2, thus
focusing on the bundle maps F1

1 and F
1
2. If the multidegrees

of the polynomials match such that

2c1 − b1 − b2 ¼ s1 þ s2 ð4:8Þ

then a target space dual geometry can exist20 in which

F1
1 ↔ G1 and F1

2 ↔ G2 ð4:9Þ

leading to a new (0, 2) GLSM, i.e. a new manifold/
bundle pair.
To make contact with previous literature involving

bundles constructed as monads (see for example [47–51])
and the (0, 2) GLSM literature on target space duality
[22–26], we will allow the GLSM charge matrix data to
determine the multidegrees of the line bundles (4.5) via the
following dictionary:

ba ¼ Λa; cl ¼ jpjl; ð4:10Þ

while the normal bundle of the CY3 manifold is determined
by si ¼ jΓjj.
We turn now to an example and consider the following

manifold and bundle pair (given in terms of GLSM charge
data), originally presented in [26].AnSU(3) bundleV, given
in monad form, over a manifold X is presented as follows:

ð4:11Þ

The massless singlet spectrum of this theory is counted by

h1;1ðXÞ þ h2;1ðXÞ þ h1ðX;End0ðVÞÞ ¼ 2þ 68þ 322 ¼ 392 ð4:12Þ
and the charged matter is given by n27 ¼ 120, n27 ¼ 0.

As shown in [26], (4.11) is linked by target space duality to the following manifold bundle pair ðX̃; ṼÞ:

ð4:13Þ

where the maps that were interchanged as in (4.9) to produce (4.13) are here of multidegree

G1 ¼ ðF̃1
1Þð2;4Þ G2 ¼ ðF̃1

2Þð2;5Þ ð4:14Þ

G̃1 ¼ ðF1
1Þð3;7Þ G̃2 ¼ ðF1

2Þð1;2Þ: ð4:15Þ

Interestingly, we may without loss of generality, choose the bidegree (1, 2) defining equation of X̃ to consist of a single
weight (1, 2) coordinate xi (by choice of coordinates) and hence, the description can be reduced to a single hypersurface:

20Subject to verifying that an appropriate hybrid phase vacuum actually exists with the appropriate vacuum expectation value,
hp1i ≠ 0.
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ð4:16Þ

This removal of a “redundant” constraint equation (with the
same multidegree as a coordinate) can be consistently
realized in the GLSM by integrating out a massive pair of
fields (i.e. x4 and Γ2).
As expected of target space duality, the massless spec-

trum remains the same, though distributed differently,

h1;1ðX̃Þ þ h2;1ðX̃Þ þ h1ðX;End0ðṼÞÞ
¼ 2þ 95þ 295 ¼ 392 ð4:17Þ

with the same E6 gauge group and charged matter spectrum
as before. Note that in this example, in moving from ðX; VÞ
to ðX̃; ṼÞ some of the complex structure and bundle moduli
were interchanged, while the number of Kähler moduli
remained the same. In general, it was observed in [23,25]
that target space dual pairs can involve a mixing of all three
types of geometric moduli by using similar “redundancies”
to the one observed in the defining equations of the
example above, only using them in reverse. In particular,
by introducing a redundant description of X which involves
more C� actions, the Kähler moduli can be nontrivially
included in the process. The general procedure for this
redundancy and then subsequent construction of the target
space dual is laid out in detail in [25]. Here we will simply
summarize the approach by means of an example.
Consider the quintic hypersurfaceP4½5�. A simple redun-

dant description of this Calabi-Yau threefold is given by

"
P1 1 0

P4 0 5

#
: ð4:18Þ

The two manifolds are equivalent for the same reasons as in
the example above. Here the geometry of redundancy is
especially simple as the linear constraint picks out a single
point in the P1 ambient space (and clearly as a manifold,
X ¼ X × fptg). However, beginning with this redundant
description as a starting point leads to novel target space
dual pairs.
As an example, we will take the same bundle which has

appeared in prior sections of this work, namely the rank 4
deformation of the tangent bundle of the quintic CY3:

0 → V → Oð1Þ⊕5 → Oð5Þ → 0: ð4:19Þ

The manifold redundancy mentioned above can be
extended in a similar manner to the bundle (as first noted
in [27]) and we will choose here to add a repeated entry to
the second and third terms of this sequence as

0 → V → Oð1Þ⊕5 ⊕ Oð4Þ → Oð5Þ ⊕ Oð4Þ → 0: ð4:20Þ

Presenting this bundle and the redundant quintic in (4.18)
in GLSM charge matrix notation we find

y0 y1 y2 y3 y4 x0 x1 Γ1 Γ2 Λ1 Λ2 Λ3 Λ4 Λ5 Λ6 p1 p2

0 0 0 0 0 1 1 −1 0 0 0 0 0 0 0 −1 0

1 1 1 1 1 0 0 0 −5 4 1 1 1 1 1 −5 −4
: ð4:21Þ

Note that in this redundant description it naively seems that c1ðXÞ ≠ 0 and c1ðVÞ ≠ 0. However, due to the simple
geometric nature of the redundancy this is not actually the case. In the GLSM the anomalies are canceled by the condition
that the net sum of charges is vanishing [i.e. c1ðXÞ þ c1ðVÞ ¼ 0] which still holds. Explicitly we choose defining
equations in (4.21) to be

x0 ¼ 0 ð4:22Þ

p5ðyÞ ¼ 0: ð4:23Þ

For the geometry described by (4.21), the algorithm of [27] leads us to a new manifold/bundle pair

BRANES AND BUNDLES THROUGH CONIFOLD TRANSITIONS … PHYS. REV. D 108, 106018 (2023)

106018-23



y0 y1 y2 y3 y4 x0 x1 Γ1 Γ2 Λ1 Λ2 Λ3 Λ4 Λ5 Λ6 p1 p2

0 0 0 0 0 1 1 −1 −1 1 0 0 0 0 0 −1 0

1 1 1 1 1 0 0 −1 −4 0 5 1 1 1 1 −5 −4
: ð4:24Þ

Here the defining equations are given by

l0ðyÞx0 þ l1ðyÞx1 ¼ 0 ð4:25Þ

q0ðyÞx0 þ q1ðyÞx1 ¼ 0: ð4:26Þ

These manifold/bundle pairs are of course the canonical
example that we have studied throughout Sec. II. In examples
of this kind in target space duality, the fact that the base CY3
manifolds, X; X̃, are related by a conifold transition is a
consequence of the redundant description used. Here a linear
hypersurface constraint in P1 as in (4.18) led to a P1 split,
while in general n linear constraints in Pn used as a
redundancy leads to a conifold realized as a Pn split.
In this case the singlet spectrum of ðX; VÞ is given by

h1;1ðXÞ þ h2;1ðXÞ þ h1ðX;End0ðVÞÞ
¼ 1þ 101þ 325 ¼ 427 ð4:27Þ

while in the target space dual geometry

h1;1ðX̃Þ þ h2;1ðX̃Þ þ h1ðX̃;End0ðṼÞÞ
¼ 2þ 86þ 339 ¼ 427 ð4:28Þ

and for both theories n27 ¼ 100 and n27 ¼ 0 as expected. In
addition, it was shown in [25] that for every anomaly-
consistent geometry ðX; VÞ that generates a target space
dual, ðX̃; ṼÞ, via this redundant ambient space procedure,
the dual geometry is guaranteed to also satisfy anomalies.
Note that in this case, the interchange of CY3 defining

equations and monad maps takes the form

G1 ¼ F̃1
1 ¼ x0 G2 ¼ F̃1

2 ¼ p5 ð4:29Þ
G̃1 ¼ F1

1 ¼ l0ðyÞx0 þ l1ðyÞx1
G̃2 ¼ F1

2 ¼ q0ðyÞx0 þ q1ðyÞx1 ð4:30Þ
and for TSD to hold, these defining equations/polynomial
maps must be held equal (and all other bundle maps which
remain unchanged are also chosen to agree). Note that this
effectively provides a map from a point in the moduli space
of ðX; VÞ to a point in the moduli space of ðX̃; ṼÞ.
At a naive first pass, the TSD procedure implemented

above seems to indicate that in some sense in the complete
geometry, components of a manifold/bundle [i.e. a pair
GðxiÞ; FðxiÞ as in (4.30)] have been interchanged in order
to construct a new stable bundle/CY3 manifold. The exact
geometric nature of this interchange and any direct links to

the conifold transition connecting the CY3 manifolds has
remained a mystery from the point of view of the heterotic
backgrounds21 ðX; VÞ and ðX̃; ṼÞ. In the remainder of this
section, we will argue that at least in the case of X and X̃
connected by conifold transitions, the gauge/gravitational
instanton transition described in previous sections provides
such an explanation.
To begin this exploration, note that for the given

polynomials exchanged in (4.30), much of the bundle
effectively carries through the transition trivially. We can
exploit this fact by moving to a point in moduli space where
the monad map becomes block diagonal (and hence the
bundle itself becomes a direct sum). This allows us to
divide the bundle into two pieces—one that changes and
one that does not (we will refer to this latter piece as V0). In
the dual (cokernel) bundle description we can write each
bundle as V0 ⊕ I (respectively Ṽ0 ⊕ Ĩ). Here the
unchanging parts (i.e. the spectators) are given as

0 → Oð−4Þ → Oð−1Þ⊕4 → V0 → 0 ð4:31Þ

0 → Oð0;−4Þ → Oð0;−1Þ⊕4 → Ṽ0 → 0 ð4:32Þ

which are familiar from (3.14) in Sec. II E, while the pieces
of the bundles that actually change under the target space
duality procedure are

0 → Oð−5Þ → Oð−1Þ ⊕ Oð−4Þ → I → 0 ð4:33Þ

0→Oð−1;−5Þ→Oð0;−5Þ⊕Oð−1;0Þ→ Ĩ→0: ð4:34Þ

Of course the suggestively named objects I ; Ĩ are ideal
sheaves and the ideal sheaves of very special curves that we
have seen already arising in previous sections. In particular,
I is the ideal sheaf of a curve C (familiar from Sec. II D) in
the class 4D2 in the quintic manifold X defined by the
vanishing of the polynomials

l1ðyÞ ¼ q1ðyÞ ¼ 0 ð4:35Þ

while Ĩ is the ideal sheaf of a curve in the class 5D1D2 in X̃
given by

x0 ¼ p5ðyÞ ¼ 0; ð4:36Þ

21The link to conifold transitions is also mysterious from the
point of view of the GLSM since the matching of vacuum spaces
typically happens deep in a nongeometric phase.
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where l1ðxÞ; q1ðxÞ and p5ðxÞ are defined as in (4.23),
(4.25), and (4.26). Note that in order to maintain target
space duality, the defining equations of these curves are
toggled to the defining equations of the dual manifold as in
(4.24). For generic choices of the quintic defining equation,
the loci supporting the sheaves I , Ĩ are codimension 2
(i.e. curves). However, for this correlated system of mani-
folds/curves in the limit that the quintic is tuned to the
conifold (i.e. nodal) point,

p5 ¼ l0q1 − l1q0; ð4:37Þ

they are precisely the Weil non-Cartier divisors described in
Sec. II D and whose role in 5-brane physics was explored in
Secs. II and III. More precisely, as described in Sec. II E, the
ideal sheaf given in (2.60) can be removed from the bundleV
via a small instanton transition [described by a Hecke
transform of the form given in (2.59) in Sec. II E]

0 → V0 ⊕ I → V0 ⊕ O → OC → 0: ð4:38Þ

Finally, and most importantly, as described in Sec. II D, the
fact that the bundle decompositions exist of the formV0 ⊕ I
above means that the arguments of Secs. II D and III
guarantee that the observedmatching of themasslessmoduli
and charged across this TSD pair follows from the dis-
cussions of Secs. II E, IVA, andAppendixD. Thus, we have
understood the moduli matching of TSD from a geometric
point of view.
The results provided above are for a single pair of

manifolds/bundles. However, we expect these arguments to
hold for all TSD pairs involving conifolds (and all toric Pn

splits) and have verified this in a large number of examples.
Indeed, as can be noted from previous sections, the
majority of our results hold for generic conifold transitions
in toric complete intersections. Moreover, although
required from the GLSM viewpoint our proofs do not rely
on the monad construction of vector bundles and hence, in
that sense (in addition to the sense in which they include the
purely 5-brane duality) are more general than the setting
of TSD.
One exhaustive playground in which to test the ubiquity

of the correspondences above—i.e., the explanation of
target space duality via gauge/gravitational pair creation—
is to consider all stable monad bundles on the quintic with
c2ðVÞ ¼ c2ðTXÞ. The list of such bundles was first found
in [49] (see also [50,51] for a description of systematic
enumerations of monads with particular c2ðVÞ; c3ðVÞ, etc.).

For each vector bundle in the list with c2ðVÞ ¼ 10D2 we
can ask the following questions:

(i) Can this bundle be linked to some other vector
bundle Ṽ on the manifold in (4.24) by TSD?

(ii) Does this bundle admit a nontrivial Hecke transform
surjection V → OC → 0 for C the curve defined in
(4.35)? (That is, can the necessary small instanton
transition be performed that effectively partitions the
dual monad bundle into V0 and IC as above?)

In each case we find that the answer to the first question is
positive if and only if the second is also true. That is, the
existence of a target space dual pair and an appropriate
gauge/gravitational instanton transition across the conifold
is one to one for this set. Moreover, the questions posed
above for the single conifold transition linking the quintic
to the CICY threefold given in (4.24) can be repeated for
every conifold transition beginning on the quintic that
increases h1;1 by 1. There are 18 such manifolds whose
second Chern classes take the form

c2 ¼ ð10 − nÞD2
2 þ � � � ; ð4:39Þ

where D2
2 is the direction in the Mori cone of the resolved

CY3 manifold that “carries through the conifold” from the
original quintic threefold. Conifold transitions can be found
for each integer value of n in (4.39) (note that in the
example presented above, n ¼ 4) and these come in pairs
consisting of a CY3 threefold and its flop in the new (i.e.
P1) direction associated with the small resolution. In each
case, we find that the target space duality can be performed
if and only if the appropriate ideal sheaf to a special curve
(in the sense of Sec. II D) can be identified inside V.
To conclude this section we note that in the arguments

above and those regarding Hecke transforms and small
instantons given in Sec. II E we considered the fully
decomposed, direct sum limit of the (dual) vector bundle
into “spectator þ ideal sheaf” in order to explain the
transition and continuity of moduli. However, in some
examples of target space duality, it seems that such a
complete direct sum decomposition is more than is required
to follow the bundle through the conifold transition (or
equivalently perform the TSD). Instead, in some cases only
the weaker condition itemized above that there exists a map
V → OC → 0 seems to be required. As an example of this,
we can consider the flop of the CY3 geometry given in
(4.24). The same deformation of the tangent bundle of the
quintic in (4.19) can be written with a different redundant
description as

y0 y1 y2 y3 y4 x0 x1 Γ1 Γ2 Λ1 Λ2 Λ3 Λ4 Λ5 p1

0 0 0 0 0 1 1 −1 0 0 0 0 0 0 −1
1 1 1 1 1 3 0 −3 −5 1 1 1 1 1 −5

; ð4:40Þ
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which is TSD to this manifold/bundle pair,

y0 y1 y2 y3 y4 x0 x1 Γ1 Γ2 Λ1 Λ2 Λ3 Λ4 Λ5 p1

0 0 0 0 0 1 1 −1 −1 1 0 0 0 0 −1
1 1 1 1 1 3 0 −4 −4 0 2 1 1 1 −5

: ð4:41Þ

The toric complete intersection threefold is the flop of that
given in (4.24). Note that in this case, the relevant curve in
X which controls the transition [in the sense of (4.33) and
(4.35)] is given by

q0 ¼ q1 ¼ 0 ð4:42Þ

which lies in the class 16D2. This class is manifestly too
large to support a 5-brane in an anomaly-consistent manner.
As a result, the picture of a 5-brane through conifold

transition followed by a Hecke transform as outlined in
Secs. II D and II E is unclear. However, without fully
removing this 5-brane from the bundle, but instead moving
to a tuned limit where a Hecke sequence such as (2.18) can
be defined, the general process can still be completed and a
bundle transitioned along with the manifold through the
conifold transition. Finally, it is worth noting that in this
particular example, the same manifold and bundle can be
found via target space duality beginning with a different
redundant description, namely,

y0 y1 y2 y3 y4 x0 x1 Γ1 Γ2 Λ1 Λ2 Λ3 Λ4 Λ5 Λ6 p1 p2

0 0 0 0 0 1 1 −1 0 0 0 0 0 0 0 −1 0

1 1 1 1 1 3 0 0 −5 2 1 1 1 1 1 −5 −5
; ð4:43Þ

which is associated to the key curve in the class D2

given by

l0 ¼ l1 ¼ 0 ð4:44Þ

which can be fully removed from V as a 5-brane in an
anomaly-consistent way. In the case of this particular
conifold transition there are four Weil non-Cartier divisors
in the nodal limit given by (4.37). These consist of two
curves in the class 4D2 (given by l0 ¼ q0 ¼ 0 and l1 ¼ q1,
respectively) which both connect the quintic to the three-
fold given in (4.24) and those described above in the classes
D2 and 16D2 [both of which lead to the CY3 manifold in
(4.41)]. Of these only the one class (16D2) is incompatible
with a complete 5-brane transition in X. We leave as an
open question whether every conifold pair has at least one
anomaly-consistent curve connecting the CY3s in the sense
of Sec. III. This has certainly been the case for every
example we have studied.

V. DISCUSSION AND OUTLOOK

A key motivation of this work is the question of whether
and how a compactification of heterotic string theory on a
Calabi-Yau threefold may be able to consistently traverse a
topological transition of the compactification geometry.

That is, we have aimed to explore in the heterotic case an
analog of the story which is well known for the type II
string (e.g. [9]). This question has remained open in the
N ¼ 1 heterotic case due (in part) to the added compli-
cation of a gauge sector background, whose behavior
across the topological transition has historically presented
a stumbling block. A broader goal for this undertaking is to
determine which theories on distinct compactification
topologies might secretly be smoothly connected, to hence
illuminate the true structure of the moduli space of heterotic
compactifications.
Separately, we have also been motivated by the phe-

nomenon of heterotic (0, 2) target space duality. While still
at the level of an intriguing observation, through the rich
structure of gauged linear sigma models there is by now
significant evidence of pairs, or even whole chains of
heterotic compactifications, which have distinct topologies
and distinct gauge sector backgrounds, but which none-
theless appear to give rise to the same physical four-
dimensional N ¼ 1 theory. In our context, we have in
particular considered this as suggestive of the existence of
consistent physical transitions between distinct compacti-
fication backgrounds, so that (0, 2) target space duality
would be merely a symptom of the possibility of this
traversal process.
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In summary then, this work has attempted to unite the two
themes above and has provided a geometric process by
which a compactification of the heterotic string can traverse
a conifold transition. Moreover, we find that this procedure
reproduces the known dual geometries connected by (0, 2)
target space duality in GLSMs (and indeed pairs connected
by a new 5-brane duality as discussed in Sec. III). As
mentioned in previous sections, our results are primarily a
geometric prescription (albeit heavily informed by heterotic
effective theories). It remains an open question exactly how
“smooth” these conifold transitions are in the full heterotic
moduli space orwhether the tools of ordinary field theory are
sufficient to describe them. The development of the con-
jectural dual pairs outlined in previous sections has involved
combining a number of disparate elements, necessarily
leaving open a number of intriguing questions. The answers
to these questions will be the subject of future work, and in
particular, this includes the following important tasks.
First, it is natural to ask whether there exists a simple

field-theoretic description of the gauge-gravity pair creation
process outlined in Sec. II C. This process has arisen as a
key component in our conifold traversal proposal, and
while the compactified context has the advantage of
providing significant nontrivial consistency checks, it also
has arisen in an intrinsically intricate setting involving
multiple aspects of heterotic bundles/branes. Hence, an
interesting area of further investigation would be to study
simple “toy models” of this process in isolation and try to
provide more detailed field-theoretic descriptions.
A related question would be to more deeply understand

the significance of the apparent jump in dimension of the
essential curves (wrapped by 5-branes) in the nodal limit
described in Sec. II D. We have seen that this jump in
dimension is crucial for the brane recombination process
which facilitates the traversal of the gauge sector across the
conifold transition. However, a physical interpretation is
difficult, because this effect occurs only in the singular
limit, and while it is clear that the supporting loci of the
skyscraper sheaves in the gauge sector jump, it is not clear
whether an interpretation exists as a genuine extended
object in string theory, or whether this is only an effect
arising in a small instanton limit. One avenue which may
provide hints for the appropriate description is a detailed
comparison with the data of the corresponding hybrid
phase of the gauged linear sigma model (see e.g. [52] for an
analysis similar in spirit). It would also be interesting to see
if realizations of 5-brane limits in GLSMs similar to those
in [53,54] could make contact with our proposed 5-brane
duality.
A further important point to note is that this work appears

to hint at some deeper duality of the heterotic string. It would
be interesting to pursue this more directly from a heterotic
non-linear sigma model viewpoint and to also ask what its
consequences might be for other theories under string
dualities. Some initial steps in the latter direction were

taken in [55] in the context of heterotic/F-theory duality. The
analysis undertaken there however was complicated by the
fact that all known examples of (0, 2) target space duality
involved the monad construction of vector bundles. In
[55,56] it was shown that under a Fourier-Mukai transform
such bundles lead to reducible/nonreduced spectral covers
and hence lead to inclusion of T-brane solutions [57–59] in
the dual F-theory compactification, which are necessarily
complicated in nature.However, in the presentworkwehave
outlined a geometric prescription that is independent of
GLSMs/the monad construction. As a result, it would be
interesting to revisit the question of F-theory duals in simpler
contexts and to understand the nature of these conjectural
dualities for such theories (including any links to the more
general heterotic/F-theory dual pairs in [60]).
Finally, we hope to use this work as a starting point to

develop a clearer picture of how a heterotic compactifica-
tion might traverse other topological transitions more
generally (including flop transitions). In particular, natural
questions arise as to whether or not portions of the full
heterotic moduli space (defined by a particular manifold/
bundle as background) can be “extended” into another that
is connected by a topological transition. It is believed that
geometric transitions can connect all known Calabi-Yau
threefolds [8], and in particular the manifold resulting from
a flop may be reached instead through a sequence of two
conifold transitions. However, analogous to the type II
story, we expect that it is possible to pass directly through
the flop without ever moving to the deformation branch. In
this case, we can expect, and indeed have seen evidence
that, the description of the traversal of the gauge sector is
qualitatively different to the conifold case. As a particular
example, one can expect that the phenomenon of a jumping
dimension of the gauge sector objects will no longer be
present, since it arises chiefly from the behavior of curves
which become divisors in going from the deformation to
the resolution branch. Hence, the understanding of the
traversal process in the flop case may be expected to
involve qualitatively different phenomena and so to provide
distinct insights. We hope to return to these questions in
future work.
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APPENDIX A: GRAVITATIONAL SMALL
INSTANTON TRANSITIONS FROM SEQUENCE

RECOMBINATION

There are a variety of 7different ways to describe the
recombination of cotangent and skyscraper sheaves,
embodied by the Hecke transform (2.19), which underlies
the gravitational small instanton transition described in
Sec. II B. As one example of this, if one has appropriate
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resolutions of the sheaves involved, one can study this
process explicitly in terms of manipulations of these
sequences. Here we will illustrate this using the canonical
example that we have used throughout the main text.
For our example, the cotangent sheaf of the nodal variety

admits a resolution of the following form:

0 → Oð0;−5Þ → ΩP4 → π�ðΩX Þ → 0: ðA1Þ

Note that while the tangent bundle is not described as a
short exact sequence in this limit, the cotangent sheaf is.
This sequence is the dual of the, nonshort exact, adjunction
sequence associated to X . In (A1) we have used the fact
that the normal bundle to X is Oð5Þ.
The sheaf OP1sð−2; 0Þ admits the following free Koszul

resolution, given that it is a complete intersection with
normal bundle Oð−1; 4Þ ⊕ Oð−1; 1Þ:

0 → Oð0;−5Þ → Oð−1;−1Þ ⊕ Oð−1;−4Þ
→ Oð−2; 0Þ → OP1sð−2; 0Þ → 0: ðA2Þ

The sequences (A1) and (A2) can be combined, simply
by adding their entries together. In doing so, we keep the
maps to be the same as in the original two sequences with
no additional components added. In other words, the maps
are “block diagonal” and descend precisely from the
structures of (A1) and (A2):

0→Oð0;−5Þ→Oð−1;−1Þ⊕Oð−1;−4Þ⊕Oð0;−5Þ
→Oð−2;0Þ⊕ΩP4 →OP1sð−2;0Þ⊕π�ðΩX Þ→0: ðA3Þ

This sequence is one description of the split locus in moduli
space of the central object of the Hecke transform (2.19),
which we reproduce here:

0 → π�ðΩX Þ → ΩX̃ → OP1sð−2Þ → 0; ðA4Þ

viewed as an extension.
By generalizing the maps in (A3) away from the block

diagonal structure inherited from (A1) and (A2), we can
obtain an explicit description of how the two sheaves
recombine into ΩX̃. The first thing to note is that, once the
maps are generalized, the two copies of Oð0;−5Þ in
consecutive terms in the sequence can be canceled without
changing the object being resolved:

0 → Oð0;−5Þ → Oð−1;−1Þ ⊕ Oð−1;−4Þ ⊕ Oð0;−5Þ
→ Oð−2; 0Þ ⊕ ΩP4 → F → 0: ðA5Þ

Note that here we have renamed OP1sð−2; 0Þ ⊕ π�ðΩX Þ to
indicate that we are no longer describing the direct sum but
rather some sheaf F whose nature we wish to elucidate.
Next we note that, because for the P1 factor in the

resolution ambient space ΩP1 ¼ Oð−2; 0Þ, the sequence
can be written as follows:

0 → Oð−1;−1Þ ⊕ Oð−1;−4Þ → ΩP1 ⊕ ΩP4 → F → 0:

ðA6Þ

This sequence is simply the dual of the adjunction sequence
associated to the description of X̃ as a complete intersection
in P1 × P4:

0 → TX̃ → TP1 × TP4 → Oð1; 1Þ ⊕ Oð1; 4Þ → 0: ðA7Þ

We can thus identify F ¼ ΩX̃ as expected. This analysis
therefore gives a different, and in some senses more
explicit, description of the small instanton in the gravita-
tional sector that connects ΩX and ΩX̃.

APPENDIX B: BRANE MODULI

For a 5-brane to preserve supersymmetry it must wrap a
holomorphic curve in the Calabi-Yau threefold. In terms of
an embedding, the holomorphic spacetime coordinates
Xaðyi; yīÞ of points on the brane must be a holomorphic
function of the world volume coordinates ðyi; ȳīÞ:

∂īX
a ¼ 0: ðB1Þ

By using projectors we can rewrite this condition in
terms of real coordinates

π̄JI ∂JðΠA
BX

BÞ ¼ 0: ðB2Þ

In this expression we have

π̄JI ¼
1

2

�
1JI þ iJ ðCÞJ

I

�
; ðB3Þ

where J ðCÞ is the complex structure tensor on the world
volume of the brane, and

ΠJ
I ¼

1

2

�
1JI − iJ ðXÞJ

I

�
; ðB4Þ

where J ðXÞ is the complex structure tensor on the space-
time manifold.
Starting by assuming that we have a solution to (B2) we

can vary the embedding XA and the two complex structure
tensors. Substituting such a variation into (B2) and using
that the unperturbed configuration is a solution, we then
arrive at the following constraint on the fluctuations if they
are to preserve supersymmetry:

1

2
iδJ ðCÞJ

I ∂JðΠA
BX

BÞ þ π̄JI ∂J

�
−
1

2
iδJ ðXÞA

B XB

�
þ π̄JI ∂JðΠA

BδX
BÞ ¼ 0: ðB5Þ

To analyze things further it is useful to consider (B5),
component by component, in terms of the original,
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unperturbed, complex coordinates. In doing so we find that
the ðI; AÞ ¼ ði; aÞ and ðI; AÞ ¼ ði; āÞ components of the
equation are trivially satisfied. The ðI; AÞ ¼ ðī; aÞ and
ðI; AÞ ¼ ðī; āÞ components however are not. The first of
these reduces to the following condition:

i
2
δJ ðCÞj

ī ∂jXa ¼ −∂ī

�
δXa −

i
2
δJ ðXÞa

b̄
Xb̄

�
: ðB6Þ

From this expression we see that δJ ðCÞj
ī corresponds to a

modulus iff δJ ðCÞj
ī ∂jXa is exact. In other words, the subset

of δJ ðCÞj
ī that corresponds to moduli are those in the kernel

of the map H1ðTCÞ → H1ðTXjCÞ. There are two types of
fluctuation δXa which can solve (B6). First, any
δXa ∈H0ðTXjCÞ satisfies the equation in isolation and
so is a modulus. Second, there are fluctuations which
are paired to fluctuations of the threefold complex structure
which ensure that the bracket on the right-hand side of (B6)
remains closed. Note that such a compensating δXa exists

for any possible fluctuation δJ ðXÞa
b̄

.
How do these allowed fluctuations of δJ ðCÞj

ī and δXa

combine into something familiar. Recall the following short
exact sequence:

0 → TC → TXjC → NC → 0: ðB7Þ

Taking the associated long exact sequence in cohomology
we arrive at the following result if H0ðTCÞ ¼ 0:

H0ðNCÞ¼H0ðTXjCÞ⊕kerðH1ðTCÞ→H1ðTXjCÞÞ: ðB8Þ

This is exactly the set of moduli we obtained from the
differential analysis above. In all of our examples
H0ðTCÞ ¼ 0 and indeed this holds for any curve with
genus g > 1.
The above analysis leaves us with just the ðI; AÞ ¼ ðī; āÞ

component of (D9) to examine. This component takes the
following form:

ð∂īδJ ðXÞā
b ÞXb ¼ 0: ðB9Þ

This is a constraint on the complex structure variation of the
threefold which is necessary if the cycle the brane is
wrapping is to be able to deform in order to remain
supersymmetric.

APPENDIX C: MODULI MATCHING FOR
THE 5-BRANE THEORIES

In Sec. II D we specified a special pair of heterotic
5-brane theories, one on the resolution and one on the
deformation side of conifold transitions between CY3s.
We have argued that these 5-brane theories are continu-
ously connected across the transition. We have also

illustrated the construction explicitly in a simple example.
(Additionally we summarize in Appendix E the explicit
construction for any of the large class of (effective) Pn

splits of toric complete intersections.)
Further, we have argued that this construction produces

two theories which are not only continuously connected but
are in fact dual. In particular, this is strongly evidenced by
the direct connection between this construction and target
space duality, as discussed in detail in Sec. IV.
In the simple example treated in the main text we also

showed, in Sec. III, that the two 5-brane theories have
matching numbers of moduli, providing further evidence
for the duality in this example. In this appendix, we
consider more general cases and attempt to provide proofs
of the matching.
We first briefly consider vector multiplet moduli, before

turning to the matching of the chiral multiplet moduli. In
this latter case, to make the computations tractable, we
focus on conifold transitions described by Pn splits
between CICYs. We first provide a proof that the chiral
multiplets from the spectator 5-branes match across the pair
of 5-brane theories. By contrast, the contributions from the
nontrivial part of the 5-brane pairing, of the 5-branes
wrapped on the special curvesC and C̃which are intimately
linked to the conifold geometry, are more difficult, and
indeed should differ precisely by the difference in geo-
metric moduli across the conifold transition. Below we
outline a proof in the simplest case, of conifold transitions
in which h1;1 changes by one and which are described by a
P1 split between CICYs.

1. Vector multiplet moduli

As discussed in Sec. III, there are gC vector multiplet
moduli coming from a 5-brane wrapped on a curve C with
genus gC. Hence, the matching of the vector multiplet
moduli across the pair of 5-brane theories depends on the
isomorphisms of the spectator curves, C0 ≅ C̃0, and of the
nontrivially transitioning curves, C ≅ C̃. The spectator
curves were discussed in Sec. III, but we now give a
general argument for the isomorphism C ≅ C̃.
Recall that both curves are defined beginning from the

same Weil non-Cartier divisor D on the nodal variety.
When the nodal variety is deformed X → X, the equation
describingD becomes independent of the equation describ-
ing the geometry, and hence the curve C arises from the
intersection of D with the zero locus of the equation
describing the deformation. On the resolution side on
the other hand, the curve C̃ is explicitly defined by
intersecting the proper transform PðDÞ with the zero locus
of an equation of the same form as describes the deforma-
tion X → X. Notably, this intersection takes place far from
the nodal points, so the small resolution takingD to PðDÞ is
irrelevant. Hence, the descriptions of the two curves are
identical, so that they are indeed isomorphic.
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2. Chiral multiplet moduli: Spectator part

We now consider the chiral multiplets coming from the
spectator brane, in the case of a P1 split between CICYs.
In analyzing this situation the following lemma, derived
in [45], is key.
Lemma. Let X and X̃ be two CICY threefolds related

by a “splitting transition” of the type described in (3.1).22

Suppose that L ¼ OðaÞ is a line bundle corresponding
to a divisor D ⊂ X such that D is the restriction of a divisor
in the ambient space A (a “favorable” line bundle on X). If
we define L̃ ¼ Oð0; aÞ then hiðX̃; L̃Þ ¼ hiðX;LÞ∀ i, on
the common “determinantal locus” in moduli space.
To apply this Lemma to the case at hand, let us assume

that the spectator 5-brane stacks on X and X̃ are described
as complete intersections. Then their normal bundles,
thanks to the class ½C0� ¼ ½C̃0� having no contributions
involving J0 [see (3.8) or more generally (E20)], are sums
of line bundles of the form N C0

¼ OðaÞ ⊕ OðbÞ and
N C̃0

¼ Oð0; aÞ ⊕ Oð0;bÞ on X and X̃ respectively.
The cohomologies of these normal bundles evaluated

on the respective 5-brane curves can be obtained by using
their associated Koszul sequences. For the curve C0 ⊂ X
this is

0 →∧2 N ∨
C0

⊗ N C0
→ N ∨

C0
⊗ N C0

→ N C0

→ N C0
jC0

→ 0; ðC1Þ

and analogously for C̃0 ⊂ X̃. Decomposing these long exact
sequences into two short exact sequences and taking the
associated long exact sequences in cohomology, one can
compute the cohomologies h0ðC0;N C0

Þ and h0ðC̃0;N C̃0
Þ

of interest [where h0ðC0;N C0
Þ≡ h0ðC0;N C0

jC0
Þ etc.].

The above Lemma shows that all of the cohomologies on
the CY3 that will be involved in this computation will be the
same on the deformation and resolution side of the tran-
sition, at the common determinantal locus in moduli space.
As such the two cohomologies will agree in this limit. As
long as the tuning to the determinantal locus is not too
special, this limit will share its cohomology with the generic
point in moduli space. Indeed, we find this to be the case in
every example we have examined.
An analogous argument shows that the spectrum of

spectator bundles, constructed using line bundles of the
form given in the above Lemma, will also match on the two
sides of the duality. For example consider spectator bundles
V0 which are two term dual monads of the form

0 → C → B → V0 → 0; ðC2Þ

where B andC are sums of line bundles of the form given in
the Lemma. We see using the Lemma that the cohomol-
ogies of B andCwill match in the singular limit, and so too,
therefore, will the cohomology of V0 and various asso-
ciated bundles. As in the 5-brane case, as long as the tuning
to the determinantal locus is not too special, the cohomol-
ogy of V0 will be the same at a generic point in moduli
space as it is in that limit, leading to a matching on the two
sides of the duality.

3. Chiral multiplet moduli: Nontrivial part

The matching of the total number of chiral multiplet
moduli requires that the change in 5-brane deformation
moduli across the transition must balance the change in
geometric deformation moduli. Since the deformation
moduli match for the spectator 5-branes, this compensating
change must come from the 5-branes wrapped on the
curves C and C̃,

h1;1ðX̃Þ þ h2;1ðX̃Þ þ h0ðC̃;N C̃Þ
¼? h1;1ðXÞ þ h2;1ðXÞ þ h0ðC;N CÞ; ðC3Þ

where N C̃ and N C are the normal bundles of C̃ ⊂ X̃ and
C ⊂ X. Recalling from Sec. II A that in a conifold transition
the Hodge numbers change as

h1;1ðX̃Þ ¼ h1;1ðXÞ þ Δðh1;1Þ;
h2;1ðX̃Þ ¼ h2;1ðXÞ − #ðP1sÞ þ Δðh1;1Þ; ðC4Þ

for some Δðh1;1Þ > 0, we see that the relation that is
required to hold amongst the 5-brane moduli is

h0ðC̃;N C̃Þ − h0ðC;N CÞ þ 2Δðh1;1Þ − #ðP1sÞ ¼? 0: ðC5Þ

a. Proof outline in a tractable case

While we do not have a proof of the above relation in the
general case, we here outline a proof in a particularly
tractable case, namely of conifold transitions for which h1;1

changes only by one, and which can be described as P1

splits between CICYs.
Before assuming that Δðh1;1Þ ¼ 1, consider a general

P1 split. In this case the resolution geometry X̃ has a
configuration matrix of the form

X̃ ¼
"
P1 1 1 0 � � � 0

A v0 v1 r0 � � � rK

#
; ðC6Þ

and the deformation geometry X has configuration
matrix

X ¼
h
A ðv0 þ v1Þ r0 � � � rK

i
: ðC7Þ22In fact the obvious generalization of this Lemma holds for

CICYs related by an arbitrary number of general Pn splits.
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Here, A is a product of N projective spaces, and v0, v1, and r0…rK are vectors of length N, where K ¼ dimðAÞ − 5.
Recalling the discussion in Sec. II D, the curves C̃ ⊂ X̃ and C ⊂ X on which we wish to wrap 5-branes can be described

by configuration matrices

ðC8Þ

where the dashed lines separate the equations defining the
geometry from the additional equations describing the
curve. Now note that the three equations of bidegree
ð1; v0Þ, ð1; v1Þ, ð1;  0Þ in the definition of C̃ are straight-
forwardly equivalent to ones of bidegree ð0; v0Þ, ð0; v1Þ,
ð1;  0Þ. With this rewriting, the descriptions of the two
curves become essentially identical (which also makes
clear their isomorphism, C ≅ C̃),

C̃¼
"
P1 0 0 0 � � � 0 1 0

A v0 v1 r0 � � � rK  0 ðv0 þ v1Þ

#

≅
�
A ðv0 þ v1Þ r0 � � � rK v0 v1

�
∋ C; ðC9Þ

so that, definingOCð  wÞ ≔ OAð  wÞjC, the normal bundles of
C̃ and C are clearly given by

N C̃jC̃ ≅ OC ⊕ OCðv0 þ v1Þ;
N CjC ≅ OCðv0Þ ⊕ OCðv1Þ: ðC10Þ

We wish to compute the zeroth cohomology of each of
the above bundles. In the case of h0ðC;N C̃Þ this is
straightforward. For example, noting from the configura-
tion matrix describing C that the canonical bundle of C is
KC ¼ OCðv0 þ v1Þ, and hence that the two line bundles in
N C̃jC̃ are Serre dual, and also noting that h0ðC;OCÞ ¼ 1, it
follows after a small amount of algebra that

h0ðC;N C̃Þ ¼ −indðC;OCÞ þ 2 ¼ 1þ gC; ðC11Þ

where gC is the genus of the curve.
In contrast, it is more difficult to give a general

expression for h0ðC;N CÞ, and indeed we expect this to
differ from the cohomology h0ðC;N C̃Þ above, which
depends only on the intrinsic topology of the curve, by
a piece that depends on the change in Hodge numbers
across the conifold transition. To proceed, we make two
assumptions.
(1) Assume that D is not isomorphic to T4.
(2) Restrict to cases for which Δðh1;1Þ ¼ 1, and for

which ODðv0Þ, ODðv1Þ, and ODðv0 þ v1Þ have
vanishing higher cohomologies.

We explain these assumptions below. Here D is the Weil
non-Cartier divisor on the nodal variety which we used to
construct the two 5-brane curves, as discussed in Sec. II D,
and which in the present case is given by

D ¼
h
A v0 v1 r0 � � � rK

i
: ðC12Þ

Noting that from the degrees of the defining equations this
surface is CY, we see that D is hence isomorphic to either a
T4 or a K3 surface. We have also defined in the second
assumption ODð  wÞ ≔ OAð  wÞjD.
As discussed in Sec. III above, the first assumption

explicitly removes that small subset of cases with a nonzero
h1ðD;ODÞ, which appears to present a genuine obstruction
to moduli matching.
The second assumption explicitly restricts to the simplest

case of conifold transitions, where the change in h1;1 is
minimal. It also restricts however to the case where a number
of cohomologies vanish. In practice, one finds in fact that
these vanishings always accompany the restriction
Δðh1;1Þ ¼ 1, so that these are in fact no further restriction
at all. Nonetheless, we have not proven this link, and so
strictly this should be considered as an additional assumption.
With the above two assumptions we can now straight-

forwardly prove the moduli matching result. First, note
that the curve C is the intersection of the divisor D inside

A with the hypersurface ½A ðv0 þ v1Þ �, so that the

Koszul resolution of C inside D is a short exact sequence,

0 → ODð−v0 − v1Þ → OD → OC → 0: ðC13Þ

If we now tensor this with ODðv0Þ ⊕ ODðv1Þ, we have

0 → ODð−v0Þ ⊕ ODð−v1Þ → ODðv0Þ ⊕ ODðv1Þ
→ OCðv0Þ ⊕ OCðv1Þ → 0: ðC14Þ

The third object is one whose zeroth cohomology we wish
to compute. Noting that the canonical bundle ofD is trivial,
we see that the first two bundles are Serre dual. Hence,
since by assumption the higher cohomologies of the second
bundle vanish, we have in the long exact sequence in
cohomology the following pattern of zeroes:
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h0

h1

h2

ODð−v0Þ ⊕ ODð−v1Þ OCðv0Þ ⊕ OCðv1Þ ODðv0Þ ⊕ ODðv1Þ

0 ? ?

0 0 ?

? 0 0

ðC15Þ

and hence we can compute the required zeroth cohomology
as an index on D,

h0ðC;N CÞ ¼ h0
�
C;OCðv0Þ ⊕ OCðv1Þ

	
¼ ind

�
D;ODðv0Þ ⊕ ODðv1Þ

	
: ðC16Þ

Next, we note that we can also rewrite h0ðC;N C̃Þ in terms
of an index on D. Tensoring the Koszul resolution of C
inside D with ODðv0 þ v1Þ, we have

0 → OD → ODðv0 þ v1Þ → OCðv0 þ v1Þ → 0: ðC17Þ

By our first assumption,D is isomorphic to a K3 surface, so
h0ðD;ODÞ ¼ 1 and h1ðD;ODÞ ¼ 0, and by our second
assumption, the higher cohomologies of the second bundle
vanish. Hence, we have

h0ðC;N C̃Þ ¼ h0
�
C;OC ⊕ OCðv0 þ v1Þ

	
¼ h0ðC;OCÞ þ h0

�
OCðv0 þ v1Þ

	
¼ 1þ �

ind
�
D;ODðv0 þ v1Þ

	
− 1

	
¼ ind

�
D;ODðv0 þ v1Þ

	
: ðC18Þ

Hence, we have expressed both cohomologies h0ðC;N CÞ
and h0ðC;N C̃Þ as indices of bundles on D. Why is
this useful? Consider theKoszul resolution ofD ·D insideD:

0 → ODð−v0 − v1Þ → ODð−v0Þ ⊕ ODð−v1Þ → OD

→ OD·D → 0: ðC19Þ
If we tensor this with ODðv0 þ v0Þ, we have

0 → OD → ODðv1Þ ⊕ ODðv0Þ → ODðv0 þ v1Þ
→ OD·D → 0: ðC20Þ

Notably, from the definition of the surface D, we see that its
self-intersection D ·D inside Y, where Y is defined by

Y ¼
h
A r0 � � � rK

i
; ðC21Þ

equals the number of exceptional P1s in the conifold
transition,

D ·D ¼
Z
Y
c1
�
OYðv0Þ

	
2c1

�
OYðv1Þ

	
2 ¼ #ðP1sÞ: ðC22Þ

(See for example the discussion in Appendix E.) Hence, if we
take the index on the above four-term exact sequence, we get

0 ¼ indðD;ODÞ − ind
�
D;ODðv0Þ ⊕ ODðv1Þ

	
þ ind

�
D;ODðv0 þ v1Þ

	
− #ðP1sÞ; ðC23Þ

so that if we note that, since D is a K3 surface,
indðD;ODÞ ¼ 2, and if we recall that two indices in this
expression are the required zeroth cohomologies, we find
finally

0 ¼ 2 − h0ðC;N CÞ þ h0ðC;N C̃Þ − #ðP1sÞ; ðC24Þ

which is the relation we set out to prove, namely (C5) in the
case that Δðh1;1Þ ¼ 1.

APPENDIX D: HECKE MODULI

Consider a Hecke transform of the following form:

0 → V → V0 ⟶
f

F → 0; ðD1Þ

where F is a sheaf supported on a curve and V0 is a bundle.
If V is stable then the Zariski tangent space to the moduli
space is given by Ext1ðV; VÞ. We will compute this
quantity, first in general and then in a special case relevant
to this work.
We begin by reviewing some properties of Ext groups

which will play a central role. Applying Ext�ð ; VÞ to a
short exact sequences of sheaves 0 → A → B → C → 0,
one obtains

0 → Ext0ðC;VÞ → Ext0ðB; VÞ → Ext0ðA; VÞ
→ Ext1ðC;VÞ → � � � ðD2Þ

and similarly for Ext�ðV; Þ,

0 → Ext0ðV; AÞ → Ext0ðV; BÞ → Ext0ðV;CÞ
→ Ext1ðV; AÞ → � � � : ðD3Þ
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In addition to these properties we will use Serre duality,
applied to our case where the dualizing sheaf is the trivial
bundle on X,

ExtiðE;OXÞ ¼ Hn−iðEÞ�; ðD4Þ

where n is the dimension of X. Finally, we will use the fact
that ExtiðA ⊗ B;CÞ ¼ ExtiðB; A∨ ⊗ CÞ if A is locally free
and ExtiðOX; AÞ ¼ HiðX; AÞ.
Combining all of the properties of the previous para-

graph, one can compute Ext1ðV; VÞ for (D1) in terms of its
component objects. One finds the following:

Ext1ðV; VÞ ¼

coker
�
Ext0ðF;FÞ → �

coker
�
Ext0ðV0; V0Þ → Ext0ðV0; FÞ

			
⊕

ker
�
Ext1ðV0; V0Þ → Ext1ðV0; FÞ

	
⊕

ker
�
Ext1ðF;FÞ → coker

�
Ext1ðV0; V0Þ → Ext1ðV0; FÞ

		
⊕

ker
�
ker ðExt2ðF; V0Þ → Ext2ðF;FÞ	 → Ext2ðV0; V0Þ

	
:

ðD5Þ

In deriving this result we used the fact that F is only
supported on a curve. Obviously, the result in (D5) is still
somewhat involved, but some structure can be observed. In
particular, the first line details contributions associated to
some elements of Ext0ðV0; FÞ, which is the space of
possible maps f in (D1). The second line in (D5) is
associated to some elements of Ext1ðV0; V0Þ, the bundle
moduli of V0. The third line is associated to elements of
Ext1ðF;FÞ, moduli of the sheaf F. Finally, the fourth line
of (D5) encodes moduli which do not fall in the previous
three classes, and so we would expect them to corres-
pond to those deformations which do not preserve the
form (D1). These are precisely the moduli which can be
used to smooth V from a sheaf into a bundle. Despite
this coarse separation of moduli types, the structure of (D5)
is unpleasant to deal with, and so we will impose
some additional properties of (D1) which are relevant to
our case.
In the cases of interest in this work, V0 takes the

special form V0 ¼ V̌0 ⊕ O, where V̌0 is a stable holomor-
phic bundle. In addition, we also have thatF ¼ Oc for some
curve c. Finally, V̌0 is stable on restriction to c and as such
Ext0ðV̌0;OcÞ ¼ H0ðV̌∨

0 ⊗ OcÞ ¼ 0. Note in such an in-
stance we have from (D1) that V ¼ V̌0 ⊕ Ic from the
special structure imposed on the map f by the above
conditions and the defining sequence of an ideal sheaf:

0 → Ic → O → Oc → 0: ðD6Þ
Using the properties of this special case, one can simplify

(D5) greatly to give the following23:

Ext1ðV;VÞ¼

H1ðV̌∨
0 ⊗ V̌0Þ
⊕

ker
�
H1ðV̌∨

0 Þ→H1ðV̌∨
0 jcÞ

	
⊕

H1ðV̌0Þ⊕ker
�
Ext2ðOc;V̌0Þ→Ext2ðO;V̌0Þ

	
⊕

H0ðN jcÞ:
ðD7Þ

Here, N is the normal bundle associated to the curve c and
we have assumed that this curve is a complete intersection
and thus admits a Koszul resolution of the following form:

0 →∧2 N ∨ → N ∨ → O → Oc → 0: ðD8Þ

Themiddle two lines in (D7) can be simplified in appearance
greatly by using the properties of Exts and of our special
case described above, as well as (D6). These allow us to
show that Ext1ðV̌0; IcÞ ¼ ker ðH1ðV̌∨

0 Þ → H1ðV̌∨
0 jcÞÞ and

Ext1ðIc;V̌0Þ¼H1ðV̌0Þ⊕kerðExt2ðOc;V̌0Þ→Ext2ðO;V̌0ÞÞ
giving us our final result:

Ext1ðV; VÞ ¼ H1ðV̌∨
0 ⊗ V̌0Þ ⊕ Ext1ðV̌0; IcÞ

⊕ Ext1ðIc; V̌0Þ ⊕ H0ðN jcÞ: ðD9Þ

In terms of applying the above results to the examples in
the main text, it is worth noting that the first three terms
in (D9) will be the same on both sides of the conifold
transition. This is due to the nature of the spectator bundle
V̌0 on the two sides together with the fact that the curve c is
in the same class, viewed as a variety in the ambient space,
on both the deformation and resolution geometries.

23Note that although we have split up this expression into
separate lines for convenience, in the following discussion these
lines are not in one–one correspondence with those in (D5).
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That the middle two terms match in this manner is easiest to
see from the form (D7) and the simple behavior of
cohomology under Leray.
As a check we can examine this result in the case of our

canonical example based upon a P1 split of the quintic. In
this example h1ðV̌∨

0 ⊗ V̌0Þ ¼ 124, ext1ðV̌0; IcÞ ¼ 32 and
ext1ðIc; V̌0Þ ¼ 132with these numbers indeedmatching on
both sides of the transition. The quantityH0ðN jcÞ ¼ 38 on
the deformation side and 52 on the resolution side of the
conifold. These numbers lead to totals for the Hecke moduli
on the two sides of the transition of 326 and 340 respectively,
with both numbers being one larger than the bundle moduli
of the smooth gauge bundles that are obtained as smooth
deformations of the Hecke sheaves V as expected.

APPENDIX E: EXPRESSIONS FOR A GENERAL
Pn SPLIT

In the main text, as our prototypical example of a conifold
transition between CY3s, we have considered a deformation
geometry X and resolution geometry X̃ which are related by
a “P1 split” of a CICY, as introduced in Sec. II A.

More generally, any Pn split of a CICY, which involves
the addition of an ambient Pn space, will describe a
conifold transition (as long as the splitting is “effective,”
meaning that the shrinking of this ambient Pn corresponds
to a wall of the Kähler cone). For a detailed discussion of
the geometry of the associated conifold transitions, we refer
the reader to [61], and we also refer the reader to the
original works on splittings [2,3,30].
Even more generally, one can consider Pn splits of toric

complete intersections, which (if again the splitting is
effective) also correspond to conifold transitions. These
Pn splits of toric complete intersections are the broadest
natural generalizations of the simple P1-split setting in
which we have constructed pairs of 5-brane theories across
conifold transitions as described in the main text.
In particular, by following precisely the same logic as for

the simple CICYP1-split example in Sec. II D, in this general
setting too one can straightforwardly construct the curves C
and C̃ which will always be such that the anomaly cancella-
tion condition is ensured on both sides of the transition (up to
the addition of spectator branes, as discussed in Sec. II D).
Additionally, the description of gauge-gravity pair creation,
and the brane recombination allowing the 5-brane theory to
traverse the transition, is entirely analogous in this very large
class of examples to the discussion of that simple CICY P1-
split example. This, hence, provides a large class of examples
in which one can perform the same procedure as in the main
text to describe the traversal of a 5-brane theory through a
conifold transition between CY3s.
In this appendix, we simply collect the relevant formulas

and results for this general case of Pn splits of toric
complete intersections.

1. The deformation and resolution geometries

We consider the situation where the deformation geom-
etry X is a complete intersection inside a smooth, compact
toric varietyA. If one of the defining equations is tuned until
it can be expressed as the determinant of some ðnþ 1Þ ×
ðnþ 1Þ matrixM, the resulting variety X will have a set of
nodal points where the rank of thematrix drops to n − 1, and
a small resolution can be performed on these nodal points by
fibering an additional Pn½x� over the ambient space A, and
replacing the determinantal equation with the set of equa-
tions Mx ¼ 0, to give a resolved geometry X̃.
Let usmake this explicit. Take any choiceQ of the defining

polynomials ofX, which is some section of some line bundle
L. Now, for any n ≥ 1, choose any set of 2ðnþ 1Þ effective
line bundles U l and Vl, where l ¼ 0; 1; 2;…; n, such that
L ¼ detðUÞ ⊗ detðVÞ, where we have defined

U ¼ ⨁
n

l¼0

U l; V ¼⨁
n

l¼0

Vl: ðE1Þ

Then, this defining polynomial Q can be tuned to equal
the determinant of an ðnþ 1Þ × ðnþ 1Þ matrix of
sections M,

Q → detðMÞ where Mij ∈ΓðVi ⊗ UjÞ: ðE2Þ

This produces a varietyX which is singular at the set of points
where rankðMÞ ≤ n − 1. Then, a small resolution of this
nodal variety can be described by aPn split, which consists of
replacing this determinantal equation by the set of equations
Mx ¼ 0, where x ¼ ðx0;…; xnÞT, which are accommodated
by introducing into the ambient space an additionalPn,whose
coordinates xi have scalings under the weight system of A
chosen to balance those of the entries of M. Explicitly,
defining the quantities ui and vi by

U i ¼ OAðuiÞ; Vi ¼ OAðviÞ; ðE3Þ

as well as their sums U and V,

U ¼
Xn
l¼0

ul; V ¼
Xn
l¼0

vl; ðE4Þ

the deformation and resolution geometries X and X̃U can be
described as

X∶
y

□ Uþ V r0 � � � rK
ðE5Þ

X̃U∶
xU0 � � � xUn y

1 � � � 1 0 1 � � � 1 0 � � � 0

−u0 � � � −un □ v0 � � � vn r0 � � � rK

ðE6Þ
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wherewe have schematically written y for all the coordinates
on A, and □ for the weight system of A, and we have also
written r0 through rK for the weights of the remaining
defining equations of X. One can check that the weight
system of the ambient space of X̃U is indeed such that the
defining equations MxU ¼ 0 are consistent. Additionally
however, it is clear that we could have made a different
consistent choice, namely

X̃V∶
xV0 � � � xVn y

1 � � � 1 0 1 � � � 1 0 � � � 0

−v0 � � � −vn □ u0 � � � un r0 � � � rK

ðE7Þ
which corresponds to introducing equations MTxV ¼ 0
instead ofMxU ¼ 0. These two possibilities reflect that there
are two (generically) inequivalent ways to perform the small
resolution. The two manifolds X̃U and X̃V are (generically)
not isomorphic, and are in fact related by a flop, as discussed
in detail in [61]. Hence, for a given deformation geometry,
there are two possible resolution geometries associated with
the samenodal tuning, andboth paths are conifold transitions.
Below we will only consider X̃U since the discussion is
entirely analogous for X̃V, involving just the replacement
U ↔ V. For convenience, we also define

R ¼⨁
K

l¼0

OAðrlÞ: ðE8Þ

The second Chern classes of the deformation and
resolution geometries can be shown to be24

c2ðXÞ¼
1

2
c21ðVÞþ

1

2
c21ðUÞþc1ðUÞc1ðVÞ

þch2ðRÞ−ch2ðAÞ;
c2ðX̃UÞ¼ð0Þþ

�
J0ðc1ðUÞþc1ðVÞÞ

�
þ�

ch2ðVÞ−ch2ðUÞþch2ðRÞ−ch2ðAÞ	; ðE9Þ

where in the second line we have grouped terms according
to whether they have two, one, or no powers of the
hyperplane class J0 of the ambient Pn. The curve class
of the exceptional P1s inside X̃U is

½P1s� ¼ −J0
�
c1ðUÞ þ c1ðVÞ

	þ �
c2ðVÞ − c2ðUÞ

þ c21ðUÞ þ c1ðUÞc1ðVÞ
	
; ðE10Þ

which we note equals the difference between the two
second Chern characters (where here and below we make a
slight abuse of notation, made precise in footnote 2),

ch2ðX̃UÞ − ch2ðXÞ ¼ ½P1s�: ðE11Þ
As an aside we also note that the number #ðP1sÞ of
exceptional P1s, or equivalently the number of nodal points
on X , is given in general by

#ðP1 sÞ¼
Z
A

h�
c2ðUÞ−c2ðVÞ

	
2

−
�
c1ðUÞ−c1ðVÞ

	�
c3ðUÞ−c3ðVÞ

	
−c1ðUÞc1ðVÞ

�
c2ðUÞþc2ðVÞ

	
þc1ðVÞ2c2ðUÞþc1ðUÞ2c2ðVÞ

i
cKþ1ðRÞ: ðE12Þ

(This can be derived with the aid of the Thom-Porteous
formula, as discussed below.)

2. The pair of 5-brane theories

In the main text we have discussed how, as the
deformation geometry is tuned to become the nodal variety,
certain curves jump to become divisors, which fill out the
new directions in the larger Picard group of the resolved
geometry. (We note that these divisors on the nodal variety
are special in that they are Weil but non-Cartier.) For a
general Pn split, these divisors are naturally described in
terms of the matrix whose determinant describes the tuned
nodal variety.
We can see this explicitly as follows. Define the matrices

Mr̂i and Mĉj as the n × ðnþ 1Þ and ðnþ 1Þ × n matrices
resulting from removing the ith row or jth column from the
matrix M defined in (E2). In each case the locus where the
rank of such a matrix drops below n describes a divisor on
the nodal variety X,

Dr̂i∶frankðMr̂iÞ ≤ n − 1g ⊂ X ;

Dĉj∶frankðMĉjÞ ≤ n − 1g ⊂ X : ðE13Þ
Moving to the deformation geometry, these defining
equations become independent of the equations describing
the complete intersection, and so these divisors fall in
dimension to become curves inside the deformation
geometry X.
Analogously to the main text, we now construct a natural

pair of 5-brane theories on the deformation and resolution
geometries. In particular, entirely analogously, we define
the curves inside X and X̃U on which the 5-branes are
wrapped by beginning from one of the divisors Dĉj

associated with removing a column25 from the matrix M.

24Here and below we abuse notation slightly by continuing to
write U etc. for the pullbacks of these line bundles from A to the
ambient space of X̃U .

25If we instead constructed a pair of curves from one of
the divisors Dr̂j , we would find that the pair of 5-brane theories
did not have the property that the remaining contributions to the
anomaly cancellation conditions could be captured by spectator
branes. Indeed, the divisors Dr̂j are instead the appropriate
starting point to form a natural pair of 5-brane theories associated
with the conifold transition X → XV .
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The curve Cj on the deformation geometry naturally
arises from the divisor Dĉj as the geometry is
deformed,

Cj∶frankðMĉjÞ ≤ n − 1g ⊂ X: ðE14Þ

In contrast, the object Dĉj remains a divisor as the small
resolution is performed. In particular, we are interested in
considering the proper transform PðDĉjÞ. It is straightfor-
ward to check that this object is described simply and
naturally as the zero locus of a particular corresponding
coordinate in the ambient Pn of X̃U ,

PðDĉjÞ∶fxUj ¼ 0g ⊂ X̃U : ðE15Þ

To construct the curve on which we wish to wrap a
5-brane, we take the intersection of this object with the
zero locus of a polynomial Q̃ of the same form that
describes the deformation on the other side of the conifold
transition, i.e., a section of the line bundle detðU ⊕ VÞ.
Hence,

C̃j∶ðfxUj ¼ 0g ∩ fQ̃ ¼ 0gÞ ⊂ X̃U : ðE16Þ

Though the definition of the curve C̃j is the more
involved, its class is easier to write down. It is simply

½C̃j� ¼ ðJ0 − c1ðUjÞÞ · ðc1ðUÞ þ c1ðVÞÞ; ðE17Þ

where we have noted that the class of the divisor with locus
fxUj ¼ 0g ⊂ X̃U is J0 − c1ðUjÞ. On the other hand, the
curve Cj is defined as a noncomplete intersection, making
its class more difficult to compute. However, this compu-
tation is made possible by the Thom-Porteous formula. We
explain this formula and perform the computation below.
The result is that

½Cj� ¼ c2ðVÞ − c2ðUÞ þ c1ðUÞc1ðVÞ þ c21ðUÞ
− c1ðUjÞðc1ðUÞ þ c1ðVÞÞ: ðE18Þ

Hence, analogously towhatwe saw in the simple example
in the main text, recalling the expression for the class of the
exceptionalP1s inside X̃U , we see that this pairing of curves
precisely captures the difference in the secondChern classes
of the deformation and resolution geometries,

½Cj� − ½C̃j� ¼ ½P1s� ¼ c2ðXÞ − c2ðX̃UÞ: ðE19Þ

Said differently, wrapping 5-branes on Cj and C̃j inside X
and X̃U leaves in the anomaly cancellation conditions only a

spectator piecewhich can be triviallymade upwith spectator
branes, namely

c2ðXÞ− ½Cj� ¼ c2ðX̃Þ− ½C̃j�
¼ ch2ðVÞ− ch2ðUÞ þ c1ðUjÞ

�
c1ðUÞ þ c1ðVÞ

	
þ ch2ðRÞ− ch2ðAÞ: ðE20Þ

We see that the remaining difference depends on the index j,
which is on the Weil non-Cartier divisor Dĉj we used to
construct the two 5-brane curves.

3. The Thom-Porteous formula

It remains to compute the class ½Cj� of the curve on the
deformation side, which is described as a noncomplete
intersection, Cj∶frankðMĉjÞ ≤ n − 1g ⊂ X.
For this purpose we can make use of the Thom-Porteous

formula. Consider a morphism U → V between vector
bundles on a smooth variety. The kth degeneracy locus
ðk ≤ minðrkU; rkVÞÞ of this morphism is the locus of
points over which it has rank at most k. If all components
of the degeneracy locus have the expected codimension
ðrkU − kÞðrkV − kÞ, then the Thom-Porteous formula tells
us that the fundamental class of the degeneracy locus is
given by the determinant of the ðrkU − kÞ × ðrkU − kÞ
matrix whose ðα; βÞ entry is

crkV−kþα−βðV=UÞ: ðE21Þ

The ðnþ 1Þ × ðnþ 1Þ matrix M defined in (E2)
can be viewed as a map between line bundle sums,
namely

M∶⨁
n

l¼0

U−1
l → ⨁

n

l¼0

Vl: ðE22Þ

The ðnþ 1Þ × n matrix Mĉj resulting from deleting a
column from M can then be viewed as a map

Mĉj∶ ⨁
n

l¼0;l≠j
U−1
l → ⨁

n

l¼0

Vl: ðE23Þ

Hence, defining for ease of notation U− ¼ ⨁n
l¼0U

−1
l , the

class of the curve Cj ⊂ X is given simply by

½Cj� ¼ c2

�
V

U−=U−1
j

�
: ðE24Þ

Note that here we implicitly take cðVÞ etc. to be
their restrictions to X. After some algebra, noting in
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particular that chðU−Þ ¼ ch0ðUÞ − ch1ðUÞ þ ch2ðUÞ − � � �,
we find

½Cj� ¼ c2ðVÞ − c2ðUÞ þ c1ðUÞc1ðVÞ þ c21ðUÞ
− c1ðUjÞ

�
c1ðUÞ þ c1ðVÞ

	
: ðE25Þ

As an aside we note that the computation of the number
#ðP1sÞ of exceptional P1s, or equivalently the number
of nodal points on X , can also be performed using the

Thom-Porteous formula. In particular, these points corre-
spond to the locus where rankðMÞ ≤ n − 1, so that

#ðP1sÞ ¼
Z
A
½ðc2ðV=UÞ2 − c1ðV=UÞc3ðV=UÞÞ�cKþ1ðRÞ;

ðE26Þ

(or equivalently with U ↔ V) which gives upon expansion
the expression in (E12).

[1] P. Candelas, P. S. Green, and T. Hubsch, Finite distances
between distinct Calabi-Yau vacua: (Other worlds are just
around the corner), Phys. Rev. Lett. 62, 1956 (1989).

[2] P. S. Green and T. Hubsch, Possible phase transitions among
Calabi-Yau compactifications, Phys. Rev. Lett. 61, 1163
(1988).

[3] P. S. Green and T. Hubsch, Connecting moduli spaces of
Calabi-Yau threefolds, Commun. Math. Phys. 119, 431
(1988).

[4] P. Candelas and X. C. de la Ossa, Comments on conifolds,
Nucl. Phys. B342, 246 (1990).

[5] P. Candelas, P. S. Green, and T. Hubsch, Rolling among
Calabi-Yau vacua, Nucl. Phys. B330, 49 (1990).

[6] P. S. Aspinwall, B. R. Greene, and D. R. Morrison, Multiple
mirror manifolds and topology change in string theory,
Phys. Lett. B 303, 249 (1993).

[7] P. S. Aspinwall, B. R. Greene, and D. R. Morrison, Calabi-
Yau moduli space, mirror manifolds and space-time topo-
logy change in string theory, Nucl. Phys. B416, 414 (1994).

[8] M. Reid, The moduli space of 3-folds with K ¼ 0 may
nevertheless be irreducible, Math. Ann. 278, 329 (1987).

[9] A. Strominger, Massless black holes and conifolds in string
theory, Nucl. Phys. B451, 96 (1995).

[10] B. R. Greene, D. R. Morrison, and A. Strominger, Black
hole condensation and the unification of string vacua,
Nucl. Phys. B451, 109 (1995).

[11] E. Witten, Small instantons in string theory, Nucl. Phys.
B460, 541 (1996).

[12] O. J. Ganor and A. Hanany, Small E(8) instantons and
tensionless noncritical strings, Nucl. Phys. B474, 122 (1996).

[13] P. Candelas, X. de la Ossa, Y. H. He, and B. Szendroi,
Triadophilia: A special corner in the landscape, Adv. Theor.
Math. Phys. 12, 429 (2008).

[14] P. Candelas, X. de la Ossa, and J. McOrist, A metric for
heterotic moduli, Commun. Math. Phys. 356, 567 (2017).

[15] P. Candelas, X. De La Ossa, J. McOrist, and R. Sisca, The
universal geometry of heterotic vacua, J. High Energy Phys.
02 (2019) 038.

[16] J. McOrist and R. Sisca, Small gauge transformations and
universal geometry in heterotic theories, SIGMA 16, 126
(2020).

[17] A. Ashmore, Y. H. He, and B. A. Ovrut, Machine learning
Calabi-Yau metrics, Fortschr. Phys. 68, 2000068 (2020).

[18] M. R. Douglas, S. Lakshminarasimhan, and Y. Qi, Numeri-
cal Calabi-Yau metrics from holomorphic networks,
arXiv:2012.04797.

[19] L. B. Anderson, M. Gerdes, J. Gray, S. Krippendorf, N.
Raghuram, and F. Ruehle, Moduli-dependent Calabi-Yau
and SU(3)-structure metrics from machine learning, J. High
Energy Phys. 05 (2021) 013.

[20] A. Ashmore, L. Calmon, Y. H. He, and B. A. Ovrut,
Calabi-Yau metrics, energy functionals and machine-
learning, Int. J. Data Sci. Math. Sci. 1, 49 (2023).

[21] M. Larfors, A. Lukas, F. Ruehle, and R. Schneider,
Numerical metrics for complete intersection and Kreuzer-
Skarke Calabi-Yau manifolds, Mach. Learn. Sci. Tech. 3,
035014 (2022).

[22] J. Distler and S. Kachru, Duality of (0, 2) string vacua, Nucl.
Phys. B442, 64 (1995).

[23] R. Blumenhagen, Target space duality for (0, 2) compacti-
fications, Nucl. Phys. B513, 573 (1998).

[24] R. Blumenhagen, (0, 2) target space duality, CICYs and
reflexive sheaves, Nucl. Phys. B514, 688 (1998).

[25] R. Blumenhagen and T. Rahn, Landscape study of target
space duality of (0, 2) heterotic string models, J. High
Energy Phys. 09 (2011) 098.

[26] T. Rahn, Target space dualities of heterotic grand unified
theories, Proc. Symp. Pure Math. 85, 423 (2012).

[27] L. B. Anderson and H. Feng, New evidence for (0, 2) target
space duality, J. Phys. A 50, 064004 (2017).

[28] L. B. Anderson, C Brodie, and J. Gray (to be published).
[29] P. Aluffi, Computing characteristic classes of projective

schemes, J. Symb. Comput. 35, 003 (2003).
[30] P. Candelas, A. M. Dale, C. A. Lutken, and R. Schimmrigk,

Complete intersection Calabi-Yau manifolds, Nucl. Phys.
B298, 493 (1988).

[31] Amachine readable version of theCICY list can be found here:
http://www-thphys.physics.ox.ac.uk/projects/CalabiYau/
CicyQuotients/Cicy_Quotients/Cicy_Quotients.html.

[32] J. Gray and J. Wang, Free quotients of favorable Calabi-Yau
manifolds, J. High Energy Phys. 07 (2022) 116.

[33] L. B. Anderson, X. Gao, J. Gray, and S. J. Lee, Fibrations in
CICY threefolds, J. High Energy Phys. 10 (2017) 077.

[34] J. Gray, A. S. Haupt, and A. Lukas, Topological invariants
and fibration structure of complete intersection Calabi-Yau
four-folds, J. High Energy Phys. 09 (2014) 093.

BRANES AND BUNDLES THROUGH CONIFOLD TRANSITIONS … PHYS. REV. D 108, 106018 (2023)

106018-37

https://doi.org/10.1103/PhysRevLett.62.1956
https://doi.org/10.1103/PhysRevLett.61.1163
https://doi.org/10.1103/PhysRevLett.61.1163
https://doi.org/10.1007/BF01218081
https://doi.org/10.1007/BF01218081
https://doi.org/10.1016/0550-3213(90)90577-Z
https://doi.org/10.1016/0550-3213(90)90302-T
https://doi.org/10.1016/0370-2693(93)91428-P
https://doi.org/10.1016/0550-3213(94)90321-2
https://doi.org/10.1007/BF01458074
https://doi.org/10.1016/0550-3213(95)00287-3
https://doi.org/10.1016/0550-3213(95)00371-X
https://doi.org/10.1016/0550-3213(95)00625-7
https://doi.org/10.1016/0550-3213(95)00625-7
https://doi.org/10.1016/0550-3213(96)00243-X
https://doi.org/10.4310/ATMP.2008.v12.n2.a6
https://doi.org/10.4310/ATMP.2008.v12.n2.a6
https://doi.org/10.1007/s00220-017-2978-7
https://doi.org/10.1007/JHEP02(2019)038
https://doi.org/10.1007/JHEP02(2019)038
https://doi.org/10.3842/SIGMA.2020.126
https://doi.org/10.3842/SIGMA.2020.126
https://doi.org/10.1002/prop.202000068
https://arXiv.org/abs/2012.04797
https://doi.org/10.1007/JHEP05(2021)013
https://doi.org/10.1007/JHEP05(2021)013
https://doi.org/10.1142/S2810939222500034
https://doi.org/10.1088/2632-2153/ac8e4e
https://doi.org/10.1088/2632-2153/ac8e4e
https://doi.org/10.1016/S0550-3213(95)00130-1
https://doi.org/10.1016/S0550-3213(95)00130-1
https://doi.org/10.1016/S0550-3213(97)00721-9
https://doi.org/10.1016/S0550-3213(97)00842-0
https://doi.org/10.1007/JHEP09(2011)098
https://doi.org/10.1007/JHEP09(2011)098
https://doi.org/10.1090/pspum/085/1396
https://doi.org/10.1088/1751-8121/50/6/064004
https://doi.org/10.1016/S0747-7171(02)00089-5
https://doi.org/10.1016/0550-3213(88)90352-5
https://doi.org/10.1016/0550-3213(88)90352-5
http://www-thphys.physics.ox.ac.uk/projects/CalabiYau/CicyQuotients/Cicy_Quotients/Cicy_Quotients.html
http://www-thphys.physics.ox.ac.uk/projects/CalabiYau/CicyQuotients/Cicy_Quotients/Cicy_Quotients.html
http://www-thphys.physics.ox.ac.uk/projects/CalabiYau/CicyQuotients/Cicy_Quotients/Cicy_Quotients.html
http://www-thphys.physics.ox.ac.uk/projects/CalabiYau/CicyQuotients/Cicy_Quotients/Cicy_Quotients.html
http://www-thphys.physics.ox.ac.uk/projects/CalabiYau/CicyQuotients/Cicy_Quotients/Cicy_Quotients.html
http://www-thphys.physics.ox.ac.uk/projects/CalabiYau/CicyQuotients/Cicy_Quotients/Cicy_Quotients.html
http://www-thphys.physics.ox.ac.uk/projects/CalabiYau/CicyQuotients/Cicy_Quotients/Cicy_Quotients.html
https://doi.org/10.1007/JHEP07(2022)116
https://doi.org/10.1007/JHEP10(2017)077
https://doi.org/10.1007/JHEP09(2014)093


[35] J. Gray, A. S. Haupt, and A. Lukas, All complete inter-
section Calabi-Yau four-folds, J. High Energy Phys. 07
(2013) 070.

[36] B. A. Ovrut, T. Pantev, and J. Park, Small instanton transitions
in heterotic M theory, J. High Energy Phys. 05 (2000) 045.

[37] E. Buchbinder, R. Donagi, and B. A. Ovrut, Vector bundle
moduli and small instanton transitions, J. High Energy Phys.
06 (2002) 054.

[38] L. B. Anderson, F. Apruzzi, X. Gao, J. Gray, and S. J. Lee, A
new construction of Calabi-Yau manifolds: Generalized
CICYs, Nucl. Phys. B906, 441 (2016).

[39] See, for exampleP. A. Grillet, Abstract Algebra (Springer,
New York, 2007), ISBN 9780387715681.

[40] M. T. Chuan, Existence of Hermitian-Yang-Mills metrics under
conifold transitions, Commun. Anal. Geom. 20, 677 (2012).

[41] T. C. Collins, S. Gukov, S. Picard, and S. T. Yau, Special
Lagrangian cycles and Calabi-Yau transitions, Commun.
Math. Phys. 401, 769 (2023).

[42] P. S. Aspinwall and R. Y. Donagi, The heterotic string, the
tangent bundle, and derived categories, Adv. Theor. Math.
Phys. 2, 1041 (1998).

[43] S. Kachru and E. Silverstein, Chirality changing phase
transitions in 4-D string vacua, Nucl. Phys.B504, 272 (1997).

[44] L. B. Anderson, X. Gao, and M. Karkheiran, Extending the
geometry of heterotic spectral cover constructions, Nucl.
Phys. B956, 115003 (2020).

[45] L. B. Anderson, J. Gray, A. Lukas, and B. Ovrut, Vacuum
varieties, holomorphic bundles and complex structure sta-
bilization in heterotic theories, J. High Energy Phys. 07
(2013) 017.

[46] A. Lukas, B. A. Ovrut, and D. Waldram, Nonstandard
embedding and five-branes in heterotic M theory, Phys.
Rev. D 59, 106005 (1999).

[47] J. Distler and B. R. Greene, Aspects of (2, 0) string
compactifications, Nucl. Phys. B304, 1 (1988).

[48] S. Kachru, Some three generation (0, 2) Calabi-Yau models,
Phys. Lett. B 349, 76 (1995).

[49] M. R. Douglas and C. G. Zhou, Chirality change in string
theory, J. High Energy Phys. 06 (2004) 014.

[50] L. B. Anderson, Y. H. He, and A. Lukas, Monad bundles in
heterotic string compactifications, J. High Energy Phys. 07
(2008) 104.

[51] L. B. Anderson, J. Gray, Y. H. He, and A. Lukas, Exploring
positive monad bundles and a new heterotic standard model,
J. High Energy Phys. 02 (2010) 054.

[52] T. Hubsch and A. Rahman, On the geometry and homology
of certain simple stratified varieties, J. Geom. Phys. 53, 31
(2005).

[53] M. Blaszczyk, S. Groot Nibbelink, and F. Ruehle, Green-
Schwarz mechanism in heterotic (2, 0) gauged linear sigma
models: Torsion and NS5 branes, J. High Energy Phys. 08
(2011) 083.

[54] C. Quigley and S. Sethi, Linear sigma models with torsion,
J. High Energy Phys. 11 (2011) 034.

[55] L. B. Anderson, H. Feng, X. Gao, and M. Karkheiran,
Heterotic/heterotic and heterotic/F-theory duality, Phys.
Rev. D 100, 126014 (2019).

[56] M. Bershadsky, T. M. Chiang, B. R. Greene, A. Johansen,
and C. I. Lazaroiu, F theory and linear sigma models, Nucl.
Phys. B527, 531 (1998).

[57] S. Cecotti, C. Cordova, J. J. Heckman, and C. Vafa,
T-branes and monodromy, J. High Energy Phys. 07
(2011) 030.

[58] L. B. Anderson, J. J. Heckman, and S. Katz, T-branes and
geometry, J. High Energy Phys. 05 (2014) 080.

[59] L. B. Anderson, J. J. Heckman, S. Katz, and L. P.
Schaposnik, T-branes at the limits of geometry, J. High
Energy Phys. 10 (2017) 058.

[60] L. B. Anderson, J. Gray, M. Karkheiran, P. K. Oehlmann,
and N. Raghuram, P1-fibrations in F-theory and string
dualities, Pure Appl. Math. Quart. 18, 1264 (2022).

[61] C. Brodie, A. Constantin, A. Lukas, and F. Ruehle, Flops for
complete intersection Calabi-Yau threefolds, J. Geom. Phys.
186, 104767 (2023).

ANDERSON, BRODIE, and GRAY PHYS. REV. D 108, 106018 (2023)

106018-38

https://doi.org/10.1007/JHEP07(2013)070
https://doi.org/10.1007/JHEP07(2013)070
https://doi.org/10.1088/1126-6708/2000/05/045
https://doi.org/10.1088/1126-6708/2002/06/054
https://doi.org/10.1088/1126-6708/2002/06/054
https://doi.org/10.1016/j.nuclphysb.2016.03.016
https://doi.org/10.4310/CAG.2012.v20.n4.a1
https://doi.org/10.1007/s00220-023-04655-3
https://doi.org/10.1007/s00220-023-04655-3
https://doi.org/10.4310/ATMP.1998.v2.n5.a4
https://doi.org/10.4310/ATMP.1998.v2.n5.a4
https://doi.org/10.1016/S0550-3213(97)00519-1
https://doi.org/10.1016/j.nuclphysb.2020.115003
https://doi.org/10.1016/j.nuclphysb.2020.115003
https://doi.org/10.1007/JHEP07(2013)017
https://doi.org/10.1007/JHEP07(2013)017
https://doi.org/10.1103/PhysRevD.59.106005
https://doi.org/10.1103/PhysRevD.59.106005
https://doi.org/10.1016/0550-3213(88)90619-0
https://doi.org/10.1016/0370-2693(95)00259-N
https://doi.org/10.1088/1126-6708/2004/06/014
https://doi.org/10.1088/1126-6708/2008/07/104
https://doi.org/10.1088/1126-6708/2008/07/104
https://doi.org/10.1007/JHEP02(2010)054
https://doi.org/10.1016/j.geomphys.2004.04.010
https://doi.org/10.1016/j.geomphys.2004.04.010
https://doi.org/10.1007/JHEP08(2011)083
https://doi.org/10.1007/JHEP08(2011)083
https://doi.org/10.1007/JHEP11(2011)034
https://doi.org/10.1103/PhysRevD.100.126014
https://doi.org/10.1103/PhysRevD.100.126014
https://doi.org/10.1016/S0550-3213(98)00429-5
https://doi.org/10.1016/S0550-3213(98)00429-5
https://doi.org/10.1007/JHEP07(2011)030
https://doi.org/10.1007/JHEP07(2011)030
https://doi.org/10.1007/JHEP05(2014)080
https://doi.org/10.1007/JHEP10(2017)058
https://doi.org/10.1007/JHEP10(2017)058
https://doi.org/10.4310/PAMQ.2022.v18.n4.a2
https://doi.org/10.1016/j.geomphys.2023.104767
https://doi.org/10.1016/j.geomphys.2023.104767

