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Abstract: Biomineralization refers to the biological processes through which living organisms
produce minerals. In recent years, biomineralizing microorganisms have been used to stabilize soil
or to impart a self-healing or self-sealing mechanism to damaged cement and concrete materials.
However, applications of biominerals in cement and concrete research can extend far beyond these
applications. This article focuses on the biomineralization of calcium carbonate (CaCO3) and
silicon dioxide (SiO2) and their past, present, and future potential applications in cement and
concrete research. First, we review the mechanisms of CaCO3 and SiO2 biomineralization and the
micro- and macroorganisms involved in their production. Second, we showcase the wide array of
biomineral architectures, with an explicit focus on CaCO3 polymorphs and SiO2 morphologies
found in nature. Third, we briefly summarize previous applications of CaCOs and SiO2
biomineralization in cement and concrete research. Finally, we discuss emerging applications of
biominerals in cement and concrete research, including mineral admixtures or raw meal for
portland cement production, as well as other applications that extend beyond self-healing.

Keywords: Biomineralization; cement; concrete; calcium carbonate (CaCOs); silicon dioxide
(S102).


mailto:nicolas.dowdy@colorado.edu
mailto:wsrubar@colorado.edu

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

Manuscript submitted to:
RILEM Technical Letters

1.0 Introduction

Biomineralization is the biological process by which living organisms produce minerals. By mass,
calcium carbonate (CaCQOs3) is the most abundant biomineral found in nature [1]. Microorganisms,
such as bacteria [2], fungi [3], and coccolithophores [4], and macroorganisms, such as mollusks
[5] and coral [6], are well known to biomineralize CaCOs. The biomineralization of silicon dioxide
(i.e., silica) (Si02) [7-10], calcium phosphate (i.e., apatite) [11,12], magnesium hydroxide (i.e.,
brucite) (Mg(OH)2) [13-15], iron oxides (e.g., hematite, magnetite) (Fe2O3) [16,17], and
aluminum oxide (i.e., alumina) (Al203) [7,18,19] also occurs in a multitude of micro- and
macroorganisms, such as diatoms [9], bacteria [17], mollusks [5] and other higher-level organisms
[20-23].

CaCOs and SiO2 biomineralization has been applied in select applications relevant to the
field of cement and concrete research. These areas include soil stabilization [24], beneficiation of
recycled concrete aggregates [25] and recycled plastic aggregates [26], living building materials
[27], and self-healing [2,28] or self-sealing [29,30] concrete. While most applications concern
CaCOs biomineralization, one study [31] recently showed that biomineralized SiO2 from diatoms
exhibit moderate to high pozzolanic reactivity, indicating their suitability as a supplementary
cementitious material (SCM). Despite the prevalence of CaCO3 and SiO2 biomineralization in
nature, the applications of biomineralization in cement and concrete research are predominantly
limited to these few examples.

In this work, we elucidate how biomineralization can be leveraged to further the
development of sustainable and resilient cementitious materials. First, we outline the main
mechanisms of biomineralization, with a focus on the two most common biominerals produced by
living organisms, CaCOs3 and SiOz. Second, we showcase the wide variety of CaCO3 polymorphs
and SiO2 morphologies and discuss the potential for their physical and chemical tunability. Finally,
we highlight past examples and future opportunities for direct applications of these materials in
cement and concrete research. Lastly, we highlight the challenges that will need to be addressed to
translate biomineralization technologies from the benchtop to a commercially viable scale.

2.0 Mechanisms of CaCOs and SiO: Biomineralization

2.1 CaCOs Biomineralization

CaCOs3 biomineralization is mediated by the metabolic activity of micro- and macroorganisms. In
this section, we review four of the most common mechanisms of CaCO3; mineralization: urea
hydrolysis, photosynthesis, sulfate reduction, and protein-mediated biomineralization. Most
involve the production of carbonic acid, which is further decomposed into the bicarbonate anion
(HCO3?) that can subsequently react with free calcium (Ca?*) if it is present in the surrounding
media. The result is the formation of biologically architected CaCO3 with properties that can be
tuned by tailoring the mineralization kinetics via controlling the metabolic activities of the
organism [32,33].

2.1.1 Urea hydrolysis

The urea hydrolysis mechanism of CaCOs3 biomineralization is well understood [3,34-37]. CaCO3
biomineralization via urea hydrolysis is a vital process for bacteria, such as Sporosarcina pasteurii
[38], and fungi, such as Fusarium cerealis [3]. These organisms employ urea hydrolysis to break
down urea so that it may be consumed as a carbon source in exchange for energy. These organisms
can biomineralize and produce CaCOs if Ca?" ions are present in the media. Without Ca?",
however, these organisms will not biomineralize.
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The urea hydrolysis mechanism of CaCO3 biomineralization is as follows:

urease enzyme

COWNH,), + 2H,0 “=2 T2y co, + 2N H, 1)
H,C0; & HCOF + H* @)
2NH; + 2H,0 & 2NH; + 20H- 3)
HCOF + OH™ & CO3™ + HyO )
Ca2* + €02~ 5 CaCo, 5)

The biomineralization reaction is catalyzed by the metabolic production of the urease enzyme. In
the presence of urea, urease will catalyze the decomposition of urea into carbonic acid and
ammonia. The carbonic acid will subsequently dissociate into bicarbonate and hydrogen ions,
which lowers the pH. However, the ammonia will react with water to form ammonium and
hydroxide ions, which increases the pH. The hydroxide and bicarbonate anions then react to form
carbonate anions and water. The former can react with free Ca?" to yield precipitated CaCOs.
Images of biomineralized CaCOs3 through urea hydrolysis are shown in Figure 1(a)-(c).

Figure 1. Biomineralized CaCO3 produced via (a-c) urea hydrolysis [(a) S. pasteurii (Heveran et
al. [32], CC BY 4.0) (b) Escherichia coli (Heveran et al. [32], CC BY 4.0), (¢) Bacillus lentus (Wei
et al. [39], CC-BY-NC), (d-e) photosynthesis [(d) Emiliana huxleyi (Neukermans et al. [40], CC-
BY), (e) Pleurochrysis dentata (Chen et al. [41], CC-BY-4.0), (f) sulfate reduction [Desulfovibrio
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bizertensis (Lin et al. [42], copyright 2018 Elsevier), and (g-h) protein-mediated biomineralization
[(g) bacterial precipitation Bacillus subtilis (Liu et al.[43], (h) Sphaerovum erbeni eggshells
(Grellet-Tinner et al. [44] copyright 2012 SEPM).

From a cement and concrete research perspective, advantages of CaCO3 biomineralization via urea
hydrolysis include the autonomous production of higher quantities of biomineralized CaCOs3
compared to other CaCO3 biomineralization mechanisms on a per-volume basis (e.g.,1.6-9.8 mg/L
from ureolysis [45] compared to 0.8-2.2 mg/mL from photosynthesis [46]). In addition, the high-
pH tolerance of spore-forming, biomineralizing microorganism species (e.g., Bacillus sphaericus,
Phoma herbarum, Bacillus subtilis, Sporosarcina pasteurii) [2,3] are a notable advantage, given
the high pH of the pore solution within hydrated cement paste. However, disadvantages of urea
hydrolysis include the production of ammonia and ammonium as byproducts of CaCOs3
biomineralization and the need to add an exogenous source of Ca?" (e.g., CaCl) to the media,
which can then lead to the addition of undesirable byproducts (e.g., chloride anions) to the
cementitious matrix [38]. In addition, the cost and availability of urea-rich media has been noted
as another significant challenge impeding widespread adoption. Nevertheless, CaCOs3
biomineralization via urea hydrolysis has been widely employed in cement and concrete research
because of the potential benefits that CaCOs biomineralization can impart to cementitious
materials (see Section 4).

2.1.2  Photosynthesis

By definition, photosynthesis is the metabolic process by which organisms produce energy and
mass via biochemical reactions involving light and carbon dioxide (COz) [47]. Photosynthetic
microorganisms, including certain strains of cyanobacteria [48] and phytoplankton (e.g.,
coccolithophores) [4], and macroorganisms, such as calcareous macroalgae [49], produce CaCOs3
through photosynthesis-driven biomineralization. Coccolithophores alone are responsible for
sequestering and storing ~ 1.5-5.9 GtCOz/year (~ 0.4-1.6 GtC/year) as biomineralized CaCOs3 [50],
which equates to ~ 3.4-13.4 Gt CaCOs. Photosynthesis-driven CaCOs3 biomineralization is
mediated by the production of carbonic anhydrase (CA), an enzyme that catalyzes the rapid
conversion of CO2 into carbonic acid [51].

The photosynthesis mechanism of CaCO3 biomineralization is as follows:

CA Enzyme
H,CO05 & HCO3 + H* (7)
Ca?* + HCO3 = CaCO; + H* (8)

While these reactions represent the most prominent pathway for photosynthesis-driven CaCOs
biomineralization [47], carbonic anhydrase (CA) is known to facilitate other CaCOs
biomineralization pathways in which it forms metal complexes with zinc (Zn?") and Ca?* to yield
bicarbonate and, ultimately, biomineralized CaCO3 [52]:

CA-—Zn—-H,0 o CA—Zn—0OH +H* 9)

CA—Zn—OH™ + CO, + H,0 & CA— Zn — Hy0 + HCO3 (10)
Ca?* + HCO3 - CaCO4 + H* (11)
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Photosynthesis-driven CaCOs3 biomineralization has two distinct advantages. First, the economics
of CaCOs biomineralization via photosynthesis are advantageous. Most photosynthetic species
that biomineralize CaCO3 are marine micro- and macroorganisms, which require only sunlight,
seawater, and COz. Second, photosynthesis-driven CaCOs3 biomineralization is a form of direct
COz capture and storage. CO2 dissolves into the media with assistance from carbonic anhydrase.
This COz is converted to inorganic biominerals (i.e., CaCO3) and organic molecules (e.g., lipids,
proteins, carbohydrates) that comprise the micro- and macroorganism cell bodies. Disadvantages
of CaCOs biomineralization via photosynthesis include lower quantities of biominerals per volume
basis and the pH sensitivity of biomineralizing strains of photosynthetic microorganisms, which
makes them less suitable for direct incorporation into concrete mixtures. Instead, researchers have
found other means to leverage photosynthesis-driven biomineralization. For example, Murphy et
al., explored the use of CaCOs derived from coccolithophores, which are biomineralizing
photosynthetic microalgae, as a nucleating agent in portland limestone cement (PLC) paste [53].
Researchers have also used photosynthesis-driven biomineralization to produce enzymatic [54] or
living building materials [31] (see Section 4). Images of biomineralized CaCOs through
photosynthesis are also shown in Figure 1(d)-(e).

2.1.3  Sulfate Reduction

Sulfate reduction is an intermediate step for energy production in some species of anaerobic
bacteria, including Desulfovibrio bizertensis [55] and Desulfomicrobium baculatum [56]. While
biomineralization via sulfate reduction is less studied than urea hydrolysis or photosynthesis, the
mechanism of biomineralization is similar in that the formation of carbonic acid is key from a
biochemical standpoint.

There are two sulfate reduction mechanisms of CaCO3 biomineralization. The first
involves the dissociation of calcium sulfate, where the cell produces formaldehyde (i.e., CH20)
and converts it to sulfuric acid (H2S), bicarbonate, CO2 and water as part of the intermediate step
[47,57,58]:

CaS0, + 2H,0 > Ca** + S0~ + 2H,0 (12)
2CH,0 + SO2~ 5 H,S + 2HCO3 + CO, + H,0 (13)
Ca?* + HCO; = CaCO; + H* (14)

Sulfate reducing organisms require an exogenous source of calcium sulfate in the medium to
nucleate an external layer of CaCOs3 directly on its cell membrane, which then leads to subsequent
precipitation and growth of CaCO3 from the medium onto the cell-templated CaCOs3 [22].

The second mechanism is similar to the first, except that it involves the metabolic
production of calcium sulfate rather than relying on an external source:

CaSO, + 2CH,0 5 CaS + 2C0, + 2H,0 (15)
CaS + 2H,0 - Ca(OH), + H,S (16)
€0, + H,0 > H,CO; (17)

Ca(OH), + H,CO5 > CaCO; + 2H,0 (18)
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In terms of its utility, sulfate reduction is less advantageous than urea hydrolysis or photosynthesis
because it necessitates the production of formaldehyde and H2S. Additionally, sulfate reduction
has limited potential in self-healing concrete applications because the reaction itself decreases the
pH [59]. Interestingly, some sulfate-reducing organisms can be found in highly alkaline
environments [59,60], which is why the mechanism could still be investigated for different cement
and concrete applications in which the H2S can be captured or toxicity is not an issue. An example
of CaCOs3 biomineralized via sulfate reduction is shown in Figure 1(f).

2.1.4 Protein-mediated

Protein-mediated CaCOs3 biomineralization is observed in mollusks, crustaceans, and avian eggs
[61]. In protein-mediated biomineralization, surface proteins, such as those rich in arginine [62]
act as positively charged nucleation sites that facilitate the interactions between CO3* and Ca®*
present in the surrounding media. The proteins seed amorphous CaCO3 (ACC) minerals that
precipitate and grow into larger CaCO3 minerals comprised of ACC or one of the other polymorphs
of CaCOs3 (i.e., calcite, aragonite, vaterite) (see Section 3). This mechanism has a few distinct
advantages in that (1) biomineralizing microorganisms that leverage protein-mediated CaCO3
biomineralization can produce larger quantities of CaCO3 and (2) the kinetics of mineralization
and the resultant biomineral architectures could theoretically be tailored by modulating the
expression of surface proteins. However, the macroorganisms that leverage this mechanism in
nature have a long growth cycle, resulting in limited quantities unless large farms or naturally
occurring deposits can overcome such a limitation. In addition, protein-mediated CaCO3 formation
ex vivo is less characterized when compared to the three prior mechanisms (ureolysis,
photosynthesis, and sulfate reduction), where the specific sequence and compounds are less well
defined due to the sheer number and variability of protein properties in nature. There is significant
work ongoing to define precise mechanistic steps [63-65], which is promising for applying these
principles on a larger scale in the future. Figure 1(g)-(h) show images of protein-mediated CaCOs3
biomineralization.

2.2 8i0: Biomineralization

S102 biomineralization is an integral structure-forming process in sea sponges and diatoms [9,66]
(see Figure 2). While the biochemical mechanisms of silica biomineralization are not fully
understood at the time of writing [9,67], studies of sea sponges and diatoms have elucidated that
the presence of silicic acid in the media is critical for S102 mineralization. Sponges use silicateins
(i.e., silica-rich proteins) to template and mineralize silicic acid into spicule structures in a process
akin to protein-mediated CaCOs; biomineralization [5,66]. However, the exact SiO2
biomineralization mechanism in sea sponges is still under investigation [66,68]. On the other hand,
Si0:2 biomineralization in diatoms is better understood. Diatoms concentrate silicic acid into silica
pools internal to the diatom. The accumulation of silicic acid results in the polycondensation and
eventual precipitation of amorphous SiO2. This precipitation of SiO2 is aided by polyamines and
polysilaftins within the cell. It is hypothesized that the occurrence of positively charged functional
groups in both polymers attracts negatively charged silica anions to create the pools, thereby
facilitating polycondensation [9,67]. The precipitated SiO2 forms the basis of the intricate
microporous exoskeletons that are characteristic of most diatom species (see Figure 2c¢).
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Figure 2. SiO2 biomineralization in sea sponge Euplectella aspergillum at (a) centimeter scale
(Imbler [69], within permissions by NOAA) and (b) millimeter scale (Monn [70], CC-BY-ND),
and (c) the diatom species Thalassiosira pseudonana (Piccinetti et al. [71] CC-BY-4.0).

In terms of advantages, most microorganisms that biomineralize SiO2 are photosynthetic and found
in marine environments, which minimizes their media and growth requirements to sunlight,
seawater, and COz2, along with trace nutrients. In fact, diatoms alone are responsible for ~ 20% of
photosynthetically fixed CO2 on Earth [72]. Diatoms are relatively resilient, and some species
exhibit fast growth rates compared to others. Additionally, diatoms have been shown to incorporate
a variety of other metal ions, including aluminum [73], magnesium [14], and zinc [74], into their
biomineral architectures, which suggests an ability to tune their chemical composition. Their
structures are also highly amorphous, which makes them more reactive than other silicates (e.g.,
clays) that may require calcination to increase reactivity. Some disadvantages include the slow
growth of some species capable of SiO2 mineralization (e.g., sponges), along with the relatively
low cell densities of diatoms, particularly when compared to other microorganisms [75].

3.0 CaCOs and SiO: Biomineral Architectures

3.1 CaCO; Biomineral Architectures

Biomineralized CaCOs3 can form as one of four polymorphs: calcite, aragonite, vaterite, or ACC
(see Figure 3). Natural limestone deposits, ancient pelagic (i.e., marine) sediments, are mainly
composed of calcite and aragonite [76]. Calcite and aragonite are more thermodynamically stable
than vaterite and ACC at ambient temperatures and pressures. Biologically precipitated vaterite
has been shown to transition to a more stable phase (i.e., calcite, aragonite) over time [77]. This
transformation is known to take place in a matter of 10-20 hours in DI water [78], and the
biological systems have been shown to facilitate the increase Mg ions in solution [77], which is
known to stabilize aragonite and vaterite in solution [78]. ACC is most commonly found in vivo
and tends to be thermodynamically unstable ex vivo [79]. Understanding the differences in these
polymorphs is of particular interest due to their differences in physical and chemical stability and
how that stability can affect cement hydration and strength when different CaCO3 particles are
added to a cementitious system [80].
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Figure 3. Morphologies of (a) calcite (Yang et al. [81], CC BY 4.0), (b) vaterite (Gilad et al. [82],
CC BY NC 3.0), (c) aragonite (Myszka et al. [83], CC BY NC 3.0), and (d) amorphous calcium
carbonate (ACC) (Xto et al. [84], CC BY 4.0).

Calcite, the most stable CaCOs3 polymorph, is characterized by its rhombohedral microstructure
[85]. Calcite is known to be biomineralized by bacteria [2], algae [86], fungi [3], and sponges [87].
Nanoscale biomineralized calcite crystals can form aggregates up to 200 um, but the size depends
on the conditions within the cells and the size of the cell itself [32,42,53,88]. Coccolithophores
form individual coccoliths comprised mostly of calcite that can be much smaller in size (i.e., 1-4
pm) [53,86,89]. Researchers have shown that individual coccolithophore species and growth
conditions, including temperature, pH, and CO2 exposure [89], have a significant effect on
coccolith formation.

Aragonite, the second most stable polymorph of CaCOs3, is characterized by its orthorhombic
crystal structure [90]. Aragonite can be found in nature alongside calcite. Aragonite is known to
be biomineralized by coral [6] and mollusks. [5,91]. Nacre is an example of biomineralized
aragonite layered in a lamellar structure with a protein matrix. The proteins provide a scaffold for
aragonite nucleation, while the aragonite provides strength to the nacre [5]. When precipitated in
solution at ambient temperatures, aragonite has a tendency to redissolve into solution and
precipitate as calcite [90,92], but aragonite is stable enough to exist on its own at ambient
temperatures and pressures.

In comparison to calcite and aragonite, vaterite is the least stable crystalline polymorph.
Vaterite is biomineralized by fish [93], ascidians [94], snails, and bacteria [93,95-97]. Pure vaterite
will dissolve in water and reprecipitate as calcite at ambient temperatures or vaterite at elevated
temperatures through a dissolution-precipitation reaction. The instability (i.e., water solubility) of
vaterite has been leveraged for applications that require readily soluble CaCO3 [98]. From a cement
and concrete research perspective, vaterite has been shown to precipitate, along with calcite and
aragonite, in self-healing concrete applications [99].

ACC is the least stable CaCO3 polymorph. ACC is generally a precursor to other forms of
biomineralized CaCOs3[77,79,84] in which it is precipitated and temporarily stabilized before it
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transforms into a more stable polymorph. ACC has been shown to be stabilized by organic
molecules ex sifu [88] and can exist as stable intracellular structures (or inclusions) in situ in some
prokaryotes [100]. However, the exact mechanisms of its initial formation and stability remain
under investigation [84,100]. Evidence of ACC biomineralization was first found in eukaryotic
organisms [79]. ACC has also been identified in prokaryotic organisms [100]. In biological
systems, ACC provides a number of functions, such as scaffolding for tissues and even influence
the short-range crystalline order of crystalline polymorphs of CaCO3 [101], most particularly of
calcite and aragonite [102].

3.2 8i0: Biomineral Architectures

In terms of morphological features, SiO2 forms spicules, as with sea sponges, or frustules, as with
diatoms. Sea sponges use SiO2 to build these spicules to make up their skeletons, which exhibit
different structural features throughout their cross-section [103]. These spicules are visible on the
macroscale as tree-like growths that branch upwards and away from the base of the seafloor [66].
At the microscale, these spicules are composed of long, cylindrical spines, which are generally
made of micrometer-scale sheets stacked on top of each other [104]. The spicules are typically
composed of semi-crystalline filaments, which contain crystalline and amorphous SiO2 and
crystallized protein [23]. Thus, the exact degree of crystallinity of the SiO2 can be difficult to
quantify due to the crystallized proteins within the spicules [66].

Diatoms use SiO2 to build their exoskeletons, or frustules. Figure 4 illustrates the
morphological diversity of diatom frustules. These frustules are porous to enable the function of
organic valves used for transport. Diatom frustules, which are generally on the order of
micrometers [15,103,105], are typically composed of amorphous or semi-crystalline SiO2 [73].
Similar to sponges, this characterization is often complicated by interfering chemical components,
where in diatoms, this is generally in the form of incorporated and surface elements, such as
aluminum [7,106], iron [15], and magnesium [8,14]. The incorporation of such metals helps limit
the dissolution of amorphous silica in the frustule, thereby enhancing its chemical and structural
stability.

0
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Figure 4. Morphological diversity of diatom frustules. (a) Thalossiosira pseudonana (Sumper et
al. [9], copyright 2008 Wiley-VCH), (b) Navicula sp. (Wang et al. [107], copyright 2012 Springer
Science+Business Media, LLC), (c) Melosira sp. (Zhang et al. [108], copyright 2011 Springer
SciencetBusiness Media, LLC), (d) Cyclotella sp. (Rorrer et al. [109], CC BY 4.0), (e)
Didymosphenia geminate (Zgtobicka et al. [110], CC BY 4.0), (f) Chaetoceros gacilis (Hildebrand
[111], copyright 2008 American Chemical Society), (g) Minidiscus comicus (Leblanc et al. [112],
CCBY 4.0).

4.0 Applications of CaCO3 and SiO: Biomineralization to Cement and Concrete Research
4.1 CaCO; Biomineralization Applications

CaCOs3 biomineralization via urea hydrolysis has been widely employed in cement and concrete
research. Ureolytic microorganisms have been applied in most self-healing [55,113,114] and self-
sealing [55,113] concrete applications. Ureolytic biomineralization has also been shown to
increase the durability of concrete through porosity reduction and through the propensity of some
microorganisms to bind potentially harmful compounds, such as free chloride ions [2]. Recycled
aggregate beneficiation has also been explored using microorganisms capable of ureolytic
biomineralization. In a seminal study conducted by Grabiec et al. [115], the authors found that
CaCOs biodeposition can reduce the porosity and water demand of recycled aggregates. Bakr and
Singh [116] demonstrated enhanced strength of cementitious systems with recycled aggregates
that were pre-treated with a ureolytic biomineralization process. Another study examined how well
strains isolated from concrete aggregates performed in a similar application [117]. In addition to
increasing the strength of stabilized soils [24,34,113], heavy metal immobilization within soils has
also been enhanced through urea hydrolysis-driven biomineralization [34,38,113].

More recently, researchers in the field of synthetic biology have shown that calcium
carbonate polymorphs and mechanical properties can be tailored by modulating the metabolic
activity of microorganisms capable of ureolytic biomineralization. Heveran ef al. demonstrated
how ureolytic organisms could tailor the polymorphism of CaCO3 when using engineered strains
of E. coli [32]. These same strains were used in a subsequent study to produce biomineralized
living building materials [118]. Other researchers have isolated the urease enzyme and used it
directly to enhance biomineralization in soil stabilization applications in which ensuring the long-
term viability of the microorganisms is less feasible [38].

Applications of CaCO3 biomineralization via photosynthesis has been less explored in
cement and concrete research. One study conducted by Rizwan et al. [119] showed how the
introduction of photosynthetic microorganisms into cement paste systems can decrease porosity,
although whether these effects persist at later ages and whether the microorganisms can survive
long-term is largely unknown. Noting the aggressive pH environment in traditional cementitious
materials, some researchers are rethinking the matrix into which biomineralizing microorganisms
are embedded. For example, in the seminal study on living building materials [120], researchers
used photosynthetic microorganisms capable of biomineralization to strengthen and toughen a
sand-hydrogel scaffold. The data showed that microbial survivability within the sand-hydrogel
scaffold was 9% to 14% after 30 days, which exceeded previous reports on microbial survivability
in self-healing concrete applications (0.1% to 0.4%) for similar timeframes [32]. Murphy ef al.
produced CaCOs using coccolithophores, biomineralizing microalgae, and showed that it could
serve as a functional COz-negative CaCOs filler in PLC pastes [53]. Wang et al. [54] isolated the
carbonic anhydrase enzyme and used it to make an enzymatic construction material. The authors



366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410

Manuscript submitted to:
RILEM Technical Letters

used gelatin, carbonic anhydrase, calcium chloride dihydrate solution, and ambient CO:2 to
generate a mortar with comparable compressive strength to conventional mortars.

Applications of biomineralization via sulfate reduction are limited in comparison to
ureolytic biomineralization. Byrd et al. [121] demonstrated that biomineralization via sulfur
reduction in a citrate production process yielded a calcite-rich sediment, which could provide
additional benefit of improving the durability of concrete vessels in which the reactions were
taking place. Sulfate reduction has also been used to reduce uranium stored in concrete, which can
reduce the risk of corrosion induced by uranium and its associated compounds [122]. While sulfate
reduction has only been achieved chemically in this application, the results suggest that similar
results could be achieved using a biological approach. In wastewater concrete pipe applications,
biomineralizing sulfur reducing microorganisms could potentially enhance concrete strength and
increase durability by reducing the rates of microbially induced concrete corrosion [123].
Protein-mediated biomineralization in cement and concrete research has focused on studying the
effects of adding biomineralized shells and protein additives into cementitious systems. For
example, cement replacement with eggshells have been shown to reduce the embodied carbon
emissions of concrete [124,125]. Ground oyster shells have been shown to reduce porosity in
geopolymer systems [126] and decrease chloride diffusion in portland cement systems [127].
Compressive strength has been shown to increase at an optimized level of cement substitution, but
the optimal percent substitution and corresponding increase in strength is source-dependent [ 128]
and likely affected by other CaCOs characteristics, such as particle size, surface area, chemical
composition, and residual organic polymer content. Oyster concrete, in which ground oyster shells
are used in lieu of fine and coarse aggregates, has also been explored [129]. Oyster concretes are
promising due to being abundant and having a long history of use as part of the more broad
category of tabby concrete [ 130]. Tabby concrete is not unlike Roman concrete. It is a type of lime-
pozzolan concrete in which oyster shells are calcined to form quicklime and combined with a
reactive, siliceous SCM. Studies have also used oyster shells as fine aggregate substitutes, but their
use as a coarse aggregate replacement warrants further investigation [131]. Martin et al. used
powdered milk to enhance ureolytic biomineralization, where the powdered milk acted to increase
precipitation quantity and bond strength at the CaCO3-Si02 interface of the sand samples utilized
in the study [132]. Another study by Baffoe and Ghahremaninezhad demonstrated how different
proteins are more or less effective in supporting biomineralization. They showed that while
Albumin was able to stabilize vaterite, calcite, and aragonite on a sliding concentration, whey
protein showed negligible difference compared to control, which the authors attributed to
differences in protein surface charge and hydrophobicity of the proteins involved [133].

4.2 SiO: Biomineralization Applications

Applications of SiO2 biomineralization in cement and concrete research was limited at the time of
writing. Sand, clays, slag, fly ash, and slag are the most dominant SiO2 sources for applications
such as cement clinkering, fine aggregate, and cement replacement. Biological SiO2 applications
have been limited to the use of agricultural waste (e.g., rice husk ash [134,135]) or diatomaceous
earth [136] as SCMs. One study evaluated the pozzolanic reactivity of biosilica harvested from
freshly cultured diatoms (i.e., Thalassiosira pseudonana and Phaeodactylum tricornutum) in
accordance with ASTM C1897 [31]. Aside from metakaolin, diatom biosilica extracted from 7.
pseudonana exhibited the highest bound water content (9.9 = 0.6 g/100 g dried paste), indicating
high pozzolanic reactivity. Contrastingly, diatom biosilica extracted from P. tricornutum was less
reactive (4.3 = 0.1 g/100 g dried paste) but exhibited similar pozzolanic reactivity to a Class F fly
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ash. Overall, the data highlighted the potential to grow reactive biominerals for use as alternative
SCMs using CO2-sequestering microorganisms.

4.3 Emerging Applications, Opportunities, and Challenges

In addition to the previous examples, biomineralized CaCO3 and SiO2 have other potential uses
within cement and concrete field. For example, biomineralized CaCO3 and SiO2 could be used to
replace raw meal in portland cement production. The use of photosynthetic production of CO:-
storing, biomineralized CaCO3; as a limestone replacement could theoretically reduce the
embodied carbon emissions of portland cement manufacturing. Biomineralized SiO2 from diatoms
could also be used to replace the silica provided by clays and sand during cement production. To
produce the CaCO3 or SiO2 in a photosynthetic manner, cement producers would need access to
seawater and COz. The potential use of CO: waste streams (e.g., flue gas) from cement
manufacturing for microorganism growth is an advantage of this approach.

Microorganisms can produce nanoscale CaCOs and SiO2, rendering these particles
excellent candidates as reactive additives to cementitious systems [80]. The reactivity of these
particles could be tailored by physically or genetically modulating the biomineralization process.
For example, CaCOs3 could be rendered more reactive by targeting the formation and stabilization
of more reactive CaCOs3 polymorphs (i.e., vaterite, aragonite, ACC) or more intricate morphologies
(i.e., higher surface area). The chemical composition of biomineralized SiO: extracted from
diatoms could be modified to include other beneficial metal cations (e.g., Al, Fe) through doping
of the culture media. To that end, biomineralized SiO2 could also be used in the production of
sodium silicate (i.e., waterglass) that is necessary for alkali activation or, if doped with Al, reactive
precursors for alkali-activated cements.

The use of enzymes to produce biomineralized cementitious materials is an emerging area
of high-impact scientific research. Enzyme-based mineralization has several advantages over
conventional biomineralization mechanisms, including fewer resources that are otherwise required
for full-scale growth. As evidenced by the work with urea [34,38] and some emerging work with
carbonic anhydrase [34,137], the enzymes need only be present in small quantities to achieve
similar degrees of mineralization to systems containing the living microorganisms. Conversely,
the exact inhibition effects of cement pore solution and other additives on the catalytic behavior
of enzymes are not fully understood and require further investigation [52].

As with any novel material technology, there are several challenges to consider in regard
to widespread implementation of CaCO3 and SiO2 biomineralization. First, at-scale cost and scale
of production is a key consideration. One promising aspect is that the global capacity of oceanic
CaCOs is estimated to be 5.48 billion metric tons [138,139], and biogenic SiO2 from surface ocean
would be estimated to be 14 billion metric tons [140]. The cost of scaling the production of
biomineralized CaCO3 and Si02 will differ by biomineralization mechanism and organism species.
To that end, photosynthesis-driven CaCOs3 and SiO2 biomineralization have a cost advantage over
other biomineralization mechanisms, given that the energy and material inputs (e.g., sunlight,
seawater) are abundantly available. At-scale production cost of biomineralized CaCO3 and SiO2
could be further ameliorated through the valorization of organic byproducts (i.e., lipids, proteins,
carbohydrates), which may have applications in biofuels [75], catalysis [7], and medicine [141].
In addition to cost, elucidating the effects of new biominerals on fresh- and hardened-state
properties of cementitious materials is a key technical challenge. This challenge is particularly
relevant to new material systems (e.g., enzyme-based building materials) whose long-term
durability needs to be understood prior to widespread implementation. Finally, shifting paradigms
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within the cement and concrete industry from one historically rooted in mining and extraction of
minerals to one centered on cultivation (i.e., farming) of minerals remains a barrier but one that
perhaps soon will be overcome in light of the current climate crisis and a steady global shift toward
fully regenerative practices.

5.0 Conclusions

Biomineralization is an emerging area of interest within the field of cement and concrete research.
In this work, the mechanisms of CaCO3 and SiO2 biomineralization were reviewed, and the
morphological diversity of CaCOs and SiO:2 architectures were highlighted and discussed. In
addition, this work reviewed traditional applications of CaCOs and SiO2 biomineralization in
cement and concrete research, including self-healing, self-sealing, soil stabilization, and recycled
aggregate beneficiation, along with emerging applications, such as biomineralized CaCOs fillers
in cementitious materials and the production of living and enzymatically mineralized construction
materials. Potentially new application areas of CaCOs; and SiO2 biomineralization were
highlighted, including the use of CaCOs3 and Si0: as the raw materials for portland cement, SCM,
and alkali-activated cement production. Finally, this work addressed the challenges and barriers to
implementing new material technologies in the field, such as cost and scale of production, as well
as the technical, regulatory, and perception barriers that must be addressed prior to widespread
implementation.
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