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ABSTRACT The open radio access network (O-RAN) architecture is consolidating the concept of
software-defined cellular networks beyond 5G networks, mainly through the introduction of the near-real-
time radio access network (RAN) intelligent controller (Near-RT RIC) and the xApps. The deployment of
the Near-RT RICs and the assignment of RAN nodes to the deployed RICs play a crucial role in optimizing
the performance of O-RANs. In this paper, we develop a robust optimization framework for joint RIC
deployment and assignment, considering the uncertainty in user locations. Specifically, our contributions
are as follows. First, we develop C3P2, a robust static joint RIC placement and RAN node-RIC assignment
scheme. The objective of C3P2 is to minimize the number of RICs needed to control all RAN nodes
while ensuring that the response time to each RAN node will not exceed δ milliseconds with a probability
greater than β. Second, we develop CPPA, a robust joint RIC placement and adaptive RAN node-RIC
assignment scheme. In contrast to C3P2, CPPA enjoys a recourse capability, where the RAN node-RIC
assignment adapts to the variations in the user locations. We use chance-constrained stochastic optimization
combined with several linearization techniques to develop a mixed-integer linear (MIL) formulation for
C3P2. Two-stage stochastic optimization with recourse, combined with several linearization techniques, is
used to develop an MIL formulation for CPPA. The optimal performance of C3P2 and CPPA has been
examined under various system parameter values. Furthermore, sample average approximation has been
employed to design efficient approximate algorithms for solving C3P2 and CPPA. Our results demonstrate
the robustness of the proposed stochastic resource allocation schemes for O-RANs compared to existing
deterministic allocation schemes. They also show the merits of adapting the allocation of resources to the
network uncertainties compared to statically allocating them.

INDEX TERMS Open radio access networks (O-RANs), RAN intelligent controller (RIC) placement, RIC
assignment, chance-constrained stochastic optimization, two-stage stochastic optimization with recourse,
sample average approximation.
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I. INTRODUCTION

THEOPEN radio access network (O-RAN) Alliance [1]
has emerged as a transformative force in the radio access

network (RAN) industry, pioneering a shift towards open,
virtualized, interoperable, and intelligent mobile cellular
networks. At the forefront of O-RAN’s groundbreaking
specifications lies its innovative RAN architecture, a pivotal
contribution that integrates principles from software-defined
networking (SDN) and network functions virtualization
(NFV), alongside cloud-native and artificial intelligence (AI)
/ machine learning (ML) technologies [2]. Drawing inspi-
ration from SDN, the O-RAN architecture [3] incorporates
concepts such as the separation of control and data planes,
coupled with the adoption of a remote RAN controller.
Crucially, this architecture divides the controller into two
core blocks: the near-real-time RAN intelligent controller
(Near-RT RIC) handling time-sensitive operations, and the
non-real-time RAN intelligent controller (Non-RT RIC)
catering to operations with more relaxed time constraints.
This pioneering approach marks a significant evolution in
RAN design and promises to reshape the landscape of mobile
cellular networks.
A RIC operates AI/ML-based applications, establishing

control loops with the RAN nodes under its jurisdiction.
The Non-RT RIC hosts applications, referred to as rApps,
capable of handling control loop latency exceeding 1 second.
Conversely, the Near-RT RIC manages applications known
as xApps, which implement control loops constrained to
time intervals between 10 milliseconds and 1 second. The
responsiveness of a control loop is intricately tied to the
specific RAN function governed by the associated xApp.
In extensive RAN deployments, the NearRT RIC and its

latency-sensitive xApps require replication, with a designated
allocation of RAN nodes for each RIC. The strategic place-
ment of RICs plays a pivotal role in minimizing response
time. This optimization challenge, known as the controller
placement problem (CPP), involves distributing a minimum
number of RICs to optimal locations to ensure timely
completion of control functions. While extensively studied in
wired networks (examples include [4], [5], [6], [7], [8], [9],
[10], [11], [12]), the CPP presents additional complexities
in the dynamic context of mobile wireless networks. These
complexities are compounded by considerations such as
network latency, reliability, and load balancing, rendering
the CPP in cellular networks a multifaceted and challenging
undertaking.
User mobility stands out as a pivotal factor in cellular

networks, introducing a distinctive challenge to the CPP in
software-defined cellular networks (SDCNs). The advent of
SDCNs aimed to facilitate flexible cellular network designs,
aligning with the evolving requirements of 5G and beyond.
User mobility complicates the CPP, especially in the context
of SDCNs. This introduces an additional layer of uncertainty,
as the distribution of mobile users across RAN nodes
becomes stochastic. Consequently, the request rates from the
RAN nodes to the RAN controllers become unpredictable,

adding a dynamic dimension to the challenge posed by user
mobility in the CPP.
Several studies have been proposed to address the

congestion-aware1 CPP in SDCN, with a focus on load
balancing as a crucial design metric for the control plane
(examples include [13], [14], [15], [16], [17]). However, these
endeavors did not incorporate considerations for the uncer-
tainty in users’ mobility patterns, which results in variations in
the control plane workload. Stochastic programming methods
have proven to be powerful mathematical tools for optimizing
resource allocation in various types of wireless networks
operating under uncertainties (examples include [18], [19],
[20], [21]). Therefore, this paper adopts chance-constrained
and two-stage stochastic programming [22] to address the
CPP, specifically taking into account the uncertainty in users’
mobility patterns leading to variations in control workload.
Main Contributions: In this paper, we develop a robust

optimization framework for joint RIC deployment and
assignment, while considering the uncertainty in the geo-
graphical distribution of mobile users (and hence, RAN node
request rates). Specifically:

• We develop a robust static joint RIC placement and
assignment scheme (denoted by C3P2): Using chance-
constrained stochastic programming, we formulate a
static joint stochastic RIC placement and RAN node-
RIC assignment problem that is robust to the variations
in the mobile user locations (and hence the RAN node
request rates). The objective of C3P2 is to minimize the
number of RICs needed to control all RAN nodes while
ensuring that the response time to each RAN node will
exceed δ milliseconds with a probability less than 1−β.

• We develop a robust joint RIC placement and adaptive
assignment scheme (denoted by CPPA): Using two-
stage stochastic programming, we formulate a joint
stochastic RIC placement and adaptive RAN node-RIC
assignment problem. In contrast to C3P2, where the
RAN node-RIC assignment is static, CPPA enjoys a
recourse capability, where the RAN node-RIC assign-
ment adapts to the variations in the RAN node request
rates, resulting from variations in mobile user locations.
The goal of the CPPA first stage is to optimally
place the minimum number of RICs. Our optimality
criteria are: (i) minimizing the number of RICs and (ii)
minimizing the response time to various RAN nodes.
In contrast to C3P2, CPPA does not ensure that the
RAN node response time constraints are satisfied with
a minimum probability of β. The first-stage problem
decision is static and is taken before knowing which
realization of RAN node request rates will occur. In the
CPPA second stage, the RAN node-RIC assignment is
optimized under each realization of RAN node request
rates aiming at minimizing the response time to various
RAN nodes.

1We use “congestion-aware” to describe a network with variations in
workload arising from uncertainties in users’ activities.
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• To evaluate and study our proposed C3P2 and CPPA
schemes, we adopt a sample average approximation
(SAA) framework, in which:
– We use Monte Carlo sampling to generate inde-

pendent and identically distributed (i.i.d.) samples
of the RAN node request rates.

– We use the generated samples to derive determin-
istic equivalent programs that represent sampled
versions of C3P2 and CPPA, which only account
for the set of generated scenarios (i.e., samples).

– We use several linearization techniques to convert
these deterministic equivalent programs into mixed-
integer linear programs (MILPs).

– We solve the MILPs using IBM ILOG CPLEX
optimization studio. CPLEX is a prescriptive ana-
lytics solution that enables rapid development and
deployment of decision optimization models using
mathematical and constraint programming [23].

– Finally, we statistically estimate the optimality gap
of our proposed SAA framework for solving the
chance-constrained and the two-stage stochastic
programming formulations of C3P2 and CPPA,
respectively.

Paper Organization:
The rest of the paper is organized as follows. The

literature review is given in Section II. The considered
models and assumptions are stated in Section III, followed
by our problem statement. In Section IV, C3P2 is presented,
mathematically formulated, and reformulated as an MILP.
An SAA-based algorithm is also developed in Section IV
to efficiently solve C3P2. In Section V, CPPA is presented,
mathematically formulated, and reformulated as an MILP.
Furthermore, an SAA-based algorithm is developed in
Section V to solve CPPA efficiently. C3P2 and CPPA are
extensively evaluated in Section VI. Finally, we conclude the
paper in Section VII. The main notations used in this paper
are summarized in Table 1. The main abbreviations used in
the paper are summarized in Table 7 in Appendix A.

II. LITERATURE REVIEW
Numerous research endeavors have delved into the intrica-
cies of the SDN CPP and the associated node-controller
assignment problem. These investigations initially explored
the CPP in the context of wired networks design [4],
[5], [6], [7], [8], [9], [10], [24], [25], [26], [27], with
emphasis on facility location analysis. Emerging trends
indicate a growing interest in applying CPP principles to
next-generation wireless networks, particularly in the O-
RAN domain [28]. In the wireless domain, the CPP has
been applied to address challenges in mobile networks with
dynamic topologies and high mobility scenarios [13], [14],
[15], [16], [17], [28], [29], [30], [31].
The next-generation wireless networks, driven by SDN

control for O-RAN design [28], have prompted research on
the CPP in wireless networks. Notable works include [13],

TABLE 1. Notation.

[14], [15], [16], [17], [28], [29], [30], [31]. In [13], a two-
tier CPP, using mixed-integer linear programming, optimized
controller placement and node assignment according to
the variations in the data rate of traffic flows. Likewise,
in [29] the authors introduced two CPP schemes, two-
tier leader-based and single-tier leaderless control planes,
deploying them interchangeably based on network load. The
authors in [31] used simulated annealing for joint controller
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and satellite gateway placement. An ant colony with an
external memory CPP algorithm was proposed in [14] and
validated against particle swarm optimization (PSO) for load
balancing. In [32], the authors explored the load-balancing
CPP with a predetermined number of controllers, addressing
proactive and reactive controller-node assignments. In [15],
a two-stage framework was developed to optimize energy
consumption and task allocation using PSO and deep
reinforcement learning. The authors in [16] considered a
dynamic topology and developed a branch-and-cut algorithm
for optimal controller placement. Clock synchronization was
integrated for reliability in a multi-objective CPP in [17].
The work in [28] focused on placing disaggregated SDN-
like control functions using a greedy approach. Additionally,
the authors in [18] conducted the first study of the wireless
CPP, considering uncertainties in wireless links using chance-
constrained stochastic optimization.
The aforementioned works have introduced novel place-

ment optimization approaches, using heuristic methods
and deterministic (exact) optimization algorithms, to tackle
specific requirements of wireless networks. They have
considered a spectrum of critical design metrics such as
deployment cost (i.e., the number of controllers), latency,
load balancing, controller capacity, reliability, resilience, and
energy consumption to formulate optimal placement policies.
The majority of CPP research has focused on minimiz-

ing the controller deployment cost while achieving low
latency [4], [6], [7], [9], [13], [14], [16], [17], [24], [25], [26],
[27], [29]. Other works expanded their scope to include load
balancing among distributed controllers and considerations
of computational and storage power [6], [7], [13], [14], [16],
[17], [25], [26]. Conversely, some works assumed a pre-
defined number of controllers and aimed to develop optimal
placement policies while minimizing energy consumption,
considering delay and load balancing constraints [15].
The CPP research commonly conceptualized the system

as an undirected graph G(V,E), where the set of candidate
locations for controllers surrounded controlled nodes V .
These locations were modeled as a subset of V connected
to controlled nodes via wired links represented as the set
of edges E in the network graph [4], [5], [6], [7], [8],
[9], [10], [13], [16], [24], [25], [26], [27], [29], [31],
[32], [28]. Alternatively, some works adopted set theory
for system modeling [14], [15], defining pairs of device-to-
device wireless links, wireless network entities, and SDN
controllers using various sets.
These CPPs were often formulated based on the

analysis of facility location problems and their vari-
ants, including k-median (k-center) problems [4], [5],
[8], [25], [29], capacitated facility location problems,
and set covering problems [6], [7]. Additionally, Pareto
optimal multi-objective optimization [9], [17], fault-tolerant
facility location problems (k-terminal network reliability
problem) [10], bin packing problems [13], k-means graph
clustering [24], constraint covering graphs [26], integer
linear optimization problems [16], [27], and two-stage joint

optimization [14], [15], [31] have been employed for CPP
formulations.
Overall, the CPP, categorized as an NP-hard optimization

problem, has been approached with various approximation
algorithms and heuristic methods across different network
architectures, ranging from wired to wireless. The literature
underscores two main categories of optimal placement
methods: heuristic approaches [4], [5], [7], [9], [10], [14],
[15], [17], [25], [26], [27], [28], [30], [31] and deterministic
approaches integrating approximation algorithms [6], [8],
[13], [16], [24], [29], [31], [32].
The diverse range of methodologies and applications

within the CPP literature highlights the importance of
its role in optimizing software-defined control plane
designs for next-generation networks. We refer the reader
to [33], [34], [35] for more details regarding the CPP
problems and methods.
Figure 1 presents a comprehensive overview of the recent

related studies on the CPP in wireless networks, encom-
passing diverse design metrics within both single-tier and
multi-tier control plane hierarchies. In the single-tier config-
uration, geo-distributed controllers are modeled, representing
one-hop wired connections to controlled nodes and to other
controllers. On the other hand, the multi-tier control plane
introduces two distinct control domains, namely global
and local, as discussed in works such as [13], [29]. The
classification of CPP in wireless networks accounts for both
wired and wireless connections between the controllers and
controlled nodes [18].
To the best of our knowledge, all existing works on

CPP, except [18], have not adequately addressed various
system uncertainties, particularly in the realm of wireless
and mobile SDNs. The study by the authors in [18] marked
the pioneering exploration of the ‘wireless CPP,’ where
the links between the controllers and controlled nodes are
wireless, and they systematically considered uncertainties
associated with these links. Employing chance-constrained
stochastic optimization [22], they optimized the placement
of the controllers and their assignment to the controlled
elements, accounting for uncertainties in the availability of
the wireless links.
In this paper, we extend our previously proposed frame-

work from [20] for the CPP in SDCNs, where users
are mobile, and their distribution across cells in the
mobile cellular network is subject to time-varying dynamics.
Additionally, we refine the terminology to enhance the
clarity and comprehension of our work within the context
of O-RANs.

III. MODELS, ASSUMPTIONS, AND PROBLEM
STATEMENT
A. SYSTEM MODEL
We consider a set B = {1, 2, . . . ,B} of RAN nodes forming
a cellular network, and a set C = {1, 2, . . . ,C} of candidate
locations for deploying SDN (or RAN) controllers to control
the RAN nodes. According to O-RAN standards [36], a
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FIGURE 1. Taxonomy of the recent related studies of the CPP in wireless networks.

RAN node can be an O-RAN-compliant LTE evolved node
B (eNB) or a component of a next-generation node B (gNB)
(i.e., a central unit, CU, or a distributed unit, DU). A RAN
node is also commonly called an E2 node due to the E2
interface used to manage the RAN node [36]. A simplified
view of our system is depicted in Figure 2 for B = 9 and
C = 4. The RAN controllers can be connected to the RAN
nodes through wired or wireless links, as explained in [37]. In
this paper, we consider wired links between the RAN nodes
and the controllers. Multiple RAN nodes can be controlled
by the same RAN controller.
We assume that each mobile user has a request rate of k

requests/second. The locations of the mobile users are time-
varying and can be modeled as a stochastic process. Hence,
at a given time instant, we model the request rate of RAN
node b, defined as the number of users served by RAN node
b at that time instant multiplied by k, as a stochastic variable,
denoted by r̃b.

B. DISTRIBUTION OF RAN NODE REQUEST RATES
To know the distribution of r̃b,∀b ∈ B, we want to know the
distribution of the mobile user locations. In [38], the authors
concluded that the traffic density, defined as the traffic
demand per unit area, in a cellular network closely follows a
log-normal distribution with spatially correlated characteris-
tics. Supported by this, the authors in [39] proposed a spatial
model of scalable, spatially correlated, and log-normally
distributed traffic (SSLT). By controlling its parameters,
the SSLT model is capable of generating a stochastic
traffic distribution over an intended area which captures

the spatially-correlated and inhomogeneous characteristics of
traffic within a cellular network.
As proposed in [39], the model operates by defining a

grid of points, each of which takes a value corresponding to
a two-dimensional, spatially-correlated log-normal function.
In [39], each point represents a user, or a collection of
users within a pixel surrounding the point, with the specified
demand. It is assumed in [39] that each user is equally
spaced with a log-normally distributed demand. Instead, in
this paper, we assume that each user (also represented by
a point) has a constant demand and is placed according to
the log-normal density function.2 The model is extended,
removing the grid of points and maintaining the model as
a continuous density function, denoted by λ(x, y), which
acts as the parameter for a two-dimensional, non-stationary
(inhomogeneous) Poisson point process (PPP). From the
model, λ(x, y) is defined as:

λ(x, y) = eσρ
(S)(x,y)+γ , (1)

where σ and γ are the scaling and location parameters,
respectively, of the log-normal distribution, and ρ(S)(x, y)
is the standardized version of ρ(G)(x, y), the Gaussian
stochastic field. ρ(G)(x, y) is given by:

ρ(G)(x, y) = 1
L

L∑

l=1

cos(il x+ φl) cos(jl y+ ψl), (2)

where angular frequencies il and jl are uniform stochastic
variables between 0 and ωmax, and phases φl and ψl are

2Our work can be easily extended to the case when user demands are
time-varying.
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FIGURE 2. System model (B = 9 and C = 4). The locations of the mobile users form
a realization of a Poisson point process.

uniform stochastic variables between 0 and 2π . L is the
number of stochastic sinusoidal fields used to generate
ρ(G)(x, y); for a sufficiently large L, ρ(G)(x, y) can be
approximated as a Gaussian stochastic variable.
Each user is positioned according to a non-stationary

PPP with parameter λ(x, y). The PPP is generated via a
trimming method. A stationary PPP with parameter λmax,
the maximum value of λ(x, y) over the considered domain, is
first generated. Then, each point (xi, yi) of the generated PPP
is kept only with probability λ(xi, yi)/λmax. The number of
remaining PPP points within the coverage area of RAN node
b (after trimming) multiplied by k represents the request rate
of RAN node b, i.e., r̃b.

C. QUEUING DELAY AT THE RICS
In addition to the transmission (and propagation) delays,
given by 2tbc for the link between RAN node b and RIC c, a
RAN node will encounter a queuing delay at the RIC.3 We
model each RIC as an M/M/1 queuing system [40], under
which the mean delay (say, at RIC c) can be expressed

3tbc for the transmission and propagation delays from RAN node b to
RIC c and tbc for the transmission and propagation delays from RIC c to
RAN node b.

TABLE 2. C3P2 vs. CPPA.

as [41]:

E[Dc] = 1
µ−∑{

b∈B:
b assigned to c

} r̃b
, (3)

where µ is the RIC service rate (a.k.a. RIC processing
capacity) and r̃b is the request rate of RAN node b.4

D. PROBLEM STATEMENT
Our objective in this paper is to find the minimum number of
RICs, their optimal locations, and the optimal assignment of
these RICs to the RAN nodes, where the optimality criteria
are based on satisfying the RAN nodes’ delay requirements.
To formulate our problem, we introduce xbc, b ∈ B, c ∈ C,
as binary decision variables; xbc equals one if a RIC is
placed at location c to control RAN node b, and equals zero
otherwise.
In the following sections, we develop two schemes for

addressing the problem stated above. We refer to our
proposed schemes by C3P2 and CPPA. Table 2 summarizes
the main differences between C3P2 and CPPA.

IV. ROBUST STATIC JOINT RIC PLACEMENT AND RAN
NODE-RIC ASSIGNMENT (C3P2)
In this section, we present our static joint RIC placement
and RAN node-RIC assignment scheme, referred to as C3P2.

4Note that µ of each RIC needs to be greater than the total request rate
from all RAN nodes assigned to that RIC, i.e., the denominator of (3) needs
to be positive for all c ∈ C.
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A. PROBLEM FORMULATION
C3P2 aims to find the optimal placement of the minimum
number of RICs and the optimal assignment of these RICs
to the RAN nodes, to ensure that the response time to each
RAN node will exceed δ milliseconds with probability less
than 1−β. We mathematically formulate C3P2 using chance-
constrained stochastic optimization [22]. We formulate C3P2

while considering the uncertainty in r̃b, b ∈ B. We say
that C3P2 is a robust scheme; because it accounts for the
variations in r̃b, b ∈ B, resulting from variations in the
mobile user locations. Mathematically, C3P2 can be stated
as:
Problem 1 (C3P2):

minimize
{xbc,b∈B,c∈C}

∑

c∈C
1{∑b∈B xbc≥1} (4)

subject to:∑

c∈C
xbc = 1,∀b ∈ B, (5)

Pr

{

2 tbc xbc + 1
µ−∑b́∈B r̃b́ xb́c

≤ δ
}

≥ β,

∀b ∈ B,∀c ∈ C, (6)

Pr

⎧
⎨

⎩
∑

b∈B
r̃b xbc ≤ µ

⎫
⎬

⎭ = 1,∀c ∈ C, (7)

xbc ∈ {0, 1},∀b ∈ B,∀c ∈ C, (8)

where 1{·} is the indicator function, which equals one if
condition {·} is satisfied and equals zero otherwise.

B. C3P2 WITH SAMPLED REQUEST RATE DISTRIBUTION
Chance-constrained stochastic programs are largely
intractable due to the difficulty in checking the feasibility
of a particular solution [42]. In other words, for a given
xbc, b ∈ B, c ∈ C, computing Pr{2tbcxbc + 1

µ−∑b́∈B r̃b́xb́c
≤ δ}

accurately is hard. One standard technique for addressing
this difficulty in solving chance-constrained stochastic
programs is sampling. The basic idea is to approximate the
true distribution of stochastic variables with an empirical
distribution by sampling. We generate a set + of i.i.d.
samples (scenarios) from the distribution of the RAN node
request rates, described in Section III-B, using Monte
Carlo simulation. After generating the scenarios, the chance
constraint can be estimated using an indicator function as
|+|−1∑

ω∈+ 1{2 tbc xbc+ 1

µ−∑
b́∈B r

(ω)

b́
x
b́c

≤δ} ≥ β, where r(ω)
b

is the request rate of RAN node b under scenario ω. C3P2

with sampled request rate distribution is given by:
C3P2 With Sampled Request Rate Distribution:

minimize
{xbc,b∈B,c∈C}

∑

c∈C
1{∑b∈B xbc≥1} (9)

subject to:∑

c∈C
xbc = 1,∀b ∈ B (10)

1
|+|

∑

ω∈+
1{

2 tbc xbc+ 1

µ−∑
b́∈B r

(ω)

b́
x
b́c

≤δ
} ≥ α,

∀b ∈ B,∀c ∈ C, (11)∑

b∈B
r(ω)
b xbc ≤ µ,∀c ∈ C,∀ω ∈ +, (12)

xbc ∈ {0, 1},∀b ∈ B,∀c ∈ C, (13)

where α ∈ (0, 1] and it can be different from β. There are
several advantages for solving the sampled version of C3P2,
as summarized in [20]. One of these advantages is to get a
lower bound on the required number of RICs. Specifically,
if o∗β and ôα are the optimal objective function values (i.e.,
the minimum number of RICs) of C3P2 and its sampled
version, respectively. Then, it has been shown that ôα ≤ o∗β
with probability at least 1 − η if |+| ≥ 1

2(β−α)2 ln( 1
η ) and

α < β [43].5 Note that the minimum number of scenarios
needed for the result to hold depends on η and β − α. It
increases as η decreases, and it also increases as α gets
closer to β.

In the next subsection, we use several linearization
techniques to convert the sampled version of C3P2 into a
mixed-integer linear program (MILP), in order to solve it
using CPLEX.

C. MIXED-INTEGER LINEAR REFORMULATION
The mathematical formulation of C3P2 developed in the
previous subsections is non-linear. In this subsection, we
present an equivalent linear reformulation of C3P2. The
mathematical details of deriving this linear reformulation of
C3P2 are explained in Appendix B.
The sampled version of C3P2 can be equivalently written

as an MILP as follows:
MILP Reformulation of the Sampled Version of C3P2:

minimize⎧
⎨

⎩

xbc,yc,xbb́c,

z(ω)

bb́c
,u(ω)
bc ,

b,b́∈B,c∈C,ω∈+

⎫
⎬

⎭

∑

c∈C
yc (14)

subject to:∑

c∈C
xbc = 1,∀b ∈ B, (15)

∑

b∈B
xbc ≤ B yc,∀c ∈ C, (16)

2 µ tbc xbc − 2 tbc
∑

b́∈B
r(ω)

b́
xbb́c − µ N(ω)

bc u(ω)
bc

+ N(ω)
bc

∑

b́∈B
r(ω)

b́
z(ω)

bb́c
+ (δ − ϵ)

∑

b́∈B
r(ω)

b́
xb́c

≤ µ(δ − ϵ)− 1,∀b ∈ B,∀c ∈ C,∀ω ∈ +, (17)

5For example, if we select α to be smaller than β by 0.15, then solving
the sampled version of C3P2 with |+| ≥ 1

2×0.152 ln 1
0.1 = 51 scenarios

will provide a lower bound on the required number of RICs for C3P2 with
probability at least 0.9. In Section VI, we solve the sampled version of
C3P2 with |+| = 100 scenarios.
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∑

ω∈+

(
1− u(ω)

bc

)
≥ α |+|,∀b ∈ B,∀c ∈ C, (18)

xbb́c ≤ xbc,∀b, b́ ∈ B,∀c ∈ C, (19)

xbb́c ≤ xb́c,∀b, b́ ∈ B,∀c ∈ C, (20)

xbb́c ≥ xbc + xb́c − 1,∀b, b́ ∈ B,∀c ∈ C, (21)

z(ω)

bb́c
≤ u(ω)

bc ,∀b, b́ ∈ B,∀c ∈ C,∀ω ∈ +, (22)

z(ω)

bb́c
≤ xb́c,∀b, b́ ∈ B,∀c ∈ C,∀ω ∈ +, (23)

z(ω)

bb́c
≥ u(ω)

bc + xb́c − 1,

∀b, b́ ∈ B,∀c ∈ C,∀ω ∈ +, (24)∑

b∈B
r(ω)
b xbc ≤ µ,∀c ∈ C,∀ω ∈ +, (25)

xbc, yc ∈ {0, 1},∀b ∈ B,∀c ∈ C, (26)

u(ω)
bc ∈ {0, 1},∀b ∈ B,∀c ∈ C,∀ω ∈ +, (27)

xbb́c, z
(ω)

bb́c
≥ 0,∀b, b́ ∈ B,∀c ∈ C,∀ω ∈ +. (28)

This MILP formulation can be solved optimally using
CPLEX.

D. COMPUTATIONAL COMPLEXITY
An MILP is, in general, NP-complete (i.e., there is no known
algorithm that has a finishing time that is polynomial in
the problem size)6 [44]. However, MILPs can certainly be
solved in a time that is exponential in the problem size using
the branch and bound algorithms implemented in CPLEX.
The MILP formulation of C3P2 with sampled request

rate distribution has BC + C + BC|+| = O(BC|+|) binary
variables and B2C + B2C|+| = O(B2C|+|) continuous
variables. It also has B+C+BC|+|+BC+3B2C+3B2C|+|+
C|+| = O(B2C|+|) constraints.
A pure integer program (IP) is a special case of a

mixed integer program (MIP). (An IP is an MIP with zero
continuous variables.) Hence, an MIP is at least as hard as
its corresponding IP. Therefore, the complexity of solving
C3P2 can be expressed as +(2BC|+|). This motivates us to
develop, in the next subsection, a more efficient approach
for solving C3P2.

E. SAMPLE AVERAGE APPROXIMATION (SAA)
ALGORITHM FOR C3P2

In the previous subsection, we converted the sampled
version of C3P2 into a form that can be solved optimally
using the branch-and-bound and branch-and-cut algorithms
implemented in CPLEX. In this subsection, we present an
algorithm that provides lower and upper statistical bounds
for the optimal objective function value of C3P2 (Problem 1).
This algorithm, called the sample average approximation
(SAA) algorithm, is summarized in Algorithm 1. The SAA
algorithm consists of the following four main processes:

• Scenario generation. The uncertainty in C3P2 is in the
RAN node request rates. The first process in the SAA

6Unless they have a special structure, such as the totally unimodular
integer programs.

algorithm is to generate the scenarios (realizations of the
RAN node request rates) as described in Section III-B.
Let + be the set of generated scenarios.

• Solution of C3P2 with sampled request rate distribution.
The second process in the SAA algorithm is to solve
the sampled version of C3P2, considering the scenarios
that have been generated in the first process.

• Verification of the solution feasibility. Assume that x̄ def=
[x̄bc,∀b ∈ B,∀c ∈ C] is an optimal solution for the
sampled version of C3P2. In the third process of the
SAA algorithm, we verify the feasibility of x̄ to C3P2.
To do this, we first estimate the true probability function
q(x̄) (defined in (29)) by q̂|+|(x̄) (defined in (30)) using
the set of scenarios + generated in the first process.

q(x̄) def= Pr

{

2 tbc xbc + 1
µ−∑b́∈B r̃b́ xb́c

> δ

}

, (29)

q̂|+|(x̄)
def= 1

|+|
∑

ω∈+
1{

2 tbc xbc+ 1

µ−∑
b́∈B r

(ω)

b́
x
b́c

>δ

}. (30)

Next, following the method described in [42] and [45],
we construct a (1−ξ)-confidence upper bound on q(x̄),
given by:

U(x̄) def= q̂|+́|(x̄) + zξ

√√√√ q̂|+́|(x̄)
(

1− q̂|+́|(x̄)
)

|+́|
, (31)

where +́ is a set of new scenarios generated for
the verification of the feasibility of x̄, q̂|+́|(x̄) is the

estimated value of q(x̄) for the set of scenarios +́, zξ
def=

0−1(1 − ξ), and 0(·) is the cumulative distribution
function (CDF) of the standard normal distribution.7 If
U(x̄) is less than the risk level (1−β), then x̄ is feasible
with confidence level (1− ξ).

• Computation of the statistical lower and upper bounds.
If x̄ is a feasible solution to C3P2 (with confidence
level (1−ξ)), then the corresponding objective function
value constitutes a statistical upper bound on the optimal
objective function value of C3P2. To get a lower bound
for the optimal objective function value, we take I
iterations. For each iteration, we run the sampled version
of C3P2 with |+| scenarios J times.8 For these J runs,
we follow the same scheme as the one described in [42]
to pick the lth smallest optimal value. Specifically, we
first compute θ|+|, as follows:

θ|+|
def= B(⌊(1− α) |+|⌋; 1− β, |+|)
def=
⌊(1−α) |+|⌋∑

i=0

(|+|
i

)
(1− β)iβ |+|−i. (32)

7|+́| is typically significantly larger than |+|.
8We pick a different set of |+| scenarios for every iteration of 1 ≤ i ≤ I

and 1 ≤ j ≤ J.
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Algorithm 1: SAA Algorithm for C3P2

Result: Lower and upper statistical bounds on the
optimal objective function value.
i← 1 j← 1
while i ≤ I do

while j ≤ J do
a. Generate a new set + of scenarios.
b. Using CPLEX, solve the sampled version of

C3P2 with the new set + of scenarios. Denote
the solution by x̄ij and the optimal value
by ōij.

c. Generate a new set +́ of scenarios.
d. Estimate q(x̄ij) in (29) using the set +́ of

scenarios, as in (30). Denote the estimated
value of q(x̄ij) by q̂|+́|(x̄ij). Use (31) to
compute U(x̄ij).

if U(x̄ij) ≤ 1− α then
Go to step e.

else
Continue to iteration j+ 1.

end
e. Estimate the corresponding upper bound for

C3P2 using (14).
end
Pick the smallest upper bound as the approximated
upper bound and denote it by ai.
Sort the optimal solutions in non-decreasing order,
pick the lth optimal value from (32)–(33), and
denote it by ōili .

end
1
I

∑I
i=1 ōili is a lower statistical bound for the optimal

objective function value.
min

1≤i≤I
ai is an upper statistical bound for the optimal

objective function value.
The optimality gap is estimated to be
min

1≤i≤I
ai− 1

I
∑I

i=1 ōili
1
I
∑I

i=1 ōili
× 100%.

where B(·; ·, ·) is the CDF of the binomial distribution.
Then, l is computed as the largest integer such that:

B
(
l− 1; θ|+|, J

)

def=
l−1∑

i=0

(
J
i

)
θ|+|i

(
1− θ|+|

)J−i

≤ ξ . (33)

Finally, taking the average of the lth smallest optimal
values across the I iterations provides a lower bound
for the optimal objective function value.

As explained in [42], if the optimal value of the sampled
version of C3P2 is denoted by ō, then ōij, j ∈ {1, 2, . . . , J}
for a given i (in Algorithm 1), can be viewed as an i.i.d.

sample of the random variable ō. If ōij are sorted in a non-
decreasing order, i.e., ōi1 ≤ . . . ≤ ōiJ . Then, it can be shown
that with probability at least 1− ξ , the random quantity ōili
is a lower bound of the optimal objective function value of
C3P2 [43], [46], [47].

V. ROBUST JOINT RIC PLACEMENT AND ADAPTIVE
RAN NODE-RIC ASSIGNMENT (CPPA)
In this section, we consider the joint stochastic RIC
placement and adaptive RAN node-RIC assignment problem,
referred to as CPPA.

A. PROBLEM FORMULATION
Using two-stage stochastic programming [22], we formulate
CPPA under the uncertainty of r̃ def= [r̃b,∀b ∈ B]. In contrast
to C3P2, in CPPA the RAN node-RIC assignment adapts to
the variations in the RAN node request rates.
The goal of the first-stage problem is to optimally place

the minimum number of RICs, knowing the distribution of
r̃. Our optimality criteria are: (i) minimizing the number of
RICs and (ii) minimizing the response time to various RAN
nodes, without decreasing it below δ. In contrast to C3P2,
CPPA does not ensure that the RAN node response time
constraints are satisfied with a minimum probability of β.
The first-stage problem decision is static and is taken before
knowing which realization of r̃ will occur. In the second-
stage problem, the RAN node-RIC assignment is optimized
under each realization of r̃ aiming at minimizing the response
time to various RAN nodes, without decreasing it below
δ. Our two-stage stochastic optimization problem can be
formulated as follows:
Problem 2 (CPPA):

minimize
{yc,c∈C}

⎧
⎨

⎩
∑

c∈C
yc + E

[
h(x, r̃)

]
⎫
⎬

⎭ (34)

subject to:

yc ∈ {0, 1},∀c ∈ C, (35)

where h(x, r̃) is the optimal value of the second-stage
problem, which is given by:

minimize{ xbc,
b∈B,c∈C

}

⎧
⎨

⎩
∑

b∈B

∑

c∈C
qbc

×max

(

2 tbc xbc + 1
µ−∑b́∈B r̃b́ xb́c

, δ

)}

(36)

subject to:

yc = 1{∑b∈B xbc≥1},∀c ∈ C, (37)
∑

c∈C
xbc = 1,∀b ∈ B, (38)

Pr

⎧
⎨

⎩
∑

b∈B
r̃b xbc ≤ µ

⎫
⎬

⎭ = 1,∀c ∈ C, (39)

xbc ∈ {0, 1},∀b ∈ B,∀c ∈ C, (40)
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where qbc, b ∈ B, c ∈ C, are design coefficients introduced
to balance the tradeoff between minimizing the number of
RICs and minimizing the response time to the RAN nodes.

B. CPPA WITH SAMPLED REQUEST RATE
DISTRIBUTION
A key source of difficulty in solving two-stage stochastic
programs is in evaluating E[h(x, r̃)]. One standard technique
for addressing this difficulty is sampling. The basic idea, as
described in Section III-B, is to approximate the true distri-
bution of stochastic variables with an empirical distribution
by sampling. We generate a set + of i.i.d. samples (scenarios)
from the distribution of the RAN node request rates using
Monte Carlo simulation. After generating the scenarios,
E[h(x, r̃)] can be estimated as 1

|+|
∑
ω∈+ h(x, r

(ω)), where

r(ω) def= [r(ω)
b ,∀b ∈ B] is the vector of the RAN node request

rates under scenario ω. CPPA with sampled request rate
distribution is given by:
CPPA With Sampled Request Rate Distribution:

minimize⎧
⎨

⎩
yc,x

(ω)
bc ,

b∈B,c∈C,
ω∈+

⎫
⎬

⎭

⎧
⎨

⎩
∑

c∈C
yc + 1

|+|
∑

ω∈+

⎛

⎝
∑

b∈B

∑

c∈C
qbc ×max

×

⎛

⎝2 tbc x
(ω)
bc + 1

µ−∑b́∈B r
(ω)

b́
x(ω)

b́c

, δ

⎞

⎠

⎞

⎠

⎫
⎬

⎭ (41)

subject to:

yc = 1{∑
ω∈+

∑
b∈B x

(ω)
bc ≥1

},∀c ∈ C, (42)
∑

c∈C
x(ω)
bc = 1,∀b ∈ B,∀ω ∈ +, (43)

∑

b∈B
r(ω)
b xbc ≤ µ,∀c ∈ C, ∀ω ∈ +, (44)

x(ω)
bc ∈ {0, 1},∀b ∈ B, ∀c ∈ C, ∀ω ∈ +, (45)

yc ∈ {0, 1}, ∀c ∈ C. (46)

It has been shown that a solution to the CPPA with
sampled request rate distribution is an optimal solution to the
CPPA with probability approaching one exponentially fast
as |+| increases [48], [49]. Specifically, if y def= [yc,∀c ∈ C],
and yϵ and ŷϵ denote the sets of ϵ-optimal solutions of CPPA
and its sampled version, respectively. Then, for any ϵ > 0
and δ ∈ [0, ϵ], there exists a constant ζ(δ, ϵ) ≥ 0 such that
Pr{ŷδ ⊂ yϵ} ≥ 1− 2Ce−ζ(δ,ϵ)|+|.

In the next subsection, we use several linearization
techniques to convert the sampled version of CPPA into a
mixed-integer linear program (MILP), in order to solve it
using CPLEX.

C. MIXED-INTEGER LINEAR REFORMULATION
The mathematical formulation of CPPA developed in the
previous subsections is non-linear. In this subsection, we
present an equivalent linear reformulation of CPPA. The
mathematical details of deriving this linear reformulation of
CPPA are explained in Appendix C.

Algorithm 2: SAA Algorithm for CPPA
Result: Lower and upper statistical bounds on the

optimal objective function value.
j← 1
while j ≤ J do

a. Generate a new set + of scenarios.
b. Solve the sampled version of CPPA with the new

set + of scenarios. Denote the solution by x̄j and
the optimal value by ōj.

c. Generate a new set +́ of scenarios.
d. Estimate the corresponding upper bound for CPPA

based on the set +́ of scenarios, which is given by
aj

def= ∑
c∈C yc + 1

|+́|
∑
ω∈+́ h

(
x̄, r(ω)

)
.

end
1
J

∑J
j=1 ōj is a lower statistical bound for the optimal

objective function value.
min

1≤j≤J
aj is an upper statistical bound for the optimal

objective function value.
The optimality gap is estimated to be
min

1≤j≤J
aj− 1

J
∑J

j=1 ōj

1
J
∑J

j=1 ōj
× 100%.

The sampled version of CPPA can be equivalently written
as an MILP as follows:
MILP Reformulation of the Sampled Version of CPPA:

minimize⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

yc,x
(ω)
bc ,

v(ω)
bc ,f (ω)

bc ,

d(ω)
bc ,x(ω)

bb́c
,

f (ω)

bb́c
,e(ω)

bb́c
,

b,b́∈B,
c∈C,ω∈+

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧
⎨

⎩
∑

c∈C
yc + 1

|+|
∑

ω∈+

⎛

⎝
∑

b∈B

∑

c∈C
qbc v

(ω)
bc

⎞

⎠

⎫
⎬

⎭

(47)

subject to:

(15), (16), (25), (63)−(69),∀ω ∈ +
linearization constraints of x(ω)

bb́c
and f (ω)

bb́c
, similar

to (61) and (62).

This MILP formulation can be solved optimally using
CPLEX.

D. COMPUTATIONAL COMPLEXITY
The MILP formulation of CPPA with sampled request rate
distribution has C+3BC|+|+2B2C|+| = O(B2C|+|) binary
variables and BC|+| + B2C|+| = O(B2C|+|) continuous
variables. It also has 4B2C|+| + 6BC|+| + 2C|+| + B|+| =
O(B2C|+|) constraints. Hence, the complexity of solving
CPPA can be expressed as +(2B

2C|+|). This motivates us to
develop, in the next subsection, a more efficient approach
for solving CPPA.

VOLUME 5, 2024 2367



ABDEL-RAHMAN et al.: ON ROBUST OPTIMAL JOINT DEPLOYMENT AND ASSIGNMENT

E. SAMPLE AVERAGE APPROXIMATION (SAA)
ALGORITHM FOR CPPA
Similar to C3P2, in this subsection we present an SAA
algorithm that provides lower and upper statistical bounds
for the optimal objective function value of CPPA. This
algorithm, summarized in Algorithm 2, consists of three main
processes: (i) Scenario generation, (ii) solution of CPPA with
sampled request rate distribution, and (iii) computation of the
statistical lower and upper bounds. Processes (i) and (ii) are
similar to those of the SAA algorithm of C3P2, described in
Section IV-E. If (ȳ def= [ȳc,∀c ∈ C], x̄) is a feasible solution
to CPPA, then

∑
c∈C ȳc + 1

|+́|
∑
ω∈+́ h(x̄, r

(ω)) constitutes a
statistical upper bound on the optimal objective function
value of CPPA, where +́ is a new set of scenarios that
is different from the set generated in the first process of
the SAA algorithm. To get a lower bound for the optimal
objective function value of CPPA, we take J iterations. For
each iteration, we run the sampled version of CPPA with
|+| scenarios.9 Taking the average of the optimal values
across the J iterations provides a lower bound for the optimal
objective function value.

VI. PERFORMANCE EVALUATION
In this section, we evaluate our stochastic joint RIC
placement and RAN node-RIC assignment schemes and
compare them with sequential optimization and deterministic
optimization schemes.

A. EVALUATION SETUP
We used the grid topology shown in Figure 3 with B = 9 and
C = 4. The RIC processing capacity (µ) was set to 20000
requests/second. k in Section III was set to 0.2. The packet
size of the flow setup request was set to 1500 Bytes [50]
and the channel data rate was set to 100 Mbps (hence, the
transmission time equals 1500×8

100×106 = 0.12 milliseconds). α
in (11) equals β in (6). We ran our experiments on an Intel
core i5 3.3 GHz core duo with 64 GB RAM.

In addition to the number of RICs, we introduce two
performance evaluation metrics to assess the ability of the
RIC deployment and assignment schemes to provide on-time
responses to the RAN node requests. These metrics are:

• The average probability of RAN node satisfaction: In
general, the response time to different RAN nodes will
be ≤ δ with different probabilities. In this metric, we
compute the average of these probabilities.

• The average RAN node delay dissatisfaction: If the
response time to a RAN node is ≤ δ with probability
κ , this means that the response time to this RAN node
exceeds δ for (1−κ)×100% of the scenarios. The excess
delay under these scenarios varies from one scenario to
another. In this metric, we compute the average excess
delay, averaged over the scenarios where the response
time exceeds δ and over the different RAN nodes.

9Every time, we pick a different set of |+| scenarios.

FIGURE 3. Considered network topology in our performance evaluation. The
locations of the mobile users form a realization of a Poisson point process.

To explain how the average probability of RAN node
satisfaction and the average RAN node delay dissatisfaction
are computed, let Ibω and dbω be two variables defined for
each b ∈ B and ω ∈ +. Then, the average probability of
RAN node satisfaction and the average RAN node delay
dissatisfaction can be computed following Procedure .
We studied the effects of δ, β, and qbc

def= q,∀b ∈ B,
∀c ∈ C, on the above performance metrics.

B. DETERMINISTIC PLACEMENT AND ASSIGNMENT:
SEQUENTIAL VS. JOINT
In this subsection, we demonstrate the advantages of
jointly optimizing the RIC placement and the RAN node-
RIC assignment problems, as compared to solving these
problems sequentially. Specifically, we compare a modified
version of C3P2, after replacing the stochastic per-link delay
constraint (6) with the following deterministic average delay
constraint:

∑
b∈B 2 tbc xbc∑

b∈B xbc
+ 1

µ−∑b∈B E
[
r̃b
]
xbc
≤ δ, (48)

with a sequential scheme, similar to the one proposed in [12],
in which the controller placement and the switch-controller
assignment problems were solved separately.
In our sequential scheme, the set of RAN nodes B is

divided into C subsets, denoted by Sc, c ∈ C, that are
not necessarily mutually exclusive. The subset Sc includes
the RAN nodes that are in the immediate neighborhood of
the RIC candidate location c ∈ C. (A RAN node can be
in the immediate neighborhood of multiple RIC candidate
locations and hence exist in multiple subsets.) If a RIC is
to be deployed at location c, then the RAN nodes that are
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FIGURE 4. Comparison between sequential [12] and joint RIC placement and RAN node-RIC assignment.

Procedure 1: Performance Metrics Evaluation
Input: RIC placement and assignment,
tbc,∀b ∈ B, c ∈ C, µ, r(ω)

b ,∀b ∈ B,ω ∈ +, and δ
Output: Average probability of RAN node satisfaction
and average RAN node delay dissatisfaction for each
RAN node b ∈ B do

for each scenario ω ∈ + do
Evaluate the response time to RAN node b
under scenario ω, following the RIC placement
and assignment provided by each scheme.
if response time ≤ δ then

Ibω = 1
dbω = 0

else
Ibω = 0
dbω = response time − δ

end
end
Compute the probability of delay satisfaction for
RAN node b as 1

|+|
∑
ω∈+ Ibω.

Compute the average delay dissatisfaction for RAN
node b as 1

|+|
∑
ω∈+ dbω.

end
Compute the average probability of RAN node
satisfaction as 1

B

∑
b∈B

1
|+|
∑
ω∈+ Ibω.

Compute the average RAN node delay dissatisfaction
as 1

B

∑
b∈B

1
|+|
∑
ω∈+ dbω.

in Sc and do not exist in any other subset will be assigned
to it. A RAN node that belongs to multiple subsets will be
randomly assigned to one of the corresponding RIC locations
(if a RIC is to be deployed at more than one of these
locations).
After precomputing Sc,∀c ∈ C, the RIC placement is

optimized taking Sc, c ∈ C as input data by finding the
minimal sub-collection of Sc, c ∈ C that serves all RAN
nodes. For each RAN node, it is required that at least one
of the subsets containing it is selected.

As shown in Figure 4, the joint scheme (i) reduces the
number of RICs from three to two for most values of δ, (ii)
increases the average probability of RAN node satisfaction
by at least 50% (when δ = 1 millisecond), and (iii) brings
the level of average RAN node delay dissatisfaction close
to 0.

C. DETERMINISTIC VS. STOCHASTIC PLACEMENT AND
ASSIGNMENT
In this subsection, we illustrate the gains of stochastic
optimization as compared to deterministic optimization.
Specifically, we compare C3P2 with a deterministic version
of it, when we replace r̃b with E[r̃b] and remove the prob-
ability term in (6). We considered 100 i.i.d. scenarios, i.e.,
realizations of mobile user locations (and hence, RAN node
request rates), each containing 1000 users. Each scenario
was generated as a non-stationary PPP from the SSLT field
(as described in Section III-B) with ωmax = π/30, σ = 1,
γ = 0, and L = 25. The field is valid over the domain x, y ∈
[0, 750] meters. E[r̃b] = [2629.4, 3957.8, 3360.8, 2824.8,
4544, 2591.6, 2806.8, 2635.4, 3039.8]. Pr{r̃b < E[r̃b]} =
[0.51, 0.53, 0.48, 0.55, 0.52, 0.51, 0.55, 0.51, 0.45].
Since 0.45 ≤ Pr{r̃b < E[r̃b]} ≤ 0.55, Figure 5 shows

a comparable performance of the deterministic scheme
to C3P2 with β = 0.6. However, when β increases to
0.85, C3P2 improves the average probability of RAN node
satisfaction significantly and brings the average RAN node
delay dissatisfaction level close to 0.

D. STOCHASTIC PLACEMENT AND ASSIGNMENT:
STATIC VS. ADAPTIVE
In this subsection, we compare our static single-stage scheme
(C3P2) with the adaptive two-stage scheme (CPPA) using the
same 100 scenarios used in Section VI-C. As can be seen
from (47), q def= qbc,∀b ∈ B,∀c ∈ C, controls the tradeoff
between the number of RICs needed and the RAN node
delay satisfaction. The objective function of CPPA (47) is
a weighted sum of the number of RICs and the expected
delay, where the weight of the number of RICs is one and
the weight of the expected delay is q.
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FIGURE 5. Comparison between deterministic and static stochastic RIC placement and RAN node-RIC assignment.

FIGURE 6. Comparison between static (C3P2) and adaptive (CPPA) joint RIC placement and RAN node-RIC assignment.

FIGURE 7. Effect of qbc
def= q, ∀b ∈B, ∀c ∈C, on the joint RIC placement and adaptive RAN node-RIC assignment (CPPA).

We consider two use cases. In the first use case, q is
set to a value that makes the expected delay dominated
by the number of RICs needed (i.e., it is more important
for the optimizer to minimize the number of RICs than
minimizing the expected delay). Considering the range of
values that the expected total delay can take in the given
setup, setting q to 10−7 makes the second term in the
objective function in (47), which is q × expected delay, less
than 0.1.

In the second use case, q is set to a value that makes the
number of RICs dominated by the expected delay (i.e., it is

more important for the optimizer to minimize the expected
delay than minimizing the number of RICs). Setting q to
1 makes the second term in the objective function in (47),
which is q × expected delay, several orders of magnitude
higher than the first term (i.e., the number of RICs).
As shown in Figures 6(a) and 7(a), in the first use case two

RICs are enough for most values of δ, which is significantly
less than the number of RICs needed in the second use case,
and comparable to the number of RICs of C3P2.

Recall that in contrast to C3P2, CPPA does not provide
guarantees on RAN node delay satisfaction. Even though,

2370 VOLUME 5, 2024



TABLE 3. Results of C3P2 for different values of |!́| when I = 5, J = 5, and |!| = 50.

TABLE 4. Results of C3P2 for different values of |!́| when I = 7, J = 5, and |!| = 50.

Figure 6 shows that when q = 1 CCPA has a superior
performance in RAN node satisfaction compared to C3P2

when β = 0.6, and a comparable performance to C3P2 when
β = 0.85. Finally, Figure 7 demonstrates the effect of q on
controlling the tradeoff between the number of RICs and the
RAN node delay satisfaction.

E. SAMPLE AVERAGE APPROXIMATION (SAA)
In this subsection, we evaluate the SAA algorithms of C3P2

and CPPA.

1) C3P2

Considering the setup explained in Section VI-A, in
Tables 3 and 4 we compare the results obtained from running
the C3P2 with sampled request rate distribution ((14)–(28))
with the results obtained from running the SAA algorithm
of C3P2 (Algorithm 1). We considered different values of I,
J, |+|, and |+́|.
Two use cases are shown in Tables 3 and 4. In the first use

case, I, J, and |+| in Algorithm 1 were set to 5, 5, and 50,
respectively. Three different values of |+́| were examined
in this use case. The results of the SAA algorithm of C3P2

with these parameter values are compared with the results
of the C3P2 (with sampled request rate distribution) with
|+| = 5 × 5 × 50 = 1250 scenarios and shown in Table 3.
Table 3 shows that, for the three different values of |+́|,
the SAA algorithm was able to achieve the same optimal
solutions as the C3P2 (optimality gap is 0%). This means
that instead of running one MILP for 1250 scenarios, using
the SAA algorithm, we can run in parallel 5 × 5 = 25
independent MILPs, each for 50 scenarios, and obtain the
optimal solution.
In the second use case, I, J, and |+| in Algorithm 1

were set to 7, 5, and 50, respectively. Two different values
of |+́| were examined in this use case. The results of the
SAA algorithm of C3P2 with these parameter values are
compared with the results of the C3P2 with |+| = 7× 5×
50 = 1750 scenarios and shown in Table 4. Again, Table 4
shows that, for the two different values of |+́|, the SAA

TABLE 5. Results of the SAA algorithm of CPPA for different values of |!| when
J = 8 and |!́| = 1100.

TABLE 6. Results of the SAA algorithm of CPPA for different values of |!́| and J
when |!| = 80.

algorithm was able to achieve the same optimal solutions as
the C3P2 (optimality gap is 0%). This means that instead
of running one MILP for 1750 scenarios, using the SAA
algorithm, we can run in parallel 7 × 5 = 35 independent
MILPs, each for 50 scenarios, and obtain the optimal
solution.

2) CPPA

Tables 3 and 4 motivate us to use the SAA algorithm of
CPPA to solve the CPPA for a much larger set of scenarios,
compared to the set of scenarios that can be considered when
solving the CPPA with sampled request rate distribution.
Using the SAA algorithm, we obtained estimates of lower
and upper bounds on the optimal objective function value,
considering up to 10, 000 scenarios (compared to the 100
scenarios considered when solving the CPPA with sampled
request rate distribution).
Two experiments were conducted. In the first experiment,

J and |+́| were set to 8 and 1100, respectively and three
different values of |+| were considered. The lower and upper
statistical bounds along with the optimality gaps are shown
in Table 5. As shown in Table 5, increasing the number of
considered scenarios (|+|) reduces the optimality gap.

In the second experiment, |+| was set to 80 and four
different combinations of (|+́|, J) were considered. The
lower and upper statistical bounds along with the optimality
gaps are shown in Table 6. As shown in Table 6, increasing
the number of scenarios used in the verification process
(|+́|) or J reduces the optimality gap. Tables 5 and 6 show
the ability of the SAA algorithm to estimate the optimal
objective function value with a very low optimality gap. This
is further illustrated using the circular dendrograms shown
in Figures 8 and 9.

VII. CONCLUSION
Using stochastic programming, in this paper we studied the
controller placement problem in software-defined cellular
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FIGURE 8. Lower bound (LB), upper bound (UB), and optimality gap (Gap) of
SAA-based CPPA for different values of |!| when J = 8 and |!́| = 1100.

FIGURE 9. Lower bound (LB), upper bound (UB), and optimality gap (Gap) of
SAA-based CPPA for different values of |!́| and J when |!| = 80.

networks, considering the uncertainty in the mobile user
locations. We employed a generic theoretical approach that
can be applied to different SDCN technologies, but we
also showed the applicability of our proposal to the under-
development O-RANs. We developed a static (C3P2) and an
adaptive (CPPA) joint stochastic controller placement and
RAN node-controller assignment problems. Our optimization

TABLE 7. List of abbreviations.

criteria are: (i) minimizing the number of controllers and
(ii) minimizing the response time to various RAN nodes. In
contrast to C3P2, in CPPA the RAN node-controller assign-
ment adapts to the variations in the mobile user locations.
However, CPPA does not ensure that the RAN node response
time constraints are satisfied with a minimum probability of
β, whereas C3P2 ensures that. Using stochastic optimization
and sample average approximation (SAA), combined with
various linearization techniques, we extensively evaluated
C3P2 and CPPA. Our results demonstrated the advantages of
(i) joint compared to sequential optimization, (ii) stochastic
compared to deterministic optimization, and (iii) adaptive
compared to static optimization. They also illustrated the
ability of the proposed SAA framework in solving C3P2

and CPPA efficiently (with much lower time complex-
ity compared to solving the full deterministic equivalent
mixed-integer linear programs) and estimating their optimal
objective function values with very low optimality gaps.

APPENDIX A
ABBREVIATIONS
The list of abbreviations used in the paper are listed in
Table 7.
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APPENDIX B
MILP REFORMULATION OF C3P2

The objective function of C3P2 (9) and the response time
constraint (11) have indicator functions, which are non-linear.
In the following, we explain the linearization methodology
for each of these indicator functions [51].

A.LINEARIZING THE OBJECTIVE FUNCTION
To linearize the indicator function in (9), we introduce new
auxiliary binary decision variables, yc,∀c ∈ C, which are
defined in terms of the true decision variables xbc, b ∈ B,
c ∈ C, as follows:

yc
def= 1{∑b∈B xbc≥1},∀c ∈ C. (49)

The objective function (9) is then rewritten as:

minimize
{xbc,b∈B,c∈C}

∑

c∈C
yc (50)

subject to:

yc
def= 1{∑b∈B xbc≥1},∀c ∈ C. (51)

The relationship between yc and xbc, given by (51), needs
then to be linearly reformulated so that the indicator function
is omitted. Equation (51) says that yc = 1 if and only if∑

b∈B xbc ≥ 1, which means the following:
• If

∑
b∈B xbc ≥ 1 then yc = 1.

• If yc = 1 then
∑

b∈B xbc ≥ 1.
Each of the above if-then statements needs to be linearly

expressed.
Let M be an upper bound of

∑
b∈B xbc−1. Then, the first

if-then statement above can be reformulated as follows:
∑

b∈B
xbc − (M + ϵ)yc ≤ 1− ϵ, (52)

where ϵ > 0 is a small tolerance beyond which we regard
the constraint as having been broken. Selecting M and ϵ to
be B− 1 and 1, respectively, (1) reduces to:

∑

b∈B
xbc ≤ Byc. (53)

Equation (53) expresses the if-then statement “if∑
b∈B xbc ≥ 1 then yc = 1” linearly. If

∑
b∈B xbc ≥ 1, then,

according to (53), yc cannot be assigned to 0 and it has to
be 1.
Next, we reformulate the second if-then statement above.

Let m be a lower bound of
∑

b∈B xbc− 1. Then, the second
if-then statement can be reformulated as follows:

∑

b∈B
xbc + m yc ≥ m+ 1, (54)

Selecting m to be −1, (2) reduces to:
∑

b∈B
xbc ≥ yc. (55)

Equation (55) expresses the if-then statement “if yc = 1
then

∑
b∈B xbc ≥ 1” linearly. If yc = 1, then, according

to (55),
∑

b∈B xbc ≥ 1. Note that the second if-then statement
above is equivalent to

∑
b∈B xbc = 0 =⇒ yc = 0, which is

already enforced by the objective function since it aims at
minimizing the number of RICs. Hence, (55) is redundant.
Considering (53) and (55), it follows that (51) can be

linearly reformulated as follows:

yc ≤
∑

b∈B
xbc ≤ Byc,∀c ∈ C. (56)

B.LINEARIZING THE RESPONSE TIME CONSTRAINT
To reformulate (11), we introduce a binary variable u(ω)

bc for
each link between RAN node b ∈ B and RIC c ∈ C, and
each scenario ω ∈ +. u(ω)

bc = 0 if the response time of
RIC c to RAN node b under scenario ω is less than δ, and
u(ω)
bc = 1 otherwise. Then, (11) is equivalent to the following
constraints:

2 tbc xbc + 1

µ−∑b́∈B r
(ω)

b́
xb́c
− δ + ϵ ≤ N(ω)

bc u(ω)
bc ,

∀b ∈ B,∀c ∈ C,∀ω ∈ +, (57)∑

ω∈+

(
1− u(ω)

bc

)
≥ α |+|,∀b ∈ B,∀c ∈ C, (58)

where N(ω)
bc = (2 tbc + 1

µ−∑b́∈B r
(ω)

b́

− δ + ϵ) is an upper-

bound for the left-hand-side of (57) and ϵ > 0 is a small
tolerance beyond which we regard the constraint as having
been broken.
Constraint (57) is non-linear. It can be equivalently written

as:

2 µ tbc xbc − 2 tbc xbc
∑

b́∈B
r(ω)

b́
xb́c − µ N(ω)

bc u(ω)
bc

+ N(ω)
bc u(ω)

bc

∑

b́∈B
r(ω)

b́
xb́c + (δ − ϵ)

∑

b́∈B
r(ω)

b́
xb́c

≤ µ(δ − ϵ)− 1,∀b ∈ B,∀c ∈ C,∀ω ∈ +. (59)

Equation (59) includes the non-linear terms xbc xb́c and
u(ω)
bc xb́c. It can be equivalently expressed in a linear form
as follows:

2 µ tbc xbc − 2 tbc
∑

b́∈B
r(ω)

b́
xbb́c − µ N(ω)

bc u(ω)
bc

+ N(ω)
bc

∑

b́∈B
r(ω)

b́
z(ω)

bb́c
+ (δ − ϵ)

∑

b́∈B
r(ω)

b́
xb́c

≤ µ(δ − ϵ)− 1,∀b ∈ B,∀c ∈ C,∀ω ∈ +. (60)

After introducing the new decision variables xbb́c and z(ω)

bb́c
,

∀b, b́ ∈ B,∀c ∈ C,∀ω ∈ +, and adding the following
constraints:

xbb́c ≤ xbc,∀b, b́ ∈ B,∀c ∈ C,
xbb́c ≤ xb́c,∀b, b́ ∈ B,∀c ∈ C,
xbb́c ≥ xbc + xb́c − 1,∀b, b́ ∈ B,∀c ∈ C,
xbb́c ≥ 0,∀b, b́ ∈ B,∀c ∈ C. (61)
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z(ω)

bb́c
≤ u(ω)

bc ,∀b, b́ ∈ B,∀c ∈ C,∀ω ∈ +,

z(ω)

bb́c
≤ xb́c,∀b, b́ ∈ B,∀c ∈ C,∀ω ∈ +,

z(ω)

bb́c
≥ u(ω)

bc + xb́c − 1,∀b, b́ ∈ B,∀c ∈ C,∀ω ∈ +,

z(ω)

bb́c
≥ 0,∀b, b́ ∈ B,∀c ∈ C,∀ω ∈ +. (62)

Therefore, the sampled version of C3P2 can be equiva-
lently written as an MILP as (14)-(28).

APPENDIX C
MILP REFORMULATION OF CPPA
The max(·, ·) term in the second-stage problem objective
function can be represented in a linear form by (i) introducing
new positive decision variables, vbc

def= max(2 tbc xbc +
1

µ−∑b́∈B r̃b́ xb́c
, δ),∀b ∈ B,∀c ∈ C, (ii) introducing new

binary decision variables, fbc (equals one if the response time
over link bc is greater than δ, and equals zero otherwise)
and dbc (equals one if the response time over link bc is less
than δ, and equals zero otherwise), ∀b ∈ B,∀c ∈ C, and (iii)
adding the following constraints:

vbc ≥ δ,∀b ∈ B,∀c ∈ C, (63)

vbc ≥
1
µ

vbc
∑

b́∈B
r̃b́ xb́c + 2 tbc xbc + 1

µ

− 2
µ
tbc xbc

∑

b́∈B
r̃b́ xb́c,∀b ∈ B,∀c ∈ C, (64)

vbc ≤
1
µ
vbc

∑

b́∈B
r̃b́ xb́c + 2 tbc xbc +M(1− fbc)

− M
µ

⎛

⎝
∑

b́∈B
r̃b́ xb́c − fbc

∑

b́∈B
r̃b́ xb́c

⎞

⎠

− 2
µ
tbc xbc

∑

b́∈B
r̃b́ xb́c + 1

µ
,∀b ∈ B,∀c ∈ C, (65)

vbc ≤ δ +M(1− dbc),∀b ∈ B,∀c ∈ C, (66)

fbc + dbc = 1,∀b ∈ B,∀c ∈ C, (67)

fbc, dbc ∈ {0, 1},∀b ∈ B,∀c ∈ C (68)

where M is a sufficiently large number. The terms xb́c xbc
def=

xbb́c and xb́c fbc
def= fbb́c can be linearized similar to (61)

and (62). The term xb́c vbc, which represents a product of
a binary variable with a positive continuous variable, can
be reformulated by introducing the new decision variables
ebb́c,∀b, b́ ∈ B, c ∈ C, and adding the following constraints:

ebb́c ≤ max
(

2 tbc + 1
µ−∑b∈B r̃b

, δ

)
xb́c,

ebb́c ≥ δ xb́c,

ebb́c ≥ vbc −max
(

2 tbc + 1
µ−∑b∈B r̃b

, δ

)(
1− xb́c

)
,

ebb́c ≤ vbc − δ
(
1− xb́c

)
. (69)

Therefore, the sampled version of CPPA can be equiva-
lently written as an MILP as summarized in Section V-C.
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