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Abstract

The QZ algorithm computes the generalized Schur form of a matrix pencil. It is

an iterative algorithm and, at some point, it must decide when to deflate, that is

when a generalized eigenvalue has converged and to move on to another one.

Choosing a deflation criterion that makes this decision is nontrivial. If it is too

strict, the algorithmmight waste iterations on already converged eigenvalues. If

it is not strict enough, the computed eigenvalues might not have full accuracy.

Additionally, the criterion should not be computationally expensive to evaluate.

There are two commonly used criteria: the elementwise criterion and the norm-

wise criterion. This paper introduces a new deflation criterion based on the size

of and the gap between the eigenvalues. We call this new deflation criterion the

strict criterion. This new criterion for QZ is analogous to the criterion derived by

Ahues and Tisseur for the QR algorithm. Theoretical arguments and numerical

experiments suggest that the strict criterion outperforms the normwise and ele-

mentwise criteria in terms of accuracy. We also provide an example where the

accuracy of the generalized eigenvalues using the elementwise or the normwise

criteria is less than two digits whereas the strict criterion leads to generalized

eigenvalues which are almost accurate to the working precision. Additionally,

this paper evaluates some commonly used criteria for infinite eigenvalues.
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1 INTRODUCTION

To solve dense generalized eigenvalue problems, the most popular algorithm is the QZ algorithm.1 It consists of a direct

reduction to Hessenberg-triangular form, an iterative reduction to generalized Schur form, and finally a direct step to

calculate the eigenvectors. This text focuses on the iterative reduction to generalized Schur form.

Consider a pencil (H,T) in Hessenberg-triangular form:

(H,T) =

⎛⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎣

h11 … … h1,n

h21 ⋱ ⋮

⋱ ⋱ ⋮

0 hn,n−1 hnn

⎤⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎣

t11 … … t1,n

⋱ ⋮

⋱ ⋮

0 tnn

⎤⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎠

. (1)

On a high level, the iterative reduction of this pencil to Schur form consists of the following steps:
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1. Select shifts. Often, Wilkinson shifts are used: the eigenvalues of the 2 × 2 subpencil in the bottom right.

2. Chase a bulge through the pencil using these shifts.

3. If a subdiagonal entry in H is small enough, it is set to zero and the eigenvalue problem is split into separate

subproblems.

4. If a diagonal entry in T is small enough, it is set to zero, and the pencil is transformed to move this entry to the top or

bottom of the pencil. Once at the edge, a single infinite eigenvalue can be split off from the pencil.

5. Repeat steps 1 through 4 until every subproblem is of size 1 × 1 (or in the case of complex eigenvalues in real pencils:

2 × 2).

More detailed explanations of the QZ algorithm can be found in References 1 and 2. This paper focuses on steps 3 and

4, and more precisely on the deflation criterion to determine whether the elements are small enough that they can be

set to zero. If this criterion is too strict, we may need to do extra iterations when the computed eigenvalues were already

accurate enough. If the criterion is not strict enough, we may get inaccurate eigenvalues.

Moler and Stewart,1 in the paper where they introduced the QZ algorithm for the first time, consider a subdiagonal

entry small enough if |hi+1,i| ≤ u||H||F and consider a diagonal entry small enough if |ti,i| ≤ u||T||F . Here and throughout
the rest of this text, u will refer to the machine precision*. We will refer to this as the normwise criterion. If we want a

backward stable decomposition, we cannot set any entries that do not satisfy this criterion to zero.

In the QR algorithm, it is known that a similar normwise criterion leads to suboptimal results for graded matrices.3

Accuracy for suchmatrices is improved by using a criterionwewill refer to as elementwise. This criterionwas also adapted

to the QZ algorithm,4-6 although we are not aware of detailed research supporting it. With this criterion, a subdiago-

nal entry is considered small enough if |hi+1,i| ≤ u(|hi,i| + |hi+1,i+1|) and a diagonal entry is considered small enough if
|ti,i| ≤ u(|ti−1,i| + |ti,i+1|). Note that |hi,i| + |hi+1,i+1| ≤

√
2
√|hi,i|2 + |hi+1,i+1|2 ≤

√
2||H||F so an entry that satisfies the ele-

mentwise criterion will also satisfy the normwise criterion up to a constant factor of
√
2. Additionally, |hi,i| + |hi+1,i+1|

is usually much smaller than ||H||F because only two entries are considered. In the rest of this text, we will ignore this
constant factor of

√
2 and say that the elementwise criterion is stricter than the normwise criterion.

The linear algebra library LAPACK7 originally used the normwise criterion for finite and infinite eigenvalues. It

switched to the elementwise criterion in version 3.9.1 for finite and infinite eigenvalues. And, as of version 3.11.0, the

latest version at the time of writing, it switched to the elementwise criterion for finite eigenvalues and the normwise

criterion for infinite eigenvalues.

The deflation criterion in the QR algorithm has received attention in the work of Ahues and Tisseur.8 Their paper

provides a theoretical basis to support a different deflation criterion than normwise and elementwise. They approximate

the sensitivity of the eigenvalues w.r.t. the subdiagonal elements and use this approximation to argue that a subdiagonal

element is small enough if it satisfies:

|hi,i−1||hi−1,i| ≤ u|hi,i − hi−1,i−1| and |hi+1,i| ≤ u(|hi,i| + |hi+1,i+1|).

So they derived and argue for a new deflation criterion for the QR algorithm, which has also found its way into LAPACK.

This paper aims to extend theirwork to theQZalgorithm.Wewill call our newdeflation criterion forQZ the strict criterion.

2 DEFLATION OF FINITE EIGENVALUES

In this section, we assume that the pencil only has finite eigenvalues.

2.1 Derivation

To derive our new criterion, we will focus our attention on a 2 × 2 subpencil of Equation (1):

(Hi(!),Ti) =

([
hi−1,i−1 hi−1,i

! hi,i

]
,

[
ti−1,i−1 ti−1,i

0 ti,i

])
. (2)
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Let "(!) be the eigenvalue of the subpencil closest to hi,i∕ti,i. It is important to note that "(!) is not necessarily an eigenvalue

of the full pencil. In the rest of this analysis, wewill assume that the influence of entries outside this subpencil is negligible.

At this point we would like to stress that this is not a detailed error analysis. We are designing a heuristic and significant

terms will be approximated.

We want to know when ! is small enough to be considered zero. This is the case when

|"(!) − "(0)| ≤ u|"(0)|, (3)

where u is the machine precision. We do not know "(!), so we must approximate. If the function "(!) is analytic, then a

first order expansion gives the bound:

|"(!) − "(0)| = |"′(0)!| + O(|!|2). (4)

To calculate |"′(0)|, we first calculate the characteristic polynomial:

p(!, x) = det(Hi(!) − xTi)

=(hi−1,i−1 − xti−1,i−1)(hi,i − xti,i) − (hi−1,i − xti−1,i)!..

The characteristic polynomial evaluated in one of the eigenvalues is always zero, so d

d!
p(!, "(!)) = 0 and we can extract

an expression for "′(!):

d

d!
p(!, "(!)) = 0

⇒
𝜕p

𝜕!
(!, x)

||||x="(!) + "′(!)
𝜕p

𝜕x
(!, x)

||||x="(!) = 0

⇒ "′(!) =

𝜕p

𝜕!
(!, x)

|||x="(!)
𝜕p

𝜕x
(!, x)

|||x="(!)
. (5)

Next, we extract an expression for 𝜕p

𝜕x
(!, x).

𝜕p

𝜕x
(!, x) = − ti−1,i−1(hi,i − xti,i)

− ti,i(hi−1,i−1 − xti−1,i−1)

+ ti−1,i!..

Luckily, almost all terms in this expression are zero when evaluated for ! = 0 and x = hi,it
−1
i,i
.

𝜕p

𝜕x
(0, hi,it

−1
i,i ) = − (hi−1,i−1ti,i − hi,iti−1,i−1). (6)

Next, we extract an expression for 𝜕p

𝜕!
(!, x):

𝜕p

𝜕!
(!, x) = − (hi−1,i − xti−1,i).

Evaluated for ! = 0 and x = hi,it
−1
i,i
, this becomes:

𝜕p

𝜕!
(0, hi,it

−1
i,i ) = − t−1i,i (hi−1,iti,i − hi,iti−1,i). (7)

Combining Equations (5), (6), and (7) leads to:

"′(0) =
hi−1,iti,i − hi,iti−1,i

ti,i(hi−1,i−1ti,i − hi,iti−1,i−1)
. (8)
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We can follow the same derivation for ", the eigenvalue closest to
hi−1,i−1

ti−1,i−1
to get the similar expression:

"
′
(0) =

hi−1,i−1ti−1,i − hi−1,iti−1,i−1

ti−1,i−1(hi−1,i−1ti,i − hi,iti−1,i−1)
. (9)

To design a deflation criterion using these equations, we will combine Equations (8), (3), and (4). This leads to:

|hi−1,iti,i − hi,iti−1,i||hi,i−1| ≤ u|hi,i||hi−1,i−1ti,i − hi,iti−1,i−1|. (10)

Finally, imagine a pencil where hi−1,i = ti−1,i = 0. The eigenvalues of the subpencil will now be independent of !, so the

deflation criterion will be satisfied, but setting ! to zero could lead to a large backward error. To guarantee backward

stability the criterion will also check that:

|hi,i−1| ≤ u(|hi,i| + |hi−1,i−1|).

2.2 Experiments

In these experiments, we will evaluate the accuracy of the QZ algorithm while using the following criteria:

• normwise: |hi,i−1| ≤ u||H||F ;
• elementwise: |hi,i−1| ≤ u(|hi−1,i−1| + |hi,i|);
• strict (our new criterion): |hi,i−1| ≤ u(|hi−1,i−1| + |hi,i|) and |hi−1,iti,i − hi,iti−1,i||hi,i−1| ≤ u|hi,i||hi−1,i−1ti,i − hi,iti−1,i−1|.

Our implementation consists of a lightly edited version of XHGEQZ, the single/double shift QZ implementation in

LAPACK.7

Before describing the different test cases, we will describe a procedure to generate a pencil with predetermined eigen-

values and a predetermined condition number of the eigenvector matrix $. This procedure is described in Algorithm 1.

We stress that the condition of the eigenvector matrix is not necessarily related to the condition of the eigenvalues.

To show that the new deflation criterion can improve the accuracy of the computed eigenvalues significantly, we

propose a small example similar to the one by Ahues and Tisseur.8 Consider the pencil:

(H,T) =

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

1 c 0

% (1 + d) 1

0 % (1 + 2d)c−1

⎤
⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎣

1 0 0

0 1 0

0 0 c−1

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠
, (11)

with % = 1.1 ⋅ 10−8, c = 1.1 ⋅ 105 and d = 10−2. The eigenvalues of this pencil are approximately: 0.95371503, 1.0261424,

and 1.0501426. This pencil shows that a good criterion needs to take both H and T into account. Criteria applied only to

H (the normwise criterion, the elementwise criterion or even the criterion by Ahues and Tisseur8) would consider h3,2
to be small enough in IEEE single precision. The returned eigenvalues are then 1, 1.02, and 1.04, resulting in less than

Algorithm 1. Generation of test pencil

Make D1 and D2 diagonal matrices, setting the diagonal entries to the desired eigenvalue pairs (&i, 'i).
(
Generalized

eigenvalues are often described as pairs, with "i =
&i

'i

)
.

Generate diagonal matrices V and W with diagonal entries logarithmically spaced between 1 and $−1 ($ determines

the condition number of the matrix that contains the eigenvectors).

Multiply V andW from the left and right with random unitarymatrices (we choose to generate suchmatrices by taking

QR factorizations of matrices with uniformly random entries).

Generate the final pencil as (A,B) = V(D1,D2)W .
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2 digits of accuracy. When using our new criterion, the QZ algorithm performs 2 more iterations, resulting in smaller

subdiagonal entries. The returned eigenvalues are: 0.95371503, 1.0261424, and 1.0501425, which are almost accurate to

the working precision.

From this example, we can already conclude that there are cases where our new criterion significantly improves the

accuracy of the eigenvalues. It is also very unlikely that the other criteria would lead to better results because our new

criterion (if we include the elementwise criterion for backward stability) is stricter than the other criteria.

We now test the criteria on matrices of certain classes with randomness in them:

• Unitarily diagonalizable pencils. For these pencils, we use Algorithm 1 with the &i randomly generated, 'i = 1 and

$ = 1.

• Nonunitarily diagonalizable pencils. For these pencils, we use Algorithm 1 with the &i randomly generated, 'i = 1 and

$ = 1000.

• Graded matrices. These pencils are generated by first generating two full random matrices A and B and then scaling

the rows and columns with values varying between 1 and 10−3.

To perform the test, the pencils are reduced to Hessenberg-triangular form, and then the eigenvalues are computed in

double precision and compared with the eigenvalues computed in single precision. For each class, 10,000 pencils of size

50 were generated. Histograms of the maximum relative error of the eigenvalues for the three classes of matrices with the

three different types of deflation criteria are shown in Figures 1–3. The averages of the distributions are shown in Table 1.

We notice a significant increase in accuracy for graded pencils. If we look at the histogram, there is a slight difference

in accuracy when using the strict criterion over the elementwise criterion. However, performing a t-test on the logarithm

of the accuracy of the eigenvalues of the nonunitarily diagonalizable pencils reveals that we cannot conclude that the

strict criterion results in higher accuracy on average (p = 0.704). No convergence failures occurred.

These experiments lead us to conclude that while there are certainly pencils where the strict criterion leads to a

significant increase in accuracy over the elementwise criterion, the average accuracy of the two criteria is very similar.

Both the elementwise and strict criterion result in a significant increase in accuracy for graded pencils. We cannot rule

out that a class of generalized eigenvalue problems for which there would be an increase in the average accuracy exists.

For a general-purpose library like LAPACK, we believe changing to the strict criterion is warranted so that it can handle

all corner cases.

3 INFINITE EIGENVALUES

In this section, we will drop the assumption that all the eigenvalues are finite. This means that instead of an eigenvalue

being a scalar, it is now a pair of scalars (&, ') ≠ (0, 0) so that det('H − &T) = 0. Note that if ' ≠ 0, we can recover the

scalar representation of the eigenvalues as the fraction " =
&

'
. If ' = 0 we say that the eigenvalue is infinite.

F IGURE 1 Histogram of the maximum relative errors (left) and the number of QZ iterations (right) for the eigenvalues of randomly

generated pencils with small $ for different deflation criteria.
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F IGURE 2 Histogram of the maximum relative errors (left) and the number of QZ iterations (right) for the eigenvalues of randomly

generated nonunitarily diagonalizable pencils for different deflation criteria.

F IGURE 3 Histogram of the maximum relative errors (left) and the number of QZ iterations (right) for the eigenvalues of randomly

generated graded pencils for different deflation criteria.

TABLE 1 Average number of accurate digits in the eigenvalues for different classes of pencils and different deflation criteria.

Normwise Elementwise Strict

Unitarily diagonalizable 6.28 (8.9) 6.28 (9.1) 6.28 (9.1)

Nonunitarily diagonalizable 3.20 (9.4) 3.27 (11.2) 3.27 (11.4)

Graded 2.70 (5.5) 3.56 (7.1) 3.57 (7.4)

Note: The average number of required iterations is shown between brackets.

In Section 3.1, we will define what it means for a pencil to have a numerically infinite eigenvalue. In Section 3.2, we

will evaluate some commonly used criteria for infinite eigenvalues using this definition.

3.1 Numerically infinite eigenvalues

An eigenvalue is infinite if ' = 0. This implies that the pencil has an infinite eigenvalue if and only if T is singular. In

practice, it is often the case that a matrix is very close to, but not exactly singular. We call such a matrix numerically
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singular. For our purposes, we will consider a matrix A numerically singular if $2(A) ≥ u−1. This criterion is commonly

used in practice. It is satisfied if and only if there exists a perturbation E so that A + E is exactly singular and ||E||2 ≤
u||A||2,9 that is, A is only a small perturbation away from being singular.

In a similar vein, we will say that a pencil (H,T) has a numerically infinite eigenvalue if and only if there exist matri-

ces E1 and E2, with ||E1||2 ≤ u||H||2 and ||E2||2 ≤ u||T||2 so that (H + E1,T + E2) has an infinite eigenvalue. With this

definition, a pencil has a numerically infinite eigenvalue if and only if T is numerically singular.

For finite eigenvalues, an essential property of our new deflation criterion is that it considers values in both H and T

and is thus invariant to diagonal scaling. If we consider an eigenvalue infinite if and only if T is numerically singular, then

values inH are ignored. This would seem to be a valid argument against our definition, but this subsection will argue that

invariance to diagonal scaling is not required.

Consider the two pencils:

(H1,T1) =

([
1 0

0 10

]
,

[
1 0

0 1

])
,

and

(H2,T2) =

([
1 0

0 10−7

]
,

[
1 0

0 10−8

])
.

In exact arithmetic, these pencils can be transformed into each other through row or column scaling and they both have

one eigenvalue 1 andone eigenvalue 10. In single precision arithmetic,T2 can be considerednumerically singular,whereas

T1 is unitary and is as far from singular as possible. According to our definition, T1 has only finite eigenvalues, whereas

T2 has a numerically infinite eigenvalue.

It is common to perform row and column scalings to improve the conditioning of the eigenvalue problem,10-12 so it

would seem that a good criterion to identify infinite eigenvalues should be invariant to such scalings. To be invariant

to scaling, we need to consider the ratio of hi,i and ti,i and for the pencil (H2,T2) this seems like a good idea. However,

consider the following pencils:

(H3,T3) =

([
1 0

0 108

]
,

[
1 0

0 1

])
,

and

(H4,T4) =

([
1 0

0 1

]
,

[
1 0

0 10−8

])
.

Just like before, these pencils can be transformed into each other through diagonal similarity transformation. They both

have eigenvalues 1 and 108. In single precision, (H3,T3) has finite eigenvalues and (H4,T4) has an infinite eigenvalue. In

the first example, it may seem clear that the pencil is badly scaled, but here it is more difficult. If we decide that (H3,T3) is

the “correct” one, then any pencil with infinite eigenvalues should be converted to a pencil with large eigenvalues so long

as ti,i is not exactly zero. If we decide that (H4,T4) is the “correct” one, then any pencil with large eigenvalues should be

converted to a pencil with infinite eigenvalues. In other words, there is no way to distinguish a badly scaled pencil from

a pencil with infinite eigenvalues without additional information.

3.2 Heuristics

We have defined that a pencil has an infinite eigenvalue if and only if T is numerically singular. However, exactly

determining the condition number of T in each iteration would be prohibitively expensive. The normwise criterion:

|ti,i| ≤ u||T||F , (12)
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and the elementwise criterion:

|ti,i| ≤ u(ti,i−1 + ti+1,i). (13)

can be interpreted as cheap heuristics to determine whether the upper triangular T is numerically singular. We will study

two types of errors the heuristics might make: they could identify a finite eigenvalue as numerically infinite or they could

identify a numerically infinite eigenvalue as finite.

A lower bound on the condition number of a triangular matrix is13:

$2(T) ∶= ||T||2||T−1||2 ≥ ||T||2(min |ti,i|)−1. (14)

The normwise criterion does not use the 2-norm, but the Frobenius norm (because it is cheaper to compute). The

Frobenius norm and the 2-norm of any matrix A are related via:

||A||2 ≤ ||A||F ≤
√
n||A||2. (15)

Combining Equations (14) and (15), we get that:

|ti,i| ≤ u||T||F
|ti,i| ≤

√
nu||T||2

⇒ $2(T) ≥ u−1n−
1

2 .

(16)

So even if the normwise criterionmisclassifies a finite eigenvalue as infinite, it will at least be close to numerically infinite

by a factor n−
1

2 . However, the normwise criterion may misclassify a numerically infinite eigenvalue as finite.

The elementwise criterion, which is stricter than the normwise criterion, is then also guaranteed to only identify

eigenvalues that are at least close to being infinite. Because it is stricter, it is alsomore likely to falsely identify numerically

infinite eigenvalues as finite. In the standard eigenvalue problem, an elementwise criterion was relevant to accurately

determine small eigenvalues in graded matrices. However, graded matrices are often numerically singular and therefore

(by our definition) lead to infinite eigenvalues so that argument is not valid here.

We now present some experiments that test both types of errors the criteria can make. They will show that (at least

for these tests) neither of the criteria falsely identifies a finite eigenvalue as infinite, but sometimes they fail to identify

numerically infinite eigenvalues. To perform the tests, the pencils are always reduced to Hessenberg-triangular form and

then the QZ algorithm (a lightly edited version of XHGEQZ as before) is run in double precision.

First, we consider a pencil (A,B) where the sparsity pattern of B is such that it has a number of infinite eigenvalues.

B =

[
B1 0

0 B2

]
, (17)

with B1 an m1 ×m2 matrix with randomly drawn entries and B2 an m2 ×m1 matrix with randomly drawn entries. A is

a full matrix with randomly drawn entries. The pencil has |m2 −m1| infinite eigenvalues. We test 1000 of these pencils,
with m1 = 22 and m2 = 28, so we expect to find six infinite eigenvalues. Using the normwise criterion, we find always

find six infinite eigenvalues. Using the elementwise criterion, we only find 4.41 infinite eigenvalues on average.

Next, we generate pencils using the procedure described in the previous section, with &i = 1, 'i = 10−16i∕n, and $ = 1.

In double precision for matrices of size 50, the last two singular values of B are 1.0 ⋅ 10−16 and 2.089 ⋅ 10−16, the first

singular value is 1 and u = 2.2204 ⋅ 10−16, so we expect to find two numerically infinite eigenvalues. The numerically

infinite eigenvalues are very close to being finite, and several finite eigenvalues are very close to being numerically infinite

so this is a good stress test of the criterion. Just like before, we test 1000 of these. On average, we find 1.94 and 0 infinite

eigenvalues using the normwise and elementwise criteria respectively.

In both experiments, the normwise criterion performed better. Combining the theoretical arguments and the experi-

mental results, we conclude that the normwise criterion is a better estimate of our definition.

 1
0

9
9

1
5

0
6

, 2
0

2
4

, 1
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

0
0

2
/n

la.2
5

2
4

 b
y

 U
n

iv
 o

f C
o

lo
rad

o
 H

ealth
 S

cien
ce C

en
ter, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [3

0
/0

8
/2

0
2

4
]. S

ee th
e T

erm
s an

d
 C

o
n

d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n

s) o
n

 W
iley

 O
n

lin
e L

ib
rary

 fo
r ru

les o
f u

se; O
A

 articles are g
o

v
ern

ed
 b

y
 th

e ap
p

licab
le C

reativ
e C

o
m

m
o

n
s L

icen
se



STEEL et al. 9 of 10

3.3 Overriding the default behavior

We have argued in Section 3.1 that we should consider a pencil (A,B) to have a numerically infinite eigenvalue if and only

if B is numerically singular. This definition has some flaws, but we have argued that a better definition is not possible

without taking extra information into account. An example where such extra information is available can be found in

the work of Van Barel and Tisseur.14,15 They present a scaling method for pencils that arise when looking for roots of

polynomials. This scaling significantly improves the accuracy of the computed eigenvalues. Unfortunately, it is also prone

to introducing numerically infinite eigenvalues. Because of the way the pencil is constructed, they know all of these

eigenvalues should be considered finite. They accomplish this by using an extremely strict deflation criterion:

|ti,i| < us,

where us is the smallest positive floating point number. This essentially means that any eigenvalue pair with ' ≠ 0 is

considered finite.

In order to accommodate both normal userswhowant a reasonable default and expert userswho can be certain that no

infinite eigenvalues are present, we propose using an optional flag. By default, the QZ algorithmwould use the normwise

criterion, but by specifying the flag, the user can switch to the extra strict criterion by Van Barel and Tisseur.14,15

4 CONCLUSION

We derived a new deflation criterion for finite eigenvalues in the QZ algorithm. It has a better mathematical foundation

and both theoretical arguments and numerical experiments indicate that it is at least as, and sometimesmuchmore accu-

rate than other commonly used criteria. We also evaluated commonly used criteria for infinite eigenvalues and concluded

that the normwise criterion performs well as a reasonable default, but that expert users should be able to switch to an

extra strict criterion if needed.
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