? frontiers ‘ Frontiers in High Performance Computing

‘ @ Check for updates

OPEN ACCESS

EDITED BY
Christopher Stewart,
The Ohio State University, United States

REVIEWED BY

Morteza Hashemi,

University of Kansas, United States
Hongyang Sun,

University of Kansas, United States

*CORRESPONDENCE

Dimitrios S. Nikolopoulos
dsn@vt.edu

EmadELDin A. Mazied
emazied@vt.edu

RECEIVED 16 February 2023
ACCEPTED 28 April 2023
PUBLISHED 09 June 2023

CITATION
Mazied EA, Nikolopoulos DS, Hanafy Y and
Midkiff SF (2023) Auto-scaling edge cloud for
network slicing.

Front. High Perform. Comput. 1:1167162.
doi: 10.3389/fhpcp.2023.1167162

COPYRIGHT
© 2023 Mazied, Nikolopoulos, Hanafy and
Midkiff. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that
the original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiersin High Performance Computing

Tvpe Original Research
PUBLISHED 09 June 2023
Dol 10.3389/fhpcp.2023.1167162

Auto-scaling edge cloud for
network slicing

EmadELDin A. Mazied*?*, Dimitrios S. Nikolopoulos'**,
Yasser Hanafy! and Scott F. Midkiff*

Electrical and Computer Engineering Department, Virginia Tech, Blacksburg, VA, United States,
2Electrical Engineering Department, Sohag University, Sohag, Egypt, *Computer Science Department,
Virginia Tech, Blacksburg, VA, United States

This paper presents a study on resource control for autoscaling virtual
radio access networks (RAN slices) in next-generation wireless networks. The
dynamic instantiation and termination of on-demand RAN slices require efficient
autoscaling of computational resources at the edge. Autoscaling involves vertical
scaling (VS) and horizontal scaling (HS) to adapt resource allocation based on
demand variations. However, the strict processing time requirements for RAN
slices pose challenges when instantiating new containers. To address this issue,
we propose removing resource limits from slice configuration and leveraging the
decision-making capabilities of a centralized slicing controller. We introduce a
resource control agent (RC) that determines resource limits as the number of
computing resources packed into containers, aiming to minimize deployment
costs while maintaining processing time below a threshold. The RAN slicing
workload is modeled using the Low-Density Parity Check (LDPC) decoding
algorithm, known for its stochastic demands. We formulate the problem as
a variant of the stochastic bin packing problem (SBPP) to satisfy the random
variations in radio workload. By employing chance-constrained programming, we
approach the SBPP resource control (S-RC) problem. Our numerical evaluation
demonstrates that S-RC maintains the processing time requirement with a higher
probability compared to configuring RAN slices with predefined limits, although it
introduces a 45% overall average cost overhead.

KEYWORDS

network slicing, auto-scaling, stochastic bin packing, resource limits, RAN slicing

1. Introduction

Mobile edge computing (MEC) is envisioned as a computational backend in the wireless
communication service architecture. It deploys containerized radio applications, i.e., radio
access network (RAN) slices, to deliver: (i) Ultra-Reliable and Low-Latency Communication
(URLLC); (ii) Enhanced Mobile Broadband (eMBB); and (iii) Massive Machine-Type-
Communication (mMTC). Unlike other MEC workloads, RAN slicing workloads have strict
processing time requirements (Akman et al., 2020).

Successful deployment of RAN slicing at the edge requires auto-scaling MEC
computational resources to meet the variations in RAN slicing workloads without
violating processing time requirements. Autoscaling the edge cloud includes
resource scaling (vertical) and scaling the application profile according to variations
in the application demands for resources (horizontal) (Armbrust et al, 2009).
While vertical scaling (VS) tailors (i.e., scales up/down) MEC resources for the
running slices within their pre-configured resource limits, horizontal scaling (HS)
responds to the growing demands for RAN slices by instantiating a new slice
(container) when the running container has demands for resources that exceed its
pre-configured resource limits. Starting a new container, which consumes 0.5-5

s (Google, 2022), contravenes end-to-end delay requirements for RAN slicing

01 frontiersin.org


https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org/journals/high-performance-computing#editorial-board
https://www.frontiersin.org/journals/high-performance-computing#editorial-board
https://www.frontiersin.org/journals/high-performance-computing#editorial-board
https://www.frontiersin.org/journals/high-performance-computing#editorial-board
https://doi.org/10.3389/fhpcp.2023.1167162
http://crossmark.crossref.org/dialog/?doi=10.3389/fhpcp.2023.1167162&domain=pdf&date_stamp=2023-06-09
mailto:dsn@vt.edu
mailto:emazied@vt.edu
https://doi.org/10.3389/fhpcp.2023.1167162
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fhpcp.2023.1167162/full
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Mazied et al.

operation, i.e., 0.5-50 ms (3GPP, 2017). Thus, removing
resource limits could minimize processing time by avoiding
the potential instantiation of the new container. Moreover, recent
technical studies (Khun, 2020; Musthafa, 2020; Henderson, 2022)
demonstrated that removing resource limits from containers’
configurations led to minimizing processing time, which is needed
for RAN slicing workload. Nevertheless, removing resource limits
from containers’ configuration is inapplicable in MEC operation
due to limited resources at the edge. Thus, carefully considering
resource usage among running slices is necessary to autoscale the
edge cloud for RAN slices.

Auto-scaling MEC for RAN slices introduces a critical research
question, which is “Can resource limits be soft-tuned according to
variation in demands rather than using pre-defined resource limits to
auto-scale MEC for RAN slices ?” This paper addresses this question
by migrating resource limits from containers’ configuration
files to a centralized entity that determines them as outcomes
of a decision-making process. Fortunately, the RAN slicing
architecture defines a slicing controller that orchestrates running
slices (Akman et al., 2020), which could embrace an autoscaling
framework to dynamically scale up/down resources to match
expansion/reduction in radio workload without instantiating a new
container. Thus, the autoscaling framework includes a resource
control agent (RC) that deploys the decision-making process to
tune resource limits according to the variations in slices’ workloads.
The decision-making process aims to minimize the cost of running
slices (i.e., minimize the number of allocated resources per running
container) while the processing delay is maintained below a
pre-defined threshold. In this regard, we introduce a variant of
the bin packing problem (BPP) to determine resource limits by
modeling containers, which process radio workload as bins and
computational resources as items that need to be packed into bins.
The amount of packed items (computational resources) determines
the containers’ limits.

Developing the decision-making process for the RC design
requires modeling RAN slicing workloads to reflect the variations
in demands for MEC resources. To facilitate modeling RAN slicing
workloads, we consider surveillance (Yuan and Muntean, 2020)
and Industry 4.0 (Garcia-Morales et al., 2019) use cases of RAN
slicing deployments where captured data are offloaded to the MEC
that executes all computational kernels to process the received
wireless signals for data analysis and the decision-making process.
Although several radio and control functions would be processed at
the edge, measurements in Foukas and Radunovic (2021) show that
the low-density parity check (LDPC) coding algorithm consumes
60% of uplink execution time and 50% of total (i.e., uplink and
downlink) execution time in 5G cloud RAN systems. Therefore, we
take a step toward modeling RAN slicing workloads by adopting
the asymptotic analysis of the LDPC decoding algorithm (Bae et al.,
2019).

Accordingly, we leverage the stationary random distribution of
the LDPC'’s iterations® to model the fluctuations in radio workload
(i.e., variations in demands). The number of LDPC iterations

1 Fading wireless channels introduce errors in received messages that
mandate carrying out a random number of LDPC iterations for error

detection/correction.

Frontiersin High Performance Computing

10.3389/fhpcp.2023.1167162

depends on the quality of the received signals (i.e., a higher-
quality received signal reduces the number of LDPC iterations).
Based on analysis in Sharon et al. (2006), this paper models the
number of iterations as a Gaussian random variable R where a
Binary Additive White Gaussian Noise (BiAWGN) channel model
is assumed for wireless propagation. Accordingly, a processing
delay is developed as a function of LDPC operations and MEC
power, defined using the Roofline model (Williams et al., 2009).
Hence, we address the problem of packing MEC’s processing cores
(items) into LDPC containers (bins), which manifests random
variations in demands, i.e., Gaussian random number of iterations.
Hence, the BPP introduces a stochastic processing time constraint
since LDPC operations are defined as a function of R.

Chance-constrained stochastic programming (CCSP) is used
for the stochastic BPP-based resource control (S-RC) as it
demonstrates success for manipulating the SBPP in cloud
datacenters (Yan et al., 2022). First, through CCSP, we formulate the
S-RC problem with probabilistic processing delay constraint. Then,
we transform it into a deterministic formulation using the inverse
cumulative distribution function (inverse-CDF) of R. Afterward,
we linearize it and use the Branch-and-Cut algorithm (Mitchell,
2002) to solve the resulting combinatorial optimization problem.

We evaluate the S-RC performance numerically by introducing
a probabilistic metric, defined as the probability of processing
time violation, i.e., the probability that processing time 7 is
more significant than a pre-defined threshold §. We measure the
probability P;.s of legacy RC vs. S-RC. In legacy RC, we assume
pre-defined resource limits are set for each container where the
RC deploys HS to start a new container. Results show that S-
RC maintains processing time t below threshold § with lower
P.-s than legacy RC for dense and enormous input data size.
However, the overall average cost overhead of S-RC deployment
(i.e., packing additional computing resources) is 45% higher
than RC, particularly with slices with ultra-low processing time
requirements (i.e., § is very small) and enormous input data size.

The subsequent sections explain our methods to solve and
evaluate the S-RC and discuss the numerical results in more detail.
First, Section 2 explains the system model, problem formulation,
and optimization methods we use to approach the S-RC. Following
that, we show the numerical evaluations in Section 3. Then,
results and recommendations for a robust design of autoscaling
framework for RAN slicing are discussed in Section 4. Finally,
Section 5 concludes the paper and outlines future work.

2. System design and autoscaling
methods

Radio Access Network (RAN) slicing introduces a novel service
architecture for network operation where many service providers,
i.e,, multiple mobile virtual network operators (MVNOs), lease
physical resources from a few infrastructure providers (InPs)
to provide virtualized wireless communication services. Figure 1
demonstrates a RAN slicing design framework where InPs lease
their network and computational resources to various tenants, i.e.,
mobile virtual network operators (MVNOs). In this context, we
consider network resources at the edge, including radio units (RUs),
wireless spectrum, and a transport network that connects RUs to the

frontiersin.org


https://doi.org/10.3389/fhpcp.2023.1167162
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Mazied et al.

edge cloud at the proximity of wireless infrastructure to provide
low-latency computational service for different wireless use-cases.
Although end-to-end network slicing architecture encompasses
slicing core cloud and data network resources, this paper discusses
the resource allocation problem at the edge for surveillance
and Industry 4.0 use-cases (Garcia-Morales et al., 2019; Fitzek
et al., 2020; Yuan and Muntean, 2020). In particular, we focus
on managing computational resources at the edge, a.k.a multi-
access (mobile) edge computing (MEC), which manifests the
computational infrastructure for wireless slices operation.

RAN slicing architecture introduces global and local slicing
control agents. As depicted in Figure 1A, InPs deploy the global
slicing controller to maximize their revenue while tenants’ service
level agreements (SLAs) are satisfied. Therefore, admission control
(AC) interplays with the resource manager (RM) to admit (reject)
a tenants (MVNO?) request for RAN slices. In this context,
RM tracks the variations in available resources according to
tenant resource usage changes (i.e., instantiation/termination of
a MVNO’s slices would affect resource availability). Furthermore,
RM interacts with the slicing scheduler to schedule a MVNOs’
slicing workloads among allocated resources for low-latency slice
instantiation. On the other hand, each tenant deploys a local slicing
controller to manage its leased resources (i.e., allocated resources
by the global slicing controller) for its running slices. Figure 1B
demonstrates the components of the local slicing controller that
would dynamically scale network and computational resources
at the edge for the tenant’s running RAN slices. Furthermore,
it is shown that dynamic scaling of the computational resources
would be carried out by adopting the autoscaling framework of
Kubernetens-like systems (Google, 2022; Microsoft, 2022), which
would manage the containerized backend of RAN slices at the
edge computing. In this sense, autoscaling computational resources
would interplay with the dynamic scaling of wireless network
resources by deploying a coordinator agent. We refer to 3GPP
(2018), Yan et al. (2019), D’Oro et al. (2020), and Liu et al. (2020) for
an insightful discussion on the design of coordinator, autoscaling
network resources, and the global slicing control.

Figure 1B shows the deployment of Kubernetes-like autoscaling
algorithms in a centralized entity, i.e., Kubernetes controller
node (master node), which manages MEC resources for running
containers (Pods) in worker nodes. The statistics of containers’
resource usage are the essence of the autoscaling framework. Based
on a user-defined (customized) deployment metric (e.g., CPU
throttling, CPU usage, memory usage, out-of-memory statistics,
etc.), a recommender agent uses statistical histogram methods
to estimate upper and lower bounds of the customized metric
according to the collected measurements during the last scaling
cycle. An updater agent decides whether horizontal scaling (HS)
or vertical scaling (VS) procedures should be invoked according
to the recommender’s output (estimated deployment metric). HS
is invoked if the deployment metric indicates that more resources
than predefined limits are needed for a running container.
Accordingly, the updater requests the admission controller to
instantiate a new container. If required resources are insufficient
to instantiate a new container, the admission controller (AC)
consults the resource control manager to scale down other running
containers whose resource usage is below their predefined resource
limits. VS is invoked when the estimated metric indicates that

Frontiersin High Performance Computing

10.3389/fhpcp.2023.1167162

a running container’s resource usage is growing but below the
pre-defined resource limit (request the AC for scaling up) or
declining (request the AC for scaling down). Based on the AC’s
decision, a scheduler agent makes its scheduling decisions for
scaled-up/down containers and any new instantiated container.
Therefore, autoscaling MEC resources becomes critical for RAN
slicing design to meet the dynamic variations in radio workload at
the edge.
Unlike
workloads, autoscaling MEC resources should consider the

autoscaling cloud resources for delay-tolerant
processing time requirement of delay-sensitive radio workloads,
i.e., end-to-end delay requirements must be within 0.5-50 ms for
different wireless services. While HS instantiates a new container
when a container requests more resources than pre-configured
resource limits, VS scales up/down resources to a container
according to the variations in workload provided that resource
requests are below the defined resource limits. Thus, HS adds delay
overhead due to the time to start a container, i.e., 0.5-5 s, which
violates end-to-end delay requirements for RAN slicing design.
Furthermore, performance evaluations in Khun (2020), Musthafa
(2020), and Henderson (2022) recommend removing resource
limits from container configuration to maintain a low processing
delay.

Removing resource limits could be beneficial to satisfy delay
requirements for RAN slicing workloads. Furthermore, resource
limit removal would lead to HS displacement since HS works
when the workload uses more resources than pre-configured limits.
However, the need for more computational resources at the edge
makes resource limit removal an unattainable solution for RAN
slicing design. Thus, a critical research for autoscaling design
RAN slicing is “Can resource limits be soft-tuned according to
variation in demands rather than using pre-defined resource limits
to auto-scale MEC for RAN slices ?” This paper paves the way
to answer this question by leveraging the capability of the local
slicing controller, which orchestrates the RAN slicing operation,
to embrace an autoscaling framework with a resource control
agent (RC) to tune resource limits according to the variations
in the running slices’ workloads. Hence, resource limits would
be removed from configuration of RAN slices (containers) but
would be determined by the RC as outcomes of a decision-making
process.

The following subsections present material for the system
model and discuss methods for developing the RC decision-making
process to determine resource limits for RAN slicing.

2.1. Material for system design

2.1.1. Assumptions
2.1.1.1. RAN slicing workload

Modeling RAN slicing workloads is challenging since
deployments are only emerging. To circumvent this challenge, we
consider two use cases of RAN slicing deployment: (i) surveillance;
and (ii) Industry 4.0. Both cases consider offloading captured
data to the MEC, which processes the received wireless signal
by executing all computational kernels for data analysis and
decision-making. In wireless surveillance applications, drones,
a.k.a unmanned aerial vehicles (UAVs), offload their encoded

frontiersin.org


https://doi.org/10.3389/fhpcp.2023.1167162
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Mazied et al.

10.3389/fhpcp.2023.1167162

Tenants® requests for slices
o

(@)

@t
,"J” « »; (g
12

/

. (Eg 2

Infrastructure Provider (InP) Domain

———————— Qo D %
Fronthaul link  Fronths ke i,

ng oo G sarver Radls uak

Logical connection between global and local slcing controller

FIGURE 1

RAN slicing design. (A) RAN slicing framework. (B) Inside local slicing controller.

(Worker node /)

ez -

Custom Metric
o deployment

Resource.
Control
manager

Admission Ugiooun o
Control Seal Ectmaton?
Request
Upuater

Up/down container

A i i (Kuberi

g

Coordinator

Customizsd

alid for nieat s aling cycle Time

(Worker node )

like system)

Scheduler

Autoscaling networking resources

observations to the MEC for further data analysis and decision-
making process regarding surveillance systems. Thus, drones
would encode, modulate, and transmit raw observations to
the MEC that demodulate and decode received signals. Hence,
drones would be supported by eMBB and URLLC containers
for real-time video transmission and vehicular communication
services, respectively. In Industry 4.0, many sensors transmit
encoded measurements to MEC for autonomous production (i.e.,
MEC would deploy a decision-making process that generates
control signals according to received measurements to manage an
actuator in the production field). Accordingly, mMTC and URLLC
containers would support massive sensor-MEC low-latency data
communication and control.

The RAN slicing deployments mentioned above include
processing various radio functions, e.g., (de)modulation, channel
(de)coding, layer (de)mapping, channel estimation, multi-in-multi-
out (MIMO) pre-coding, etc. However, given the lack of technical
studies that characterize variations in RAN slicing workload, we
consider the most significant radio functions to model fluctuations
in radio workload. Measurements in Foukas and Radunovic (2021)
demonstrate that the channel decoding task, which deploys the
Low-Density Parity Check (LDPC) decoding algorithm (Bae et al.,
2019), is the most expensive computational task. It contributes
60% of execution time to the uplink processing time and 50% of
execution time to the total downlink and uplink processing time.
Therefore, to introduce a case study of modeling the RAN slicing
workload, we adopt LDPC to model the radio workload.

LDPC is an Iterative-based Belief Propagation algorithm, i.e.,
Message Passing Algorithm (MPA), used for error detection and
correction of the received message transmitted over a noisy channel
(Maguolo and Mior, 2008; Chandrasetty and Aziz, 2018b). MPA
behaves as an iterative sum-product algorithm (SPA) where, in
each iteration, there are two basic operations: (i) variable node sum
operations (Sum) that perform summation of log-likelihood ratios
(LLR) of n-bits that represent the reliability of a decoded message;
and (ii) check nodes multiplication operations (product) that
estimate the multiplications of LLRs for each bit value (i.e., each
check node value). The MPAS iterations depend on the quality of
the received signals (Sharon et al., 2006; Maguolo and Mior, 2008).

Frontiersin High Performance Computing

Therefore, we model the MPA’s number of iterations as a random
variable R that reflects the reliability of a received message (Sharon
et al., 2006; Maguolo and Mior, 2008; Chandrasetty and Aziz,
2018b). By following the analysis in Sharon et al. (2006), we define
the random distribution of the R as Gaussian distribution where a
Binary Additive White Gaussian Noise (BIAWGN) channel model
is assumed for wireless propagation.

2.1.1.2. Scaling period

Auto-scaling decision-making occurs at each scaling period,
i.e., constant duration scaling cycle (Google, 2022). Nevertheless,
we address the auto-scaling problem during a single scaling cycle
and skip the iterative property of the problem since we study only
one radio function to model the radio workload and assume that
the variations in LDPC workload follow the same distribution at
each cycle.

2.1.1.3. Computational resources

Since we focus on the processing time design constraint,
this paper considers only the processing units to model the
computational resources, i.e., only CPUs and GPUs. Studying the
impact of memory management on execution time is out of this
paper’s scope.

2.1.2. System model
2.1.2.1. LDPC

In LDPC (Chandrasetty and Aziz, 2018a), the received message
(encoded message) has length n bits that convey a k-bit source
message where k < n and % is the LDPC code rate. Further, h
redundant bits (i.e., parity bits) are added to the source message,
where (k = n — h). LDPC codes are generated by constructing a
sparse (H) matrix (h rows x n columns); following that, a generator
matrix (G) is defined for LDPC code generation. The parity-
check sparse matrix H is used at the receiver for error detection
and correction. The density of 1’s in the H sparse matrix is low;
therefore, LDPC is called a low-density Parity Check. A Tanner
graph represents the H matrix where h check nodes are connected
to n variable nodes through many edges representing the number
of non-zero elements in the H matrix.

frontiersin.org


https://doi.org/10.3389/fhpcp.2023.1167162
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Mazied et al.

2.1.2.2. LDPC processing time

To model the processing time of the LDPC decoding algorithm,
we adopt two first-order approximation methods: (i) the Roofline
analytical model (Williams et al., 2009); and (ii) LDPC algorithmic
analysis (Maguolo and Mior, 2008; Chandrasetty and Aziz, 2018b;
Hamidi-Sepehr et al, 2018). Roofline introduces a first-order
approximation of a function that defines an architecture’s peak
performance as a function of an application’s operational intensity
(arithmetic intensity) A. The architecture’s peak performance is
characterized by its memory bandwidth B (bytes/seconds) and its
processing throughput 7 (operations/seconds) when processing a
computational kernel with operational intensity A. A is the ratio
of the number of operations to the number of memory reads and
writes, which depends on the input data size. We model the MPA’s
number of operations (MUL + ADD) operations by following the
analysis of the MPA’s time complexity in Maguolo and Mior (2008)
and Chandrasetty and Aziz (2018b). Likewise, we model the MPA’s
number of memory reads and writes through the MPASs space
complexity (Chandrasetty and Aziz, 2018b; Hamidi-Sepehr et al.,
2018). In each iteration, there are approximately (2hp/ + 4ny/)
multiplications and n additions where p and y' are the average
number of ones in the H’s rows and H’s columns, respectively.
Therefore, the number of operations is OPSippc = l~2.[2h,0’ +
4ny/ + n] = R.OPS?, where OPS? = [2h,o/ + 4ny/ + n]. MPAs
space complexity is defined as H'’s size, i.e., hn. Accordingly, A ~

RoOPS?
hnz
Bytes for integer variables). Moreover, the Roofline model defines

(Operations/Byte) where z is the variable data size (i.e., 4

the peak performance of an architecture that processes a certain
computational kernel as min(w, BA). LDPC has a multi-threading
feature (Maguolo and Mior, 2008) that allows parallel computations
on multiple cores. We assume that the number of processing cores
that could be allocated to process the LDPC is 7. Later in this
section, 1 is replaced with resource limit, the output of the RC

decision-making process. Hence, the LDPC’s processing time 7 is
ROPS?

defined as T ~ npmin(z,BA)

2.1.2.3. MEC

We consider a leased amount of MEC computational
resources to process RAN slicing workloads. Figure 2 depicts
MEC computing resources that need to be managed for network
slicing containers to deliver Ultra-Reliable and Low-Latency
Communication (URLLC), enhanced Mobile Broadband (eMBB),
and massive machine-type-communication (mMTC) services.

There is a set of computational resources J = {P,G} where
P = {1,2,ldots, p, Idots, P — 1, P} is a set of CPU cores, and G =
{1,2,Idots, g, Idots, G — 1, G} a set of GPU cores to support a set
of containers Z. There is a set of containers Z = {e, m, u} where
e, m, and u refer to eMBB, mMTC, and URLLC service categories,
respectively. We define the containers’ limits as /; V containers i € 7
and V resources j € J where [; = {lip, lig} for each container i € Z,
where lj, and lj; represent allocated CPU cores or GPU cores to run
the LDPC radio function in a container i, respectively. We define
cij as the cost of using a computational resource j € J to process
workload in a container i € 7. The cost ¢jj = [cjp, cjg] is defined per
allocated resource unit, where Cips and Cig define the cost of using a
CPU core p, and GPU core g to support a container i, respectively.

Frontiersin High Performance Computing

10.3389/fhpcp.2023.1167162

2.1.2.4. Design requirements

RAN slicing defines several design metrics to specify a
service level agreement (SLA) between MVNOs and infrastructure
providers, e.g., availability, latency, reliability, security, and
throughput. However, we focus on latency and isolation design
requirements. We consider isolation among resources since it is
critical to achieving security requirements. Latency is modeled as
a design constraint where the processing delay 7; is less than a
pre-defined threshold §; for each container i € Z. We model the
isolation at the hardware level by assigning a resource j € J to a
container i € Z where j is not used by any other containerin Z C Z
where 7' = 7 — i. We assume that the isolation requirement at the
OS kernel level is achieved by other methods such as Van’t Hof and
Nieh (2022).

2.2. Autoscaling methods

2.2.1. Problem statement

The core concept of RAN slicing is auto-scaling resources to
deliver on-demand virtual network environments for various use
cases. This research investigates the capability of RC to auto-scale
MEC resources without HS deployment where resource limits are
removed from the containers’ configuration and determined as
outcomes of the RC decision-making process. In this sense, we
aim to minimize the cost of running slices where a limited amount
of computational resources are allocated to process demands with
random fluctuations such that an SLA is fulfilled, i.e., the processing
delay is maintained below a pre-defined threshold §;. Figure 2
depicts the modeling of computing resources as items packed into
LDPC containers (bins). Bin sizes, i.e., [;, are outcomes of the RC
decision-making process. Hence, RC is defined as a problem of
packing resources into containers where an SLA is satisfied with
minimum cost.

2.2.2. Problem formulation

We formulate the resource limit decision-making problem as
a variant of the classical bin packing problem (BPP) (Johnson,
1973) where a MVNO has a fixed number of bins (i.e., containers)
that have variable sizes, which depend on the amount of allocated
resources (i.e., items) to meet the variations in workload (i.e.,
demands). Therefore, we need to determine the optimal size I;
of each container i € Z to minimize the total cost of running
containers and meet SLA requirements (i.e., processing time 7;
below the pre-defined threshold §; and resources per container
are isolated). To determine [;, we define a binary decision variable
xij = [xip,Xig] that equals 1 when a resource j is assigned to a
container i and equals 0 otherwise. Thus, [; = Zje 7 %ij = {lip, lig}
where lj = Zpep xjp and [;; = deg xig Vi € L.

The objective is to minimize the cost of running containers.
Since we define the cost c¢;j to use resource j for a container i, the
cost function is formulated as follows.

Z injcij = Z Z XipCip + Z ingcig (1)

i€ jeJ i€ peP i€Z geg

frontiersin.org


https://doi.org/10.3389/fhpcp.2023.1167162
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Mazied et al.

10.3389/fhpcp.2023.1167162

eMBB mMTC URLLC

| —

Computational Autoscaling Radio workload [
Distribution €
Identification

Resource Controller
(RC)

!

Scheduler

Slicing Controller

Control decision

p: CPU core ID wherep €{1, 2, 3, ..., 14, ..., P}

g: GPU core ID where g €{1, 2, 3, ..., 20, ..., G}

FIGURE 2
System model.

[+ ]
)

et of lease: cores

Set of leased CPU cores

Since we process a container i € Z, which runs the LDPC
decoding algorithm, by using either CPU cores or GPU cores for
minimum cost, we formulate processing time design constraints for
each container i € 7 as follows.

Tp <8 or Tg<& Viel VpeP VgeG (2)

Here, 7jp = R'OP.S? and 7, = R'Oes’d .
’ Tpep xipmin(tp.BpA)° 8T Ygeg Xig-min(rg,BeA)

OPS? and A are first-order approximations of arithmetic operations
and arithmetic operational intensity of the LDPC decoding
algorithm that runs in a container i € Z, respectively. 7, and 7, are
the peak performance of CPU and GPU architectures, respectively.
Bp and B, are the memory bandwidth of the CPU and GPU,
respectively.

To guarantee that a resource j can only be used at most once by a
container i, we formulate the isolation design constraint as follows.

injfl

i€

VieJ (3)

We also have resource constraints as follows.

DY xp<P (4)

i€Z peP

Frontiersin High Performance Computing

YD xg <G (5)

i€eZ geG

Thus, the problem is formulated as follows.

H}C;n DieT 2je CiiXij
s.t. 2 through 5 (6)
x,-j S {0, 1}

The problem in Equation (6) is a variant of the stochastic bin
packing problem (SBPP) with a non-linear stochastic processing
time constraint in Equation (2) that results in an infeasible solution.
Chance-constrained methods (Kall and Wallace, 1994) are adopted
to approach the SBPP-based RC (S-RC) problem.

« R.ops?

written  as ——
di. ZpE’P Xip

Equation  (2) s <

R;.ops¢
min(m,, BpA) or —~—— < min(m,, BeA) Vi € L”. However,
(i BpA) or SO < min(rg, )

. R.oPs? . . R;.OPs?
Tps BpA) > lent to 7, > —~——— and
min(my, BpA) > 7S is equivalent to 7, > E7S an
R;.0Ps¢ R;.oPs¢
A ~~—+—. Therefore, min(m,, BpA) > ~———
Bp 5 pep 5 (7 BpA) = 5 Y pep
is reformulated into Ri.OPSf - ”P'(Si'ZpeP xp < 0 and
. . R;.oPs?
Wiz = fpdi Ypepip < 0.V € Tsince A = S5O0

R;.OPS¢

Likewise, min(mg, BgA) is reformulated into

Rj.OPSY — mg.8;. Yoeec %ig

> Pk el
= i D geg Xig
0 and h;.nj.z — Bg.4;. deg xig <0,

A

frontiersin.org


https://doi.org/10.3389/fhpcp.2023.1167162
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Mazied et al.

Vi € Z. Furthermore, we introduce a new binary decision variable
yi to linearize the “or” operator where y; = 1 for CPU and y; = 0
for GPU resources to process the LDPC in container i € 7. We
also add another constraint, which uses y;, to guarantee that the
selection of CPU or GPU resources is associated with its resource
limits ZPE'P Xip or deg Xig, respectively. Therefore, Equation (2)
is reformulated as follows.

R;.OPS} — 7,.;. Z Xyp <Mi(1—y) Viel 7)
peP
R}.OPS?I — 7Tg~5i- Zx)/ig <My; Viel (8)
g€y
hinj.z — ﬂp.Si. Z Xyip < M;(1—y) Viel 9)
peP
hiniz — Pg.di. Y xyg < My Yie T (10)
g€y

inp <M;y; Viel (11)

peP
D xig <Mi(l—y) Viel (12)

Y

Here, M; is a large constant value that we choose to guarantee
that constraints in Equations (7)-(12) are satisfied for any
value of decision variable y;, i.e., M; = max(P,G, (Ii,-.OPS;-’Z —
7p.8i.P), (hi.ni.z — Bp.8;.P), (R;.OPS? — 114.8,.G), (hi.ni.z — B4.8:.G)).
Furthermore, we introduce xyjp = xip.yi, and xyje = xjg.(1 — 1)
as new non-linear binary decision variables to guarantee resource
allocation for the selected resource, i.e., CPU or GPU. Thus, we add
the following constraints for linearization purposes.

xyp <yi Viel VpeP (13)

xyip <xipp Yiel VpeP (14)

Xyip = Xip+yi—1 Viel VpeP (15)

xyp =0 Viel VpeP (16)

Xyig<1l—y; Viel Vgeg (17)

Xyig <xig Viel Vgeg (18)

Xyig = Xig —yi Vi€ 7 Vgeg (19)

Xyig =20 Viel Vgeg (20)

Equations (7) and (8) introduce R, as a Gaussian

random variable where processing time constraints are

expressed as probabilistic constraints that are fulfilled with

Frontiersin High Performance Computing

10.3389/fhpcp.2023.1167162

probability «. Thus, Equations (7) and (8) are rewritten
as Pr(lii.OPSf—ﬂp.éi,-.ngpxy,-p 5M,-(1—y,—)> > o« and

Pr (ﬁi.OPSf — 1g.5i. deg Xyig < Miyi) > o, Vi € I,
respectively. The probabilistic constraints are manipulated
by using the definition of inverse cumulative distribution
function (inverse-CDF) of Gaussian random variable CDFIgil(a).
Then, Pr (ﬁi < {j) > «, where j € {p,g}, is reformulated as
¢ > CDFEX_I((X), which can be written as ¢ > R + d>§i1 (@).og;

Miyij+nj.6i.zjejxy,j .
—OPsf ,y,-j_yilf]_pandy,-j_l—y,-

if j = g, R; is the mean value of R;, o, is the variance of R;, and
Cbgl(a) = «/iaRi.erf_l(Zoz — 1) + R; (Gilchrist, 2000) where

erf~1(2a — 1) is the inverse error function of (2« — 1). Accordingly,

where ¢; =

Equations (7) and (8) are rewritten as follows.

ui.OPS! — 7,81 ) Xy <Mi(1—y) VieZ  (21)

peP
ui.OPSld — ﬂg.si. nyig < Miyi Viel (22)
g€y
Here, u; = (R; + d>1%v1 (o).og;). Hence, the deterministic and

linear formulation of 6 is written as shown below in Equation (23).
Table 1 summarizes the notations used for the S-RC model and
problem formulation.

n}{l}ﬂ DieT 2je CiiXij

s.t. 3 through 5
9 through 20 (23)

21 through 22

Xij» i xij € {0,1}

2.2.3. S-RC offline algorithm

Online algorithms for decision-making are often based on
insights from their offline algorithms, (e.g., Fazi et al, 2012;
Buchbinder et al., 2021; Foukas and Radunovic, 2021; Yan et al.,
2022). In the following, we discuss the S-RC offline algorithm
to determine each container’s (i.e., RAN slice) optimal resource
limits (I;). As shown in Figure 2, there is a pre-processing stage
that aims to identify the random distribution of radio workload
patterns to determine R and og. Then, the S-RC algorithm in
Algorithm 1 initially computes the required data parameters for
each slice category i € 7, i.e,, OPS?, Cblg_l (@), uj, M;. It then deploys
Branch-and-Cut procedures to solve F:quation (23). The Branch-
and-Cut algorithm (B&C) (Mitchell, 2002) manages the complexity
of Equation (23) by using the Branch-and-Bound B&B algorithm
with the Cutting Plane algorithm (CP) (Wolsey, 2020). B&C is
an iterative algorithm that uses B&B to partition the prior node
(original problem) into two sub-nodes (subproblems) when we get
a non-integer feasible solution of the relaxed LP. Then, the CP
algorithm is called to find more linear constraints fulfilled by all
feasible integers but violated by the current non-integer solution.
This set of linear constraints is added to the problem, which leads

frontiersin.org


https://doi.org/10.3389/fhpcp.2023.1167162
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Mazied et al.

TABLE 1 List of symbols.

10.3389/fhpcp.2023.1167162

Definition Definition
H LDPC parity check matrix G LDPC generator matrix
n H’s columns size h H’s rows size
Y Average # of I’sin n 0 Average # of I'sin h
k Sourceword size (k = n — h) z Data variable size (e.g., 4 Bytes)
OPS;ppc # of LDPC’s MULs & ADDs operations R # of iterations of OPS; ppc
A Arithmetic intensity (Operations/Byte) P CPU cores {1, 2, ldots, p, Idots, P — 1, P}
g GPU cores {1, 2,ldots, g, Idots, G — 1, G} J Set of j resources J <« {P, G}
7 p’s peak perf (operations/second) Ty ¢’s peak perf (Operations/second)
By p’s memory bandwidth (bytes/second) By ¢’s memory bandwidth (bytes/second)
T LDPC processing time T Set of i RAN slicing containers
n; n’s of running LDPC in i n {n;:Vie T}
h; I’s of running LDPC in i h (hi:Vie T}
Vi Average # of Is in #; ' {y/ :VieT)
o Average # of 1’s in h; ) {p; :Vie T}
OPS? OPS;ppc in i R; Gaussian random # of OPS:-’I iterations
R; Average value of Rin i R {Ri:Vie T}
oR, Variance of R; Or {og, :Vie T}
Tip 7 in i with p T 7iniwithg
8; T’s upper bound when runs in i 5 {8;:Vie T}
o Pre-defined probability value € (0, 1] <I>Ii1 () «-quantile of R;
Cij Cost vector [cjp, cig] C {cij:VieZVje J}
Xij Binary decision variable (BDV) X {xj:YieZVje J}
Vi Resource selection BDV y {yi:Vie I}
xyij Non-linear BDV x;y; XY {(xyj:YieIVjieJ)
M; Parameter for constraint tuning Vi € Z. M {M;:VieI}
I; Resource limits for a container i € Z. i {li:Vie I}
to a new problem that is solved again as an LP problem using 1: Input: 7, J, P, G, h, #t, v'» o+ R, G, Tpr Bpr Tgr
simplex methods. If the resulting solution is an integer and feasible, Bes 8, @, C
we compute the objective function of this integer solution and 2: output: |
check for any other subproblems to be solved. If yes, B&B and 3: for i< 1 to |T| do
CP iterate and the objective value with the new integer solution is 4: OPS! < flhimiyip))s @)« fRiona), w
inspected. If it is less than the last updated solution, it is chosen R, ®7 @), M celoction
for the minimization problem. The process repeats until finding 5. end for
the optimal solution (Mitchell, 2002). Consequently, x;; decision 6: x;j < solve (23) > B&C
variables are determined by solving Equation (23), and, hence, 7: for i< 1 to |I| do
optimal resource limits are obtained. a: b Yier %
9: end for

3. Results

We evaluate the S-RC in the following. We describe the
methodology and tool used for numerical evaluation and then

Algorithm 1. Offline S-RC.

3.1. Setup

To evaluate the S-RC, we consider the deployment of horizontal

discuss the numerical results. scaling (HS), where legacy RC uses pre-defined resource limits as

Frontiersin High Performance Computing 08 frontiersin.org


https://doi.org/10.3389/fhpcp.2023.1167162
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Mazied et al.

a metric to instantiate a new container. Two performance metrics
are defined for S-RC evaluation: (i) probability of processing time
violation P; - g; and (ii) S-RC cost overhead.

3.1.1. Performance metrics

The legacy RC enables HS to start a new container when
a container’s required resources surpass its pre-defined limits.
However, HS deployment brings a critical question to our
evaluation, which is “how could we set resource limits for each
container (slice) according to the system setup that is described in
Section 27? To address this question, we define each container’s
resource limit as an average value l_i, which is defined as l_, =
Z]:n:1pmlim Vi € 7 where p,, is the probability Pr(R <

R; < R;,) and [;, is the solution of a deterministic instance of

im—1

Equation (6), which is obtained by replacing the stochastic variable
Iii with a deterministic value R;, where m = 1,2, Idots, n, Idots, k.
Following the same analysis and methods presented in Section 2,
we obtain Equation (24) as shown below. Consequently, we use
the resource limit computation algorithm in Algorithm 2 to solve
Equation (24) with each sample of R; € {R;,Idots, R;,, ldots, R;, }
and determine [;, € {l;;,dots,[; , Idots, I;, }.

>

min E E CijXij
XYY

GV i€Z jeJ
s.t.

3 through 5

9 through 20
(24)

Rim.OPSf — 7TP.51‘. ZPEP XYip < M;(1 —y,') Viel
R;,.OPS¢ — 7,.6;. Ygeg yig < Miyi Vi€l
xij» yi- xyij € {0, 1}

As mentioned above, we have two performance metrics to
evaluate the S-RC. The first one is P;~g, which is defined for S-
RC as 1 — « since we assume S-RC introduces a probabilistic time
constraint that is fulfilled with a probability greater than «. Thus,
the violation of the processing time design requirement occurs with
chance (1 — @), i.e, Pr=gsg oo = 1 — «. On the other hand, the
legacy RC for HS deployment introduces an additional delay to
start a container, which violates the processing time requirement
if the required resources exceed the pre-defined resource limits.
Therefore, Pros,. = Pr(R;, < R < Ri i, > I;) where
R; , is the deterministic m’ instant of R; that satisfies L, <
I < i, Furthermore, R; , is the deterministic m” value of
R; that satisfies L, > i
m',m"” € {1,2,3,...,k}. The second performance metric is the cost

> I; where m" > m’ + 1 and

of running S-RC, which we define as the overhead cost percentage
of the amount of resources used with S-RC and under-utilized with
different values of R;, in legacy RC. Hence, S-RC cost overhead %

_ Uig_pe—lim)-Pr(Ri<Ry,)

: x 100%.

im

Frontiersin High Performance Computing

10.3389/fhpcp.2023.1167162

1: Input: Z, J, k, P, G, h, #, P, );/, ,t;', Ry, Tpr Bpo
Tgr Ber 8, C
Output: _j
for m <« 1 to k do
for i< 1 to |Z| do
OPS‘? <« f(hi,n,',yl-/,p;), M; <«  max(P,G, (Rim.OPS:-j —
7p.81.P), (hi.ni.z — Bp.8;.P), (R, .OPS¢ — 71.8,.G), (hi.ni.z — Pg.81.G))

end for

s W N

Xjj < solve (24) > B&C

for i< 1 to |Z| do
li, < ZjeJ Xij
10: end for

O 0w N o

11: end for
12: for i<« 1 to |Z| do

13: sm <0

14: for m <1 to k do
15: Sm < Sm + pmli,
16: end for

17: l_;<—sm

18: end for

Algorithm 2. Resource limit computation with deterministic instants of R.

3.1.2. Experimental design

This paper adopts CPLEX C++ libraries (CPLEX and IBM
ILOG, 2009) to implement Algorithms 1, 2 on Ubuntu 20.04.4 LTS
that runs on Intel Core i5-8250U 8" Gen (1.6GHz x eight cores
and 7.6 GiB RAM). We enumerate the set of containers 7 =
{1:eMBB,2: mMTC,3: URLLC}. Although each container deploys
the same LDPC decoding algorithm, the processing time required
for each category is different. We assume the processing delay
requirement is §; = 0.3%«RTD; where RTD; is the end-to-end round-
trip delay (RTD) for each service category i € Z since edge cloud
consumes about 30% of RTD to deliver eMBB, mMTC, or URLLC
service (Fitzek et al., 2020). However, we only consider the LDPC
radio decoding function, which consumes 60% of processing time
at the edge (Foukas and Radunovic, 2021). Therefore, §; = 0.3%0.6%
RTD; where RTD,npp, RTDypmrc, and RTDygrrrc have ranges 5-
50, 10-50, and 0.5-50 ms, respectively (3GPP, 2017). Accordingly,
we set the processing delay threshold 5 = [8emBBs SmmrC> SURLLC]
where Soppg = 0.18 x5 = 0.9 ms, §;umyrc = 0.18 % 10 = 1.8
0.18 ms. We assume that the
MVNO leases resources with a cost for CPU resources ¢ =
{eMBB: 0.1, mMTC:0.08, URLLC:0.05} and for GPU resources
cig = {0.5,0.4,0.25} unit cost per unit time.

ms, and Sepgg = 0.18 x 1 =

We assume five different data inputs, (;1, n, );’, ,5’), to
evaluate the impact of LDPC workload variations where
Dy, values are (h; = 100,..,500,n; = 200,...,1000, yi/ =
34, ...,170,,01{ = 68,..,340)Vi € Z,w = 1,2,3,4,5 with
step size 100,200,34,68, for hj,nj,y/,p!, respectively. We
set the average value of iterations R; = 15 and the variance
op; = 4 Vi € Z. For deterministic values of R;, , k is 10
= 5,10,..,45,50. To study the
impact of relaxing the probabilistic processing time constraint

with step size 5, ie., R

im

on resource limits, we consider different values of o where
o = {0.5,0.6,0.7,0.8,0.9,0.99}.

frontiersin.org


https://doi.org/10.3389/fhpcp.2023.1167162
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Mazied et al.

We consider running an LDPC on a cluster that uses the AMD
EPYC 7251 processor architecture. Although the EPYC 7251 has
eight cores, we assume the number of cores for our model is 64
cores, ie, P = 64 (AMD, 2006) with the number of integer
operations 1, = 5.954 Giga Operations/s per core and its memory
bandwidth per socket 8, = 153.6 GB/s (PassMark Software,
2018). Moreover, the cluster has NVIDIA Volta Tesla V100 GPU
architecture that has 640 cores, i.e., G = 640, and 112 Tera
Flops for tensor operations, i.e., matrix multiplication operations,
ie, mg = 175 Giga Operations/s, and memory bandwidth g, =
900 GB/second (NVIDIA, 2018).

To measure the value of P;.;5, we run 50 experiments with
different deterministic samples of R;,, (10 R;,s x 5 data inputs) to
evaluate the legacy RC for HS deployment where each container’s
resource limit is determined as described in Algorithm 2. Then, we

10.3389/fhpcp.2023.1167162

run five experiments (5 data inputs) of Algorithm 1 to measure the
overhead cost of running S-RC. In both sets of experiments, we set
a = 0.99 for S-RC. Following that, we study the impact of « on
resource limit per container type by running 30 experiments of S-
RC with different values of & (i.e., 6 «s x 5 data inputs). We share
CPLEX models of Algorithms 1, 2 on GitHub (Mazied, 2022). The

following subsection discusses results.

3.2. Numerical evaluation

Figures 3-7 illustrate the impact of data size on the processing
time violation and overhead cost for each service category (i.e.,
container type). The legacy RC for HS deployment does not violate
the processing time requirement with a tiny data size, as shown

Frontiersin High Performance Computing

A B
RCvs. S-RC 0,99 with D1 S-RC = 0.99 COSt overhead with D1
001 =400 —4—0--0-—0—9-—0 200 R
20
0.009 - 1 180 P' s
I ‘-‘ * S-RC 5
0.008 1 160 ! ' R S-RC,
1 ' =p--S-RC
0.007 - R _ 10 'l' 1 p- URLLC
e S i '
0.006 | PP p——p § 120} i \‘ 1
N 1 N /
2 0.005 ; . < 100 -3 i 1
~ ; g i i
0.004 ; S 80f i \ 1
0003 i =& S-RC, g S o ! '\_
g I L RC F . 4
i = RC o H s e S 3
0.002 | ,’ “xp RC e w0} ; 1
N === RC y
0.001 ! > KCumirc 201 B ]
] L
-
I e o ot 0 — W ———————%
0 10 20 30 40 50 0 10 20 30 40 50
R R
FIGURE 3
Tiny data size D;. (A) Time violation. (B) Cost overhead.
A B
RCvs. S-RC with D2 S-RC cost overhead with D2
05 a=0.99 * Y 40 =099
. P i
/V'
0.45 ’ 1
/ R
¢ 120 ,
0.4+ >~' J ,/’ ‘\‘ ~H—S-RC,,, .
X ) " \ WX SRC,
] 100 28 k "
0.35 - 1 7 — =P S-RCyppsc
i g
03 ' H
© ! =O- S-RC, g9 § 80
A ]
o 0.25 i +RCeMBB §
-
02l ." "v'"RCmMTC 3 60
3
! =P RCypyyc S
0.15 "' 1 40
0.1} i i
H
1 20
0.05+ i :
H
0 - - - - - - - — 0 & = = = -
0 10 20 30 40 50 0 10 20 30 40 50
R R
FIGURE 4
Limited data size D;. (A) Time violation. (B) Cost overhead.
10 frontiersin.org



https://doi.org/10.3389/fhpcp.2023.1167162
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Mazied et al.

10.3389/fhpcp.2023.1167162

RCvs. S-RC with D3
a=0.99

=0.

0.9

0.8

0.7

0 10 20 30 40 5

FIGURE 5
Modest data size Ds. (A) Time violation. (B) Cost overhead.

B
S-RC cost overhead with D3
=099
160 T T T T

AN

140 SN
I'I \ —h—S-RC,,,,

\

120 Y S, e SRC, e
F * =-p-- SRCypric

~
S
S

Cost overhead (%)
2 2

S

N
S

with D4

RCvs. S'RC0=0499

0.5

0.45 1

04

0.35 -

-6 S-RC, 99
—h— L

g RCmMTC H
= b‘ = RCURLLC

0.3 r

L2t
S

0.2

0.15

0.1

0.05

FIGURE 6
Large data size D4. (A) Time violation. (B) Cost overhead

B S-RC o = 0.99 €Ot overhead with D4
150 — ; ‘
B }\
/ \\ —h—S-RC,,
R S'RCmMTC
=p-- SRCypi1c
< 100
S
=
s
D
T
X
3
3
S 50
0
0 10 20 30 40 50

in Figure 3A. However, Figures 6A, 7A show that S-RC performs
better than RC for all containers with large and enormous data
sizes. Nevertheless, RC for HS deployment violates the processing
time required for limited data size with only a URLLC container as
shown in Figure 4A due to its strict processing time requirement,
i.e., Surrrc is the lowest threshold value of 0.18 ms. Figures 4-7
show that as data size grows, the number of containers that violate
the processing time requirement increases due to HS deployment,
which imposes starting new containers to satisfy the growing
demands for LDPC processing. Furthermore, the excess in P; .5 for
HS deployment occurs when R, > 15, which is greater than the
average value of LDPC iterations Rs_gc. On the other hand, S-RC
shows higher overhead cost due to allocating more resources than
what is instantaneously consumed with different values of R,, > 15,
in particular, Figures 3B, 4B, 5B, 6B show the highest overhead cost
for URLLC containers that have strict processing requirements with

Frontiersin High Performance Computing

average 75%, 58%, 60%, and 63%, respectively. However, Figure 7B
shows that URLLC has only 51% average overhead cost, which is
the lowest among other scenarios of lower data size, because of
allocating only 2 GPU cores for LDPC operations in this scenario.
Nevertheless, the trend of URLLC overhead will vary if we assume
a higher cost for GPU allocation. In our setup, we assume GPU cost
is 0.25 unit cost per unit time, while CPU cost is 0.05 unit cost per
unit time for the URLLC container. We observe that overhead cost
ranges from 0 to 200% with an overall average, for all data input
sets and containers, of approximately 45%, which is foreseen as a
relatively low average overhead for achieving low processing time
requirements with high probability. Nevertheless, overhead costs in
this case study reflect the limitation of using exact algorithms, i.e.,
B&C, that provide the optimal solution for combinatorial problems.
Therefore, we are motivated to develop approximation algorithms
that would provide a near-optimal solution for combinatorial

frontiersin.org


https://doi.org/10.3389/fhpcp.2023.1167162
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Mazied et al.

10.3389/fhpcp.2023.1167162

A
RCvs. S-RC 020,99 with D5
0.5 A
0.45 1
04
'O‘ S-RC =0.99
0.35 ~Hh=RC, ..
03 "v"RCmMTC
P -b"RCURLLC
2025 1
9
0.2 1
0.15 4
ol e v ...... :vnv ...... )~ (TE
0.05
) - 0= =0 =& = 0= =¢
30 40 50
FIGURE 7
Enormous data size Ds. (A) Time violation. (B) Cost overhead.

S-RC cost overhead with D5
a =099

180 v

: '-_ s S'RCeMBB
B ¥ S-RC
—>--S-RC

160 B
/ mMTC

~
N
S

URLLC

Cost overhead (%)
N, x S B
S % S S 5

)
S

S

TABLE 2 Average overhead cost of using S-RC.

Data input Average cost overhead %
per slice category
eMBB mMTC URLLC
D, 35 0 58
D; 38 25 60
Dy 51 54 63
Ds 67 69 51

problems, (e.g., D’Oro et al., 2020), with minimum overhead costs
overhead. Table 2 summarizes the average overhead cost for each
slice category and data input.

Figure 8 depicts the impact of selecting «, with different data
input sizes, on the resource limits ¢, and g, (i.e, number of
allocated resources) that refer to CPU and GPU resource limits,
respectively. Figures 8A, B show that relaxing the processing time
constraint with a probability 0.5 < o < 0.99 does not affect
resource limits for containers that have a low delay threshold with
tiny and limited data sizes (i.e., data input Dy, D;, and D3 in eMBB
and mMTC containers). However, enormous data sizes in eMBB
and mMTC containers show slight changes in resource limits due
to tuning . On the other hand, Figure 8C demonstrates significant
increments in resource limits due to tuning o, in particular with
enormous data size (Ds5) where S-RC allocates 2 GPU cores for
o = 0.99.

4. Discussion

The results presented in Section 3 show that S-RC deployment
has a high likelihood to effectively auto-scale the edge cloud for
RAN slicing workload. However, its deployment cost, especially

Frontiersin High Performance Computing

with containers with large data sizes and low latency requirements
(i.e., URLLC container), is high due to using an exact method
to solve the S-RC problem. Furthermore, in MEC, it is essential
to utilize resources efficiently. Thus, S-RC could be augmented
to achieve better resource usage by developing approximation
algorithms for the introduced offline S-RC and developing an
online algorithm for real-time operation.

The core concept of S-RC design is workload characterization
(i.e., workload pattern identification). While the characterization
of the RAN slicing workload is still challenging, inspecting MEC
resource usage for containerized radio workloads with strict
processing time requirements is critical for S-RC design. The
inspection would deliver improved workload pattern recognition
with a more accurate random distribution of its variations.
Furthermore, auto-scaling the edge requires the optimal estimation
of the scaling period since real-time autoscaling depends on
capturing the variations in workload characteristics to scale
up/down the resources. Indeed, a low scaling period would lead
to a more accurate workload characterization. However, there is
a tradeoft between scaling period determination and the required
time for online resource allocation and scheduling decision-
making. Therefore, RAN slicing workload characterization is
mandatory for a practical S-RC design, especially if we get a
periodic pattern of workload variations that could be leveraged to
determine the optimal scaling period and workload distribution at
the edge.

Resource selection is another crucial factor for S-RC design.
This paper presents a rudimentary S-RC model, which decides the
resource type based on resource usage value, i.e., selects CPU or
GPU according to minimization of the cost function. Since our
model assumes CPU cost is much lower than GPU cost, the B&C
algorithm always selects the resource with lower cost, provided that
linear design constraint is fulfilled. Nevertheless, resource selection
should consider other performance metrics affecting the MEC’s
overall performance for RAN slicing production, such as memory
access time and energy consumption.

frontiersin.org


https://doi.org/10.3389/fhpcp.2023.1167162
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Mazied et al.

Impact of o on resource limits (eMBB)

12

€05
c

0=0.6
10 ¢
0=0.7
€08
c

a=0.9

nnn

€0=099

[ EAwe
e,
e,
4 e,
80
:]gn =0.99

Resource limits (# of cores)
EN

Data input

Impact of o on resource limits (mMTC)

W

LN

[

Resource limits (# of cores)
w

~

Data input

Impact of « on resource limits (URLLC)

s
..,
L, ]

cz) =0.8

50

N
S

Caz0.9
| .

805
s, .,
Cs0m0r 1
2,005
(A
[ J8mnss 4

04-ﬂlﬂ i

1 2 3 4 5
Data input

“w
S

%)
S
T

Resource limits (# of cores)

~
S
T

FIGURE 8
Impact of & on resource limit (;. (A) eMBB resource limits. (B) mMTC
resource limits. (C) URLLC resource limits.

Accordingly, S-RC can be deployed for delay-sensitive
applications, including RAN slicing workloads, by considering
the workload characterization and S-RC algorithmic development
design factors.

Frontiersin High Performance Computing

10.3389/fhpcp.2023.1167162

4.1. Workload characterization

Instead of introducing a case study, i.e., LDPC radio function,
to characterize the workload, hardware profiling tools such as
PERF (WiKi, 2023) can be used for distribution identification
(pattern recognition) of realistic workloads. Hardware profiling
tools would facilitate the measurement of arithmetic intensity A,
resource usage, task execution time, and many other performance
metrics that read processing and memory counters of different
traces of radio workload. Moreover, to model the processing
time constraint in the introduced S-RC algorithm, an extended
Roofline model (Cabezas and Piischel, 2014) can be constructed
using an LLVM tool (LLVM Project, 2023) to define the peak
performance of the underlying architecture with various traces
of input data that reflect the fluctuations in use-cases’ activities
in the wireless environment. Furthermore, the characterization
study would highlight the frequency of workloads variations that
necessitate running autoscaling algorithms.

4.1.1. Algorithmic development

Since the S-RC design is still in its infancy, three stages
should follow what this work introduces-first, developing a scaling
period optimization algorithm that would rely on the outcomes
of the workload characterization study. Then, an approximation
offline algorithm for the S-RC would be developed to minimize
the overhead cost of using the B&C algorithm. Following that,
motivated by seminal works in Ayala-Romero et al. (2019),
Buchbinder et al. (2021), and Foukas and Radunovic (2021),
the development of an online S-RC algorithm becomes critical
for production phase where heuristic/machine learning tools
could be introduced to augment the results of the S-RC offline
approximation algorithm.

5. Conclusion

Autoscaling mobile edge computing (MEC) is at the core of
the radio access network (RAN) slicing operation since it tailors
MEC resources to fulfill variations in demands for different wireless
communication services. Autoscaling the edge takes place by either
scaling resources (vertical) or scaling the number of containers
(slices) for each service category (horizontal). When the demands
for MEC resources exceed predefined resource limits, horizontal
scaling (HS) incurs an additional 0.5 to 5 second delay to start a
new container for the RAN slicing operation, which violates the
strict timing requirements for radio processing, i.e., 0.5-50 ms.
This paper introduces a design of a resource control (RC) decision-
making process to scale the MEC resource without HS deployment,
thus, eliminating HS delay. We develop stochastic RC (S-RC) where
resource limits are removed from container configuration files and
determined as outcomes of the S-RC decision-making process.
S-RC is modeled as an offline stochastic bin packing problem
where MEC resources (items) need to be packed into containers
(bins) according to stochastic variations in RAN slicing workloads
(demands). As a case study, the Low-Density Parity Check (LDPC)
decoding algorithm is used to model radio workload, and the
Roofline model is adopted to model the MEC performance.

frontiersin.org


https://doi.org/10.3389/fhpcp.2023.1167162
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Mazied et al.

LDPC asymptotic analysis and the Roofline model are leveraged
for deriving processing time design constraints where LDPC
stochasticity lies in the random distribution of LDPC iterations.
Stochastic and combinatorial optimization methods are utilized to
decide resource limits for each container type in the S-RC problem.
Although S-RC outperforms the legacy RC for HS deployment
in terms of meeting processing time requirements, it experiences
resource underutilization overhead compared to the deterministic
alternative of the S-RC, where deterministic samples of LDPC
iterations replace its inverse cumulative distribution function for
processing time design constraint. Developing an approximation
algorithm for the offline S-RC could subside overhead cost.

We plan to characterize RAN slicing workload with complete
consideration of radio functions and realistic operational scenarios
to augment the S-RC design. Workload characterization would
identify workload fluctuation patterns and determine the optimal
scaling period for online S-RC design.

Data availability statement

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding authors.

Author contributions

EM conceived of soft-tuning resource limits as outcomes
of the decision-making process rather than hard coding them
as user-defined configurations, developed the system model and
formulated the problem, conducted the experiments and designed
the performance metrics for numerical evaluation, discussed the
obtained results and concluded the research by drawing directions
for future work, and wrote the paper and followed the co-
authors’ instructions for its organization and presentation style. DN
suggested developing the processing time design constraint using
algorithmic asymptotic analysis and Roofline model and advised
EM through paper development, and made the necessary edits.

References

3GPP (2017). Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource
Control (RRC); Protocol specification. Technical Specification (TS) 36.331, 3rd
Generation Partnership Project (3GPP). Available online at: https://portal.3gpp.org/
desktopmodules/Specifications/SpecificationDetails.aspx?specificationld=2440

3GPP (2018). Telecommunication Management; Study on Management and
Orchestration of Network Slicing for Next Generation Network. Technical report.

Akman, A,, Li, C,, Ong, L., Suciu, L., Sahin, B. Y., Li, T., et al. (2020). O-RAN Use
Cases and Deployment Scenarios: Towards Open and Smart RAN. Technical report,
O-RAN Alliance.

AMD (2006). AMD EPYC 7251.

Armbrust, M., Fox, A., Griffith, R, Joseph, A. D., Katz, R. H., Konwinski, A.,
et al. (2009). Above the Clouds: A Berkeley View of Cloud Computing. Technical

report UCB/EECS-2009-28, Electrical Engineering and Computer Sciences University
of California at Berkeley.

Ayala-Romero, J. A., Garcia-Saavedra, A., Gramaglia, M., Costa-Perez, X., Banchs,
A, and Alcaraz, J. J. (2019). “VrAln: a deep learning approach tailoring computing and
radio resources in virtualized RANs,” in Proc. ACM MobiCom (Los Cabos), 1-16.

Frontiersin High Performance Computing

10.3389/fhpcp.2023.1167162

YH reviewed the paper during its initial development phase and
suggested highlighting the research question at the very beginning
of the paper and comparing the results using different data
inputs to reflect the impact of workload variations on system
performance. SM revised the initial draft of the paper, suggested
its organization and presentation style, suggested presenting a
table to summarize the mathematical notations of the system
model and problem formulation, and advised EM through paper
development. All authors contributed to the article and approved
the submitted version.

Funding

We acknowledge the funding from the Virginia Tech office of
Research and Innovation for their grant Fellowship for Graduate
Student First-Author Papers.

Conflict of interest

DN declared that they were an editorial board member of
Frontiers, at the time of submission. This had no impact on the peer
review process and the final decision.

The remaining authors declare that the research was conducted
in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Bae, J. H., Abotabl, A, Lin, H.-P., Song, K.-B., and Lee, J. (2019). “An
overview of channel coding for 5G NR cellular communications,” in APSIPA
Transactions on Signal and Information Processing, eds S. Furui, C.-C. Jay
Kuo, and K. J. Ray Liu (Cambridge Press), 1-14. doi: 10.1017/ATSIP.
2019.10

Buchbinder, N., Fairstein, Y., Mellou, K., Menache, 1., and Naor, J. (2021). Online
virtual machine allocation with lifetime and load predictions. ACM Sigmetr. Perform.
Eval. Rev. 49, 9-10. doi: 10.1145/3543516.3456278

Cabezas, V. C., and Piischel, M. (2014).15 “Extending the roofline model: bottleneck
analysis with microarchitectural constraints,” in Proc. of the IEEE 15th IISWC (Raleigh,
NC), 222-231.

Chandrasetty, V. A., and Aziz, S. M. (2018a). “Chapter 2: Overview of LDPC codes,”
in Resource Efficient LDPC Decoders, eds V. A. Chandrasetty and S. M. Aziz (Academic
Press), 5-10.

Chandrasetty, V. A., and Aziz, S. M. (2018b). “Chapter 4: LDPC decoding
algorithms,” Resource Efficient LDPC Decoders, eds V. A. Chandrasetty and S. M. Aziz
(Academic Press), 29-53.

frontiersin.org


https://doi.org/10.3389/fhpcp.2023.1167162
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2440
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2440
https://doi.org/10.1017/ATSIP.2019.10
https://doi.org/10.1145/3543516.3456278
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Mazied et al.

CPLEX and IBM ILOG (2009). V12. 1: User’s manual for CPLEX. Int. Bus. Mach.
Corp. 46, 157. Available online at: https://www.ibm.com/docs/en/icos/12.8.0.0?topic=c
plex-users-manual

D’Oro, S., Bonati, L., Restuccia, F., Polese, M., Zorzi, M., and Melodia, T. (2020).
“Sl-edge: network slicing at the edge,” in Proc. of the ACM 21st MobiHoc, Mobihoc 20,
1-10.

Fazi, S., Van Woensel, T., and Fransoo, J. C. (2012). A stochastic variable size bin
packing problem with time constraints. Eindhoven: Technische Universiteit Eindhoven,
382.

Fitzek, F., Granelli, F., and Seeling, P. (2020). Computing in Communication
Networks: From Theory to Practice. Amsterdam: Academic Press.

Foukas, X., and Radunovic, B. (2021). “Concordia: teaching the 5g vran to share
compute,” in Proceedings of the 2021 ACM SIGCOMM 2021 Conference, 580-596.

Garcia-Morales, J., Lucas-Estan, M. C., and Gozalvez, J. (2019). Latency-
sensitive 5G RAN slicing for industry 4.0. IEEE Access 7, 143139-143159.
doi: 10.1109/ACCESS.2019.2944719

Gilchrist, W. (2000). Statistical Modelling with Quantile Functions. Chapman and
Hall/CRC.

Google (2022). Vertical Pod Autoscaling.

Hamidi-Sepehr, F., Nimbalker, A., and Ermolaev, G. (2018). “Analysis of 5G LDPC
codes rate-matching design,” in 2018 IEEE 87th Vehicular Technology Conference (VTC
Spring) (Porto: IEEE), 1-5.

Henderson, D. (2022). Kubernetes CPU Throttling: The Silent Killer of Response
Time—and What to Do About It. Available online at: https://community.ibm.
com/community/user/aiops/blogs/dina-henderson/2022/06/29/kubernetes- cpu-
throttling- the-silent-killer- of- res

Johnson, D. S. (1973). Near-optimal bin packing algorithms (Ph.D. thesis).
Massachusetts Institute of Technology, Cambridge, MA, United States.

Kall, P., and Wallace, S. W. (1994). Stochastic Programming. John Wiley and Sons.

Khun, E. (2020). Kubernetes: Make Your Services Faster by Removing CPU Limits.
Available online at: https://erickhun.com/posts/kubernetes-faster-services-no-cpu-
limits/

Liu, Q., Han, T., and Moges, E. (2020). “EdgeSlice: slicing wireless edge computing
network with decentralized deep reinforcement learning,” in Proc. of the IEEE 40th
ICDCS, ICDCS 20 (Singapore), 234-244.

LLVM Project (2023). The LLVM Compiler Infrastructure.

Frontiersin High Performance Computing

15

10.3389/fhpcp.2023.1167162

Maguolo, F., and Mior, A. (2008). “Analysis of complexity for the message passing
algorithm,” in 2008 16th International Conference on Software, Telecommunications and
Computer Networks (Split), 295-299.

Mazied, E. A. (2022). CPLEX Model of Stochastic Offline Resource Control for MEC
Autoscaling. Available online at: https://github.com/emazied80/Stochastic_Resource
Control_to_AutoScale_. MEC

Microsoft (2022). Azure Kubernetes Service.

Mitchell, J. E. (2002). Branch-and-cut algorithms for combinatorial optimization
problems. Handb. Appl. Opt. 1, 65-77.

Musthafa, F. (2020). CPU Limits and Aggressive Throttling in Kubernetes. Available
online at: https://medium.com/omio- engineering/cpu-limits-and-aggressive-
throttling-in-kubernetes-c5b20bd8a718

NVIDIA (2018). TESLA v100 Performance Guide.

PassMark Software (2018). AMD EPYC 7251 CPU Benchmarks.

Sharon, E., Ashikhmin, A., and Litsyn, S. (2006). Analysis of low-density
parity-check codes based on exit functions. IEEE Trans. Commun. 54, 1407-1414.
doi: 10.1109/TCOMM.2006

Van’t Hof, A., and Nieh, J. (2022). “{BlackBox}: a container security monitor for
protecting containers on untrusted operating systems,” in 16th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 22) (Carlsbad, CA),
683-700.

WiKi, P. (2023). Linux Profiling with Performance Counters. Available online at:
https://perf.wiki.kernel.org/index.php/Main_Page

Williams, S., Waterman, A., and Patterson, D. (2009). Roofline: an insightful visual
performance model for multicore architectures. Commun. ACM 52, 65-76.

Wolsey, L. A. (2020). Integer Programming. John Wiley & Sons.

Yan, J., Lu, Y., Chen, L., Qin, S., Fang, Y., Lin, Q,, et al. (2022). “Solving the batch
stochastic bin packing problem in cloud: a chance-constrained optimization approach,”
in Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, KDD 22 (Washington, DC: Association for Computing Machinery),
2169-2179.

Yan, M., Feng, G., Zhou, J., Sun, Y., and Liang, Y-C. (2019). Intelligent resource
scheduling for 5G radio access network slicing. IEEE Trans. Veh. Technol. 68, 7691
7703.

Yuan, Z., and Muntean, G.-M. (2020). AirSlice: a network slicing framework for
UAV communications. IEEE Commun. Mag. 58, 62-68.

frontiersin.org


https://doi.org/10.3389/fhpcp.2023.1167162
https://www.ibm.com/docs/en/icos/12.8.0.0?topic=cplex-users-manual
https://doi.org/10.1109/ACCESS.2019.2944719
https://community.ibm.com/community/user/aiops/blogs/dina-henderson/2022/06/29/kubernetes-cpu-throttling-the-silent-killer-of-res
https://community.ibm.com/community/user/aiops/blogs/dina-henderson/2022/06/29/kubernetes-cpu-throttling-the-silent-killer-of-res
https://community.ibm.com/community/user/aiops/blogs/dina-henderson/2022/06/29/kubernetes-cpu-throttling-the-silent-killer-of-res
https://erickhun.com/posts/kubernetes-faster-services-no-cpu-limits/
https://erickhun.com/posts/kubernetes-faster-services-no-cpu-limits/
https://github.com/emazied80/Stochastic_Resource_Control_to_AutoScale_MEC
https://github.com/emazied80/Stochastic_Resource_Control_to_AutoScale_MEC
https://medium.com/omio-engineering/cpu-limits-and-aggressive-throttling-in-kubernetes-c5b20bd8a718
https://medium.com/omio-engineering/cpu-limits-and-aggressive-throttling-in-kubernetes-c5b20bd8a718
https://doi.org/10.1109/TCOMM.2006
https://perf.wiki.kernel.org/index.php/Main_Page
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

	Auto-scaling edge cloud for network slicing
	1. Introduction
	2. System design and autoscaling methods
	2.1. Material for system design
	2.1.1. Assumptions
	2.1.1.1. RAN slicing workload
	2.1.1.2. Scaling period
	2.1.1.3. Computational resources

	2.1.2. System model
	2.1.2.1. LDPC
	2.1.2.2. LDPC processing time
	2.1.2.3. MEC
	2.1.2.4. Design requirements


	2.2. Autoscaling methods
	2.2.1. Problem statement
	2.2.2. Problem formulation
	2.2.3. S-RC offline algorithm


	3. Results
	3.1. Setup
	3.1.1. Performance metrics
	3.1.2. Experimental design

	3.2. Numerical evaluation

	4. Discussion
	4.1. Workload characterization
	4.1.1. Algorithmic development


	5. Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


