
TYPE Original Research

PUBLISHED 09 June 2023

DOI 10.3389/fhpcp.2023.1167162

OPEN ACCESS

EDITED BY

Christopher Stewart,

The Ohio State University, United States

REVIEWED BY

Morteza Hashemi,

University of Kansas, United States

Hongyang Sun,

University of Kansas, United States

*CORRESPONDENCE

Dimitrios S. Nikolopoulos

dsn@vt.edu

EmadElDin A. Mazied

emazied@vt.edu

RECEIVED 16 February 2023

ACCEPTED 28 April 2023

PUBLISHED 09 June 2023

CITATION

Mazied EA, Nikolopoulos DS, Hanafy Y and

Midkiff SF (2023) Auto-scaling edge cloud for

network slicing.

Front. High Perform. Comput. 1:1167162.

doi: 10.3389/fhpcp.2023.1167162

COPYRIGHT

© 2023 Mazied, Nikolopoulos, Hanafy and

Midkiff. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Auto-scaling edge cloud for
network slicing

EmadElDin A. Mazied1,2*, Dimitrios S. Nikolopoulos1,3*,

Yasser Hanafy1 and Scott F. Midkiff1

1Electrical and Computer Engineering Department, Virginia Tech, Blacksburg, VA, United States,
2Electrical Engineering Department, Sohag University, Sohag, Egypt, 3Computer Science Department,

Virginia Tech, Blacksburg, VA, United States

This paper presents a study on resource control for autoscaling virtual

radio access networks (RAN slices) in next-generation wireless networks. The

dynamic instantiation and termination of on-demand RAN slices require efficient

autoscaling of computational resources at the edge. Autoscaling involves vertical

scaling (VS) and horizontal scaling (HS) to adapt resource allocation based on

demand variations. However, the strict processing time requirements for RAN

slices pose challenges when instantiating new containers. To address this issue,

we propose removing resource limits from slice configuration and leveraging the

decision-making capabilities of a centralized slicing controller. We introduce a

resource control agent (RC) that determines resource limits as the number of

computing resources packed into containers, aiming to minimize deployment

costs while maintaining processing time below a threshold. The RAN slicing

workload is modeled using the Low-Density Parity Check (LDPC) decoding

algorithm, known for its stochastic demands. We formulate the problem as

a variant of the stochastic bin packing problem (SBPP) to satisfy the random

variations in radio workload. By employing chance-constrained programming, we

approach the SBPP resource control (S-RC) problem. Our numerical evaluation

demonstrates that S-RC maintains the processing time requirement with a higher

probability compared to configuring RAN slices with predefined limits, although it

introduces a 45% overall average cost overhead.

KEYWORDS

network slicing, auto-scaling, stochastic bin packing, resource limits, RAN slicing

1. Introduction

Mobile edge computing (MEC) is envisioned as a computational backend in the wireless
communication service architecture. It deploys containerized radio applications, i.e., radio
access network (RAN) slices, to deliver: (i) Ultra-Reliable and Low-Latency Communication
(URLLC); (ii) Enhanced Mobile Broadband (eMBB); and (iii) Massive Machine-Type-
Communication (mMTC). Unlike other MEC workloads, RAN slicing workloads have strict
processing time requirements (Akman et al., 2020).

Successful deployment of RAN slicing at the edge requires auto-scaling MEC

computational resources to meet the variations in RAN slicing workloads without

violating processing time requirements. Autoscaling the edge cloud includes

resource scaling (vertical) and scaling the application profile according to variations

in the application demands for resources (horizontal) (Armbrust et al., 2009).

While vertical scaling (VS) tailors (i.e., scales up/down) MEC resources for the

running slices within their pre-configured resource limits, horizontal scaling (HS)

responds to the growing demands for RAN slices by instantiating a new slice

(container) when the running container has demands for resources that exceed its

pre-configured resource limits. Starting a new container, which consumes 0.5–5

s (Google, 2022), contravenes end-to-end delay requirements for RAN slicing

Frontiers inHighPerformanceComputing 01 frontiersin.org

https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org/journals/high-performance-computing#editorial-board
https://www.frontiersin.org/journals/high-performance-computing#editorial-board
https://www.frontiersin.org/journals/high-performance-computing#editorial-board
https://www.frontiersin.org/journals/high-performance-computing#editorial-board
https://doi.org/10.3389/fhpcp.2023.1167162
http://crossmark.crossref.org/dialog/?doi=10.3389/fhpcp.2023.1167162&domain=pdf&date_stamp=2023-06-09
mailto:dsn@vt.edu
mailto:emazied@vt.edu
https://doi.org/10.3389/fhpcp.2023.1167162
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fhpcp.2023.1167162/full
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Mazied et al. 10.3389/fhpcp.2023.1167162

operation, i.e., 0.5–50 ms (3GPP, 2017). Thus, removing

resource limits could minimize processing time by avoiding

the potential instantiation of the new container. Moreover, recent

technical studies (Khun, 2020; Musthafa, 2020; Henderson, 2022)

demonstrated that removing resource limits from containers’

configurations led to minimizing processing time, which is needed

for RAN slicing workload. Nevertheless, removing resource limits

from containers’ configuration is inapplicable in MEC operation

due to limited resources at the edge. Thus, carefully considering

resource usage among running slices is necessary to autoscale the

edge cloud for RAN slices.

Auto-scaling MEC for RAN slices introduces a critical research

question, which is “Can resource limits be soft-tuned according to

variation in demands rather than using pre-defined resource limits to

auto-scale MEC for RAN slices ?” This paper addresses this question

by migrating resource limits from containers’ configuration

files to a centralized entity that determines them as outcomes

of a decision-making process. Fortunately, the RAN slicing

architecture defines a slicing controller that orchestrates running

slices (Akman et al., 2020), which could embrace an autoscaling

framework to dynamically scale up/down resources to match

expansion/reduction in radio workload without instantiating a new

container. Thus, the autoscaling framework includes a resource

control agent (RC) that deploys the decision-making process to

tune resource limits according to the variations in slices’ workloads.

The decision-making process aims to minimize the cost of running

slices (i.e., minimize the number of allocated resources per running

container) while the processing delay is maintained below a

pre-defined threshold. In this regard, we introduce a variant of

the bin packing problem (BPP) to determine resource limits by

modeling containers, which process radio workload as bins and

computational resources as items that need to be packed into bins.

The amount of packed items (computational resources) determines

the containers’ limits.

Developing the decision-making process for the RC design

requires modeling RAN slicing workloads to reflect the variations

in demands for MEC resources. To facilitate modeling RAN slicing

workloads, we consider surveillance (Yuan and Muntean, 2020)

and Industry 4.0 (Garcia-Morales et al., 2019) use cases of RAN

slicing deployments where captured data are offloaded to the MEC

that executes all computational kernels to process the received

wireless signals for data analysis and the decision-making process.

Although several radio and control functions would be processed at

the edge, measurements in Foukas and Radunovic (2021) show that

the low-density parity check (LDPC) coding algorithm consumes

60% of uplink execution time and 50% of total (i.e., uplink and

downlink) execution time in 5G cloud RAN systems. Therefore, we

take a step toward modeling RAN slicing workloads by adopting

the asymptotic analysis of the LDPC decoding algorithm (Bae et al.,

2019).

Accordingly, we leverage the stationary random distribution of

the LDPC’s iterations1 to model the fluctuations in radio workload

(i.e., variations in demands). The number of LDPC iterations

1 Fading wireless channels introduce errors in received messages that

mandate carrying out a random number of LDPC iterations for error

detection/correction.

depends on the quality of the received signals (i.e., a higher-

quality received signal reduces the number of LDPC iterations).

Based on analysis in Sharon et al. (2006), this paper models the

number of iterations as a Gaussian random variable R̃ where a

Binary Additive White Gaussian Noise (BiAWGN) channel model

is assumed for wireless propagation. Accordingly, a processing

delay is developed as a function of LDPC operations and MEC

power, defined using the Roofline model (Williams et al., 2009).

Hence, we address the problem of packing MEC’s processing cores

(items) into LDPC containers (bins), which manifests random

variations in demands, i.e., Gaussian random number of iterations.

Hence, the BPP introduces a stochastic processing time constraint

since LDPC operations are defined as a function of R̃.

Chance-constrained stochastic programming (CCSP) is used

for the stochastic BPP-based resource control (S-RC) as it

demonstrates success for manipulating the SBPP in cloud

datacenters (Yan et al., 2022). First, through CCSP, we formulate the

S-RC problem with probabilistic processing delay constraint. Then,

we transform it into a deterministic formulation using the inverse

cumulative distribution function (inverse-CDF) of R̃. Afterward,

we linearize it and use the Branch-and-Cut algorithm (Mitchell,

2002) to solve the resulting combinatorial optimization problem.

We evaluate the S-RC performance numerically by introducing

a probabilistic metric, defined as the probability of processing

time violation, i.e., the probability that processing time τ is

more significant than a pre-defined threshold δ. We measure the

probability Pτ>δ of legacy RC vs. S-RC. In legacy RC, we assume

pre-defined resource limits are set for each container where the

RC deploys HS to start a new container. Results show that S-

RC maintains processing time τ below threshold δ with lower

Pτ>δ than legacy RC for dense and enormous input data size.

However, the overall average cost overhead of S-RC deployment

(i.e., packing additional computing resources) is 45% higher

than RC, particularly with slices with ultra-low processing time

requirements (i.e., δ is very small) and enormous input data size.

The subsequent sections explain our methods to solve and

evaluate the S-RC and discuss the numerical results in more detail.

First, Section 2 explains the system model, problem formulation,

and optimization methods we use to approach the S-RC. Following

that, we show the numerical evaluations in Section 3. Then,

results and recommendations for a robust design of autoscaling

framework for RAN slicing are discussed in Section 4. Finally,

Section 5 concludes the paper and outlines future work.

2. System design and autoscaling
methods

Radio Access Network (RAN) slicing introduces a novel service

architecture for network operation where many service providers,

i.e., multiple mobile virtual network operators (MVNOs), lease

physical resources from a few infrastructure providers (InPs)

to provide virtualized wireless communication services. Figure 1

demonstrates a RAN slicing design framework where InPs lease

their network and computational resources to various tenants, i.e.,

mobile virtual network operators (MVNOs). In this context, we

consider network resources at the edge, including radio units (RUs),

wireless spectrum, and a transport network that connects RUs to the

Frontiers inHighPerformanceComputing 02 frontiersin.org

https://doi.org/10.3389/fhpcp.2023.1167162
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Mazied et al. 10.3389/fhpcp.2023.1167162

edge cloud at the proximity of wireless infrastructure to provide

low-latency computational service for different wireless use-cases.

Although end-to-end network slicing architecture encompasses

slicing core cloud and data network resources, this paper discusses

the resource allocation problem at the edge for surveillance

and Industry 4.0 use-cases (Garcia-Morales et al., 2019; Fitzek

et al., 2020; Yuan and Muntean, 2020). In particular, we focus

on managing computational resources at the edge, a.k.a multi-

access (mobile) edge computing (MEC), which manifests the

computational infrastructure for wireless slices operation.

RAN slicing architecture introduces global and local slicing

control agents. As depicted in Figure 1A, InPs deploy the global

slicing controller to maximize their revenue while tenants’ service

level agreements (SLAs) are satisfied. Therefore, admission control

(AC) interplays with the resource manager (RM) to admit (reject)

a tenant’s (MVNO’s) request for RAN slices. In this context,

RM tracks the variations in available resources according to

tenant resource usage changes (i.e., instantiation/termination of

a MVNO’s slices would affect resource availability). Furthermore,

RM interacts with the slicing scheduler to schedule a MVNOs’

slicing workloads among allocated resources for low-latency slice

instantiation. On the other hand, each tenant deploys a local slicing

controller to manage its leased resources (i.e., allocated resources

by the global slicing controller) for its running slices. Figure 1B

demonstrates the components of the local slicing controller that

would dynamically scale network and computational resources

at the edge for the tenant’s running RAN slices. Furthermore,

it is shown that dynamic scaling of the computational resources

would be carried out by adopting the autoscaling framework of

Kubernetens-like systems (Google, 2022; Microsoft, 2022), which

would manage the containerized backend of RAN slices at the

edge computing. In this sense, autoscaling computational resources

would interplay with the dynamic scaling of wireless network

resources by deploying a coordinator agent. We refer to 3GPP

(2018), Yan et al. (2019), D’Oro et al. (2020), and Liu et al. (2020) for

an insightful discussion on the design of coordinator, autoscaling

network resources, and the global slicing control.

Figure 1B shows the deployment of Kubernetes-like autoscaling
algorithms in a centralized entity, i.e., Kubernetes’ controller
node (master node), which manages MEC resources for running
containers (Pods) in worker nodes. The statistics of containers’
resource usage are the essence of the autoscaling framework. Based
on a user-defined (customized) deployment metric (e.g., CPU
throttling, CPU usage, memory usage, out-of-memory statistics,

etc.), a recommender agent uses statistical histogram methods

to estimate upper and lower bounds of the customized metric

according to the collected measurements during the last scaling

cycle. An updater agent decides whether horizontal scaling (HS)

or vertical scaling (VS) procedures should be invoked according

to the recommender’s output (estimated deployment metric). HS

is invoked if the deployment metric indicates that more resources

than predefined limits are needed for a running container.

Accordingly, the updater requests the admission controller to

instantiate a new container. If required resources are insufficient

to instantiate a new container, the admission controller (AC)

consults the resource control manager to scale down other running

containers whose resource usage is below their predefined resource

limits. VS is invoked when the estimated metric indicates that

a running container’s resource usage is growing but below the

pre-defined resource limit (request the AC for scaling up) or

declining (request the AC for scaling down). Based on the AC’s

decision, a scheduler agent makes its scheduling decisions for

scaled-up/down containers and any new instantiated container.

Therefore, autoscaling MEC resources becomes critical for RAN

slicing design to meet the dynamic variations in radio workload at

the edge.

Unlike autoscaling cloud resources for delay-tolerant

workloads, autoscaling MEC resources should consider the

processing time requirement of delay-sensitive radio workloads,

i.e., end-to-end delay requirements must be within 0.5–50 ms for

different wireless services. While HS instantiates a new container

when a container requests more resources than pre-configured

resource limits, VS scales up/down resources to a container

according to the variations in workload provided that resource

requests are below the defined resource limits. Thus, HS adds delay

overhead due to the time to start a container, i.e., 0.5–5 s, which

violates end-to-end delay requirements for RAN slicing design.

Furthermore, performance evaluations in Khun (2020), Musthafa

(2020), and Henderson (2022) recommend removing resource

limits from container configuration to maintain a low processing

delay.

Removing resource limits could be beneficial to satisfy delay

requirements for RAN slicing workloads. Furthermore, resource

limit removal would lead to HS displacement since HS works

when the workload uses more resources than pre-configured limits.

However, the need for more computational resources at the edge

makes resource limit removal an unattainable solution for RAN

slicing design. Thus, a critical research for autoscaling design

RAN slicing is “Can resource limits be soft-tuned according to

variation in demands rather than using pre-defined resource limits

to auto-scale MEC for RAN slices ?” This paper paves the way

to answer this question by leveraging the capability of the local

slicing controller, which orchestrates the RAN slicing operation,

to embrace an autoscaling framework with a resource control

agent (RC) to tune resource limits according to the variations

in the running slices’ workloads. Hence, resource limits would

be removed from configuration of RAN slices (containers) but

would be determined by the RC as outcomes of a decision-making

process.

The following subsections present material for the system

model and discuss methods for developing the RC decision-making

process to determine resource limits for RAN slicing.

2.1. Material for system design

2.1.1. Assumptions
2.1.1.1. RAN slicing workload

Modeling RAN slicing workloads is challenging since

deployments are only emerging. To circumvent this challenge, we

consider two use cases of RAN slicing deployment: (i) surveillance;

and (ii) Industry 4.0. Both cases consider offloading captured

data to the MEC, which processes the received wireless signal

by executing all computational kernels for data analysis and

decision-making. In wireless surveillance applications, drones,

a.k.a unmanned aerial vehicles (UAVs), offload their encoded

Frontiers inHighPerformanceComputing 03 frontiersin.org

https://doi.org/10.3389/fhpcp.2023.1167162
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Mazied et al. 10.3389/fhpcp.2023.1167162

A B

FIGURE 1

RAN slicing design. (A) RAN slicing framework. (B) Inside local slicing controller.

observations to the MEC for further data analysis and decision-

making process regarding surveillance systems. Thus, drones

would encode, modulate, and transmit raw observations to

the MEC that demodulate and decode received signals. Hence,

drones would be supported by eMBB and URLLC containers

for real-time video transmission and vehicular communication

services, respectively. In Industry 4.0, many sensors transmit

encoded measurements to MEC for autonomous production (i.e.,

MEC would deploy a decision-making process that generates

control signals according to received measurements to manage an

actuator in the production field). Accordingly, mMTC and URLLC

containers would support massive sensor-MEC low-latency data

communication and control.

The RAN slicing deployments mentioned above include

processing various radio functions, e.g., (de)modulation, channel

(de)coding, layer (de)mapping, channel estimation,multi-in-multi-

out (MIMO) pre-coding, etc. However, given the lack of technical

studies that characterize variations in RAN slicing workload, we

consider the most significant radio functions to model fluctuations

in radio workload. Measurements in Foukas and Radunovic (2021)

demonstrate that the channel decoding task, which deploys the

Low-Density Parity Check (LDPC) decoding algorithm (Bae et al.,

2019), is the most expensive computational task. It contributes

60% of execution time to the uplink processing time and 50% of

execution time to the total downlink and uplink processing time.

Therefore, to introduce a case study of modeling the RAN slicing

workload, we adopt LDPC to model the radio workload.

LDPC is an Iterative-based Belief Propagation algorithm, i.e.,

Message Passing Algorithm (MPA), used for error detection and

correction of the receivedmessage transmitted over a noisy channel

(Maguolo and Mior, 2008; Chandrasetty and Aziz, 2018b). MPA

behaves as an iterative sum-product algorithm (SPA) where, in

each iteration, there are two basic operations: (i) variable node sum

operations (Sum) that perform summation of log-likelihood ratios

(LLR) of n-bits that represent the reliability of a decoded message;

and (ii) check nodes multiplication operations (product) that

estimate the multiplications of LLRs for each bit value (i.e., each

check node value). The MPA’s iterations depend on the quality of

the received signals (Sharon et al., 2006; Maguolo and Mior, 2008).

Therefore, we model the MPA’s number of iterations as a random

variable R̃ that reflects the reliability of a received message (Sharon

et al., 2006; Maguolo and Mior, 2008; Chandrasetty and Aziz,

2018b). By following the analysis in Sharon et al. (2006), we define

the random distribution of the R̃ as Gaussian distribution where a

Binary Additive White Gaussian Noise (BiAWGN) channel model

is assumed for wireless propagation.

2.1.1.2. Scaling period

Auto-scaling decision-making occurs at each scaling period,

i.e., constant duration scaling cycle (Google, 2022). Nevertheless,

we address the auto-scaling problem during a single scaling cycle

and skip the iterative property of the problem since we study only

one radio function to model the radio workload and assume that

the variations in LDPC workload follow the same distribution at

each cycle.

2.1.1.3. Computational resources

Since we focus on the processing time design constraint,

this paper considers only the processing units to model the

computational resources, i.e., only CPUs and GPUs. Studying the

impact of memory management on execution time is out of this

paper’s scope.

2.1.2. System model
2.1.2.1. LDPC

In LDPC (Chandrasetty and Aziz, 2018a), the received message

(encoded message) has length n bits that convey a k-bit source

message where k < n and k
n is the LDPC code rate. Further, h

redundant bits (i.e., parity bits) are added to the source message,

where (k = n − h). LDPC codes are generated by constructing a

sparse (H) matrix (h rows x n columns); following that, a generator

matrix (G) is defined for LDPC code generation. The parity-

check sparse matrix H is used at the receiver for error detection

and correction. The density of 1’s in the H sparse matrix is low;

therefore, LDPC is called a low-density Parity Check. A Tanner

graph represents the H matrix where h check nodes are connected

to n variable nodes through many edges representing the number

of non-zero elements in the H matrix.

Frontiers inHighPerformanceComputing 04 frontiersin.org

https://doi.org/10.3389/fhpcp.2023.1167162
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Mazied et al. 10.3389/fhpcp.2023.1167162

2.1.2.2. LDPC processing time

Tomodel the processing time of the LDPC decoding algorithm,

we adopt two first-order approximation methods: (i) the Roofline

analytical model (Williams et al., 2009); and (ii) LDPC algorithmic

analysis (Maguolo and Mior, 2008; Chandrasetty and Aziz, 2018b;

Hamidi-Sepehr et al., 2018). Roofline introduces a first-order

approximation of a function that defines an architecture’s peak

performance as a function of an application’s operational intensity

(arithmetic intensity) A. The architecture’s peak performance is

characterized by its memory bandwidth β (bytes/seconds) and its

processing throughput π (operations/seconds) when processing a

computational kernel with operational intensity A. A is the ratio

of the number of operations to the number of memory reads and

writes, which depends on the input data size. We model the MPA’s

number of operations (MUL + ADD) operations by following the

analysis of the MPA’s time complexity in Maguolo and Mior (2008)

and Chandrasetty and Aziz (2018b). Likewise, we model the MPA’s

number of memory reads and writes through the MPA’s space

complexity (Chandrasetty and Aziz, 2018b; Hamidi-Sepehr et al.,

2018). In each iteration, there are approximately (2hρ
′ + 4nγ

′
)

multiplications and n additions where ρ
′
and γ

′
are the average

number of ones in the H’s rows and H’s columns, respectively.

Therefore, the number of operations is ˜OPSLDPC = R̃.[2hρ
′ +

4nγ
′ + n] = R̃.OPSd, where OPSd = [2hρ

′ + 4nγ
′ + n]. MPA’s

space complexity is defined as H’s size, i.e., hn. Accordingly, A ≈
R̃.OPSd

hnz (Operations/Byte) where z is the variable data size (i.e., 4

Bytes for integer variables). Moreover, the Roofline model defines

the peak performance of an architecture that processes a certain

computational kernel as min(π ,βA). LDPC has a multi-threading

feature (Maguolo andMior, 2008) that allows parallel computations

on multiple cores. We assume that the number of processing cores

that could be allocated to process the LDPC is np. Later in this

section, np is replaced with resource limit, the output of the RC

decision-making process. Hence, the LDPC’s processing time τ̃ is

defined as τ̃ ≈ R̃.OPSd

npmin(π ,βA) .

2.1.2.3. MEC

We consider a leased amount of MEC computational

resources to process RAN slicing workloads. Figure 2 depicts

MEC computing resources that need to be managed for network

slicing containers to deliver Ultra-Reliable and Low-Latency

Communication (URLLC), enhanced Mobile Broadband (eMBB),

and massive machine-type-communication (mMTC) services.

There is a set of computational resources J = {P ,G} where
P = {1, 2, ldots, p, ldots, P − 1, P} is a set of CPU cores, and G =
{1, 2, ldots, g, ldots,G − 1,G} a set of GPU cores to support a set

of containers I . There is a set of containers I = {e,m, u} where
e, m, and u refer to eMBB, mMTC, and URLLC service categories,

respectively.We define the containers’ limits as li ∀ containers i ∈ I

and ∀ resources j ∈ J where li = {lip, lig} for each container i ∈ I ,

where lip, and lig represent allocated CPU cores or GPU cores to run

the LDPC radio function in a container i, respectively. We define

cij as the cost of using a computational resource j ∈ J to process

workload in a container i ∈ I . The cost cij = [cip, cig] is defined per

allocated resource unit, where cip, and cig define the cost of using a

CPU core p, and GPU core g to support a container i, respectively.

2.1.2.4. Design requirements

RAN slicing defines several design metrics to specify a

service level agreement (SLA) between MVNOs and infrastructure

providers, e.g., availability, latency, reliability, security, and

throughput. However, we focus on latency and isolation design

requirements. We consider isolation among resources since it is

critical to achieving security requirements. Latency is modeled as

a design constraint where the processing delay τ̃i is less than a

pre-defined threshold δi for each container i ∈ I . We model the

isolation at the hardware level by assigning a resource j ∈ J to a

container i ∈ I where j is not used by any other container in I ‘ ⊂ I

where I ‘ = I − i. We assume that the isolation requirement at the

OS kernel level is achieved by other methods such as Van’t Hof and

Nieh (2022).

2.2. Autoscaling methods

2.2.1. Problem statement
The core concept of RAN slicing is auto-scaling resources to

deliver on-demand virtual network environments for various use

cases. This research investigates the capability of RC to auto-scale

MEC resources without HS deployment where resource limits are

removed from the containers’ configuration and determined as

outcomes of the RC decision-making process. In this sense, we

aim to minimize the cost of running slices where a limited amount

of computational resources are allocated to process demands with

random fluctuations such that an SLA is fulfilled, i.e., the processing

delay is maintained below a pre-defined threshold δi. Figure 2

depicts the modeling of computing resources as items packed into

LDPC containers (bins). Bin sizes, i.e., li, are outcomes of the RC

decision-making process. Hence, RC is defined as a problem of

packing resources into containers where an SLA is satisfied with

minimum cost.

2.2.2. Problem formulation
We formulate the resource limit decision-making problem as

a variant of the classical bin packing problem (BPP) (Johnson,

1973) where a MVNO has a fixed number of bins (i.e., containers)

that have variable sizes, which depend on the amount of allocated

resources (i.e., items) to meet the variations in workload (i.e.,

demands). Therefore, we need to determine the optimal size li
of each container i ∈ I to minimize the total cost of running

containers and meet SLA requirements (i.e., processing time τ̃i

below the pre-defined threshold δi and resources per container

are isolated). To determine li, we define a binary decision variable

xij = [xip, xig] that equals 1 when a resource j is assigned to a

container i and equals 0 otherwise. Thus, li =
∑

j∈J xij = {lip, lig}
where lip =

∑

p∈P xip and lig =
∑

g∈G xig ∀i ∈ I .

The objective is to minimize the cost of running containers.

Since we define the cost cij to use resource j for a container i, the

cost function is formulated as follows.

∑

i∈I

∑

j∈J
xijcij =

∑

i∈I

∑

p∈P
xipcip +

∑

i∈I

∑

g∈G
xigcig (1)

Frontiers inHighPerformanceComputing 05 frontiersin.org

https://doi.org/10.3389/fhpcp.2023.1167162
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Mazied et al. 10.3389/fhpcp.2023.1167162

FIGURE 2

System model.

Since we process a container i ∈ I , which runs the LDPC

decoding algorithm, by using either CPU cores or GPU cores for

minimum cost, we formulate processing time design constraints for

each container i ∈ I as follows.

τ̃ip ≤ δi or τ̃ig ≤ δi ∀i ∈ I ∀p ∈ P ∀g ∈ G (2)

Here, τ̃ip = R̃.OPSdi
∑

p∈P xip .min(πp ,βpA)
, and τ̃ig = R̃.OPSdi

∑

g∈G xig .min(πg ,βgA)
.

OPSdi andA are first-order approximations of arithmetic operations

and arithmetic operational intensity of the LDPC decoding

algorithm that runs in a container i ∈ I , respectively. πp and πg are

the peak performance of CPU and GPU architectures, respectively.

βp and βg are the memory bandwidth of the CPU and GPU,

respectively.

To guarantee that a resource j can only be used atmost once by a

container i, we formulate the isolation design constraint as follows.

∑

i∈I
xij ≤ 1 ∀j ∈ J (3)

We also have resource constraints as follows.

∑

i∈I

∑

p∈P
xip ≤ P (4)

∑

i∈I

∑

g∈G
xig ≤ G (5)

Thus, the problem is formulated as follows.

min
xij

∑

i∈I
∑

j∈J cijxij

s.t. 2 through 5

xij ∈ {0, 1}
(6)

The problem in Equation (6) is a variant of the stochastic bin

packing problem (SBPP) with a non-linear stochastic processing

time constraint in Equation (2) that results in an infeasible solution.

Chance-constrained methods (Kall andWallace, 1994) are adopted

to approach the SBPP-based RC (S-RC) problem.

Equation (2) is written as “
R̃i .OPS

d
i

δi .
∑

p∈P xip
≤

min(πp,βpA) or
R̃i .OPS

d
i

δi .
∑

g∈G xig
≤ min(πg ,βgA) ∀i ∈ I”. However,

min(πp,βpA) ≥
R̃i .OPS

d
i

δi .
∑

p∈P xip
is equivalent to πp ≥

R̃i .OPS
d
i

δi .
∑

p∈P xip
and

βpA ≥ R̃i .OPS
d
i

δi .
∑

p∈P xip
. Therefore, min(πp,βpA) ≥

R̃i .OPS
d
i

δi .
∑

p∈P xip

is reformulated into R̃i.OPS
d
i − πp.δi.

∑

p∈P xip ≤ 0 and

hi.ni.z − βp.δi.
∑

p∈P xip ≤ 0, ∀i ∈ I since A = R̃i .OPS
d
i

hi .ni .z
.

Likewise, min(πg ,βgA) ≥ R̃i .OPS
d
i

δi .
∑

g∈G xig
is reformulated into

R̃i.OPS
d
i − πg .δi.

∑

g∈G xig ≤ 0 and hi.ni.z − βg .δi.
∑

g∈G xig ≤ 0,

Frontiers inHighPerformanceComputing 06 frontiersin.org

https://doi.org/10.3389/fhpcp.2023.1167162
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Mazied et al. 10.3389/fhpcp.2023.1167162

∀i ∈ I . Furthermore, we introduce a new binary decision variable

yi to linearize the “or” operator where yi = 1 for CPU and yi = 0

for GPU resources to process the LDPC in container i ∈ I . We

also add another constraint, which uses yi, to guarantee that the

selection of CPU or GPU resources is associated with its resource

limits
∑

p∈P xip or
∑

g∈G xig , respectively. Therefore, Equation (2)

is reformulated as follows.

R̃i.OPS
d
i − πp.δi.

∑

p∈P
xyip ≤ Mi(1− yi) ∀i ∈ I (7)

R̃i.OPS
d
i − πg .δi.

∑

g∈G
xyig ≤ Miyi ∀i ∈ I (8)

hi.ni.z − βp.δi.
∑

p∈P
xyip ≤ Mi(1− yi) ∀i ∈ I (9)

hi.ni.z − βg .δi.
∑

g∈G
xyig ≤ Miyi ∀i ∈ I (10)

∑

p∈P
xip ≤ Miyi ∀i ∈ I (11)

∑

g∈G
xig ≤ Mi(1− yi) ∀i ∈ I (12)

Here, Mi is a large constant value that we choose to guarantee

that constraints in Equations (7)–(12) are satisfied for any

value of decision variable yi, i.e., Mi = max(P,G, (R̃i.OPS
d
i −

πp.δi.P), (hi.ni.z−βp.δi.P), (R̃i.OPS
d
i −πg .δi.G), (hi.ni.z−βg .δi.G)).

Furthermore, we introduce xyip = xip.yi, and xyig = xig .(1 − yi)

as new non-linear binary decision variables to guarantee resource

allocation for the selected resource, i.e., CPU or GPU. Thus, we add

the following constraints for linearization purposes.

xyip ≤ yi ∀i ∈ I ∀p ∈ P (13)

xyip ≤ xip ∀i ∈ I ∀p ∈ P (14)

xyip ≥ xip + yi − 1 ∀i ∈ I ∀p ∈ P (15)

xyip ≥ 0 ∀i ∈ I ∀p ∈ P (16)

xyig ≤ 1− yi ∀i ∈ I ∀g ∈ G (17)

xyig ≤ xig ∀i ∈ I ∀g ∈ G (18)

xyig ≥ xig − yi ∀i ∈ I ∀g ∈ G (19)

xyig ≥ 0 ∀i ∈ I ∀g ∈ G (20)

Equations (7) and (8) introduce R̃i as a Gaussian

random variable where processing time constraints are

expressed as probabilistic constraints that are fulfilled with

probability α. Thus, Equations (7) and (8) are rewritten

as Pr
(

R̃i.OPS
d
i − πp.δi.

∑

p∈P xyip ≤ Mi(1− yi)
)

≥ α and

Pr
(

R̃i.OPS
d
i − πg .δi.

∑

g∈G xyig ≤ Miyi
)

≥ α, ∀i ∈ I ,

respectively. The probabilistic constraints are manipulated

by using the definition of inverse cumulative distribution

function (inverse-CDF) of Gaussian random variable CDF−1
R̃i

(α).

Then, Pr
(

R̃i ≤ ζj
)

≥ α, where j ∈ {p, g}, is reformulated as

ζ ≥ CDF−1
R̃i

(α), which can be written as ζj ≥ R̄i +)−1
R̃i

(α).σRi

where ζj =
Miyij+πj .δi .

∑

j∈J xyij

OPSdi
; yij = yi if j = p and yij = 1 − yi

if j = g, R̄i is the mean value of R̃i, σRi is the variance of R̃i, and

)−1
R̃i

(α) =
√
2σRi .erf

−1(2α − 1) + R̄i (Gilchrist, 2000) where

erf−1(2α−1) is the inverse error function of (2α−1). Accordingly,
Equations (7) and (8) are rewritten as follows.

ui.OPS
d
i − πp.δi.

∑

p∈P
xyip ≤ Mi(1− yi) ∀i ∈ I (21)

ui.OPS
d
i − πg .δi.

∑

g∈G
xyig ≤ Miyi ∀i ∈ I (22)

Here, ui = (R̄i +)−1
R̃i

(α).σRi). Hence, the deterministic and

linear formulation of 6 is written as shown below in Equation (23).

Table 1 summarizes the notations used for the S-RC model and

problem formulation.

min
xij

∑

i∈I
∑

j∈J cijxij

s.t. 3 through 5

9 through 20

21 through 22

xij, yi, xyij ∈ {0, 1}

(23)

2.2.3. S-RC offline algorithm
Online algorithms for decision-making are often based on

insights from their offline algorithms, (e.g., Fazi et al., 2012;

Buchbinder et al., 2021; Foukas and Radunovic, 2021; Yan et al.,

2022). In the following, we discuss the S-RC offline algorithm
to determine each container’s (i.e., RAN slice) optimal resource
limits (li). As shown in Figure 2, there is a pre-processing stage

that aims to identify the random distribution of radio workload

patterns to determine ⃗̄R and σ⃗R. Then, the S-RC algorithm in

Algorithm 1 initially computes the required data parameters for

each slice category i ∈ I , i.e., OPSdi ,)
−1
R̃i

(α), ui,Mi. It then deploys

Branch-and-Cut procedures to solve Equation (23). The Branch-

and-Cut algorithm (B&C) (Mitchell, 2002) manages the complexity

of Equation (23) by using the Branch-and-Bound B&B algorithm

with the Cutting Plane algorithm (CP) (Wolsey, 2020). B&C is

an iterative algorithm that uses B&B to partition the prior node

(original problem) into two sub-nodes (subproblems) when we get

a non-integer feasible solution of the relaxed LP. Then, the CP

algorithm is called to find more linear constraints fulfilled by all

feasible integers but violated by the current non-integer solution.

This set of linear constraints is added to the problem, which leads

Frontiers inHighPerformanceComputing 07 frontiersin.org

https://doi.org/10.3389/fhpcp.2023.1167162
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Mazied et al. 10.3389/fhpcp.2023.1167162

TABLE 1 List of symbols.

Symbol Definition Symbol Definition

H LDPC parity check matrix G LDPC generator matrix

n H’s columns size h H’s rows size

γ
′

Average # of 1’s in n ρ
′

Average # of 1’s in h

k Sourceword size (k = n− h) z Data variable size (e.g., 4 Bytes)

OPSLDPC # of LDPC’s MULs & ADDs operations R̃ # of iterations of OPSLDPC

A Arithmetic intensity (Operations/Byte) P CPU cores {1, 2, ldots, p, ldots, P − 1, P}

G GPU cores {1, 2, ldots, g, ldots,G− 1,G} J Set of j resourcesJ ← {P ,G}

πp p’s peak perf (operations/second) πg g’s peak perf (Operations/second)

βp p’s memory bandwidth (bytes/second) βg g’s memory bandwidth (bytes/second)

τ̃ LDPC processing time I Set of i RAN slicing containers

ni n’s of running LDPC in i n⃗ {ni : ∀i ∈ I}

hi h’s of running LDPC in i h⃗ {hi : ∀i ∈ I}

γ
′
i Average # of 1’s in ni γ⃗

′ {γ ′i : ∀i ∈ I}

ρ
′
i Average # of 1’s in hi ρ⃗

′ {ρ ′i : ∀i ∈ I}

OPSdi OPSLDPC in i R̃i Gaussian random # of OPSdi iterations

R̄i Average value of R̃ in i ⃗̄R {R̄i : ∀i ∈ I}

σRi Variance of R̃i σ⃗R {σRi :∀i ∈ I}

τ̃ip τ̃ in i with p τ̃ig τ̃ in i with g

δi τ̃ ’s upper bound when runs in i δ⃗ {δi : ∀i ∈ I}

α Pre-defined probability value ∈ (0, 1])−1
R̃i
(α) α-quantile of R̃i

cij Cost vector [cip , cig] C {cij : ∀i ∈ I ∀j ∈ J }

xij Binary decision variable (BDV) X {xij : ∀i ∈ I ∀j ∈ J }

yi Resource selection BDV y⃗ {yi : ∀i ∈ I}

xyij Non-linear BDV xijyi XY {xyij : ∀i ∈ I ∀j ∈ J }

Mi Parameter for constraint tuning ∀i ∈ I. M⃗ {Mi : ∀i ∈ I}

li Resource limits for a container i ∈ I. l⃗ {li : ∀i ∈ I}

to a new problem that is solved again as an LP problem using

simplex methods. If the resulting solution is an integer and feasible,

we compute the objective function of this integer solution and

check for any other subproblems to be solved. If yes, B&B and

CP iterate and the objective value with the new integer solution is

inspected. If it is less than the last updated solution, it is chosen

for the minimization problem. The process repeats until finding

the optimal solution (Mitchell, 2002). Consequently, xij decision

variables are determined by solving Equation (23), and, hence,

optimal resource limits are obtained.

3. Results

We evaluate the S-RC in the following. We describe the

methodology and tool used for numerical evaluation and then

discuss the numerical results.

1: Input: I, J , P, G, h⃗, n⃗, γ⃗
′, ρ⃗

′, ⃗̄R, σ⃗R, πp, βp, πg,

βg, δ⃗, α, C

2: Output: l⃗

3: for i← 1 to |I| do

4: OPSdi ← f (hi, ni, γ
′
i , ρ

′
i),)−1

R̃i
(α) ← f (R̄i, σRi ,α), ui ←

f (R̄i, σRi ,)
−1
R̃i

(α)), Mi selection

5: end for

6: xij ← solve (23) ◃ B&C

7: for i← 1 to |I| do

8: li ←
∑

j∈J xij

9: end for

Algorithm 1. Offline S-RC.

3.1. Setup

To evaluate the S-RC, we consider the deployment of horizontal

scaling (HS), where legacy RC uses pre-defined resource limits as

Frontiers inHighPerformanceComputing 08 frontiersin.org

https://doi.org/10.3389/fhpcp.2023.1167162
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Mazied et al. 10.3389/fhpcp.2023.1167162

a metric to instantiate a new container. Two performance metrics

are defined for S-RC evaluation: (i) probability of processing time

violation Pτ>δ ; and (ii) S-RC cost overhead.

3.1.1. Performance metrics
The legacy RC enables HS to start a new container when

a container’s required resources surpass its pre-defined limits.

However, HS deployment brings a critical question to our

evaluation, which is “how could we set resource limits for each

container (slice) according to the system setup that is described in

Section 2”? To address this question, we define each container’s

resource limit as an average value l̄i, which is defined as l̄i =
∑k

m=1 pmlim ∀i ∈ I where pm is the probability Pr(Rim−1 ≤
R̃i ≤ Rim) and lim is the solution of a deterministic instance of

Equation (6), which is obtained by replacing the stochastic variable

R̃i with a deterministic value Rim where m = 1, 2, ldots, n, ldots, k.

Following the same analysis and methods presented in Section 2,

we obtain Equation (24) as shown below. Consequently, we use

the resource limit computation algorithm in Algorithm 2 to solve

Equation (24) with each sample of Ri ∈ {Ri1 , ldots,Rim , ldots,Rik}
and determine lim ∈ {li1 , ldots, lim , ldots, lik}.

min
xij ,xyij ,yi

∑

i∈I

∑

j∈J
cijxij

s.t.

3 through 5

9 through 20

Rim .OPS
d
i − πp.δi.

∑

p∈P xyip ≤ Mi(1− yi) ∀i ∈ I

Rim .OPS
d
i − πg .δi.

∑

g∈G xyig ≤ Miyi ∀i ∈ I

xij, yi, xyij ∈ {0, 1}

(24)

As mentioned above, we have two performance metrics to

evaluate the S-RC. The first one is Pτ>δ , which is defined for S-

RC as 1 − α since we assume S-RC introduces a probabilistic time

constraint that is fulfilled with a probability greater than α. Thus,

the violation of the processing time design requirement occurs with

chance (1 − α), i.e., Pτ>δS−RC = 1 − α. On the other hand, the

legacy RC for HS deployment introduces an additional delay to

start a container, which violates the processing time requirement

if the required resources exceed the pre-defined resource limits.

Therefore, Pτ>δRC = Pr(Rim′ ≤ R̃i ≤ Rim′′ |lim′′ > l̄i) where

Rim′ is the deterministic m′ instant of R̃i that satisfies lim′ <

l̄i ≤ lim′+1
. Furthermore, Rim′′ is the deterministic m′′ value of

R̃i that satisfies lim′′ ≥ lim′+1
> l̄i where m′′ ≥ m′ + 1 and

m′,m′′ ∈ {1, 2, 3, ..., k}. The second performance metric is the cost

of running S-RC, which we define as the overhead cost percentage

of the amount of resources used with S-RC and under-utilized with

different values of Rim in legacy RC. Hence, S-RC cost overhead %

= (liS−RC−lim).Pr(R̃i≤Rim)

lim
x 100%.

1: Input: I, J , k, P, G, h⃗, n⃗, p⃗, γ⃗
′, ρ⃗

′, R⃗m, πp, βp,

πg, βg, δ⃗, C

2: Output: ⃗̄l
3: for m← 1 to k do

4: for i← 1 to |I| do

5: OPSdi ← f (hi, ni, γ
′
i , ρ

′
i), Mi ← max(P,G, (Rim .OPS

d
i −

πp.δi.P), (hi.ni.z − βp.δi.P), (Rim .OPS
d
i − πg .δi.G), (hi.ni.z − βg .δi.G))

6: end for

7: xij ← solve (24) ◃ B&C

8: for i← 1 to |I| do

9: lim ←
∑

j∈J xij

10: end for

11: end for

12: for i← 1 to |I| do

13: sm ← 0

14: for m← 1 to k do

15: sm ← sm + pmlim

16: end for

17: l̄i ← sm

18: end for

Algorithm 2. Resource limit computation with deterministic instants of R̃.

3.1.2. Experimental design
This paper adopts CPLEX C++ libraries (CPLEX and IBM

ILOG, 2009) to implement Algorithms 1, 2 on Ubuntu 20.04.4 LTS

that runs on Intel Core i5-8250U 8thGen (1.6GHz x eight cores

and 7.6 GiB RAM). We enumerate the set of containers I =
{1 : eMBB, 2 :mMTC, 3 :URLLC}. Although each container deploys
the same LDPC decoding algorithm, the processing time required

for each category is different. We assume the processing delay

requirement is δi = 0.3∗RTDi whereRTDi is the end-to-end round-

trip delay (RTD) for each service category i ∈ I since edge cloud

consumes about 30% of RTD to deliver eMBB, mMTC, or URLLC

service (Fitzek et al., 2020). However, we only consider the LDPC

radio decoding function, which consumes 60% of processing time

at the edge (Foukas and Radunovic, 2021). Therefore, δi = 0.3∗0.6∗
RTDi where RTDeMBB, RTDmMTC , and RTDURLLC have ranges 5–

50, 10–50, and 0.5–50 ms, respectively (3GPP, 2017). Accordingly,

we set the processing delay threshold δ⃗ = [δeMBB, δmMTC, δURLLC]

where δeMBB = 0.18 ∗ 5 = 0.9 ms, δmMTC = 0.18 ∗ 10 = 1.8

ms, and δeMBB = 0.18 ∗ 1 = 0.18 ms. We assume that the

MVNO leases resources with a cost for CPU resources cip =
{eMBB : 0.1,mMTC : 0.08,URLLC : 0.05} and for GPU resources

cig = {0.5, 0.4, 0.25} unit cost per unit time.

We assume five different data inputs, (h⃗, n⃗, γ⃗ ′, ρ⃗′), to

evaluate the impact of LDPC workload variations where

Dwi values are (hi = 100, ..., 500, ni = 200, ..., 1000, γ ′i =
34, ..., 170, ρ′i = 68, ..., 340)∀i ∈ I ,w = 1, 2, 3, 4, 5, with

step size 100, 200, 34, 68, for hi, ni, γ
′
i , ρ
′
i , respectively. We

set the average value of iterations R̄i = 15 and the variance

σRi = 4 ∀i ∈ I . For deterministic values of Rim , k is 10

with step size 5, i.e., Rim = 5, 10, ..., 45, 50. To study the

impact of relaxing the probabilistic processing time constraint

on resource limits, we consider different values of α where

α = {0.5, 0.6, 0.7, 0.8, 0.9, 0.99}.

Frontiers inHighPerformanceComputing 09 frontiersin.org

https://doi.org/10.3389/fhpcp.2023.1167162
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Mazied et al. 10.3389/fhpcp.2023.1167162

We consider running an LDPC on a cluster that uses the AMD

EPYC 7251 processor architecture. Although the EPYC 7251 has

eight cores, we assume the number of cores for our model is 64

cores, i.e., P = 64 (AMD, 2006) with the number of integer

operations πb = 5.954GigaOperations/s per core and its memory

bandwidth per socket βp = 153.6 GB/s (PassMark Software,

2018). Moreover, the cluster has NVIDIA Volta Tesla V100 GPU

architecture that has 640 cores, i.e., G = 640, and 112 Tera

Flops for tensor operations, i.e., matrix multiplication operations,

i.e., πg = 175 GigaOperations/s, and memory bandwidth βg =
900 GB/second (NVIDIA, 2018).

To measure the value of Pτ>δ , we run 50 experiments with

different deterministic samples of Rim (10 Rim s x 5 data inputs) to

evaluate the legacy RC for HS deployment where each container’s

resource limit is determined as described in Algorithm 2. Then, we

run five experiments (5 data inputs) of Algorithm 1 to measure the

overhead cost of running S-RC. In both sets of experiments, we set

α = 0.99 for S-RC. Following that, we study the impact of α on

resource limit per container type by running 30 experiments of S-

RC with different values of α (i.e., 6 αs × 5 data inputs). We share

CPLEX models of Algorithms 1, 2 on GitHub (Mazied, 2022). The

following subsection discusses results.

3.2. Numerical evaluation

Figures 3–7 illustrate the impact of data size on the processing

time violation and overhead cost for each service category (i.e.,

container type). The legacy RC for HS deployment does not violate

the processing time requirement with a tiny data size, as shown

A B

FIGURE 3

Tiny data size D1. (A) Time violation. (B) Cost overhead.

A B

FIGURE 4

Limited data size D2. (A) Time violation. (B) Cost overhead.

Frontiers inHighPerformanceComputing 10 frontiersin.org

https://doi.org/10.3389/fhpcp.2023.1167162
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Mazied et al. 10.3389/fhpcp.2023.1167162

A B

FIGURE 5

Modest data size D3. (A) Time violation. (B) Cost overhead.

A B

FIGURE 6

Large data size D4. (A) Time violation. (B) Cost overhead.

in Figure 3A. However, Figures 6A, 7A show that S-RC performs

better than RC for all containers with large and enormous data

sizes. Nevertheless, RC for HS deployment violates the processing

time required for limited data size with only a URLLC container as

shown in Figure 4A due to its strict processing time requirement,

i.e., δURLLC is the lowest threshold value of 0.18 ms. Figures 4–7

show that as data size grows, the number of containers that violate

the processing time requirement increases due to HS deployment,

which imposes starting new containers to satisfy the growing

demands for LDPC processing. Furthermore, the excess in Pτ>δ for

HS deployment occurs when Rm > 15, which is greater than the

average value of LDPC iterations R̄S−RC. On the other hand, S-RC

shows higher overhead cost due to allocating more resources than

what is instantaneously consumedwith different values ofRm > 15,

in particular, Figures 3B, 4B, 5B, 6B show the highest overhead cost

for URLLC containers that have strict processing requirements with

average 75%, 58%, 60%, and 63%, respectively. However, Figure 7B

shows that URLLC has only 51% average overhead cost, which is

the lowest among other scenarios of lower data size, because of

allocating only 2 GPU cores for LDPC operations in this scenario.

Nevertheless, the trend of URLLC overhead will vary if we assume

a higher cost for GPU allocation. In our setup, we assume GPU cost

is 0.25 unit cost per unit time, while CPU cost is 0.05 unit cost per

unit time for the URLLC container. We observe that overhead cost

ranges from 0 to 200% with an overall average, for all data input

sets and containers, of approximately 45%, which is foreseen as a

relatively low average overhead for achieving low processing time

requirements with high probability. Nevertheless, overhead costs in

this case study reflect the limitation of using exact algorithms, i.e.,

B&C, that provide the optimal solution for combinatorial problems.

Therefore, we are motivated to develop approximation algorithms

that would provide a near-optimal solution for combinatorial

Frontiers inHighPerformanceComputing 11 frontiersin.org

https://doi.org/10.3389/fhpcp.2023.1167162
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Mazied et al. 10.3389/fhpcp.2023.1167162

A B

FIGURE 7

Enormous data size D5. (A) Time violation. (B) Cost overhead.

TABLE 2 Average overhead cost of using S-RC.

Data input Average cost overhead %
per slice category

eMBB mMTC URLLC

D1 0 0 75

D2 35 0 58

D3 38 25 60

D4 51 54 63

D5 67 69 51

problems, (e.g., D’Oro et al., 2020), with minimum overhead costs

overhead. Table 2 summarizes the average overhead cost for each

slice category and data input.

Figure 8 depicts the impact of selecting α, with different data

input sizes, on the resource limits cα and gα (i.e., number of

allocated resources) that refer to CPU and GPU resource limits,

respectively. Figures 8A, B show that relaxing the processing time

constraint with a probability 0.5 ≤ α ≤ 0.99 does not affect

resource limits for containers that have a low delay threshold with

tiny and limited data sizes (i.e., data input D1, D2, and D3 in eMBB

and mMTC containers). However, enormous data sizes in eMBB

and mMTC containers show slight changes in resource limits due

to tuning α. On the other hand, Figure 8C demonstrates significant

increments in resource limits due to tuning α, in particular with

enormous data size (D5) where S-RC allocates 2 GPU cores for

α = 0.99.

4. Discussion

The results presented in Section 3 show that S-RC deployment

has a high likelihood to effectively auto-scale the edge cloud for

RAN slicing workload. However, its deployment cost, especially

with containers with large data sizes and low latency requirements

(i.e., URLLC container), is high due to using an exact method

to solve the S-RC problem. Furthermore, in MEC, it is essential

to utilize resources efficiently. Thus, S-RC could be augmented

to achieve better resource usage by developing approximation

algorithms for the introduced offline S-RC and developing an

online algorithm for real-time operation.

The core concept of S-RC design is workload characterization

(i.e., workload pattern identification). While the characterization

of the RAN slicing workload is still challenging, inspecting MEC

resource usage for containerized radio workloads with strict

processing time requirements is critical for S-RC design. The

inspection would deliver improved workload pattern recognition

with a more accurate random distribution of its variations.

Furthermore, auto-scaling the edge requires the optimal estimation

of the scaling period since real-time autoscaling depends on

capturing the variations in workload characteristics to scale

up/down the resources. Indeed, a low scaling period would lead

to a more accurate workload characterization. However, there is

a tradeoff between scaling period determination and the required

time for online resource allocation and scheduling decision-

making. Therefore, RAN slicing workload characterization is

mandatory for a practical S-RC design, especially if we get a

periodic pattern of workload variations that could be leveraged to

determine the optimal scaling period and workload distribution at

the edge.

Resource selection is another crucial factor for S-RC design.

This paper presents a rudimentary S-RC model, which decides the

resource type based on resource usage value, i.e., selects CPU or

GPU according to minimization of the cost function. Since our

model assumes CPU cost is much lower than GPU cost, the B&C

algorithm always selects the resource with lower cost, provided that

linear design constraint is fulfilled. Nevertheless, resource selection

should consider other performance metrics affecting the MEC’s

overall performance for RAN slicing production, such as memory

access time and energy consumption.

Frontiers inHighPerformanceComputing 12 frontiersin.org

https://doi.org/10.3389/fhpcp.2023.1167162
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Mazied et al. 10.3389/fhpcp.2023.1167162

A

B

C

FIGURE 8

Impact of α on resource limit li. (A) eMBB resource limits. (B) mMTC

resource limits. (C) URLLC resource limits.

Accordingly, S-RC can be deployed for delay-sensitive

applications, including RAN slicing workloads, by considering

the workload characterization and S-RC algorithmic development

design factors.

4.1. Workload characterization

Instead of introducing a case study, i.e., LDPC radio function,

to characterize the workload, hardware profiling tools such as

PERF (WiKi, 2023) can be used for distribution identification

(pattern recognition) of realistic workloads. Hardware profiling

tools would facilitate the measurement of arithmetic intensity A,

resource usage, task execution time, and many other performance

metrics that read processing and memory counters of different

traces of radio workload. Moreover, to model the processing

time constraint in the introduced S-RC algorithm, an extended

Roofline model (Cabezas and Püschel, 2014) can be constructed

using an LLVM tool (LLVM Project, 2023) to define the peak

performance of the underlying architecture with various traces

of input data that reflect the fluctuations in use-cases’ activities

in the wireless environment. Furthermore, the characterization

study would highlight the frequency of workloads variations that

necessitate running autoscaling algorithms.

4.1.1. Algorithmic development
Since the S-RC design is still in its infancy, three stages

should follow what this work introduces–first, developing a scaling

period optimization algorithm that would rely on the outcomes

of the workload characterization study. Then, an approximation

offline algorithm for the S-RC would be developed to minimize

the overhead cost of using the B&C algorithm. Following that,

motivated by seminal works in Ayala-Romero et al. (2019),

Buchbinder et al. (2021), and Foukas and Radunovic (2021),

the development of an online S-RC algorithm becomes critical

for production phase where heuristic/machine learning tools

could be introduced to augment the results of the S-RC offline

approximation algorithm.

5. Conclusion

Autoscaling mobile edge computing (MEC) is at the core of

the radio access network (RAN) slicing operation since it tailors

MEC resources to fulfill variations in demands for different wireless

communication services. Autoscaling the edge takes place by either

scaling resources (vertical) or scaling the number of containers

(slices) for each service category (horizontal). When the demands

for MEC resources exceed predefined resource limits, horizontal

scaling (HS) incurs an additional 0.5 to 5 second delay to start a

new container for the RAN slicing operation, which violates the

strict timing requirements for radio processing, i.e., 0.5–50 ms.

This paper introduces a design of a resource control (RC) decision-

making process to scale the MEC resource without HS deployment,

thus, eliminatingHS delay.We develop stochastic RC (S-RC) where

resource limits are removed from container configuration files and

determined as outcomes of the S-RC decision-making process.

S-RC is modeled as an offline stochastic bin packing problem

where MEC resources (items) need to be packed into containers

(bins) according to stochastic variations in RAN slicing workloads

(demands). As a case study, the Low-Density Parity Check (LDPC)

decoding algorithm is used to model radio workload, and the

Roofline model is adopted to model the MEC performance.

Frontiers inHighPerformanceComputing 13 frontiersin.org

https://doi.org/10.3389/fhpcp.2023.1167162
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Mazied et al. 10.3389/fhpcp.2023.1167162

LDPC asymptotic analysis and the Roofline model are leveraged

for deriving processing time design constraints where LDPC

stochasticity lies in the random distribution of LDPC iterations.

Stochastic and combinatorial optimization methods are utilized to

decide resource limits for each container type in the S-RC problem.

Although S-RC outperforms the legacy RC for HS deployment

in terms of meeting processing time requirements, it experiences

resource underutilization overhead compared to the deterministic

alternative of the S-RC, where deterministic samples of LDPC

iterations replace its inverse cumulative distribution function for

processing time design constraint. Developing an approximation

algorithm for the offline S-RC could subside overhead cost.

We plan to characterize RAN slicing workload with complete

consideration of radio functions and realistic operational scenarios

to augment the S-RC design. Workload characterization would

identify workload fluctuation patterns and determine the optimal

scaling period for online S-RC design.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding authors.

Author contributions

EM conceived of soft-tuning resource limits as outcomes

of the decision-making process rather than hard coding them

as user-defined configurations, developed the system model and

formulated the problem, conducted the experiments and designed

the performance metrics for numerical evaluation, discussed the

obtained results and concluded the research by drawing directions

for future work, and wrote the paper and followed the co-

authors’ instructions for its organization and presentation style. DN

suggested developing the processing time design constraint using

algorithmic asymptotic analysis and Roofline model and advised

EM through paper development, and made the necessary edits.

YH reviewed the paper during its initial development phase and

suggested highlighting the research question at the very beginning

of the paper and comparing the results using different data

inputs to reflect the impact of workload variations on system

performance. SM revised the initial draft of the paper, suggested

its organization and presentation style, suggested presenting a

table to summarize the mathematical notations of the system

model and problem formulation, and advised EM through paper

development. All authors contributed to the article and approved

the submitted version.

Funding

We acknowledge the funding from the Virginia Tech office of

Research and Innovation for their grant Fellowship for Graduate

Student First-Author Papers.

Conflict of interest

DN declared that they were an editorial board member of

Frontiers, at the time of submission. This had no impact on the peer

review process and the final decision.

The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that

could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

3GPP (2017). Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource
Control (RRC); Protocol specification. Technical Specification (TS) 36.331, 3rd
Generation Partnership Project (3GPP). Available online at: https://portal.3gpp.org/
desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2440

3GPP (2018). Telecommunication Management; Study on Management and
Orchestration of Network Slicing for Next Generation Network. Technical report.

Akman, A., Li, C., Ong, L., Suciu, L., Sahin, B. Y., Li, T., et al. (2020). O-RAN Use
Cases and Deployment Scenarios: Towards Open and Smart RAN. Technical report,
O-RAN Alliance.

AMD (2006). AMD EPYC 7251.

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R. H., Konwinski, A.,
et al. (2009). Above the Clouds: A Berkeley View of Cloud Computing. Technical
report UCB/EECS-2009-28, Electrical Engineering and Computer Sciences University
of California at Berkeley.

Ayala-Romero, J. A., Garcia-Saavedra, A., Gramaglia, M., Costa-Perez, X., Banchs,
A., and Alcaraz, J. J. (2019). “VrAIn: a deep learning approach tailoring computing and
radio resources in virtualized RANs,” in Proc. ACMMobiCom (Los Cabos), 1–16.

Bae, J. H., Abotabl, A., Lin, H.-P., Song, K.-B., and Lee, J. (2019). “An
overview of channel coding for 5G NR cellular communications,” in APSIPA
Transactions on Signal and Information Processing, eds S. Furui, C.-C. Jay
Kuo, and K. J. Ray Liu (Cambridge Press), 1–14. doi: 10.1017/ATSIP.
2019.10

Buchbinder, N., Fairstein, Y., Mellou, K., Menache, I., and Naor, J. (2021). Online
virtual machine allocation with lifetime and load predictions. ACM Sigmetr. Perform.
Eval. Rev. 49, 9–10. doi: 10.1145/3543516.3456278

Cabezas, V. C., and Püschel, M. (2014).15 “Extending the rooflinemodel: bottleneck
analysis with microarchitectural constraints,” in Proc. of the IEEE 15th IISWC (Raleigh,
NC), 222–231.

Chandrasetty, V. A., and Aziz, S. M. (2018a). “Chapter 2: Overview of LDPC codes,”
in Resource Efficient LDPC Decoders, eds V. A. Chandrasetty and S. M. Aziz (Academic
Press), 5–10.

Chandrasetty, V. A., and Aziz, S. M. (2018b). “Chapter 4: LDPC decoding
algorithms,” Resource Efficient LDPC Decoders, eds V. A. Chandrasetty and S. M. Aziz
(Academic Press), 29–53.

Frontiers inHighPerformanceComputing 14 frontiersin.org

https://doi.org/10.3389/fhpcp.2023.1167162
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2440
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2440
https://doi.org/10.1017/ATSIP.2019.10
https://doi.org/10.1145/3543516.3456278
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Mazied et al. 10.3389/fhpcp.2023.1167162

CPLEX and IBM ILOG (2009). V12. 1: User’s manual for CPLEX. Int. Bus. Mach.
Corp. 46, 157. Available online at: https://www.ibm.com/docs/en/icos/12.8.0.0?topic=c
plex-users-manual

D’Oro, S., Bonati, L., Restuccia, F., Polese, M., Zorzi, M., and Melodia, T. (2020).
“Sl-edge: network slicing at the edge,” in Proc. of the ACM 21st MobiHoc, Mobihoc ’20,
1–10.

Fazi, S., Van Woensel, T., and Fransoo, J. C. (2012). A stochastic variable size bin
packing problem with time constraints. Eindhoven: Technische Universiteit Eindhoven,
382.

Fitzek, F., Granelli, F., and Seeling, P. (2020). Computing in Communication
Networks: From Theory to Practice. Amsterdam: Academic Press.

Foukas, X., and Radunovic, B. (2021). “Concordia: teaching the 5g vran to share
compute,” in Proceedings of the 2021 ACM SIGCOMM 2021 Conference, 580–596.

Garcia-Morales, J., Lucas-Estañ, M. C., and Gozalvez, J. (2019). Latency-
sensitive 5G RAN slicing for industry 4.0. IEEE Access 7, 143139–143159.
doi: 10.1109/ACCESS.2019.2944719

Gilchrist, W. (2000). Statistical Modelling with Quantile Functions. Chapman and
Hall/CRC.

Google (2022). Vertical Pod Autoscaling.

Hamidi-Sepehr, F., Nimbalker, A., and Ermolaev, G. (2018). “Analysis of 5G LDPC
codes rate-matching design,” in 2018 IEEE 87th Vehicular Technology Conference (VTC
Spring) (Porto: IEEE), 1–5.

Henderson, D. (2022). Kubernetes CPU Throttling: The Silent Killer of Response
Time—and What to Do About It. Available online at: https://community.ibm.
com/community/user/aiops/blogs/dina-henderson/2022/06/29/kubernetes-cpu-
throttling-the-silent-killer-of-res

Johnson, D. S. (1973). Near-optimal bin packing algorithms (Ph.D. thesis).
Massachusetts Institute of Technology, Cambridge, MA, United States.

Kall, P., and Wallace, S. W. (1994). Stochastic Programming. John Wiley and Sons.

Khun, E. (2020). Kubernetes: Make Your Services Faster by Removing CPU Limits.
Available online at: https://erickhun.com/posts/kubernetes-faster-services-no-cpu-
limits/

Liu, Q., Han, T., and Moges, E. (2020). “EdgeSlice: slicing wireless edge computing
network with decentralized deep reinforcement learning,” in Proc. of the IEEE 40th
ICDCS, ICDCS ’20 (Singapore), 234–244.

LLVM Project (2023). The LLVM Compiler Infrastructure.

Maguolo, F., and Mior, A. (2008). “Analysis of complexity for the message passing
algorithm,” in 2008 16th International Conference on Software, Telecommunications and
Computer Networks (Split), 295–299.

Mazied, E. A. (2022). CPLEX Model of Stochastic Offline Resource Control for MEC
Autoscaling. Available online at: https://github.com/emazied80/Stochastic_Resource_
Control_to_AutoScale_MEC

Microsoft (2022). Azure Kubernetes Service.

Mitchell, J. E. (2002). Branch-and-cut algorithms for combinatorial optimization
problems. Handb. Appl. Opt. 1, 65–77.

Musthafa, F. (2020). CPU Limits and Aggressive Throttling in Kubernetes. Available
online at: https://medium.com/omio-engineering/cpu-limits-and-aggressive-
throttling-in-kubernetes-c5b20bd8a718

NVIDIA (2018). TESLA v100 Performance Guide.

PassMark Software (2018). AMD EPYC 7251 CPU Benchmarks.

Sharon, E., Ashikhmin, A., and Litsyn, S. (2006). Analysis of low-density
parity-check codes based on exit functions. IEEE Trans. Commun. 54, 1407–1414.
doi: 10.1109/TCOMM.2006

Van’t Hof, A., and Nieh, J. (2022). “{BlackBox}: a container security monitor for
protecting containers on untrusted operating systems,” in 16th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 22) (Carlsbad, CA),
683–700.

WiKi, P. (2023). Linux Profiling with Performance Counters. Available online at:
https://perf.wiki.kernel.org/index.php/Main_Page

Williams, S., Waterman, A., and Patterson, D. (2009). Roofline: an insightful visual
performance model for multicore architectures. Commun. ACM 52, 65–76.

Wolsey, L. A. (2020). Integer Programming. John Wiley & Sons.

Yan, J., Lu, Y., Chen, L., Qin, S., Fang, Y., Lin, Q., et al. (2022). “Solving the batch
stochastic bin packing problem in cloud: a chance-constrained optimization approach,”
in Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, KDD ’22 (Washington, DC: Association for Computing Machinery),
2169–2179.

Yan, M., Feng, G., Zhou, J., Sun, Y., and Liang, Y-C. (2019). Intelligent resource
scheduling for 5G radio access network slicing. IEEE Trans. Veh. Technol. 68, 7691–
7703.

Yuan, Z., and Muntean, G.-M. (2020). AirSlice: a network slicing framework for
UAV communications. IEEE Commun. Mag. 58, 62–68.

Frontiers inHighPerformanceComputing 15 frontiersin.org

https://doi.org/10.3389/fhpcp.2023.1167162
https://www.ibm.com/docs/en/icos/12.8.0.0?topic=cplex-users-manual
https://doi.org/10.1109/ACCESS.2019.2944719
https://community.ibm.com/community/user/aiops/blogs/dina-henderson/2022/06/29/kubernetes-cpu-throttling-the-silent-killer-of-res
https://community.ibm.com/community/user/aiops/blogs/dina-henderson/2022/06/29/kubernetes-cpu-throttling-the-silent-killer-of-res
https://community.ibm.com/community/user/aiops/blogs/dina-henderson/2022/06/29/kubernetes-cpu-throttling-the-silent-killer-of-res
https://erickhun.com/posts/kubernetes-faster-services-no-cpu-limits/
https://erickhun.com/posts/kubernetes-faster-services-no-cpu-limits/
https://github.com/emazied80/Stochastic_Resource_Control_to_AutoScale_MEC
https://github.com/emazied80/Stochastic_Resource_Control_to_AutoScale_MEC
https://medium.com/omio-engineering/cpu-limits-and-aggressive-throttling-in-kubernetes-c5b20bd8a718
https://medium.com/omio-engineering/cpu-limits-and-aggressive-throttling-in-kubernetes-c5b20bd8a718
https://doi.org/10.1109/TCOMM.2006
https://perf.wiki.kernel.org/index.php/Main_Page
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

	Auto-scaling edge cloud for network slicing
	1. Introduction
	2. System design and autoscaling methods
	2.1. Material for system design
	2.1.1. Assumptions
	2.1.1.1. RAN slicing workload
	2.1.1.2. Scaling period
	2.1.1.3. Computational resources

	2.1.2. System model
	2.1.2.1. LDPC
	2.1.2.2. LDPC processing time
	2.1.2.3. MEC
	2.1.2.4. Design requirements

	2.2. Autoscaling methods
	2.2.1. Problem statement
	2.2.2. Problem formulation
	2.2.3. S-RC offline algorithm

	3. Results
	3.1. Setup
	3.1.1. Performance metrics
	3.1.2. Experimental design

	3.2. Numerical evaluation

	4. Discussion
	4.1. Workload characterization
	4.1.1. Algorithmic development

	5. Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

