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Contributions. In this paper, we consider several important linear

algebra kernels whose dependence graph exhibits a dependency

pattern called the hourglass pattern. We propose a new proof tech-

nique that uses the properties of this pattern to improve the lower

bound on the minimal data movement required by these kernels.

In more detail:

• Wedefine the hourglass pattern, a pattern of the dependencies

of a program, and present its properties.

• Weprovide a lower bound derivation proof, based on an adap-

tation of the𝐾-partitioning technique, that tighten the lower

bound of a program exhibiting an hourglass pattern. This

proof has been fully automatized, inside the tool IOLB [17,

18].

• We present new data movement lower bounds for several

linear algebra kernels: Modified GramSchmidt (MGS), QR

Householder (GEQR2 and ORG2R in the LAPACK [16] li-

brary; also called A2V and V2Q), bidiagonal matrix reduction

(GEBD2) and Hessenberg matrix reduction (GEHD2). For all

of these kernels, their asymptotic bound was improved by

a parametric factor, compared to the bound obtainable by

the classical 𝐾-partitioning technique. Figure 4 and Figure 5

summarize the new lower bounds found for several linear

algebra kernels.

• We also provide tiled orderings for MGS and Householder,

resulting in upper bounds that asymptotically match these

new lower bounds. This proves the optimality of the new

I/O lower bounds.

Outline. In Section 2, we provide some background on the I/O

complexity and introduce the 𝐾-partitioning method for deriving a

lower bound on the minimal amount of data movement of a com-

putation. In Section 3, we present the hourglass pattern, a pattern of

dependencies whose properties can be used to improve the derived

lower bound. In Section 4, we show how to exploit the hourglass

pattern to adapt the 𝐾-partitioning method, in order to obtain a

tighter bound. In Section 5, we list different linear algebra ker-

nels exhibiting an hourglass pattern, and their associated improved

lower bound. Additionally, the appendix of the full version of this

paper [11] contains the tiled algorithm for two of these kernels. The

data movement of these algorithms provides an upper bound to the

minimal amount of data movement, which matches asymptotically

their new lower bound.

2 BACKGROUND - I/O COMPLEXITY AND
THE K-PARTITIONING METHOD

In this section, we present a state-of-the-art method of proof ś the

𝐾-partitioning method ś which infers a lower bound on the amount

of data movement needed by a computation.

Memory model and I/O complexity. We consider a simple two-

level memory model, composed of (1) a slow memory of unbounded

size, and (2) a fast memory of size 𝑆 . Both memories can transmit

data from one to another, as long as the constraint on the size of the

small memory is satisfied. When we perform an operation, the data

used must be present in the small memory, and the data produced

must be committed in the small memory.

We consider a program, which performs a collection of oper-

ations organized in statements. Each statement 𝑆𝑋 has multiple

instances 𝑆𝑋 [®𝑖], where ®𝑖 is a vector of the surrounding loop in-

dexes.

In this paper, we consider a subclass of programs called poly-

hedron (or affine) programs. These programs are combinations of

nested loops and statements such as: (i) the loop bounds are affine

constraints using the surrounding loop indexes and the program pa-

rameters (e.g., the sizes of an input array); (ii) the array accesses are

affine expression of the surrounding loop indexes and program pa-

rameters. All the programs presented in this paper, such as Figure 3,

are polyhedral programs. Also, we will call a quantity łparametricž

when it is a function of the parameters of the program, which are

considered as symbolic constants.

A statement instance might depend on the data produced by

another instance, for example when the first instance uses a value

produced by the second instance. We call this a dependency be-

tween these two statement instances. These dependencies impose

constraints on the order of execution of the program. This order of

execution is called the schedule or the ordering. Frequently, the data

consumed/produced by the statements of a program are too big to

fit all at once in the small memory, it it thus necessary to spill, i.e.,

to transfer some data back into the slow memory and retrieve it

later when needed. However, doing so increases the amount of data

movement between both memories.

Given a valid schedule for a program, the I/O cost for this program

and for this ordering is the amount of data movement required,

i.e. the number of data transfers between both memories. The I/O

complexity of a program is the minimal I/O cost that can be reached

by any valid schedule. This quantity is interesting, in particular

in the context of an architecture where the transfer of data is the

limiting factor for performance. Knowing the minimal amount of

data transfers is a good algorithmic indicator to know if it could

be theoretically optimized further. However, because we need to

find the minimal I/O cost for all possible orderings, the exact I/O

complexity is hard to evaluate. Instead, we rely on bounds on the I/O

complexity of a program: we can provide a mathematical proof for

the lower bound, and exhibit an ordering (i.e., an implementation of

a program) that reaches an I/O cost and provides an upper bound.

CDAG and red-white pebble game. When trying to prove a lower

bound, one should decide whether redundant computation is al-

lowed or not. The red-white pebble game, a variation of the red-blue

pebble game of Hong and Kung [12], was introduced by Olivry

et al. [18] in order to model the state of the memories during the

execution of a program without recomputation, which matched the

assumptions we make in this paper.

This game is played on the Computational Directed Acyclic Graph

(CDAG) of the program. This is a directed graph 𝐺 , where

• the nodes 𝑉 represent the computation (statement instance)

of a program, and

• the edges represent the flow dependencies between the com-

putations of the program.

Notice that the inputs of a program are nodes that do not have

incoming edges. The outputs of a program are a subset of nodes

𝑂 ⊂ 𝑉 ; they might have outgoing edges.
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During a red-white pebble game, red and white pebbles are placed

on the nodes of a CDAG. A white pebble represents a computation

that was performed, and a red pebble represents a computation

whose output is currently stored in the small memory. A game

follows this set of rules:

• At the start, the only pebbles in the CDAG are white pebbles,

placed on the inputs of the program.

• At most 𝑆 red pebbles can be simultaneously present on the

nodes of the CDAG.

• Spill: a red pebble can be removed from a node.

• Compute:When a node does not have a white pebble, but

all its predecessors have red pebbles, then we can place both

a white and a red pebble on it.

• Load: A red pebble can be added to nodes with a white

pebble.

• The game ends when each node has a white pebble on it.

Notice that once a white pebble is placed on a node, it cannot be

removed. This prevents recomputation. In order to compute the

amount of data movements, we focus on the number of red pebbles

added with the Load rule during a game. This means that we only

focus on the łLoadž portion of the data movements and ignore its

łStorež part. The resulting bounds are still valid, and because the

number of łLoadž often dominates the number of łStorež, their tight-

ness should not be strongly impacted. This assumption is identical

to the one made in [18].

𝐾-partitioning method. The 𝐾-partitioning method introduced

in the seminal paper of Hong and Kunk [12] is a proof technique

that allows to derive a lower bound.

The first idea is to consider a partition of the CDAG and games

that play on each set of the partition one by one.

Then, we consider the notion of 𝐾-bounded set. An inset of a set

𝐸 of nodes of the CDAG, noted 𝐼𝑛𝑆𝑒𝑡 (𝐸), is the set of data used

by 𝐸 but not produced by a computation of 𝐸. A 𝐾-bounded set

is a set of nodes 𝐸 of the CDAG whose inset has a size at most

𝐾 : |𝐼𝑛𝑆𝑒𝑡 (𝐸) | ≤ 𝐾 . This notion is interesting because an (𝑆 + 𝑇 )-
bounded set requires at least 𝑇 additional data to fit in the small

memory (of size 𝑆). Thus, even if the small memory is filled with

interesting data, we will need at least 𝑇 load operations to perform

the computations of this set. In addition, we assume that our 𝐾-

bounded sets are convex: if there is a dependency chain between

two points of a 𝐾-bounded set 𝐸, then all the intermediate points

must belong to 𝐸.

Finally, a 𝐾-partition is a partition into convex 𝐾-bounded sets.

The idea is to consider all 𝐾-partitions of a CDAG and to count

how many sets are in this partition. By choosing 𝐾 = 𝑆 + 𝑇 , we
know that there will be at least 𝑇 loads per set of the partition.

Therefore, a lower bound on the number of loads is 𝑇 times the

minimal number of sets in such a partition.

Theorem 2.1 ((𝑆 +𝑇 )-partitioning I/O lower bound [9]). Let

𝑆 be the size of the small memory, and for any 𝑇 > 0 let 𝑈 be the

maximal size of a (𝑆 +𝑇 )-partition. Let 𝑉 be the set of nodes of the

CDAG of the program. Then, a lower bound on the number 𝑄 of data

movement of the program is:

𝑇 .

⌊ |𝑉 |
𝑈

⌋

≤ 𝑄

Then, we pick a value of𝑇 (which means a value of 𝐾 ) that leads

to the tightest lower bound.

To estimate the minimal number of sets in a 𝐾-partition, we

can estimate the maximum size of a set inside this partition. In

other words, an upper bound on the size of a 𝐾-bounded set can be

transformed into a lower bound on the amount of data movement

required.

Upper bound on the size of a 𝐾-bounded set. An upper bound on

the size of a 𝐾-bounded set 𝐸 can be obtained by analyzing the

dependencies of the program. Indeed, for a polyhedral program,

dependencies between its statement instances are associated with

affine relations, matching the loop indices of the data producing

instance with the data consuming instance. When examining the

path of affine dependencies starting from any node of 𝐸 to a node

of the inset of 𝐸, we can either obtain a projection or a translation.

In both cases, the image of 𝐸 through these affine functions 𝜙 can

be mapped to geometrical borders or projections of 𝐸, and can

be associated with parts of 𝐼𝑛𝑆𝑒𝑡 (𝐸). This is the key geometrical

intuition that leads us to use the Brascamp-Lieb theorem.

The Brascamp-Lieb theorem is a geometrical way to bound the

volume of a set by the volume of its projections, which can be

bounded by 𝐾 .

Theorem 2.2 (Brascamp-Lieb theorem [6]). Let 𝑑 and 𝑑 𝑗 be

non-negative integers and 𝜙 𝑗 : Z
𝑑 ↦→ Z

𝑑 𝑗 be a collection of group

homomorphisms for all 1 ≤ 𝑗 ≤ 𝑚.

If we have a collection of coefficients 𝑠 𝑗 ∈ [0, 1] such that, for any

subgroup H ⊂ Z𝑑 :

𝑟𝑎𝑛𝑘 (H) ≤
𝑚
∑︁

𝑗=1

𝑠 𝑗 × 𝑟𝑎𝑛𝑘 (𝜙 𝑗 (H)) .

Then, for any non-empty finite set 𝐸 ⊂ Z𝑑 :

|𝐸 | ≤
𝑚
∏

𝑗=1

|𝜙 𝑗 (𝐸) |𝑠 𝑗 .

For example, if we consider a 3D set and the 3 canonical pro-

jections 𝜙 𝑗,𝑘 (𝑖, 𝑗, 𝑘) = ( 𝑗, 𝑘), 𝜙𝑖,𝑘 (𝑖, 𝑗, 𝑘) = (𝑖, 𝑘) and 𝜙𝑖, 𝑗 (𝑖, 𝑗, 𝑘) =
(𝑖, 𝑗), this theorem gives us the following inequality between the

volume of 𝐸 and the area of its faces 𝜙𝑥 (𝐸):

|𝐸 | ≤ |𝜙 𝑗,𝑘 (𝐸) |1/2 × |𝜙𝑖,𝑘 (𝐸) |1/2 × |𝜙𝑖, 𝑗 (𝐸) |1/2 .

As another example, we could consider instead the projections

𝜙𝑖 (𝑖, 𝑗, 𝑘) = (𝑖), 𝜙 𝑗 (𝑖, 𝑗, 𝑘) = ( 𝑗) and 𝜙𝑘 (𝑖, 𝑗, 𝑘) = (𝑘), to obtain the

following inequality:

|𝐸 | ≤ |𝜙𝑖 (𝐸) | × |𝜙 𝑗 (𝐸) | × |𝜙𝑘 (𝐸) |.

In the case of a 𝐾-bounded set, we consider the path of depen-

dencies to automatically derive these projections 𝜙 ∈ Φ. So, 𝜙 (𝐸)
can be mapped to one part of the inset of 𝐸, and its size is bounded

by 𝐾 .
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1 for (𝑘 = 0 ; 𝑘 < 𝑁 ; 𝑘 += 1 ) {

2 𝑛𝑟𝑚 = 0.0 ;

3 for ( 𝑖 = 0 ; 𝑖 < 𝑀 ; 𝑖 += 1 )

4 𝑛𝑟𝑚 += 𝐴[𝑖 ] [𝑘 ] ∗ 𝐴[𝑖 ] [𝑘 ] ;
5 𝑅 [𝑘 ] [𝑘 ] = s q r t (𝑛𝑟𝑚) ;
6

7 for ( 𝑖 = 0 ; 𝑖 < 𝑀 ; 𝑖 += 1 )

8 𝑄 [𝑖 ] [𝑘 ] = 𝐴[𝑖 ] [𝑘 ] / 𝑅 [𝑘 ] [𝑘 ] ;
9

10 for ( 𝑗 = 𝑘 + 1 ; 𝑗 < 𝑁 ; 𝑗 += 1 ) {

11 𝑅 [𝑘 ] [ 𝑗 ] = 0.0 ;

12 for ( 𝑖 = 0 ; 𝑖 < 𝑀 ; 𝑖 += 1 )

13 SR : 𝑅 [𝑘 ] [ 𝑗 ] += 𝑄 [𝑖 ] [𝑘 ] ∗ 𝐴[𝑖 ] [ 𝑗 ] ;
14 for ( 𝑖 = 0 ; 𝑖 < 𝑀 ; 𝑖 += 1 )

15 SU : 𝐴[𝑖 ] [ 𝑗 ] = 𝐴[𝑖 ] [ 𝑗 ] − 𝑄 [𝑖 ] [𝑘 ] ∗ 𝑅 [𝑘 ] [ 𝑗 ] ;
16 }

17 }

Figure 1: Modified Gram-Schmidt - Right-Looking (from

Polybench [19]). The input matrix 𝐴 is of size 𝑀 × 𝑁 , and

the output of the algorithm are matrices𝑄 (the orthonormal-

ized column vector basis) and 𝑅 such that 𝐴 = 𝑄𝑅. The usual

right-looking Gram-Schmidt reuses the matrix 𝐴, instead of

defining a new matrix 𝑄 . 𝑆𝑅 and 𝑆𝑈 are labels of two state-

ments, updating 𝑅 and 𝐴.

3 THE HOURGLASS PATTERN

In this section, we describe the intuition of our core contribution.

We consider a specific pattern of dependencies, called the hourglass

pattern, that forces a convex 𝐾-bounded set to have a specific shape.

We can exploit this property to significantly improve the derived

I/O complexity lower bound of programs that exhibit such a pattern.

In the whole section, we use the Modified Gram-Schmidt algo-

rithm as an illustrative example, whose right-looking variant is

provided in Figure 1. Using the automatic tool IOLB [18] to ap-

ply the 𝐾-partitioning method (described in Section 2) to the MGS

computation results in a lower bound in Ω

(

𝑀𝑁 2√
𝑆

)

. By using the

hourglass pattern, we obtain a more precise lower bound:

𝑀2𝑁 (𝑁 − 1)
8(𝑆 +𝑀) ≤ 𝑄 (𝑀𝐺𝑆)

3.1 Intuition of the hourglass pattern

Intuition. Figure 2 presents the main idea of the hourglass pat-

tern. It is a repeating succession of reduction and broadcast state-

ments, such that the number of elements reduced/broadcasted is

parametric, thus greater than the cache size 𝑆 . There are 3 cate-

gories of dimensions in this pattern: (a) the dimensions over which

the reduction and the broadcast are performed (horizontal axis of

Figure 2), (b) the łtemporalž dimensions over which the hourglass

pattern is repeated (vertical axis of Figure 2), and (c) the neutral

dimensions that do not interact with the hourglass pattern.

Running example. The hourglass pattern appears on several lin-

ear algebra kernels, including the Modified Gram-Schmidt kernel

(Figure 1). The pattern appears between the last two statements:

statement 𝑆𝑅 which updates 𝑅 [𝑘] [ 𝑗], and statement 𝑆𝑈 which up-

dates𝐴[𝑖] [ 𝑗]. The statement 𝑆𝑅 is a reduction along the 𝑖 dimension

and uses, in particular, all the values of𝐴[·] [ 𝑗] produced during the

...
• • • • • • •

Reduction

•
Broadcast

• • • • • • •

Iteration 𝑡

• • • • • • •
Reduction

•
Broadcast

• • • • • • •

Iteration (𝑡 + 1)

...

Figure 2: Shape of an hourglass pattern, inside the depen-

dence graph. A node is an instance of a statement of the

program, and an edge is a data dependency between two

nodes. The 𝑡 dimension is an external loop surrounding the

hourglass.

previous iteration of 𝑘 . The statement 𝑆𝑈 broadcasts 𝑅 [𝑘] [ 𝑗] across
the 𝑖 dimension to update all the 𝐴[·] [ 𝑗] of the current iteration
of 𝑘 . Therefore, dimension 𝑘 is a temporal dimension, dimension 𝑖

is the reduction/broadcast dimension and dimension 𝑗 is a neutral

dimension. There is exactly one dimension in each category in this

example, but in general, there might be several.

Consequences of the hourglass pattern. When considering a 𝐾-

bounded set over this pattern, we notice that if it spans over several

iterations of the temporal dimension 𝑡 , then the setmust include

all the nodes of the broadcast/reduction in between, due to the

convexity property of the set. Therefore, we have two situations:

• Either the 𝐾-bounded set spans over several iterations of

𝑡 and includes all the nodes over the reduction/broadcast

dimension. Notice that this is not always possible, depending

on the size of the broadcast/reduction dimension and the

value of 𝐾 .

• Or, the 𝐾-bounded set is łflatž along the 𝑡 dimension.

For both situations, we can deducemuch stronger constraints on the

sizes of the projection |𝜙 (𝐸) | used in the Brascamp-Lieb theorem

(Theorem 2.2). This provides the derivation of an improved lower

bound compared to the classical methodology.

3.2 Hourglass pattern - formal definition

In this section, we provide a formal definition of the hourglass

pattern.

Preliminary notations. Given an instance for a statement 𝑆𝑋 ,

we call an iteration vector the tuple of the (integral) values of its

surrounding loop indices. The iteration domainD𝑆𝑋 of the statement

𝑆𝑋 is the set of iteration vectors that respect the conditions on the

indices of the surrounding loops.
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1 for (𝑘 = 0 ; 𝑘 < 𝑁 ; 𝑘 += 1 ) {

2 𝑛𝑜𝑟𝑚𝑎2 = 0.0 ;

3 for ( 𝑖 = 𝑘 + 1 ; 𝑖 < 𝑀 ; 𝑖 += 1 ) {

4 𝑛𝑜𝑟𝑚𝑎2 += 𝐴[𝑖 ] [𝑘 ] ∗ 𝐴[𝑖 ] [𝑘 ] ;
5 }

6 𝑛𝑜𝑟𝑚𝑎 = 𝑠𝑞𝑟𝑡 (𝐴[𝑘 ] [𝑘 ] ∗ 𝐴[𝑘 ] [𝑘 ] + 𝑛𝑜𝑟𝑚𝑎2) ;
7 𝐴[𝑘 ] [𝑘 ] =(𝐴[𝑘 ] [𝑘 ] > 0 ) ?

8 (𝐴[𝑘 ] [𝑘 ]+𝑛𝑜𝑟𝑚𝑎 ) : (𝐴[𝑘 ] [𝑘 ]−𝑛𝑜𝑟𝑚𝑎 ) ;

9

10 𝑡𝑎𝑢 [𝑘 ] = 2.0 /

11 ( 1.0 + 𝑛𝑜𝑟𝑚𝑎2 / (𝐴[𝑘 ] [𝑘 ] ∗ 𝐴[𝑘 ] [𝑘 ] ) ) ;
12

13 for ( 𝑖 = 𝑘 + 1 ; 𝑖 < 𝑀 ; 𝑖 += 1 ) {

14 𝐴[𝑖 ] [𝑘 ] /= 𝐴[𝑘 ] [𝑘 ] ;
15 }

16 𝐴[𝑘 ] [𝑘 ] = (𝐴[𝑘 ] [𝑘 ] > 0 ) ? ( −𝑛𝑜𝑟𝑚𝑎 ) : ( 𝑛𝑜𝑟𝑚𝑎 ) ;

17

18 for ( 𝑗 = 𝑘 + 1 ; 𝑗 < 𝑁 ; 𝑗 += 1 ) {

19 𝑡𝑎𝑢 [ 𝑗 ] = 𝐴[𝑘 ] [ 𝑗 ] ;
20 for ( 𝑖 = 𝑘 + 1 ; 𝑖 < 𝑀 ; 𝑖 += 1 ) {

21 SR : 𝑡𝑎𝑢 [ 𝑗 ] += 𝐴[𝑖 ] [𝑘 ] ∗ 𝐴[𝑖 ] [ 𝑗 ] ;
22 }

23 𝑡𝑎𝑢 [ 𝑗 ] = 𝑡𝑎𝑢 [𝑘 ] ∗ 𝑡𝑎𝑢 [ 𝑗 ] ;
24 𝐴[𝑘 ] [ 𝑗 ] = 𝐴[𝑘 ] [ 𝑗 ] − 𝑡𝑎𝑢 [ 𝑗 ] ;
25 for ( 𝑖 = 𝑘 + 1 ; 𝑖 < 𝑀 ; 𝑖 += 1 ) {

26 SU : 𝐴[𝑖 ] [ 𝑗 ] = 𝐴[𝑖 ] [ 𝑗 ] − 𝐴[𝑖 ] [𝑘 ] ∗ 𝑡𝑎𝑢 [ 𝑗 ] ;
27 }

28 }

29 }

Figure 3: QR Householder computation - Part A2V (LAPACK

routine GEQR2).

As mentioned above, in general, there might be several reduction

or temporal dimensions. Thus, we will consider sets of dimensions,

and represent their iteration as a vector ®𝑖 = (𝑖1, 𝑖2, . . . ). Given an

iteration
⃗⃗
𝑘 , we write

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
𝑘 + 1 to represent the next valid lexicographic

value of
⃗⃗
𝑘 . We extend this notation to

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
𝑘 + 𝑛 where 𝑛 is an integer.

The hourglass pattern. Considering a statement 𝑆 of the CDAG

of a program, the hourglass pattern is a pattern of dependencies

with the following properties:

• Partitioning of the dimensions. The dimensions of the state-

ment 𝑆𝑋 can be partitioned into 3 groups: (i) the temporal

dimensions ®𝑘 , (ii) the reduction/broadcast dimensions ®𝑖 , and
(iii) the neutral dimensions ®𝑗 . For simplicity of the presen-

tation, we assume that ®𝑘 are the first/outer dimensions and

that ®𝑖 are the last/inner dimensions.

• Path in the dependence graph. For any valid value of ®𝑖 and ®𝑖′,
there is a dependency chain between the instances 𝑆𝑋 [®𝑘, ®𝑗, ®𝑖]
and 𝑆𝑋 [

⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
𝑘 + 1, ®𝑗, ®𝑖′].

• Large width of the hourglass. Let us consider𝑊 , the number of

statement instances on all the dependency chains between

𝑆𝑋 [®𝑘, ®𝑗, ®𝑖] and 𝑆𝑋 [
⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
𝑘 + 2, ®𝑗, ®𝑖]. This expression depends on

the parameters of the program, and cannot be bounded by a

constant value.

Notice that, to have such a chain of dependencies, it must include

a reduction and a broadcast. The dimensions ®𝑖 are the dimensions

which are reduced on and broadcasted over. The dimensions ®𝑘 are

the dimensions that are incremented by a constant factor when

looping along this loop. So, once a path is found, partitioning the

dimensions should be unambiguous, if this condition is also satis-

fied.

The automatic detection of such an hourglass pattern has been

implemented inside the IOLB tool, using a polyhedral library [24,

25].

Examples. For the MGS computation (Figure 1), we consider the

statement 𝑆𝑈 and the cycle of dependencies going through the

𝑆𝑅. We confirm that there are 2𝑀 statement instances inside a

dependency chain between two instances 𝑆𝑈 [𝑘, 𝑗, 𝑖] and 𝑆𝑈 [𝑘 +
2, 𝑗, 𝑖]: 𝑆𝑅 [𝑘 + 1, 𝑗, ·] and 𝑆𝑈 [𝑘 + 1, 𝑗, ·]. The same reasoning would

hold if we considered the statement 𝑆𝑅 instead of 𝑆𝑈 .

For the A2V QR Householder computation (Figure 3), we con-

sider the statement 𝑆𝑈 , and the cycle of dependencies going through

the 𝑆𝑅 statement. There are (𝑀 −𝑘) statement instances 𝑆𝑅 [𝑘, 𝑗, ·],
inside a dependency chain between two instances 𝑆𝑈 [𝑘, 𝑗, 𝑖] and
𝑆𝑈 [𝑘 + 1, 𝑗, 𝑖].

4 LOWER BOUND PROOF USING THE
HOURGLASS PATTERN

In this section, we show how to exploit the hourglass pattern of

a program to derive a tighter lower bound on the data movement.

We will use the Modified Gram-Schmidt program (Figure 1) as a

running example to illustrate our proof.

Once again, this proof has been integrated inside the automatic

data movement lower bound derivation tool, IOLB [18], and is

applied when an hourglass pattern is detected.

Preliminary notations. Let us denote with 𝐸 a set of integral

iteration vectors. The cardinality of such a set |𝐸 | is the number of

integer points inside this set.

Given a dimension 𝑘 , 𝜙𝑘 : (𝑖, 𝑗, 𝑘) ↦→ (𝑘) is the projection to the

dimension 𝑘 . This notation can be extended to several dimensions.

For example, 𝜙 𝑗,𝑘 : (𝑖, 𝑗, 𝑘) ↦→ ( 𝑗, 𝑘).
Given a set 𝐸, a dimension 𝑘 and a value 𝑘0, 𝐸𝑘=𝑘0 is a slice of

𝐸, i.e., the set of points of 𝐸 whose value along the dimension 𝑘

is 𝑘0: 𝐸𝑘=𝑘0 = {(𝑖, 𝑗, 𝑘) ∈ 𝐸 | 𝑘 = 𝑘0}. We extend this notation to

several dimensions, as in 𝐸𝑘=𝑘0, 𝑗=𝑗0 . In the rest of the paper, we use

a compact notation for slices, by omitting the dimension when it is

not ambiguous, like 𝐸𝑘0, 𝑗0 .

Starting point and intuition. The goal of the proof is to find an

upper bound on the size of a 𝐾-bounded set, to transform it into

a lower bound on the data volume required by a portion of the

program. So, we start the proof with an arbitrary convex𝐾-bounded

set 𝐸 containing instances of the broadcast statement 𝑆𝑋 [®𝑘, ®𝑗, ®𝑖],
which we assume is part of an hourglass pattern. Just like in the

classical proof, an analysis of the dependencies of the program

yields a set Φ of projections 𝜙 ®𝑥 for some dimensions ®𝑥 , which
project on the inset of 𝐸.

The classical proof involves applying the Brascamp-Lieb theorem

on the 𝐾-bounded set 𝐸, by bounding the size |𝜙 ®𝑥 (𝐸) | of each of

these projections by 𝐾 .

In our proof, we split 𝐸 into two parts (Section 4.1) and we adapt

the set of projections when we apply the Brascamp-Lieb theorem

on each of these parts (Sections 4.2 and 4.3) to obtain more precise

bounds.
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Running example. In the case of MGS, by following the chain

of dependencies associated with the accesses 𝐴[𝑖] [ 𝑗], 𝑄 [𝑖] [𝑘] and
𝑅 [𝑘] [ 𝑗] of statement 𝑆𝑈 , we infer that the projections are 𝜙𝑖, 𝑗 , 𝜙𝑖,𝑘
and 𝜙𝑘,𝑗 . When following the classical proof, the application of the

Brascamp-Lieb theorem results in the following inequality:

|𝐸 | ≤ |𝜙𝑖, 𝑗 (𝐸) |
1

2 .|𝜙𝑖,𝑘 (𝐸) |
1

2 .|𝜙𝑘,𝑗 (𝐸) |
1

2 ≤ 𝐾3/2

We prove in Section 4.4 a tighter upper bound: |𝐸 | ≤ 𝐾2

𝑀 + 2𝐾 .

4.1 Part 1 - Decomposition of the K-bounded set

In the first part of the proof, we decompose 𝐸 into the union of two

fragments: (i) 𝐼 ′ which has volume along the ®𝑘 dimensions, and (ii)

𝐹 which is flat along the ®𝑘 dimensions. Both parts have their own

upper bound, obtained with different reasoning, that is described

in Section 4.2 and Section 4.3.

Decomposition of 𝐸. We consider the number of different values

of ®𝑘 for a given value of ®𝑗 :

𝑇𝑖𝑐𝑘 ®𝑗 = {®𝑘 | ∃®𝑖, 𝑆𝑋 [®𝑘, ®𝑗, ®𝑖] ∈ 𝐸 ®𝑗 }.

We split 𝐸 into two sets:

• 𝐸′ = ∪®𝑗∈ 𝐽3+𝐸 𝑗 where 𝐽3+ = {®𝑗 | 3 ≤ 𝑇𝑖𝑐𝑘 ®𝑗 }, and
• 𝐸′′ = ∪®𝑗∈ 𝐽12𝐸 𝑗 where 𝐽12 = {®𝑗 | 1 ≤ 𝑇𝑖𝑐𝑘 ®𝑗 ≤ 2}.

The intuition between this separation is that (i) 𝐸′ contains the
connected components which need to include an entire line of

statement instances along the ®𝑖 dimensions, and (ii) 𝐸′′ contains
the connected components which are łflatž along the ®𝑘 dimensions.

We start by focusing on 𝐸′, to show that these components need

to include a parametric number of iterations along the ®𝑖 dimension,

using the hourglass pattern.

Lemma 4.1 (Structure of 𝐸′). Given some ®𝑗 ∈ 𝜙 ®𝑗 (𝐸
′), let us

consider the slice 𝐸′®𝑗 along the dimensions ®𝑗 . Let us consider:

•
⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗
𝑘min ( ®𝑗) =𝑚𝑖𝑛®𝑘 {®𝑘 | 𝑆𝑋 [®𝑘, ®𝑗, ®𝑖] ∈ 𝐸′®𝑗 },

•
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
𝑘max ( ®𝑗) =𝑚𝑎𝑥 ®𝑘 {®𝑘 | 𝑆𝑋 [®𝑘, ®𝑗, ®𝑖] ∈ 𝐸′®𝑗 },

• ®𝑎, any subset of the indices of ®𝑖 ,
• |𝜙 ®𝑎 (D𝑆 ) | ≥𝑊®𝑎 , a lower bound on the size of the projection of

D𝑆 , the iteration domain of the statement 𝑆𝑋 .

Then:

(1) 𝐸′®𝑗 is a connected component.

(2) For all
⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗
𝑘min ( ®𝑗) <𝑙𝑒𝑥 ®𝑘 <𝑙𝑒𝑥

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
𝑘max ( ®𝑗), |𝜙 ®𝑎 (𝐸′®𝑗,®𝑘 ) | ≥𝑊®𝑎 .

Proof. (1) Because 𝑆𝑋 satisfies the hourglass pattern proper-

ties, for any two instances 𝑆𝑋 [®𝑘, ®𝑗, ®𝑖] and 𝑆𝑋 [ ®𝑘′, ®𝑗, ®𝑖′] in 𝐸′®𝑗 where
®𝑘 <𝑙𝑒𝑥

®𝑘′, we can prove that there is a chain of dependencies from

one statement instance to another. Therefore, using the convexity

property of 𝐸, we conclude that 𝐸′𝑗 is a connected component.

(2) By considering one instance of index ®𝑘 =

⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗
𝑘min and another

of index ®𝑘 =

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
𝑘max, we can show that all the 𝑆𝑋 [®𝑖, ®𝑗, ®𝑘] are in the

middle of a dependency chain between the two of them. Therefore,

by projecting the ®𝑖 on the subset of dimension ®𝑎, we conclude:

∀
⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗
𝑘min ( ®𝑗) <𝑙𝑒𝑥 ®𝑘 <𝑙𝑒𝑥

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
𝑘max ( ®𝑗), |𝜙 ®𝑎 (𝐸′®𝑗,®𝑘 ) | ≥ |𝜙 ®𝑎 (D𝑆 ) | ≥𝑊®𝑎 .

□

We consider 𝐸′ = 𝐼 ′ ⊎ 𝐵′ defined by:

• 𝐼 ′ = ∪®𝑗∈ 𝐽3+ (𝐸 ®𝑗 − 𝐸 ®𝑗,
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
𝑘min ( ®𝑗 ) − 𝐸 ®𝑗,

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗
𝑘max ( ®𝑗 ) ): the łinsidež of the

connected components of 𝐸′, according to dimensions ®𝑘 .
• 𝐵′ = ∪®𝑗∈ 𝐽3+ (𝐸 ®𝑗,

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
𝑘min ( ®𝑗 ) ∪ 𝐸 ®𝑗,

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗
𝑘max ( ®𝑗 ) ): the łboundariesž of the

connected components of 𝐸′, according to dimensions ®𝑘 .
We define 𝐹 = 𝐵′ ⊎ 𝐸′′ the flat parts of 𝐸, and we adapt our

previous decomposition of 𝐸 to obtain the desired decomposition:

𝐸 = 𝐸′ ⊎ 𝐸′′ = 𝐼 ′ ⊎ 𝐹 .

4.2 Part 2 - Bound on the size of I’

Let us focus on the upper bound of the size of 𝐼 ′, using Lemma 4.1.

The goal is to have tighter bounds on the projections involving

some of the reduce/broadcast dimensions ®𝑖 , to use them with the

Brascamp-Lieb theorem, instead of the classical ł≤ 𝐾ž bound.

Lemma 4.2 (Bounds on the size of some of the projections

of 𝐼 ′). Let us consider a projection 𝜙 ®𝑥,®𝑎 ∈ Φ, where ®𝑎 is a subset of
®𝑖 , and ®𝑥 is a subset of ( ®𝑗, ®𝑘). Assume that we have a lower bound

|𝜙 ®𝑎 (D𝑆 ) | ≥𝑊®𝑎 on the size of the projection of the iteration domain

D𝑆 of statement 𝑆 . Then:

|𝜙 ®𝑥 (𝐼 ′) | ≤
𝐾

𝑊®𝑎
.

Proof. Because 𝐼 ′ is a subset of a 𝐾-partition, then we have

|𝜙 ®𝑎,®𝑥 (𝐼 ′) | ≤ 𝐾 .

By slicing 𝐼 ′ along the dimensions of ®𝑥 , we also have:

|𝜙 ®𝑎,®𝑥 (𝐼 ′) | = |𝜙 ®𝑎,®𝑥 (∪ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
𝑥 ′′ 𝐼

′⃗⃗⃗ ⃗⃗ ⃗⃗
𝑥 ′′

) | =
∑︁

⃗⃗ ⃗⃗ ⃗⃗ ⃗
𝑥 ′′

|𝜙 ®𝑎,®𝑥 (𝐼 ′⃗⃗⃗ ⃗⃗ ⃗⃗𝑥 ′′ ) |.

Furthermore:

|𝜙 ®𝑎,®𝑥 (𝐼 ′⃗⃗⃗ ⃗⃗ ⃗⃗𝑥 ′′ ) | ≥ |𝜙 ®𝑎𝐼
′⃗⃗⃗ ⃗⃗ ⃗⃗
𝑥 ′′

) | (a slice along ®𝑥 only has a single

point to be projected along ®𝑥)
≥ |𝜙 ®𝑎 (𝐼 ′⃗⃗⃗⃗ ⃗⃗𝑗 ′′, ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑘 ′′ ) | (𝐼 ′⃗⃗⃗⃗ ⃗⃗

𝑗 ′′,
⃗⃗ ⃗⃗ ⃗⃗ ⃗
𝑘 ′′

⊂ 𝐼 ′⃗⃗⃗ ⃗⃗ ⃗⃗
𝑥 ′′

, for some (
⃗⃗⃗⃗ ⃗⃗⃗
𝑗 ′′,

⃗⃗ ⃗⃗ ⃗⃗ ⃗
𝑘′′)

matching
⃗⃗ ⃗⃗ ⃗⃗ ⃗
𝑥 ′′ on its dimensions)

≥𝑊®𝑎 . (by Lemma 4.1)

Therefore: |𝜙 ®𝑎,®𝑥 (𝐼 ′) | ≥𝑊®𝑎 × |𝜙 ®𝑥 (𝐼 ′) |. In other words:

|𝜙 ®𝑥 (𝐼 ′) | ≤
|𝜙 ®𝑎,®𝑥 (𝐼 ′) |
𝑊®𝑎

≤ 𝐾

𝑊®𝑎
.

□

To obtain a bound on |𝐼 ′ |, we use the set of projections Φ, modi-

fied in the following way:

• We add a projection on ®𝑖 whose bound is: |𝜙®𝑖 (𝐼
′) | ≤ 𝑊 ,

where𝑊 is the width of the hourglass.
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• When a projection on ( ®𝑥, ®𝑎) shares some of its dimensions

®𝑎 with ®𝑖 , we use the projection on ®𝑥 instead, and the bound

given by Lemma 4.2.

• The rest of the projections, which do not involve dimensions

of ®𝑖 , are unchanged and associated with a classical upper

bound |𝜙 ®𝑥 (𝐼 ′) | ≤ 𝐾 .

Then, we apply the Brascamp-Lieb theorem, while optimizing the

values of the power 𝑠 of the size of the projections |𝜙 (𝐸) |. Notice
that some projections can be filtered out through this optimization

process (𝑠 = 0), to obtain a tighter bound on 𝐼 ′.

Running example. We notice that Φ contains two projections 𝜙𝑖, 𝑗
and𝜙𝑖,𝑘 , both of them using the dimension 𝑖 and another dimension.

Therefore, from Lemma 4.2, we have the following bounds:

|𝜙 𝑗 (𝐼 ′) | ≤
𝐾

𝑀
and |𝜙𝑘 (𝐼 ′) | ≤

𝐾

𝑀
.

We apply the Brascamp-Lieb theorem on 𝐼 ′, using the projections
on 𝑖 , on 𝑗 instead of a projection on (𝑖, 𝑗), and on 𝑘 instead of a

projection on (𝑖, 𝑘), each with coefficient 1:

|𝐼 ′ | ≤ |𝜙𝑖 (𝐼 ′) | × |𝜙 𝑗 (𝐼 ′) | × |𝜙𝑘 (𝐼 ′) |.
By using our specialized bounds, we have:

|𝐼 ′ | ≤ 𝑀 × 𝐾

𝑀
× 𝐾

𝑀
=

𝐾2

𝑀
.

4.3 Part 3 - Bound on the size of F

We now focus on the bound of the remaining part of 𝐸, i.e., 𝐹 =

(𝐵′ ⊎ 𝐸′′). Our goal is to exploit the fact that this set is łflatž along

the ®𝑘 dimensions, to improve the upper bounds on the projections

used in the Brascamp-Lieb application to 𝐹 . In particular, our proof

will consider each 𝐹 ®𝑗 separately, the slice of 𝐹 for a given value ®𝑗 .
Then, by picking a list of well-chosen projections for the Brascamp-

Lieb theorem, we obtain interesting bounds on the size of 𝐹 ®𝑗 , that
are finally summed to obtain our bound on 𝐹 .

We recall that 𝐸′ and 𝐸′′ contains the ®𝑗-slices of 𝐸 for the values

of ®𝑗 such that 𝑇𝑖𝑐𝑘 ®𝑗 are respectively at least 3 and at most 2. Since

𝐵′ ⊂ 𝐸′, 𝐵′ and 𝐸′′ do not share the same set of ®𝑗 . So we get a

łflatness boundž: ∀®𝑗 ∈ 𝜙 ®𝑗 (𝐹 ), |𝜙 ®𝑘 (𝐹 ®𝑗 ) | ≤ 2.

In addition, we notice that because 𝐹 ®𝑗 ⊂ 𝐸, for any projection

𝜙 ∈ Φ, |𝜙 (𝐹 ®𝑗 ) | ≤ |𝜙 (𝐸) | ≤ 𝐾 .

In this part of the proof, instead of focusing on 𝐹 , we apply the

Brascamp-Lieb theorem to the slice 𝐹 ®𝑗 .
As in Section 4.2, we start with the same list of projections Φ to

the in-set of 𝐸, obtained by inspecting the chain of dependencies of

the considered statement. Then, we customize this list of projections

to exploit the properties of 𝐹 ®𝑗 :

• We add a projection on ®𝑘 and the flatness bound |𝜙 ®𝑘 (𝐹 ®𝑗 ) | ≤ 2.

• We identify a projection that involves a non-empty subset

of the dimensions of ®𝑗 : after applying the Brascamp-Lieb

theorem, we will not try to immediately use an upper bound

for this projection. Let us call 𝜙 ®𝑤 this projection.

• The remaining projections are left alone, and associated with

the classical upper bound |𝜙 ®𝑥 (𝐹 ®𝑗 ) | ≤ |𝜙 ®𝑥 (𝐹 ) | ≤ 𝐾 .

At that point, we have obtained an upper bound on |𝐹 ®𝑗 | of the
following form:

|𝐹 ®𝑗 | ≤ 𝑒 × |𝜙 ®𝑤 (𝐹 ®𝑗 ) |.
where 𝑒 is a parametric expression using the parameter 𝐾 and

independent of the value of ®𝑗 . Notice that the Brascamp-Lieb power

above |𝜙 ®𝑤 | must be equal to 1, due to the fact that this is the only

projection involving the ®𝑗 dimensions.

Let us consider the collection of projected sets 𝜙 ®𝑤 (𝐹 ®𝑗 ). Two of

these projected sets are either (i) identical, along the dimensions of
®𝑗 which are not present in ®𝑤 , or (ii) disjoint. Because the distinct
values of these projections are always a subset of the inset of 𝐸, of

size 𝐾 , the sum of the size of the disjoint union of these distinct

values is also bounded by 𝐾 . Let us call 𝑅 the number of values that

can be taken by the dimensions of ®𝑗 which are not in ®𝑤 . This is also

the maximum number of times a 𝜙 ®𝑤 (𝐸) projects on the same value.

Notice that 𝑅 = 1 when ®𝑤 covers all the dimensions of ®𝑗 , and that

𝑅 can be a parametric expression in general. So, we have:
∑︁

®𝑗∈𝜙 ®𝑗 (𝐹 )
|𝜙 ®𝑤 (𝐹 ®𝑗 ) | ≤ 𝑅 × 𝐾.

Combining all these observations, we obtain the following upper

bound on the size of 𝐹 :

|𝐹 | =
∑︁

®𝑗∈𝜙 ®𝑗 (𝐹 )
|𝐹 ®𝑗 | ≤

∑︁

®𝑗∈𝜙 ®𝑗 (𝐹 )
𝑒 × |𝜙 ®𝑤 (𝐹 ®𝑗 ) |

≤ 𝑒 ×
∑︁

®𝑗∈𝜙 ®𝑗 (𝐹 )
|𝜙 ®𝑤 (𝐹 ®𝑗 ) | ≤ 𝑒 × 𝑅 × 𝐾.

Running example. In the MGS case, the flatness bound yields:

∀𝑗, |𝜙𝑘 (𝐹 𝑗 ) | ≤ 2. We can apply the Brascamp-Lieb theorem on 𝐹 𝑗 ,

with the projection 𝜙𝑖, 𝑗 , together with the projection 𝜙𝑘 :

|𝐹 𝑗 | ≤ |𝜙𝑘 (𝐹 𝑗 ) | × |𝜙𝑖, 𝑗 (𝐹 𝑗 ) | ≤ 2 × |𝜙𝑖, 𝑗 (𝐹 𝑗 ) |.
And since dimension 𝑗 is included in the dimensions (𝑖, 𝑗) of the

projection, we have 𝑅 = 1 and therefore:

|𝐹 | =
∑︁

𝑗∈𝜙 𝑗 (𝐹 )
|𝐹 𝑗 | ≤ 2 ×

∑︁

𝑗∈𝜙 𝑗 (𝐹 )
|𝜙𝑖, 𝑗 (𝐹 𝑗 ) | ≤ 2𝐾.

4.4 Part 4 - Wrapping things up

We have found in Section 4.2 and Section 4.3 an upper bound of the

size of the two parts of 𝐸. We simply sum them together to obtain

an upper bound of the size of 𝐸, then apply Theorem 2.1 to deduce

a lower bound on the data movement.

Running example. Thanks to the above results, we can obtain

lower bounds on the data movement of MGS.

Theorem 4.3 (Lower bounds for MGS). The communication

volume 𝑄 for the MGS algorithm on a𝑀 × 𝑁 matrix can be bounded

as follows:

𝑀2𝑁 (𝑁 − 1)
8(𝑆 +𝑀) ≤ 𝑄

Furthermore, if 𝑆 ≤ 𝑀 , we also have:

(𝑀 − 𝑆)𝑁 (𝑁 − 1)
4

≤ 𝑄
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Proof. From the previous results, we have:

|𝐸 | = |𝐼 ′ | + |𝐹 | ≤ 𝐾2

𝑀
+ 2𝐾.

Then, by using Theorem 2.1 with 𝐾 = 2𝑆 :

(𝐾 − 𝑆) × 𝑀𝑁 (𝑁 − 1)
2 ·

(

𝐾2

𝑀 + 2𝐾
) =

𝑀2𝑁 (𝑁 − 1)
8(𝑆 +𝑀) ≤ 𝑄

Due to Lemma 4.1 and because we have at least an input depen-

dency involving the dimension 𝑖 , |𝐼𝑛𝑆𝑒𝑡 (𝐸′) | > 𝑀 . So, if we have

𝑆 ≤ 𝑀 , then 𝐸′ must be empty. Therefore, 𝐸 = 𝐹 , and we can use

only the second part of the bound: |𝐸 | ≤ 2𝐾 .

Using Theorem 2.1 again, but this time with 𝐾 = 𝑀 , we obtain:

(𝐾 − 𝑆) · 𝑀𝑁 (𝑁 − 1)
2 × 2𝐾

= (𝑀 − 𝑆) · 𝑁 (𝑁 − 1)
4

≤ 𝑄

□

5 EXPERIMENTAL RESULTS - NEW LOWER
BOUNDS

In this section, we report the data movement lower bounds gener-

ated by IOLB for four kernels exhibiting an hourglass pattern. We

compare the results using our technique (new bound) with those

obtained without it (old bound). These kernels are:

• Modified Gram-Schmidt (Figure 1), already used as a running

example in Section 4.

• QR Householder algorithm: both its A2V (Figure 3) and V2Q

parts (left-looking variants of respectively the GEQR2 and

ORG2R subroutines in LAPACK [16]).

• Reduction to a bidiagonal matrix (GEBD2 subroutine)

• Reduction to a Hessenberg matrix (GEHD2 subroutine)

Figure 5 summarizes all the newly found full lower bounds,

and Figure 4 focuses on their leading term, to emphasize their

improvements. More precisely:

• Section 5.1 contains an asymptotic analysis of the MGS lower

bound.

• Section 5.2 presents the lower bound for both QR House-

holder parts, and the GEBD2 computation.

• Section 5.3 presents the lower bounds for the GEHD2 com-

putation.

The appendix of the full version of this paper [11] contains a

description of a tiled algorithm for MGS and for HH A2V and the

computation of their amount of data movement. This provides an

upper bound to the minimal amount of data movement required

by these algorithms, which matches asymptotically the provided

lower bound.

5.1 MGS - Asymptotic analysis

In this section, we analyze the bound obtained in Theorem 4.3 for

MGS, by specializing it for different ordering of𝑀 and 𝑆 :

• If 𝑆 ≤ 𝑀/2, we have𝑀/2 ≤ 𝑀 −𝑆 , so that the second bound
yields:

𝑀𝑁 2

8
= Ω(𝑀𝑁 2) ≤ 𝑄

Kernel Old bound [18] New bound (hourglass)

MGS Ω

(

𝑀𝑁 2√
𝑆

)

Ω

(

𝑀2𝑁 (𝑁−1)
𝑆+𝑀

)

QR HH A2V Ω

(

𝑀𝑁 2√
𝑆

)

Ω

(

𝑀𝑁 2 (𝑁−𝑀 )
𝑁−𝑀−𝑆

)

QR HH V2Q Ω

(

𝑀𝑁 2√
𝑆

)

Ω

(

𝑀𝑁 2 (𝑁−𝑀 )
𝑁−𝑀−𝑆

)

GEBD2 Ω

(

𝑀𝑁 2√
𝑆

)

Ω

(

𝑀𝑁 2 (𝑀−𝑁+1)
8(𝑆+𝑀−𝑁+1)

)

GEHD2 Ω

(

𝑁 3√
𝑆

)

Ω

(

𝑁 4

𝑁+2𝑆
)

Figure 4: Summary of the new asymptotic data movement

lower bounds.

• If 𝑀/2 ≤ 𝑆 , we have 𝑆 + 𝑀 ≤ 3𝑆 , so that the first bound

becomes:

𝑀2𝑁 2

24𝑆
= Ω

(

𝑀2𝑁 2

𝑆

)

≤ 𝑄

The first result matches the amount of data movements obtained

by the classical ordering of the MGS algorithm, as presented at

the end of Section 3.1. Both the algorithm and the bound are thus

asymptotically optimal when 𝑆 is small.

Demmel et al. [7] propose a tiled ordering for the case 2𝑀 ≤ 𝑆
(in Section F.2 of their paper), that achieves an amount of data

movement 𝑂 (𝑀2𝑁 2/𝑆), thus matching asymptotically the second

upper bound. Both of these bounds are thus optimal up to a constant

factor. For reference, the tiled ordering is detailed in the Appendix

of the full version of this paper [11], together with the proof on its

amount of data movement.

We can compare these bounds with the lower bound returned

by the classical hourglass-less proof, whose asymptotic bound is

Ω(𝑀𝑁 2√
𝑆
). Our first bound for small values of 𝑆 is stronger by a factor

of 𝑇ℎ𝑒𝑡𝑎(
√
𝑆). By writing our second bound as Ω( 𝑀√

𝑆
· 𝑀𝑁 2√

𝑆
), we

see that our bound is stronger by a factor of Θ( 𝑀√
𝑆
). Since the input

matrix has size𝑀 ×𝑁 , we can assume that 𝑆 < 𝑀𝑁 , otherwise, the

whole matrix fits in the cache and there is no need to minimize data

transfers. Besides, we know that 𝑁 ≤ 𝑀 , which leads to 𝑆 < 𝑀2.

We can conclude that 𝑀√
𝑆
> 1: our bound is asymptotically at least

as strong as the previous bound.

The results of Theorem 4.3 can also be presented differently, to

improve the constant in front of the dominant term. Indeed:

If 𝑆 ≪ 𝑀 , the first bound yields
𝑀𝑁 2

4
≤ 𝑄,

Similarly, if𝑀 ≪ 𝑆 , the second result becomes
𝑀2𝑁 2

8𝑆
≤ 𝑄.

5.2 Householder QR factorization and GEBD2

In this section, we present the bounds to both parts of the House-

holder QR factorization (LAPACK routines GEQR2 et ORG2R). The

computation of the first part (A2V) is given in Figure 3 and the

computation of the second part (V2Q) in Figure 6.

By using the hourglass reasoning, we obtain the following new

lower bounds for both kernels.

Theorem 5.1 (Lower bounds for HH - part A2V). The commu-

nication volume 𝑄 for the A2V part of the HH algorithm on a𝑀 × 𝑁
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Kernel Old bound [18] New bound (hourglass)

MGS 2𝑀+3𝑀𝑁+𝑀𝑁 2√
𝑆

+ 5𝑀 −𝑀𝑁 + 7𝑁−𝑁 2

2
− 𝑆 − 6

𝑁 2𝑀2+2𝑀2−3𝑁𝑀2

8(𝑀+𝑆 ) + 5𝑀 −𝑀𝑁 + 7𝑁−𝑁 2

2
− 𝑆 − 6

QR HH A2V 3𝑀𝑁 2+6𝑀+7𝑁−𝑁 3−9𝑀𝑁−6
3
√
𝑆

+ 5𝑀 −𝑀𝑁 + 5𝑁 − 𝑆 − 13
3𝑀𝑁 2−9𝑀𝑁+7𝑁+6𝑀−6−𝑁 3

24(1− 𝑆
𝑁 −𝑀 ) + 5𝑀 −𝑀𝑁 + 5𝑁 − 𝑆 − 13

QR HH V2Q 3𝑀𝑁 2−𝑁 3+6𝑀+7𝑁−9𝑀𝑁−6
3
√
𝑆

+ 2𝑀 + 2𝑁 + 𝑁−𝑁 2

2
− 𝑆 − 4

3𝑀𝑁 2−𝑁 3+6𝑀+7𝑁−9𝑀𝑁−6
24(1+ 𝑆

𝑀−𝑁 ) + 2𝑀 + 2𝑁 + 𝑁−𝑁 2

2
− 𝑆 − 4

GEBD2 3𝑀𝑁 2−𝑁 3−9𝑀𝑁+6𝑀+7𝑁−6
3
√
𝑆

+ 5𝑁 + 5𝑀 −𝑀𝑁 − 𝑆 − 13
3𝑀𝑁 2−𝑁 3+3𝑁 2−15𝑀𝑁+4𝑁+18𝑀−12

24(1+ 𝑆
1+𝑀−𝑁 ) + 5𝑁 + 7𝑀 −𝑀𝑁 − 𝑆 − 18

GEHD2 5𝑁 3−30𝑁 2+55𝑁−30
3
√
𝑆

+ 69𝑁−9𝑁 2

2
− 3 ∗ 𝑆 − 56

𝑁 3−6𝑁 2+11𝑁−6
12(1+ 𝑆

𝑁 −𝑀−1 )
− 𝑁 2 + 12𝑁 − 𝑆 − 19

Figure 5: Data movement lower-bounds (with constants) automatically derived by IOLB [18] without/with hourglass detection.

In GEHD2’s new bound, a new parameter𝑀 is introduced, corresponding to the place where we split the outer loop. Depending

on 𝑆 and 𝑁 , it can be instantiated with a different parametric expression (cf Section 5.3).

1 for (𝑘 = 𝑁 − 1 ; 𝑘 > −1 ; 𝑘 − = 1 ) {

2 for ( 𝑗 = 𝑘 + 1 ; 𝑗 < 𝑁 ; 𝑗 += 1 ) {

3 𝑡𝑎𝑢 [ 𝑗 ] = 0.0 ;

4 for ( 𝑖 = 𝑘 + 1 ; 𝑖 < 𝑀 ; 𝑖 += 1 ) {

5 SR : 𝑡𝑎𝑢 [ 𝑗 ] += 𝐴[𝑖 ] [𝑘 ] ∗ 𝐴[𝑖 ] [ 𝑗 ] ;
6 }

7 }

8 for ( 𝑗 = 𝑘 + 1 ; 𝑗 < 𝑁 ; 𝑗 += 1 ) {

9 ST : 𝑡𝑎𝑢 [ 𝑗 ] ∗= 𝑡𝑎𝑢 [𝑘 ] ;
10 }

11 𝐴[𝑘 ] [𝑘 ] = 1.0 − 𝑡𝑎𝑢 [𝑘 ] ;
12 for ( 𝑗 = 𝑘 + 1 ; 𝑗 < 𝑁 ; 𝑗 += 1 ) {

13 𝐴[𝑘 ] [ 𝑗 ] = −𝑡𝑎𝑢 [ 𝑗 ] ;
14 }

15 for ( 𝑗 = 𝑘 + 1 ; 𝑗 < 𝑁 ; 𝑗 += 1 ) {

16 for ( 𝑖 = 𝑘 + 1 ; 𝑖 < 𝑀 ; 𝑖 += 1 ) {

17 SU : 𝐴[𝑖 ] [ 𝑗 ] −= 𝐴[𝑖 ] [𝑘 ] ∗ 𝑡𝑎𝑢 [ 𝑗 ] ;
18 }

19 }

20 for ( 𝑖 = 𝑘 + 1 ; 𝑖 < 𝑀 ; 𝑖 += 1 ) {

21 𝐴[𝑖 ] [𝑘 ] = −𝐴[𝑖 ] [𝑘 ] ∗ 𝑡𝑎𝑢 [𝑘 ] ;
22 }

23 }

Figure 6: QR Householder computation - Part V2Q (LAPACK

subroutine ORG2R). We assume that𝑀 ≥ 𝑁 .

matrix, with𝑀 > 𝑁 , can be bounded as follows:

(3𝑀 − 𝑁 )𝑁 2 (𝑀 − 𝑁 )2
24(𝑀𝑆 + (𝑀 − 𝑁 )2) ≤ 𝑄

If𝑀 ≫ 𝑁 , then the bound becomes:

𝑀2𝑁 (𝑁 − 1)
8(𝑆 +𝑀) ≤ 𝑄

Theorem 5.2 (Lower bound for HH - Part V2Q). The commu-

nication volume 𝑄 for the HH V2Q algorithm on a 𝑀 × 𝑁 algorithm,

with𝑀 > 𝑁 , can be bounded as follows:

𝑁 (𝑁 − 1) (3𝑀 − 𝑁 − 1) (𝑀 − 𝑁 )2
24((𝑀 − 𝑁 )2 + 𝑆𝑀) ≤ 𝑄

When𝑀 ≫ 𝑁 , this bound becomes:

𝑁 (𝑁 − 1)𝑀2

8(𝑆 +𝑀) ≤ 𝑄

One interesting detail of the proof concerns the detection of the

hourglass, and the criteria on its size (third criterion introduced

in Section 3.2). For the MGS computation, the size of its hourglass

was constant and equal to 𝑀 . In the case of both Householder

computations, the size of their hourglass is parametrized by the

outer loop iteration value 𝑘 , and is equal to (𝑀 − 1−𝑘). Its smallest

value happens for 𝑘 = 𝑁 − 1, and is (𝑀 − 𝑁 ). By using this value

in Lemma 4.1, we can derive the announced lower bound.

The lower bound proof of the GEBD2 subroutine is similar to

both Householder proofs.

Theorem 5.3 (Lower bounds for GEBD2). The communication

volume𝑄 for the GEBD2 subroutine on a𝑀 ×𝑁 matrix, with𝑀 ≥ 𝑁 ,

can be bounded as follows:

𝑀𝑁 2 (𝑀 − 𝑁 + 1)
8(𝑆 +𝑀 − 𝑁 + 1) ≤ 𝑄

If𝑀 ≫ 𝑁 , then the bound becomes:

𝑀2𝑁 2

8(𝑆 +𝑀) ≤ 𝑄

5.3 Hessenberg matrix reduction

In this section, we present the bound for the Hessenberg matrix

factorization kernel (GEHD2 kernel in LAPACK), whose code is in

Figure 7. By using the hourglass reasoning, we obtain the following

new lower bound for the GEHD2 kernel.

Theorem 5.4 (Lower bound for GEHD2). The communication

volume 𝑄 for the Hessenberg matrix factorization algorithm on a

𝑁 × 𝑁 algorithm can be bounded as follows:

1

12
.
𝑁 4

𝑁 + 2𝑆
≤ 𝑄

When 𝑁 ≫ 𝑆 ,
𝑁 3

24
≤ 𝑄

As in Section 5.2, the size of the hourglass depends on the value

of iteration 𝑗 of the outermost loop (temporal dimension), and is

equal to (𝑁 − 2 − 𝑗), where 0 ≤ 𝑗 < 𝑁 − 2. This means that its

minimal value is 1, which causes an issue with our proof.

A way to solve this problem is to introduce a new parameter

𝑀 < 𝑁−2 and to consider a loop splitting of the outermost temporal
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1 for ( 𝑗 = 0 ; 𝑗 < 𝑛 − 2 ; 𝑗+= 1 ) {

2 𝑛𝑜𝑟𝑚𝑎2 = 0.0 ;

3 for ( 𝑖 = 𝑗 + 2 ; 𝑖 < 𝑛 ; 𝑖+= 1 ) {

4 𝑛𝑜𝑟𝑚𝑎2 += 𝐴[𝑖 ] [ 𝑗 ] ∗ 𝐴[𝑖 ] [ 𝑗 ] ;
5 }

6 𝑛𝑜𝑟𝑚𝑎 = 𝑠𝑞𝑟𝑡 ( 𝐴[ 𝑗 + 1] [ 𝑗 ] ∗ 𝐴[ 𝑗 + 1] [ 𝑗 ] + 𝑛𝑜𝑟𝑚𝑎2 ) ;

7 𝐴[ 𝑗 + 1] [ 𝑗 ] = (𝐴[ 𝑗 + 1] [ 𝑗 ] > 0 ) ?

8 (𝐴[ 𝑗 + 1] [ 𝑗 ]+𝑛𝑜𝑟𝑚𝑎 ) : (𝐴[ 𝑗 + 1] [ 𝑗 ]−𝑛𝑜𝑟𝑚𝑎 ) ;

9 𝑡𝑎𝑢 = 2.0 / ( 1.0 + 𝑛𝑜𝑟𝑚𝑎2 / (𝐴[ 𝑗 + 1] [ 𝑗 ] ∗ 𝐴[ 𝑗 + 1] [ 𝑗 ] ) ) ;
10 for ( 𝑖 = 𝑗 + 2 ; 𝑖 < 𝑛 ; 𝑖+= 1 ) {

11 𝐴[𝑖 ] [ 𝑗 ] /= 𝐴[ 𝑗 + 1] [ 𝑗 ] ;
12 }

13 𝐴[ 𝑗 + 1] [ 𝑗 ] = (𝐴[ 𝑗 + 1] [ 𝑗 ] > 0 ) ? ( −𝑛𝑜𝑟𝑚𝑎 ) : ( 𝑛𝑜𝑟𝑚𝑎 ) ;

14 for ( 𝑖 = 𝑗 + 1 ; 𝑖 < 𝑛 ; 𝑖+= 1 ) {

15 𝑡𝑚𝑝 [𝑖 ] = 𝐴[ 𝑗 + 1] [𝑖 ] ;
16 for (𝑘 = 𝑗 + 2 ; 𝑘 < 𝑛 ; 𝑘+= 1 ) {

17 𝑡𝑚𝑝 [𝑖 ] += 𝐴[𝑘 ] [ 𝑗 ] ∗ 𝐴[𝑘 ] [𝑖 ] ;
18 }

19 }

20 for ( 𝑖 = 𝑗 + 1 ; 𝑖 < 𝑛 ; 𝑖+= 1 ) {

21 𝑡𝑚𝑝 [𝑖 ] ∗= 𝑡𝑎𝑢 ;

22 }

23 for ( 𝑖 = 𝑗 + 1 ; 𝑖 < 𝑛 ; 𝑖+= 1 ) {

24 𝐴[ 𝑗 + 1] [𝑖 ] −= 𝑡𝑚𝑝 [𝑖 ] ;
25 }

26 for ( 𝑖 = 𝑗 + 2 ; 𝑖 < 𝑛 ; 𝑖+= 1 ) {

27 for (𝑘 = 𝑗 + 1 ; 𝑘 < 𝑛 ; 𝑘+= 1 ) {

28 𝐴[𝑖 ] [𝑘 ] −= 𝐴[𝑖 ] [ 𝑗 ] ∗ 𝑡𝑚𝑝 [𝑘 ] ;
29 }

30 }

31 for ( 𝑖 = 0 ; 𝑖 < 𝑛 ; 𝑖+= 1 ) {

32 𝑡𝑚𝑝 [𝑖 ] = 𝐴[𝑖 ] [ 𝑗 + 1] ;
33 for (𝑘 = 𝑗 + 2 ; 𝑘 < 𝑛 ; 𝑘+= 1 ) {

34 𝑡𝑚𝑝 [𝑖 ] += 𝐴[𝑖 ] [𝑘 ] ∗ 𝐴[𝑘 ] [ 𝑗 ] ;
35 }

36 }

37 for ( 𝑖 = 0 ; 𝑖 < 𝑛 ; 𝑖+= 1 ) {

38 𝑡𝑚𝑝 [𝑖 ] ∗= 𝑡𝑎𝑢 ;

39 }

40 for ( 𝑖 = 0 ; 𝑖 < 𝑛 ; 𝑖+= 1 ) {

41 𝐴[𝑖 ] [ 𝑗 + 1] −= 𝑡𝑚𝑝 [𝑖 ] ;
42 }

43 for ( 𝑖 = 0 ; 𝑖 < 𝑛 ; 𝑖+= 1 ) {

44 for (𝑘 = 𝑗 + 2 ; 𝑘 < 𝑛 ; 𝑘+= 1 ) {

45 𝐴[𝑖 ] [𝑘 ] −= 𝑡𝑚𝑝 [𝑖 ] ∗ 𝐴[𝑘 ] [ 𝑗 ] ;
46 }

47 }

48 }

Figure 7: Hessenberg matrix factorization of a 𝑁 × 𝑁 matrix

(LAPACK subroutine GEHD2)

dimension 𝑗 at iteration 𝑀 . First, notice that a loop splitting does

not change the dependencies of a program, thus the lower bound

of the split version will apply to the original one.

The first half of the split program satisfies the hourglass pattern

and has a minimum size of its hourglass of (𝑁 −𝑀 − 1). Thus, as
long as this quantity is not bounded by a constant, the hourglass

reasoning should apply. The second half does not satisfy the last

condition of the hourglass pattern, so the classical derivation is

used there. Notice that its bound is asymptotically worse than the

bound on the first part, so the bound of the first part will dominate.

We consider𝑀 =
𝑁
2
−1 to obtain the first bound, and𝑀 = 𝑁 −𝑆 −2

to obtain the second bound when 𝑁 ≫ 𝑆 .

6 RELATEDWORK

I/O complexity and automation of the proof. The seminal work

of Hong and Kung [12] introduced the red-blue pebble game and

used it as a formalism to manually prove the I/O lower bound of

programs. Following this contribution, many papers [1ś3, 5, 8, 14,

15, 20ś23] focused on the manual proof of lower bounds for various

(classes of) programs. A large portion of these papers consider a

formalism that forbid recomputation. This assumption is necessary

to decompose complex CDAGs into simpler subregions, and to be

able to recombine the bounds of each region.

Irony et al. [14] used the Loomis-Whitney bound, a specialization

of the Brascamp-Lieb theorem with canonical projections, on the

gemm algorithm. This was later extended by the work of Christ

et al. [6] for the class of affine programs, by using the Brascamp-

Lieb theorem. Then, Elango et al. [9] added the idea of considering

paths of dependencies, completing the 𝐾-partitioning method as

introduced in Section 2 of our paper.

This leads to the work of Olivry et al. [18] that introduced the

first automatic lower bound derivation tool, based on combining

bounds obtained from the 𝐾-partitioning and the wavefront meth-

ods of proof. This tool includes several refinements to the bound

derivation, by taking advantage of some specific properties. For

example, if the projections use disjoint parts of the inset, the derived

bound could be improved by a constant factor. A later extension [17]

exploits the fact that some dimensions have very small sizes and

applies this reasoning to convolutions.

7 CONCLUSION

In this paper, we introduced a new proof reasoning to derive data

movement lower bounds, based on a pattern of dependencies, called

the hourglass pattern. This pattern appears on several linear algebra

kernels, such as the Modified Gram-Schmidt, the QR Householder

decomposition (A2V and V2Q parts), the bidiagonal matrix reduc-

tion, and the Hessenberg matrix reduction. We managed to derive

asymptotically tighter lower bounds for these kernels, compared to

the previous classical methods. We also provided tiled algorithms

for MGS and QR A2V, whose amount of data movement matches

asymptotically the new lower bounds, up to a constant factor.

We integrated the hourglass detection and its associated proof

in the automatic data movement lower bound derivation tool of

Olivry et al., IOLB [18], whose implementation is freely available.

Individual contributions. Fabrice identified the original problem

on MGS and the intuition on how to attack this problem. The

implementation in IOLB and the proof were written by Guillaume.

The proof was refined by Lionel, who also provided a detailed study

of the bound, and an experimental performance analysis. Julien

identified the interesting kernels exhibiting an hourglass pattern

and provided valuable insights on the linear algebra side. Lionel

and Julien are also at the source of the upper bound proof in the

appendix of the full version of this paper [11].
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