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ABSTRACT

When designing an algorithm, one cares about arithmetic/compu-
tational complexity, but data movement (I/O) complexity plays an
increasingly important role that highly impacts performance and
energy consumption. For a given algorithm and a given I/O model,
scheduling strategies such as loop tiling can reduce the required I/O
down to a limit, called the I/O complexity, inherent to the algorithm
itself.

The objective of I/O complexity analysis is to compute, for a given
program, its minimal I/O requirement among all valid schedules.
We consider a sequential execution model with two memories, an
infinite one, and a small one of size S on which the computations
retrieve and produce data. The I/O is the number of reads and writes
between the two memories.

We identify a common “hourglass pattern” in the dependency
graphs of several common linear algebra kernels. Using the proper-
ties of this pattern, we mathematically prove tighter lower bounds
on their I/O complexity, which improves the previous state-of-the-
art bound by a parametric ratio. This proof was integrated inside
the IOLB automatic lower bound derivation tool.
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1 INTRODUCTION

When designing an algorithm, we usually reason about its compu-
tational complexity, to estimate the increase in its execution time,
when its problem sizes increase. However, the amount of compu-
tation is not the only factor when estimating the performance of
an algorithm. The data movement (I/O) also plays an increasingly
important role in both performance and the energy consumed by
an algorithm.

In order to minimize the amount of data movement of an algo-
rithm, we modify its schedule by using program transformations,
such as the tiling transformation [13]. However, finding an opti-
mal schedule is not trivial, due to the size and complexity of the
optimization space. The notion of I/O complexity of an algorithm
indicates the minimal amount of data movement required for any
valid schedule of an algorithm. It provides an indication on how far
it is possible to optimize the I/O of an algorithm.

However, due to the number of possible valid schedules, it is
not possible to directly compute the I/O complexity. Instead, we
search for a lower and upper bound on the minimal amount of data
movement. To find an upper bound, one only needs to exhibit a valid
schedule and compute its I/O cost. However, finding a lower bound
requires us to reason over all possible schedules, which requires
a mathematical proof based on the data dependency graph of the
program.

Several proof techniques exist for deriving lower bounds, such as
the wavefront [10] or the K-partitioning technique [12]. Depending
on the shape of the dependencies, some of these techniques might
work better than the others: for example, the wavefront technique
is usually the most effective for stencil-like computation, while
the K-partitioning technique is usually better for linear-algebraic
computation. Other algorithms might require a specialized proof to
obtain an asymptotically tight bound (e.g., for the SYRK kernel [4]).
However, there are still some kernels for which the ratio between
their proven lower bound and their best upper bound is parametric.
For example, such a ratio is described in Table 1 of [18] for the
kernels of the Polybench benchmark suite [19].

Some of the proof techniques mentioned above have been autom-
atized and implemented in automatic data movement lower bound
derivation tools, such as IOLB [18], so that they can be applied to
any kernel given as an input.
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Contributions. In this paper, we consider several important linear
algebra kernels whose dependence graph exhibits a dependency
pattern called the hourglass pattern. We propose a new proof tech-
nique that uses the properties of this pattern to improve the lower
bound on the minimal data movement required by these kernels.

In more detail:

o We define the hourglass pattern, a pattern of the dependencies
of a program, and present its properties.

e We provide alower bound derivation proof, based on an adap-
tation of the K-partitioning technique, that tighten the lower
bound of a program exhibiting an hourglass pattern. This
proof has been fully automatized, inside the tool IOLB [17,
18].

e We present new data movement lower bounds for several
linear algebra kernels: Modified GramSchmidt (MGS), QR
Householder (GEQR2 and ORGZ2R in the LAPACK [16] li-
brary; also called A2V and V2Q), bidiagonal matrix reduction
(GEBD2) and Hessenberg matrix reduction (GEHD?2). For all
of these kernels, their asymptotic bound was improved by
a parametric factor, compared to the bound obtainable by
the classical K-partitioning technique. Figure 4 and Figure 5
summarize the new lower bounds found for several linear
algebra kernels.

e We also provide tiled orderings for MGS and Householder,
resulting in upper bounds that asymptotically match these
new lower bounds. This proves the optimality of the new
I/O lower bounds.

Outline. In Section 2, we provide some background on the I/O
complexity and introduce the K-partitioning method for deriving a
lower bound on the minimal amount of data movement of a com-
putation. In Section 3, we present the hourglass pattern, a pattern of
dependencies whose properties can be used to improve the derived
lower bound. In Section 4, we show how to exploit the hourglass
pattern to adapt the K-partitioning method, in order to obtain a
tighter bound. In Section 5, we list different linear algebra ker-
nels exhibiting an hourglass pattern, and their associated improved
lower bound. Additionally, the appendix of the full version of this
paper [11] contains the tiled algorithm for two of these kernels. The
data movement of these algorithms provides an upper bound to the
minimal amount of data movement, which matches asymptotically
their new lower bound.

2 BACKGROUND -I/0 COMPLEXITY AND
THE K-PARTITIONING METHOD

In this section, we present a state-of-the-art method of proof - the
K-partitioning method - which infers a lower bound on the amount
of data movement needed by a computation.

Memory model and I/O complexity. We consider a simple two-
level memory model, composed of (1) a slow memory of unbounded
size, and (2) a fast memory of size S. Both memories can transmit
data from one to another, as long as the constraint on the size of the
small memory is satisfied. When we perform an operation, the data
used must be present in the small memory, and the data produced
must be committed in the small memory.
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We consider a program, which performs a collection of oper-
ations organized in statements. Each statement SX has multiple
instances SX[i], where i is a vector of the surrounding loop in-
dexes.

In this paper, we consider a subclass of programs called poly-
hedron (or affine) programs. These programs are combinations of
nested loops and statements such as: (i) the loop bounds are affine
constraints using the surrounding loop indexes and the program pa-
rameters (e.g., the sizes of an input array); (ii) the array accesses are
affine expression of the surrounding loop indexes and program pa-
rameters. All the programs presented in this paper, such as Figure 3,
are polyhedral programs. Also, we will call a quantity “parametric”
when it is a function of the parameters of the program, which are
considered as symbolic constants.

A statement instance might depend on the data produced by
another instance, for example when the first instance uses a value
produced by the second instance. We call this a dependency be-
tween these two statement instances. These dependencies impose
constraints on the order of execution of the program. This order of
execution is called the schedule or the ordering. Frequently, the data
consumed/produced by the statements of a program are too big to
fit all at once in the small memory, it it thus necessary to spill, i.e.,
to transfer some data back into the slow memory and retrieve it
later when needed. However, doing so increases the amount of data
movement between both memories.

Given a valid schedule for a program, the I/O cost for this program
and for this ordering is the amount of data movement required,
i.e. the number of data transfers between both memories. The I/O
complexity of a program is the minimal I/O cost that can be reached
by any valid schedule. This quantity is interesting, in particular
in the context of an architecture where the transfer of data is the
limiting factor for performance. Knowing the minimal amount of
data transfers is a good algorithmic indicator to know if it could
be theoretically optimized further. However, because we need to
find the minimal I/O cost for all possible orderings, the exact I/O
complexity is hard to evaluate. Instead, we rely on bounds on the I/O
complexity of a program: we can provide a mathematical proof for
the lower bound, and exhibit an ordering (i.e., an implementation of
a program) that reaches an I/O cost and provides an upper bound.

CDAG and red-white pebble game. When trying to prove a lower
bound, one should decide whether redundant computation is al-
lowed or not. The red-white pebble game, a variation of the red-blue
pebble game of Hong and Kung [12], was introduced by Olivry
et al. [18] in order to model the state of the memories during the
execution of a program without recomputation, which matched the
assumptions we make in this paper.

This game is played on the Computational Directed Acyclic Graph
(CDAG) of the program. This is a directed graph G, where

e the nodes V represent the computation (statement instance)
of a program, and

o the edges represent the flow dependencies between the com-
putations of the program.

Notice that the inputs of a program are nodes that do not have
incoming edges. The outputs of a program are a subset of nodes
O C V; they might have outgoing edges.
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During a red-white pebble game, red and white pebbles are placed
on the nodes of a CDAG. A white pebble represents a computation
that was performed, and a red pebble represents a computation
whose output is currently stored in the small memory. A game
follows this set of rules:

o At the start, the only pebbles in the CDAG are white pebbles,
placed on the inputs of the program.

e At most S red pebbles can be simultaneously present on the
nodes of the CDAG.

o Spill: a red pebble can be removed from a node.

e Compute: When a node does not have a white pebble, but
all its predecessors have red pebbles, then we can place both
a white and a red pebble on it.

e Load: A red pebble can be added to nodes with a white
pebble.

o The game ends when each node has a white pebble on it.

Notice that once a white pebble is placed on a node, it cannot be
removed. This prevents recomputation. In order to compute the
amount of data movements, we focus on the number of red pebbles
added with the Load rule during a game. This means that we only
focus on the “Load” portion of the data movements and ignore its
“Store” part. The resulting bounds are still valid, and because the
number of “Load” often dominates the number of “Store”, their tight-
ness should not be strongly impacted. This assumption is identical
to the one made in [18].

K-partitioning method. The K-partitioning method introduced
in the seminal paper of Hong and Kunk [12] is a proof technique
that allows to derive a lower bound.

The first idea is to consider a partition of the CDAG and games
that play on each set of the partition one by one.

Then, we consider the notion of K-bounded set. An inset of a set
E of nodes of the CDAG, noted InSet(E), is the set of data used
by E but not produced by a computation of E. A K-bounded set
is a set of nodes E of the CDAG whose inset has a size at most
K: |InSet(E)| < K. This notion is interesting because an (S + T)-
bounded set requires at least T additional data to fit in the small
memory (of size S). Thus, even if the small memory is filled with
interesting data, we will need at least T load operations to perform
the computations of this set. In addition, we assume that our K-
bounded sets are convex: if there is a dependency chain between
two points of a K-bounded set E, then all the intermediate points
must belong to E.

Finally, a K-partition is a partition into convex K-bounded sets.
The idea is to consider all K-partitions of a CDAG and to count
how many sets are in this partition. By choosing K = S + T, we
know that there will be at least T loads per set of the partition.
Therefore, a lower bound on the number of loads is T times the
minimal number of sets in such a partition.

THEOREM 2.1 ((S + T)-PARTITIONING I/O LOWER BOUND [9]). Let
S be the size of the small memory, and for any T > 0 let U be the
maximal size of a (S + T)-partition. Let V be the set of nodes of the
CDAG of the program. Then, a lower bound on the number Q of data
movement of the program is:

[0
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Then, we pick a value of T (which means a value of K) that leads
to the tightest lower bound.

To estimate the minimal number of sets in a K-partition, we
can estimate the maximum size of a set inside this partition. In
other words, an upper bound on the size of a K-bounded set can be
transformed into a lower bound on the amount of data movement
required.

Upper bound on the size of a K-bounded set. An upper bound on
the size of a K-bounded set E can be obtained by analyzing the
dependencies of the program. Indeed, for a polyhedral program,
dependencies between its statement instances are associated with
affine relations, matching the loop indices of the data producing
instance with the data consuming instance. When examining the
path of affine dependencies starting from any node of E to a node
of the inset of E, we can either obtain a projection or a translation.
In both cases, the image of E through these affine functions ¢ can
be mapped to geometrical borders or projections of E, and can
be associated with parts of InSet(E). This is the key geometrical
intuition that leads us to use the Brascamp-Lieb theorem.

The Brascamp-Lieb theorem is a geometrical way to bound the
volume of a set by the volume of its projections, which can be
bounded by K.

THEOREM 2.2 (BRASCAMP-LIEB THEOREM [6]). Let d and d; be
non-negative integers and ¢; : 74 - Z% be a collection of group
homomorphisms forall1 < j < m.

If we have a collection of coefficients sj € [0, 1] such that, for any
subgroup H c Z4:

m

rank(H) < Z sj X rank(¢;(H)).

Jj=1

Then, for any non-empty finite set E C Z4:

Bl < [ T1g;E)I.
j=1

For example, if we consider a 3D set and the 3 canonical pro-

jections ¢; (i, j, k) = (j,k), $ix (i, j, k) = (i, k) and ¢; j (i, j, k) =
(i, j), this theorem gives us the following inequality between the
volume of E and the area of its faces ¢ (E):

|E| < 16, 1 (E)M? x | (E)[M? x | (E)|M/2.

As another example, we could consider instead the projections

¢i(i, j, k) = (i), ¢ (i, j, k) = (j) and ¢x (i, j, k) = (k), to obtain the
following inequality:

[E| < 1¢i (E)| X |9 (E)| X [ (E)].

In the case of a K-bounded set, we consider the path of depen-
dencies to automatically derive these projections ¢ € . So, ¢(E)
can be mapped to one part of the inset of E, and its size is bounded
by K.
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for (k=0; k<N; k+=1) {

Qlillk] = A[i][k] / R[k][k];

1
2 nrm = 0.0;

3 for (i=0; i<M; i+=1)

4 nrm += Ali]|[k] « Ali][k];
5 R[k][k] = sqrt(nrm);

6

7 for (i=0; i<M; i+=1)

8

9

10 for (j=k+1; j<N; j+=1) {

1 R[k][j] = 0.0;

12 for (i=0; i<M; i+=1)

13 SR: R[k][j1 += Qlillk] « A[il[j];

14 for (i=0; i<M; i+=1)

15 SU: A1 = AlillJ] - Qlillk] = RIkI[jls

16 }
17}

Figure 1: Modified Gram-Schmidt - Right-Looking (from
Polybench [19]). The input matrix A is of size M X N, and
the output of the algorithm are matrices Q (the orthonormal-
ized column vector basis) and R such that A = QR. The usual
right-looking Gram-Schmidt reuses the matrix A, instead of
defining a new matrix Q. SR and SU are labels of two state-
ments, updating R and A.

3 THE HOURGLASS PATTERN

In this section, we describe the intuition of our core contribution.
We consider a specific pattern of dependencies, called the hourglass
pattern, that forces a convex K-bounded set to have a specific shape.
We can exploit this property to significantly improve the derived
I/O complexity lower bound of programs that exhibit such a pattern.

In the whole section, we use the Modified Gram-Schmidt algo-
rithm as an illustrative example, whose right-looking variant is
provided in Figure 1. Using the automatic tool IOLB [18] to ap-
ply the K-partitioning method (described in Section 2) to the MGS

computation results in a lower bound in Q (MTI;]Z) By using the

hourglass pattern, we obtain a more precise lower bound:
M2N(N - 1)
——— < Q(MGS

8(S+M) o )

3.1 Intuition of the hourglass pattern

Intuition. Figure 2 presents the main idea of the hourglass pat-
tern. It is a repeating succession of reduction and broadcast state-
ments, such that the number of elements reduced/broadcasted is
parametric, thus greater than the cache size S. There are 3 cate-
gories of dimensions in this pattern: (a) the dimensions over which
the reduction and the broadcast are performed (horizontal axis of
Figure 2), (b) the “temporal” dimensions over which the hourglass
pattern is repeated (vertical axis of Figure 2), and (c) the neutral
dimensions that do not interact with the hourglass pattern.

Running example. The hourglass pattern appears on several lin-
ear algebra kernels, including the Modified Gram-Schmidt kernel
(Figure 1). The pattern appears between the last two statements:
statement SR which updates R[k][], and statement SU which up-
dates A[i][j]. The statement SR is a reduction along the i dimension
and uses, in particular, all the values of A[-][j] produced during the

186

Lionel Eyraud-Dubois, Guillaume looss, Julien Langou, and Fabrice Rastello

00> 000> 0 >0

Reduction

[
o o o o L[]
‘Aduction
(4

Iteration t

]

o<4+——o

>0 >0

Iteration (¢t + 1)

Figure 2: Shape of an hourglass pattern, inside the depen-
dence graph. A node is an instance of a statement of the
program, and an edge is a data dependency between two
nodes. The ¢t dimension is an external loop surrounding the
hourglass.

previous iteration of k. The statement SU broadcasts R[k] [ j] across
the i dimension to update all the A[-][j] of the current iteration
of k. Therefore, dimension k is a temporal dimension, dimension i
is the reduction/broadcast dimension and dimension j is a neutral
dimension. There is exactly one dimension in each category in this
example, but in general, there might be several.

Consequences of the hourglass pattern. When considering a K-
bounded set over this pattern, we notice that if it spans over several
iterations of the temporal dimension ¢, then the set must include
all the nodes of the broadcast/reduction in between, due to the
convexity property of the set. Therefore, we have two situations:

e Either the K-bounded set spans over several iterations of
t and includes all the nodes over the reduction/broadcast
dimension. Notice that this is not always possible, depending
on the size of the broadcast/reduction dimension and the
value of K.

e Or, the K-bounded set is “flat” along the ¢ dimension.

For both situations, we can deduce much stronger constraints on the
sizes of the projection |¢(E)| used in the Brascamp-Lieb theorem
(Theorem 2.2). This provides the derivation of an improved lower
bound compared to the classical methodology.

3.2 Hourglass pattern - formal definition

In this section, we provide a formal definition of the hourglass
pattern.

Preliminary notations. Given an instance for a statement SX,
we call an iteration vector the tuple of the (integral) values of its
surrounding loop indices. The iteration domain Dgsx of the statement
SX is the set of iteration vectors that respect the conditions on the
indices of the surrounding loops.
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for(k=0; k<N; k+=1){

norma2 = 0.0;

for(i=k+1; i<M; i+=1){
norma2 += Alil[k] « Ali][k];

1
2

3

4

5 }
6 norma = sqrt(Alk][k] + A[k][k] + norma2);
7 Alk][k]=(A[k][k] > 0)?

8 (Alk][k]+norma): (Alk][k]-norma);
9

10 taulk] = 2.0 /

n (1.0 + norma2 / (Alk][k]  A[k][k]));
13 for(i=k+1; i<M; i+=1){

14 Alillk] /= Al[k][k];

16 Alk][k] = (Alk]llk] >0)?(—norma):(norma);

18 for(j=k+1; j<N; j4+=1){

1 taulj] = A[k][j];

20 for(i=k+1; i<M; i+=1){

21 SR: taulj] += Alillk] « A[il[j];

22 }

23 taulj] = taulk] + taulj];

24 Alk1Lj1 = ALKI[j] - taulj];

25 for(i=k+1; i<M; i+1){

% SU: Alil[j] = Alillj] - Alillk] « taulj];

27 }

Figure 3: QR Householder computation - Part A2V (LAPACK
routine GEQR2).

As mentioned above, in general, there might be several reduction
or temporal dimensions. Thus, we will consider sets of dimensions,
and represent their iteration as a vector i= (i1, ig,...). Given an
iteration k, we write k + 1 to represent the next valid lexicographic
value of k. We extend this notation to k + n where n is an integer.

The hourglass pattern. Considering a statement S of the CDAG
of a program, the hourglass pattern is a pattern of dependencies
with the following properties:

e Partitioning of the dimensions. The dimensions of the state-
ment SX can be partitioned into 3 groups: (i) the temporal
dimensions E, (ii) the reduction/broadcast dimensions 7, and
(iii) the neutral dimensions ;. For simplicity of the presen-
tation, we assume that l: are the first/outer dimensions and
that i are the last/inner dimensions.

e Path in the dependence graph. For any valid value of Tand 77,
there is a dependency chain between the instances SX [Iz, 71l
and SX[k + 1,7, '].

o Large width of the hourglass. Let us consider W, the number of
statement instances on all the dependency chains between
SX [E,j,?] and SX [m,f,?] This expression depends on
the parameters of the program, and cannot be bounded by a
constant value.

Notice that, to have such a chain of dependencies, it must include
a reduction and a broadcast. The dimensions i are the dimens_)ions
which are reduced on and broadcasted over. The dimensions k are
the dimensions that are incremented by a constant factor when
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looping along this loop. So, once a path is found, partitioning the
dimensions should be unambiguous, if this condition is also satis-
fied.

The automatic detection of such an hourglass pattern has been
implemented inside the IOLB tool, using a polyhedral library [24,
25].

Examples. For the MGS computation (Figure 1), we consider the
statement SU and the cycle of dependencies going through the
SR. We confirm that there are 2M statement instances inside a
dependency chain between two instances SU [k, j, i] and SU [k +
2,j,i]: SR[k + 1, j,-] and SU[k + 1, j, -]. The same reasoning would
hold if we considered the statement SR instead of SU.

For the A2V QR Householder computation (Figure 3), we con-
sider the statement SU, and the cycle of dependencies going through
the SR statement. There are (M — k) statement instances SR[k, j, -],
inside a dependency chain between two instances SU [k, j, i] and
SU[k +1, j,1].

4 LOWER BOUND PROOF USING THE
HOURGLASS PATTERN

In this section, we show how to exploit the hourglass pattern of
a program to derive a tighter lower bound on the data movement.
We will use the Modified Gram-Schmidt program (Figure 1) as a
running example to illustrate our proof.

Once again, this proof has been integrated inside the automatic
data movement lower bound derivation tool, IOLB [18], and is
applied when an hourglass pattern is detected.

Preliminary notations. Let us denote with E a set of integral
iteration vectors. The cardinality of such a set |E| is the number of
integer points inside this set.

Given a dimension k, ¢y : (i, j, k) +— (k) is the projection to the
dimension k. This notation can be extended to several dimensions.
For example, ¢j,k 2 (4, j, k) - (J, k).

Given a set E, a dimension k and a value ko, Ex—y, is a slice of
E, i.e., the set of points of E whose value along the dimension k
is ko: Ex—g, = {(i,j.k) € E | k = ko}. We extend this notation to
several dimensions, as in Ep—p,, =0 In the rest of the paper, we use
a compact notation for slices, by omitting the dimension when it is
not ambiguous, like Eg, ;..

Starting point and intuition. The goal of the proof is to find an
upper bound on the size of a K-bounded set, to transform it into
a lower bound on the data volume required by a portion of the
program. So, we start the proof with an arbitrary convex K-bounded
set E containing instances of the broadcast statement SX [E, j, ?],
which we assume is part of an hourglass pattern. Just like in the
classical proof, an analysis of the dependencies of the program
yields a set @ of projections ¢3 for some dimensions X, which
project on the inset of E.

The classical proof involves applying the Brascamp-Lieb theorem
on the K-bounded set E, by bounding the size |¢3(E)| of each of
these projections by K.

In our proof, we split E into two parts (Section 4.1) and we adapt
the set of projections when we apply the Brascamp-Lieb theorem
on each of these parts (Sections 4.2 and 4.3) to obtain more precise
bounds.
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Running example. In the case of MGS, by following the chain
of dependencies associated with the accesses A[i][j], Q[i][k] and
R[k][j] of statement SU, we infer that the projections are ¢; j, ¢;
and ¢y ;. When following the classical proof, the application of the
Brascamp-Lieb theorem results in the following inequality:

IE| < 1 (E) 2 |gix (B)|7 g s (E)] 2 < K32

We prove in Section 4.4 a tighter upper bound: |E| < £ + 2K.

4.1 Part 1- Decomposition of the K-bounded set
In the first part of the proof, we decompose E into the union of two
fragments: (i) I’ which has volume along the k dimensions, and (ii)
F which is flat along the k dimensions. Both parts have their own
upper bound, obtained with different reasoning, that is described
in Section 4.2 and Section 4.3.

Decomposition of E. We consider the number of different values

of k for a given value of J:
Tle-*_{k | 3, SX[k 7.1 EE =}

We split E into two sets:

o E' = User, E;j where 54 = {(jl13< Tick;.}, and
e £ = Ui Ej where Ji2 = 1< Tickj. <2}

The intuition between this separation is that (i) E’ contains the
connected components which need to include an entire line of
statement instances along the i dimensions, and (i) E” contains
the connected components which are “flat” along the k dimensions.

We start by focusing on E’, to show that these components need
to include a parametric number of iterations along the 7 dimension,
using the hourglass pattern.

LEMMA 4.1 (STRUCTURE OF E’). Given some ] € ¢;(E’), let us

consider the slice Ei along the dimensions j. Let us consider:

mln~{k | SX[k jile E'}
maxA{k | SX[k 7l e E .},

o Fmin () =
® Kmax (.7)

e d, any subset ofthe indices of i,
o |9z(Ds)| = W3, a lower bound on the size of the projection of
Ds, the lteratlon domain of the statement SX.

Then:

(1) EQ is a connected component.

@) For all kopin () <tex K <ex Kmax (7). |¢a(E D=V

Proor. (1) Because SX satisfies the hourglass pattern proper-

ties, for any two instances SX [k, j, ?] and SX[k’, f, 17] in EZ where
J

k <jex k’, we can prove that there is a chain of dependencies from
one statement instance to another. Therefore, using the convexity
property of E, we conclude that E' is a connected component.

(2) By cons1der1ng one instance of index k = kmm and another
of index k = Kmax, we can show that all the SX[i, J, ] are in the
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middle of a dependency chain between the two of them. Therefore,
by projecting the 7 on the subset of dimension @, we conclude:

Vhinin(7) <tex K <lex max (7). 19a(E%)| = |$a(Ds)| = Ws.

We consider E’ = I’ & B’ defined by:

4 — —— & — £l
o' = UjE]3+(Ej Ej,kmin(j) E] f— (J)) the “inside” of the

connected components of E’, according to dimensions k.
’ . . « . »
e B = U]G]H (Ej,kmm(j) v Ej,kmax(j))' the “boundaries oithe
connected components of E’, according to dimensions k.

We define F = B’ & E” the flat parts of E, and we adapt our
previous decomposition of E to obtain the desired decomposition:

E=FE WE’=I"wF.

4.2 Part 2 - Bound on the size of I’

Let us focus on the upper bound of the size of I, using Lemma 4.1.
The goal is to have tighter bounds on the projections involving
some of the reduce/broadcast dimensions T to use them with the
Brascamp-Lieb theorem, instead of the classical “< K” bound.

LEMMA 4.2 (BOUNDS ON THE SIZE OF SOME OF THE PROJECTIONS
oF I'). Let us consider a projection ¢z z € ®, where d is a subset of
i, and X is a subset of (j, k). Assume that we have a lower bound

|9z(Ds)| = W; on the size of the projection of the iteration domain
Ds of statement S. Then:

6001 < -

Proor. Because I’ is a subset of a K-partition, then we have
lgzz(I)] < K.

By slicing I’ along the dimensions of X, we also have:

I$az()] = |daz (VIS = ) 1gaz(U5)].

Furthermore:

|92z (1)1 = |6zl )]

(a slice along X only has a single
point to be projected along X)

(I — C I—,;, for some (]" k”)

> |da (I —
> 19a(1% )]

-7 ku

matching X onits dimensions)

> W;. (by Lemma 4.1)
Therefore: [¢; 3(I")| = W; X |¢z(I")|. In other words:
$G % ')l K
g2(1)] < T2 < o
a a

O

To obtain a bound on |I’|, we use the set of projections @, modi-
fied in the following way:

e We add a projection on i whose bound is: (1] < W,

where W is the width of the hourglass.
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e When a projection on (%, d@) shares some of its dimensions
@ with i, we use the projection on X instead, and the bound
given by Lemma 4.2.

o The rest of the projections, which do not involve dimensions
of 7, are unchanged and associated with a classical upper
bound |¢z(I")| < K.

Then, we apply the Brascamp-Lieb theorem, while optimizing the
values of the power s of the size of the projections |¢(E)|. Notice
that some projections can be filtered out through this optimization
process (s = 0), to obtain a tighter bound on I’.

Running example. We notice that ® contains two projections ¢; ;
and ¢; i, both of them using the dimension i and another dimension.
Therefore, from Lemma 4.2, we have the following bounds:

650 < 3 and 4] < 3.

We apply the Brascamp-Lieb theorem on I’, using the projections
on i, on j instead of a projection on (i, j), and on k instead of a
projection on (i, k), each with coefficient 1:

1] < 1 (1] x 1 (1) X 1g (1)
By using our specialized bounds, we have:

, K K K?
[I'l < M x

— X — = —

M™M M’

4.3 Part 3 - Bound on the size of F

We now focus on the bound of the remaining part of E, i.e., F =
(B’ WE"”). Our goal is to exploit the fact that this set is “flat” along
the k dimensions, to improve the upper bounds on the projections
used in the Brascamp-Lieb application to F. In particular, our proof
will consider each F- separately, the slice of F for a given value j.
Then, by picking a list of well-chosen projections for the Brascamp-
Lieb theorem, we obtain interesting bounds on the size of F]?, that
are finally summed to obtain our bound on F.

We recall that E’ and E”’ contains the j-slices of E for the values
of J such that Tick;. are respectively at least 3 and at most 2. Since

B’ ¢ E’, B’ and E” do not share the same set of j So we get a
“flatness bound™: VJ € ¢;(F), |¢];(F7)| <2
In addition, we notice that because F]‘.’ C E, for any projection

¢ € [p(F7)| < |¢(E)| < K.

In this part of the proof, instead of focusing on F, we apply the
Brascamp-Lieb theorem to the slice F-.

As in Section 4.2, we start with the same list of projections ® to
the in-set of E, obtained by inspecting the chain of dependencies of
the considered statement. Then, we customize this list of projections
to exploit the properties of Fj?:

e We add a projection on k and the flatness bound |¢E (F7)| <2

o We identify a projection that involves a non-empty subset
of the dimensions of J: after applying the Brascamp-Lieb
theorem, we will not try to immediately use an upper bound
for this projection. Let us call ¢, this projection.

o The remaining projections are left alone, and associated with
the classical upper bound |¢5E(F])| < |¢z(F)| < K.
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At that point, we have obtained an upper bound on |ij| of the

following form:

[F5| < ex |45 (F;)l.
where e is a parametric expression using the parameter K and
independent of the value of j. Notice that the Brascamp-Lieb power
above |¢;| must be equal to 1, due to the fact that this is the only
projection involving the 7 dimensions.

Let us consider the collection of projected sets ¢, (F). Two of
these projected sets are either (i) identical, along the dimensions of
fwhich are not present in w, or (ii) disjoint. Because the distinct
values of these projections are always a subset of the inset of E, of
size K, the sum of the size of the disjoint union of these distinct
values is also bounded by K. Let us call R the number of values that
can be taken by the dimensions of 7 which are not in w. This is also
the maximum number of times a ¢; (E) projects on the same value.
Notice that R = 1 when w covers all the dimensions of 7, and that
R can be a parametric expression in general. So, we have:

D ¢ (F)l < RxK.
Jjeg;(F)

Combining all these observations, we obtain the following upper
bound on the size of F:

Fl= > 1Bl ) exlpg(F)l

Jjed;(F) jed;(F)
<ex Z |¢‘;J(F7)|5e><R><K.
jeg;(F)

Running example. In the MGS case, the flatness bound yields:
Vj, l¢r(Fj)| < 2. We can apply the Brascamp-Lieb theorem on Fj,
with the projection ¢; j, together with the projection ¢:

[Fjl < 1r (FI X |sj (Fi)| < 2 X |y j (Fj)I.

And since dimension j is included in the dimensions (i, j) of the
projection, we have R = 1 and therefore:

Fl= > IFl<2x Y Igij(F)] < 2K,

Jjeg;(F) Jjeg;(F)

4.4 Part4 - Wrapping things up

We have found in Section 4.2 and Section 4.3 an upper bound of the
size of the two parts of E. We simply sum them together to obtain
an upper bound of the size of E, then apply Theorem 2.1 to deduce
a lower bound on the data movement.

Running example. Thanks to the above results, we can obtain
lower bounds on the data movement of MGS.

THEOREM 4.3 (LOWER BOUNDS FOR MGS). The communication
volume Q for the MGS algorithm on a M X N matrix can be bounded
as follows:

2 _
MN(N-1) _ 0
8(S+ M)
Furthermore, if S < M, we also have:
(M—-S)N(N -1) <

1 Q
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Proor. From the previous results, we have:

K2
|E| = |I'| +|F| < M+2K.

Then, by using Theorem 2.1 with K = 2S:

MN(N-1) _ M2N(N -1)

(K_S)Xz.(%.;.z[() 55+ 3D

<Q

Due to Lemma 4.1 and because we have at least an input depen-
dency involving the dimension i, |InSet(E”)| > M. So, if we have
S < M, then E’ must be empty. Therefore, E = F, and we can use
only the second part of the bound: |E| < 2K.

Using Theorem 2.1 again, but this time with K = M, we obtain:

MN(N - 1) N(N-1)
4

K-S5)-
( ) 2Xx2K

=(M-3S)- <Q

5 EXPERIMENTAL RESULTS - NEW LOWER
BOUNDS

In this section, we report the data movement lower bounds gener-
ated by IOLB for four kernels exhibiting an hourglass pattern. We
compare the results using our technique (new bound) with those
obtained without it (old bound). These kernels are:

o Modified Gram-Schmidt (Figure 1), already used as a running
example in Section 4.

e OR Householder algorithm: both its A2V (Figure 3) and V2Q
parts (left-looking variants of respectively the GEQR2 and
ORGZ2R subroutines in LAPACK [16]).

e Reduction to a bidiagonal matrix (GEBD2 subroutine)

e Reduction to a Hessenberg matrix (GEHD2 subroutine)

Figure 5 summarizes all the newly found full lower bounds,
and Figure 4 focuses on their leading term, to emphasize their
improvements. More precisely:

e Section 5.1 contains an asymptotic analysis of the MGS lower
bound.

e Section 5.2 presents the lower bound for both QR House-
holder parts, and the GEBD2 computation.

e Section 5.3 presents the lower bounds for the GEHD2 com-
putation.

The appendix of the full version of this paper [11] contains a
description of a tiled algorithm for MGS and for HH A2V and the
computation of their amount of data movement. This provides an
upper bound to the minimal amount of data movement required
by these algorithms, which matches asymptotically the provided
lower bound.

5.1 MBGS - Asymptotic analysis
In this section, we analyze the bound obtained in Theorem 4.3 for
MGS, by specializing it for different ordering of M and S:
o IfS < M/2, we have M/2 < M — S, so that the second bound
yields:

2
MN” _ Q(MN?) < Q
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Kernel Old bound [18] | New bound (hourglass)
QRHH A2V | (MX) o (M)
QRHHV2Q | ©Q (Mv’;lz ) Q (M—%Zfﬁ:g” )

GEBD2 Q (M\/J\Slz) Q (%)

GEHD2 o (%) o ()

Figure 4: Summary of the new asymptotic data movement
lower bounds.

e If M/2 < S, we have S + M < 38, so that the first bound
becomes:

2\2 272

MN® _ o (M N ) <0
24§ S

The first result matches the amount of data movements obtained
by the classical ordering of the MGS algorithm, as presented at
the end of Section 3.1. Both the algorithm and the bound are thus
asymptotically optimal when S is small.

Demmel et al. [7] propose a tiled ordering for the case 2M < S
(in Section F.2 of their paper), that achieves an amount of data
movement O(M?N?/S), thus matching asymptotically the second
upper bound. Both of these bounds are thus optimal up to a constant
factor. For reference, the tiled ordering is detailed in the Appendix
of the full version of this paper [11], together with the proof on its
amount of data movement.

We can compare these bounds with the lower bound returned
by the classical hourglass-less proof, whose asymptotic bound is

Q( MTI;IZ) Our first bound for small values of S is stronger by a factor
of Theta(VS). By writing our second bound as Q(\% . MTJ;IZ) we
see that our bound is stronger by a factor of ©( \M@) Since the input
matrix has size M X N, we can assume that S < MN, otherwise, the
whole matrix fits in the cache and there is no need to minimize data
transfers. Besides, we know that N < M, which leads to S < M2.
We can conclude that % > 1: our bound is asymptotically at least
as strong as the previous bound.

The results of Theorem 4.3 can also be presented differently, to
improve the constant in front of the dominant term. Indeed:

MN?

If S < M, the first bound yields , <0,
M2N?

Similarly, if M <« S, the second result becomes <0.

5.2 Householder QR factorization and GEBD2

In this section, we present the bounds to both parts of the House-
holder QR factorization (LAPACK routines GEQR2 et ORG2R). The
computation of the first part (A2V) is given in Figure 3 and the
computation of the second part (V2Q) in Figure 6.

By using the hourglass reasoning, we obtain the following new
lower bounds for both kernels.

THEOREM 5.1 (LOWER BOUNDS FOR HH - PART A2V). The commu-
nication volume Q for the A2V part of the HH algorithm on a M X N
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Kernel Old bound [18] New bound (hourglass)
MGS aM+3MN+MN? 500 poar o 7N—N2 “Ss—¢ NZMzg(z]{\/IAjS—)fsNM +5M — MN + 7N N g ¢
OR HH A2V 3MN2+6M+73’ffN —OMN =6 4 50f — MN +5N — S — 13 SMN®— AT OM 6 N' L SM — MN +5N - S — 13
N-M p
QRHH V2Q | 3MN’- N3+63{‘f;7N IMN=6 1 gpf 4N + NoN2 g5y SMN?- I‘Z’z:fi‘/“m) IMN=6 1 g\ 42N + NoN2 gy
GEBD2 3MN?-N3— 31\\/#\[+6M+7N 6 +5N+5M — MN =S —13 3MN?— N3+Si\£21;15MN+)4N+18M 12 +5N+7M - MN —S —18
1+M-N
5N3-30N%+55N-30 , 69N—9N? N3-6N?+11N-6 2
GEHD2 VS + ) —-3%xS5—-56 W—N +12N-S5-19

Figure 5: Data movement lower-bounds (with constants) automatically derived by IOLB [18] without/with hourglass detection.
In GEHD2’s new bound, a new parameter M is introduced, corresponding to the place where we split the outer loop. Depending
on S and N, it can be instantiated with a different parametric expression (cf Section 5.3).

SR:

ST:

SU:

(k=N-1; k>-1; k—-=1) {

for (j=k+1; j<N; j4+=1){
taulj] = 0.0;
for(i=k+1; i<M; i+=1){

taulj] += Alil[k] « A[i][j];

}

}

for(j=k+1; j<N; j+=
taulj] += taulk];

4

}

Alk][k] = 1.0 - taulk];

for(j=k+1; j<N; j+=
Alk][j] = —taulj];

1){

}
for(j=k+1;
for(i=k+1;
Alil[j] -=

J<N: j4=1)

i<M; i+=1){

} Ali][k] » taulj];

}

for(i=k+1;
Ali][k] =

i<M; i+=1){
—Ali][k] « tau[k];
}

Figure 6: QR Householder computation - Part V2Q (LAPACK
subroutine ORG2R). We assume that M > N.

matrix, with M > N, can be bounded as follows:

(3M — N)N%(M — N)?
24(MS + (M — N)?)

<Q

IfM > N, then the bound becomes:

M2N(N - 1)

ss+) =Y

THEOREM 5.2 (LOWER BOUND FOR HH - PART V2Q). The commu-
nication volume Q for the HH V2Q algorithm on a M X N algorithm,
with M > N, can be bounded as follows:

N(N-1)(3M -N -1)(M - N)?
24((M — N)2 + SM)

<Q

When M > N, this bound becomes:

N(N - 1)M?

ss) =Y
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One interesting detail of the proof concerns the detection of the
hourglass, and the criteria on its size (third criterion introduced
in Section 3.2). For the MGS computation, the size of its hourglass
was constant and equal to M. In the case of both Householder
computations, the size of their hourglass is parametrized by the
outer loop iteration value k, and is equal to (M — 1 — k). Its smallest
value happens for k = N — 1, and is (M — N). By using this value
in Lemma 4.1, we can derive the announced lower bound.

The lower bound proof of the GEBD2 subroutine is similar to
both Householder proofs.

THEOREM 5.3 (LOWER BOUNDS FOR GEBD2). The communication
volume Q for the GEBD2 subroutine on a M X N matrix, with M > N,
can be bounded as follows:

MN?(M-N+1)
8(S+M—-N+1)

IfM > N, then the bound becomes:

MZNZ
8(S+ M)

<0Q

<0

5.3 Hessenberg matrix reduction

In this section, we present the bound for the Hessenberg matrix
factorization kernel (GEHD2 kernel in LAPACK), whose code is in
Figure 7. By using the hourglass reasoning, we obtain the following
new lower bound for the GEHD2 kernel.

THEOREM 5.4 (LOWER BOUND FOR GEHDZ2). The communication
volume Q for the Hessenberg matrix factorization algorithm on a
N X N algorithm can be bounded as follows:

1 N*
12'N +25

<Q

When N > S,
N3

— <
24_Q

As in Section 5.2, the size of the hourglass depends on the value
of iteration j of the outermost loop (temporal dimension), and is
equal to (N — 2 — j), where 0 < j < N — 2. This means that its
minimal value is 1, which causes an issue with our proof.

A way to solve this problem is to introduce a new parameter
M < N-2and to consider a loop splitting of the outermost temporal
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(j=0; j<n-2; j+=1) {
norma2 = 0.0;
for (i=j+2; i<n; i+=1) {
norma2 += A[i][j] « A[i][j];
norma = sqrt( A[j+1][j] » A[j+1][j] + norma2);
Alj+11l7] = (A[j+1][j]>0)?
(Alj+1][jl+norma): (A[j+1][j]-norma);
tau = 2.0/(1.0 + norma2/(A[j+1][j] « A[j+1][j]));
10 for (i=j+2; i<n; i+=1 ) {
" Alillj] /= Alj+11ljl:
12

}
13 Alj+1][j] = (A[j+1][j] >0)?(—norma):(norma);
14 for (i=j+1; i<n; i+=1) {

1
2
3
4
s}
6
7
8
9

15 tmpli] = A[j+1][i];
16 for (k=j+2; k<n; k+=1) {
1 tmpli] += A[K][j] « A[k][i];

18 }
19 }

20 for (i=j+1; i<n; i+=1) {

21 tmpli] «= tau;

22 }

23 for (i=j+1 ; i<n ; i+=1) {
24 Alj+1][i] -= tmpli];

25 }

26 for (i=j+2; i<n; i+=1) {

27 for (k=j+1; k<n; k+=1) {
28 Ali][k] -= A[][] = tmplk];
29 }

30 }

31 for (i=0; i<n; i+=1) {

32 tmpli] = Ali][j+1];

33 for (k=j+2; k<n; k+=1) {
34 tmpli] += Alil[k] « A[k][j];

35 }

36 }

37 for (i=0; i<n; i+=1) {

38 tmpli] «= tau;

39 }

40 for (i=0; i<n; i+=1) {

41 Alill[j+1] -= tmpli];

42 }

43 for (i=0; i<n; i+=1) {

44 for (k=j+2; k<n; k+=1) {
45 Alil[k] -= tmpli] « Alk]I[j];
46 }

47 }

48}

Figure 7: Hessenberg matrix factorization of a N X N matrix
(LAPACK subroutine GEHD2)

dimension j at iteration M. First, notice that a loop splitting does
not change the dependencies of a program, thus the lower bound
of the split version will apply to the original one.

The first half of the split program satisfies the hourglass pattern
and has a minimum size of its hourglass of (N — M — 1). Thus, as
long as this quantity is not bounded by a constant, the hourglass
reasoning should apply. The second half does not satisfy the last
condition of the hourglass pattern, so the classical derivation is
used there. Notice that its bound is asymptotically worse than the

bound on the first part, so the bound of the first part will dominate.

We consider M = % —1 to obtain the first bound,and M = N-S-2
to obtain the second bound when N > S.
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6 RELATED WORK

I/O complexity and automation of the proof. The seminal work
of Hong and Kung [12] introduced the red-blue pebble game and
used it as a formalism to manually prove the I/O lower bound of
programs. Following this contribution, many papers [1-3, 5, 8, 14,
15, 20-23] focused on the manual proof of lower bounds for various
(classes of) programs. A large portion of these papers consider a
formalism that forbid recomputation. This assumption is necessary
to decompose complex CDAGs into simpler subregions, and to be
able to recombine the bounds of each region.

Irony et al. [14] used the Loomis-Whitney bound, a specialization
of the Brascamp-Lieb theorem with canonical projections, on the
gemm algorithm. This was later extended by the work of Christ
et al. [6] for the class of affine programs, by using the Brascamp-
Lieb theorem. Then, Elango et al. [9] added the idea of considering
paths of dependencies, completing the K-partitioning method as
introduced in Section 2 of our paper.

This leads to the work of Olivry et al. [18] that introduced the
first automatic lower bound derivation tool, based on combining
bounds obtained from the K-partitioning and the wavefront meth-
ods of proof. This tool includes several refinements to the bound
derivation, by taking advantage of some specific properties. For
example, if the projections use disjoint parts of the inset, the derived
bound could be improved by a constant factor. A later extension [17]
exploits the fact that some dimensions have very small sizes and
applies this reasoning to convolutions.

7 CONCLUSION

In this paper, we introduced a new proof reasoning to derive data
movement lower bounds, based on a pattern of dependencies, called
the hourglass pattern. This pattern appears on several linear algebra
kernels, such as the Modified Gram-Schmidt, the QR Householder
decomposition (A2V and V2Q parts), the bidiagonal matrix reduc-
tion, and the Hessenberg matrix reduction. We managed to derive
asymptotically tighter lower bounds for these kernels, compared to
the previous classical methods. We also provided tiled algorithms
for MGS and QR A2V, whose amount of data movement matches
asymptotically the new lower bounds, up to a constant factor.

We integrated the hourglass detection and its associated proof
in the automatic data movement lower bound derivation tool of
Olivry et al., IOLB [18], whose implementation is freely available.

Individual contributions. Fabrice identified the original problem
on MGS and the intuition on how to attack this problem. The
implementation in IOLB and the proof were written by Guillaume.
The proof was refined by Lionel, who also provided a detailed study
of the bound, and an experimental performance analysis. Julien
identified the interesting kernels exhibiting an hourglass pattern
and provided valuable insights on the linear algebra side. Lionel
and Julien are also at the source of the upper bound proof in the
appendix of the full version of this paper [11].
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