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De novo design of complex protein folds using solely computational means remains a
substantial challenge’. Here we use arobust deep learning pipeline to design complex
folds and soluble analogues of integral membrane proteins. Unique membrane
topologies, such as those from G-protein-coupled receptors?, are not found in

the soluble proteome, and we demonstrate that their structural features can be
recapitulated in solution. Biophysical analyses demonstrate the high thermal stability
of the designs, and experimental structures show remarkable design accuracy. The
soluble analogues were functionalized with native structural motifs, as a proof of
concept for bringing membrane protein functions to the soluble proteome, potentially
enabling new approachesin drug discovery. Insummary, we have designed complex
protein topologies and enriched them with functionalities from membrane proteins,
with high experimental success rates, leading to a de facto expansion of the functional

soluble fold space.

Protein design enables the expansion of nature’s molecular machin-
ery, creating synthetic proteins with new functionalities. Traditionally,
protein design has been dominated by physics-based approaches,
such as Rosetta’. However, these methods require parametric and
symmetric restraints to guide the design process and often extensive
experimental screening and optimization. This proves problematic for
the design of functional proteins with complex structural topologies.
Recently, structure prediction pipelines, such as AlphaFold2 (AF2)*,
have achieved unprecedented accuracy in predicting protein structure
given the amino acid sequence. With the rise of deep learning-based
methods, exploring the sequence space has become increasingly feasi-
ble, allowing the discovery of proteins with stable topologies and new
functions. Deep learning-powered methods have also been influential
in various tasks that include the generation of new designable back-
bones®”, oligomeric protein assemblies®’, proteins with embedded
functional motifs'®, new protein structural descriptors", the sequence
design problem™" and, more recently, the generation of a diverse
range of protein topologies using diffusion models®**, In addition,
structure prediction networks can be inverted and used for protein
design, resulting in the generation of plausible protein backbones®’*®.

Nevertheless, designing protein folds with complex structures,
including non-local topologies and large sizes, remains challenging;
however, it is essential for creating new protein functions. In addi-
tion to design proficiency, the answers to many questions about the
fundamental determinants of protein structure and folding remain
elusive, particularly regarding the generalizability of deep learning
methods beyond natural protein structures and sequences. To probe
some of these questions, we analysed the protein fold space in the

Structural Classification of Proteins (SCOP) database" and observed
asegregation at the structural level between proteins in the soluble
proteome and those in the cell membrane environment (Fig. 1a). We
observed that 1,075 membrane proteins exhibited unique topologies
thatwere not found in soluble form, with only 189 folds being present
inboth solubleand membrane environments. This raises the question
of whether integral membrane protein topologies have some funda-
mental structural features that preclude them from existing in the
solublefold space. Consequently, weinvestigated whether membrane
folds could be designed as soluble analogues, thus achieving ade facto
fold expansion of the soluble proteome and creating opportunities for
designing new functions using these previously inaccessible protein
folds. Although there has been previous work on the solubilization of
near-native membrane proteins using physics-based and empirical
methods™ %, no generalizable approach for the computational design
of soluble membrane topologies with preserved functional aspects
has been devised.

To this end, we developed a computational pipeline for robust
de novo protein design, based on inversion of the AF2 network’ cou-
pled withsequence design using ProteinMPNN" (Fig. 1b). Our approach
allowed us to computationally design highly stable folds that were
previously very challenging (Ig-like fold (IGF), B-barrel (BBF) and
TIM-barrel (TBF)), as well as soluble analogues of integral membrane
proteinfolds (claudin, rhomboid protease, G-protein-coupled recep-
tor (GPCR)) without the need for parametric design restraints or sub-
sequent experimental optimization. Finally, we demonstrated that
the soluble analogues could be designed in a conformation-specific
manner while preserving native functional motifs with structurally
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Fig.1|Overview of the fold space across different environments and
computational design approach. a, Overview of the occurrence of soluble
and membrane folds in the SCOP structural database, with depictions of
selected representatives. b, Schematic representation of the integrated design
pipeline for backbone and sequence generation. Given atarget structure, an
initial sequence is generated using AF2 through loss function optimization.
Theresulting structure is then passed to ProteinMPNN to sample new amino
acid sequences foragiven fold. ProteinMPNN designs are filtered on the basis
of structural similarity to the target, confidence and sequence diversity.

¢, Novelty of generated sequences resulting from different backbone sampling
methods, evaluated by e-valuesrelative to the non-redundant protein sequence
database.d, Sequence recovery of core and surface residues of TBF ProteinMPNN
designs generated on the basis of the reference crystal X-ray structure (Protein
DataBank (PDB) 5BVL), Rosetta-perturbed backbones (backrub protocol),
molecular dynamics simulation trajectories or AF2,.-generated structures.

elaborate features and of biological and therapeutic relevance, such
as G-protein-binding interfaces and toxin-receptor interaction sites.
Our findings showcase the remarkable success and accuracy of deep
learning-based methods in protein design, paving the way for explora-
tionof new protein topologies and sequences forimproved functional
design strategies.

Structure-sequence generation using deep learning

AF2-based designapproaches have beenshown to generate plausible
protein backbones’?*?*; however, their performance in sequence
design has been suboptimal, as evidenced by low experimental suc-
cess rates”®®, Wicky and coworkers® have demonstrated the effi-
ciency of using ProteinMPNN on AF2-generated structures to enhance
their expression and solubility, but it remained unclear whether
this approach could be successfully used to explore the sequence
space of complex protein folds with intricate topological features,
including those only found in membrane environments (Fig. 1a).
To address this challenge, we integrated our previously developed
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AF2-based design approach (AF2,,,)” with the ProteinMPNN frame-
work (Fig. 1b).

In this pipeline, we use AF2,,, to generate sequences that adopt a
desired target fold. AF2.., optimizes a sequence on the basis of a loss
function that comprises both topological and structural confidence
loss components (Methods) untilasequence is found that folds to the
desired topology. We then apply ProteinMPNN sequence optimization
tothe AF2.,-generated starting topologies. Finally, the structures of all
resulting sequences arerepredicted with AF2 and filtered on the basis
of their structural similarity to the target topology (template model-
ling (TM) score > 0.8), confidence scores (predicted value of the local
distance difference test (pLDDT) > 80) and sequence novelty relative
to naturally occurring sequences (e-value > 0.1).

In silico assessment showed that despite the restricted structural
diversity (Extended DataFig.1a,b), AF2.,-designed backbones enabled
ProteinMPNN to generate much greater protein sequence diversity for
adesired fold than that of classical backbone sampling methods such
as Rosetta Backrub® or molecular dynamics simulations (Fig. 1c and
Extended DataFig.1a,b). Toinvestigate the source of the diversity, we
examined sequence conservationat the core and surface of the designs
following ProteinMPNN optimization, which was originally reported
to consistently recover approximately 50% of the starting sequence®.
Sequence optimization using ProteinMPNN alone resulted in high
sequencerecoveriesin the core of the designs, relative to the starting
sequence (Fig. 1d). AF2,.,-generated designs exhibited low sequence
recoveriesinboththe core and the surface compared with the sequence
ofthetarget protein. This indicates that the novelty and designability of
ourbackbones primarily stem from the new backbone templates gener-
ated by AF2,.,. Increasing levels of Gaussian noise applied to the back-
bonebefore ProteinMPNN sequence design could also reduce sequence
recovery (Extended Data Fig. 1c); however, this was at the expense of
low-confidence predictions that deviated significantly from the target
fold (Extended DataFig.1d-f).In addition, we found that for some more
complex design tasks, the target structure could not be predicted in
single sequence mode by AF2 after ProteinMPNN redesign. However,
whenusing acombination of AF2,.,and ProteinMPNN (AF2,.,-MPNN),
we found the input sequence toresultinaccurate structural predictions
of the target folds (Extended Data Fig. 2a-d). Therefore, we sought
to test whether our design strategy would be successful in designing
proteinfolds that have thus far been challenging to other approaches.

Design of topologically complex folds

To identify challenging design targets for our pipeline, we quantified
the topological complexity of protein folds using metrics of protein
lengthand sequence contact order (Extended Data Fig.3a,band Meth-
ods). Onthe basis of this assessment, and given how challenging some
folds have been for computational design, we selected three folds
to test our approach: the IGF, BBF and TBF (Fig. 2a). The IGF is one of
the most prevalent folds in nature and is an essential building block
of immunological effectors and therapeutics such as antibodies and
receptors®. The IGF consists of two stacked B-sheets, presenting a
substantial design challenge. This is because of its non-local inter-
actions and susceptibility to aggregation through edge B-strands?,
previously requiring strict parametric and symmetry restraints dur-
ing design®?%. Using our AF2,.,-MPNN protocol (Fig. 1b), we designed
IGFs that were significantly distant from natural protein sequences
(Fig. 2b). We selected 19 designs for experimental characterization
onthebasis of AF2 confidence scores and sequence diversity (Supple-
mentary Figs.1and 2). Seven designs were soluble, with four designs
exhibiting monodisperse peaks in solution (Supplementary Fig. 3).
Exemplified by IGF_10 (Fig. 2¢), the designed IGFs exhibited a typical
B-sheet-rich secondary structure profile according to circular dichro-
ism spectroscopy, together with unusually high thermostability®
(Fig. 2c and Supplementary Fig. 3).
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Fig.2|Experimental characterization of designed complex protein
topologies. a, Cartoon depiction of three protein topologies that have been
challenging for computational design: IGF, BBF and TBF. b, Closest e-value
hitsfor the AF2,.,and AF2,.,-MPNN designs when searching anon-redundant
protein sequence database. The significance threshold of 0.05is
highlighted, indicatinglittle sequence homology with natural sequences.

Next, we attempted to design ade novo BBF, afold presentbothinthe
soluble and membrane proteomes, with applicationsin small-molecule
binders, transporters and sensors®**~**, It consists of eight antiparal-
lel B-strands with precise hydrogen bonding patterns’, making its
design extremely challenging. Previously, Dou et al. used a set of design
principlesthatinvolve the introduction of glycine kinks, B-bulges and
tryptophan corners to alleviate backbone strain and allow continu-
ous hydrogen bonding connectivity®’. We investigated whether our
approach could be used to successfully design BBFs without explicitly
defining such constraints. We experimentally characterized 25 designs,

c-e, Characterization of designs IGF_10 (c), BBF_16 (d) and TBF_24 (e) showing
superposition of the design (colour) and the target fold (grey), the corresponding
SEC-MALS measurement, circular dichroism spectraat differentincubation
temperatures and the circular dichroism melting curve. f, X-ray structure of
TBF_24 (coloured) superimposed on the design model (grey).

of which six were found to be folded and monomericin solution while
exhibiting high thermal stability (Fig. 2d and Supplementary Fig. 4).
Sequence analysis of the designs showed high glycine residue recov-
ery at glycine kink positions (Extended Data Fig. 4a-c), as observed
by Verkuil et al.>*. This demonstrates that not all empirically derived
features are necessary for successful BBF design, and that a larger
uncharted sequence space can be explored.

Finally, we attempted to design a TBF, a challenging protein topology
that is of paramount importance in biology, as its structure is highly
proficient in supporting enzymatic active sites, making it an ideal
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candidate for the design of enzymes with new catalytic functions®.
The TBF comprises eight parallel-paired -strands, each separated by
ana-helix, resulting in long-range interactions between the B-strands*.
The TBF has been a longstanding challenge in protein design®**, and
itisonly very recently that several studies have successfully designed
this fold®*®*, Previous TBF design strategies imposed symmetry and
parametric restraints at both the structural and sequence levels®*,
Withour pipeline, we could design TBFs without any constraints, allow-
ing greater structural and sequence diversity and even asymmetry,
which could potentially accommodate more complex enzymaticsites
(Supplementary Fig. 5). We experimentally assessed 25 designs, five
of which were monomeric, folded and highly thermostable in solu-
tion (Fig. 2e and Supplementary Fig. 6). To confirm the accuracy of
our design, we solved a crystal structure of TBF_24 at 1.34 A resolu-
tion (Fig. 2f). Our asymmetric design showed noticeable structural
deviations from theinitial symmetric template (Fig. 2f), with an overall
backboner.m.s.d.., (root meansquare deviation computed over the Ca
atoms of the backbone) of 2.06 A (Extended Data Fig. 4d). Comparison
of the X-ray structure with the designed model showed the r.m.s.d.c,
and full-atomr.m.s.d.;, (root mean square deviation computed over all
theatomsinthestructure) were 0.80 Aand 2.12 A, respectively (Fig. 2f).
These structural comparisons demonstrate the remarkable accuracy
of our design approach, further underlined by the almost identical
side-chain placement in both the core and peripheral regions of the
protein (Fig. 2f). Given the encouraging results obtained with our initial
designs, we considered whether our approach would allow us to probe
the sequence space of topologies not presentinthe soluble proteome,
such as those of integral membrane proteins.

Solubilizing the membrane protein fold space

Inadomain analysis performed over the SCOP database, we observed
that both the soluble and membrane proteome each encompassed a
group of unique structural protein topologies, with only anarrow over-
lap between the two (Figs. 1aand 3a). This prompted us to ask whether
it was possible to design soluble analogues of such membrane-only
folds or whether they contained intrinsic structural features that
precluded them from existing in soluble form. Previous studies have
demonstrated that simply substituting exposed hydrophobicresidues
for polar or charged amino acids might not be sufficient to solubilize
these folds, as the interactions between the surface residues have to
be carefully considered'®*°*2, To address this question, we set out to
designsoluble analogues of membrane proteins using the AF2,.,-MPNN
pipeline (Methods). We selected three membrane folds to test the
design strategy: the claudin fold*®, the rhomboid protease fold* and
the GPCR fold? (Fig. 3b).

Initial designs by AF2,, exhibited high sequence novelty compared
with natural proteins (Fig. 3¢) and a low fraction of surface hydro-
phobics (Fig. 3d); however, none could be expressed in soluble form
(Fig.3e). We attempted to optimize the sequences using the standard
ProteinMPNN model, but the resulting sequences consistently recov-
ered the surface hydrophobics, probably owing to the similarity of the
topology to that of membrane proteins encountered during training
(Fig.3d). Biasing the amino acid sampling towards hydrophilicamino
acids (AF2,.,,-MPNNy,,) only marginally improved the solubility of the
designs (Fig. 3d). Therefore, we retrained the ProteinMPNN network
using a dataset of only soluble proteins, which we named soluble
MPNN (MPNN,,) (Fig. 3c-e). AF2,,-MPNN,, was able to produce new
sequences with high confidence scores predicted by AF2 and low frac-
tion of surface hydrophobics (Fig. 3d and Supplementary Fig.1f). Asa
result, we were able to generate high-confidence designs of membrane
protein topologies that do not exist in the soluble proteome.

We started by designing soluble analogues of the claudin fold, aclass
of proteins involved in the formation of tight junctions, which are criti-
calincontrolling the flow of molecules between layers of epithelial and
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endothelial cells*. Claudin folds are composed of an o/ mixed second-
arystructureinwhichthereare four transmembrane a-helicesand an
extracellular B-sheet*’. The composition of the B-sheet determines the
type of tight junction between cells that is being formed, resulting in
highly selective permeability of ions and solutes*. Claudin-targeting
therapies hold great promise as new cancer therapies, and soluble
claudin analogues could represent a new route to screen for claudin
binders®. We tested 13 designs for the claudin-like fold (CLF), of which
ten were found to be expressed in soluble form (Fig. 3e). Five designs
were further biochemically characterized; three were monomers in
solution according to size-exclusion chromatography with multi-angle
light scattering (SEC-MALS) and were folded, with two showing amelt-
ingtemperature (7;,) above 90 °C (Fig. 3fand Supplementary Fig. 7). The
CLF designs showed sequence identity below 13% relative to the native
fold and nearest e-values to natural sequences below 0.063 (Fig. 3cand
Supplementary Fig. 1). AF2-predicted structures, comparison with
the designed models, exhibited r.m.s.d.., values ranging from 2.84
to 4.03 A (Supplementary Fig. 7). The CLF design series showed that
our approach could be used successfully to design soluble analogues
of membrane proteins with simple membrane-spanning topologies
suchas four-helix bundles.

Next, we attempted to design a larger fold and a more intricate
topology, the rhomboid protease fold (RPF). The RPF comprises six
transmembrane a-helices, with many structured loops and long-range
contacts* (Fig.3b).Inaddition, it harbours a serine-histidine catalytic
dyad buried in the cell membrane, allowing it to cleave transmem-
brane protein domains and play an important part in cell signalling,
which makes it a therapeutically interesting target*. We selected
15designs for protein expression, of which 13 were found to be soluble
(Fig.3e) and five were selected for further experimental characteriza-
tion. Three of the five designs showed a single monomeric species in
solution and the expected helical secondary structure as assessed
by circular dichroism (Fig. 3g and Supplementary Fig. 8). All of the
three monomeric species of RPFs exhibited high thermal stability,
with T, above 90 °C (Fig. 3g and Supplementary Fig. 8). Notably, the
AF2structure predictions for the designs were less accurate than those
for the CLF designs, with the r.m.s.d.., values between models and
predictions ranging from 3.34 to 5.57 A (Fig. 3g and Supplementary
Fig. 8). Overall, the high r.m.s.d.., values between design models and
AF2 predictions highlight the inherent difficulty in designing folds
with such structural complexity.

Then, we tested our design approach in one of the most prevalent
membrane folds in nature: the GPCR fold. GPCRs are the largest and
most diverse family of membrane receptors in eukaryotes, play-
ing important parts in signalling pathways?. About 34% of all drugs
approved by the US Food and Drug Administration target GPCRs, and
they remain the most studied drug target*. The core topology of GPCRs
comprises seven transmembrane helices that facilitate numerous
non-local interactions, enabling them to bind to a variety of ligands,
including photoreceptors, odours, pheromones, hormones and neu-
rotransmitters® De novo design of GPCR-like folds (GLFs) offers the
potential to create new small-molecule receptors and protein scaffolds
with functional sites of GPCRs. We tested 56 designs, of which 36 were
expressed tobesoluble,and we selected the ten most highly expressed
designs for further biochemical characterization. Of these ten designs,
nine were monodisperse monomers in solution, and all showed the
characteristic circular dichroism signature of a-helix-rich proteins
(Fig. 3h and Supplementary Fig. 9). All ten designs also showed high
thermal stabilities (7, > 90 °C) (Fig. 3h and Supplementary Fig. 9).

To assess the designaccuracy, we attempted to crystallize the solu-
ble analogues of membrane topologies and obtained high-resolution
X-ray structures for one claudin, one rhomboid protease and two
GPCR designed folds (Fig. 4 and Extended Data Fig. 5a). The CLF_4
structure exhibited exceptional design precision in both backbone
and side chains, as indicated by an r.m.s.d.., of 0.73 A and r.m.s.d.,,
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Fig.3|Experimental characterization of soluble analogues of membrane
proteins. a, Structural similarity for each of the target folds against the SCOP
database. TMscore cut-off of 0.5 is highlighted, denoting significant structural
similarity to the reference fold. The centre line represents the median of the
data (50th percentile), whereas the box (coloured) represents the 25th and 75th
percentiles of the values. The whiskers show the minimum and maximum values
of the distribution. Data points were considered to be outliers (black diamonds)
ifthey fell outside the 1.5 interquartile range. b, Cartoon representation of
three transmembrane topologies chosento be redesigned as soluble folds: the
CLF,RPFand GLF.c, Closest e-value hits of the solubilized CLF, RPF and GLF
againstanon-redundant protein sequence database. Most of the designed

of1.28 A (Fig. 4a). Comparison between CLF 4 and the native claudin
demonstrated accurate secondary structural element positioning,
with an r.m.s.d., of 3.63 A and most of the deviation arising from
the B-sheet region (Fig. 4b and Extended Data Fig. 6a,b). In addition,
the four helices were mostly hydrophilic, as evidenced by the low

sequences differed substantially from natural sequences, as indicated by
e-values higher than the significance threshold of 0.05 (red line). d, Fraction of
hydrophobicresidues found on the surface of the GLF designs using different
sequence-generation methods following AF2,., backbone generation. The
fraction of surface hydrophobics of the native GLF is 0.61 (red line). e, Number
of designsresulting in soluble expression of the designed soluble membrane
proteinanalogues. f-h, Experimental characterization of CLF_4 (f), RPF_9 (g)
and GLF_18 (h). Comparison of the design (colour) and target fold (grey) solution
behaviour by SEC-MALS, circular dichroism spectraat different incubation
temperatures and melting temperature profiles by circular dichroism.

lipophilicity potential on the surface (Fig. 4c). Inthe case of the rhom-
boid protease design RPF_9, we observed high accuracy between the
X-ray structure and the design model, with r.m.s.d.c, of 0.97 A and
r.m.s.d.,,of 1.83 A. However, the structural similarity was significantly
lower compared with the target fold, as indicated by an r.m.s.d.., of
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design model (grey). b, X-ray structure of CLF_4 (coloured) superimposed on
the design model (grey). ¢, Molecular lipophilicity potential of the surface of
the claudin designtarget and the soluble design CLF_4.d, X-ray structure of
RPF_9 (coloured) superimposed on the design model (grey). e, X-ray structure
of RPF_9 (coloured) superimposed on the design model (grey). f, Molecular
lipophilicity potential of the surface of the rhomboid protease design target
and the soluble design RPF_9. g, X-ray structure of GLF_32 (coloured)
superimposed on the design model (grey). h, X-ray structure of GLF_32
(coloured) superimposed on the design model (grey). i, Molecular lipophilicity
potential of the surface of the GPCR design target and the soluble GLF_32
design. After redesign of the original membrane folds with MPNN,,, the
hydrophobicity (yellow) of the surface was significantly reduced, and polarity
wasincreased (blue).

5.67 A (Fig. 4d-e). Specifically, large structural deviations in the first
extracellular loop (Extended Data Fig. 6¢,d) were observed, which
could have been duetoits native positioning in the water-membrane
interface*. The designed RPF_9 fold showed significantly increased
hydrophobicity on the transmembrane surface compared with the
native RPF fold (Fig. 4f). Last, the designed GLFs preserved the canoni-
calseven-helical bundle characteristic of native GPCRs. Structurally,
the crystal structures were in very good agreement with the design
models, with r.m.s.d.., values of 1.05 A and 0.88 A for GLF 18 and
GLF_32,respectively (Fig.4g,hand Extended Data Fig. 5a). Thisaccu-
racy further extended to the side-chain level, for which comparisons of
crystal structures versus design models for GLF_18 and GLF_32 showed
1.54and1.40 Ar.m.s.d.;, values, respectively. Comparing the structures
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of the soluble analogues with that of the reference native GPCR, the
overall backbone r.m.s.d.c, values were 3.08 and 3.51 A for GLF 18 and
GLF_32, respectively (Fig.4g,hand Extended Data Fig. 5b). By analysing
thelipophilicity potential at the surface*® of the designed proteins, we
observedaclear transition from aniinitially hydrophobic surface toa
hydrophilic one (Fig. 4i and Extended Data Fig. 5c). Interestingly, many
of the sequence signatures of the GPCR fold were absent from our
designs, including the evolutionarily conserved DRY motifin the first
intracellular loop*, the (N/D)PxxY motifin the seventh helix** and the
transmembrane proline-rich domains® (Extended Data Fig. 7a—c). This
demonstrates that by design one can explore very diverse sequence
spaces while removing potential evolutionary biases. At the structural
level, we observed that the irregular local structure of the terminal
helix was preserved, whereas the intracellular segment of the GPCR
fold exhibited notable structural deviationin GLF_18 (Extended Data
Fig.7d-g). Ourresults demonstrate thatintegral membrane folds can
be successfully designed in soluble form, hinting that these topologies
share many of the designability principles and constraints of folds
presentinthe soluble proteome.

Functional soluble membrane protein analogues

After validating the structural accuracy of our designs, we explored
the possibility of functionalizing the designed soluble analogues. To
thisend, we devised an approach in which we explicitly fix structural
segments and amino acid identities of the functional motifs during
design, whereas the transmembrane segment is solubilized in their
context (Fig. 5). We applied this strategy to the design of soluble
analogues of human claudin-1and claudin-4 (ref. 52), inwhich varying
levels of the two extracellular segments were preserved (Methods).
To verify structure and function, we tested their binding to Clostrid-
ium perfringens enterotoxin (CpE), acommon foodborne pathogen
to humans known to bind claudin-1 and claudin-4 differentially®2
Binding assays using bio-layer interferometry (BLI) indicated that
soluble claudin-1and claudin-4 exhibit binding kinetics and affinities
for CpE that are comparable with those of their membrane-bound
counterparts® (Fig. 5b-e). The claudin-1 designs exhibited lower
binding affinity for CpE versus claudin-4, owing to the latter being
a high-affinity CpE receptor. Notably, the higher proportion of
native sequence preserved in claudin-1 design CLN1_14 resulted in
areduced melting temperature compared with CLN1_18 (Extended
Data Fig. 8a-d).

Additionally, we observed that CLN4_20 assembled into soluble
high-molecular-weight oligomeric species, according to SEC-MALS
(Fig. 5f,g). The oligomeric assemblies could be disrupted by addi-
tion of the carboxy-terminal claudin-binding domain of CpE (cCpE)
(Fig. 5g~i). Thisis analogous to the disassembly of high-order claudin
oligomers within tight junctions by cCpE in the gut®**>. To confirm
that the soluble analogue engaged the toxin in the same manner as the
natural membrane-bound claudin-4, we reconstituted the complex
together with aFab and nanobody toincreaseits size and determined
its structure using cryo-electron microscopy (cryo-EM) (Fig. 5j,k and
Extended Data Fig. 8e). We observed that both the claudin topology
and the toxin binding mode were comparable with those of the natural
complex®2, These resultsindicate that the designed soluble membrane
protein analogues might accommodate natural sequences and func-
tional motifsin native-like conformations, and that certain mechanistic
aspects could be recapitulated in solution.

Toembed functionin the soluble GPCR analogues, we used two dis-
tinct design approaches. First, we created chimeric proteins from GLFs
and intracellular loop 3 (ICL3) of the ghrelin receptor* (Fig. 6a). The
residues grafted from ICL3 connect TMS5 and TM6 and form hydro-
phobic interactions with the a subunit of G; in the activated ghrelin
receptor®. The GLF-ghrelin chimeras were generated using asequence
transplant of the natural epitope into the corresponding region of
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the GLF scaffold (Fig. 6a). Using a pull-down assay, we prescreened
16 chimeric designs for binding and found that nine designs bound
to the ICL3-targeting antibody®*, whereas GLF scaffolds without the
ICL3 did not show any binding (Supplementary Fig.10). We measured
the binding affinity of five designs using surface plasmon resonance
(SPR) and obtained affinity constant (K,) values between 150 nM and
790 nM (Fig. 6b—-d), whereas knockout mutants and GLF scaffolds
without the epitope did not exhibit binding to the ghrelin receptor
ICL3-specific antibody (Fig. 6¢,d).

An important part of GPCR receptor function is the activation of
intracellular signalling pathways mediated by G protein binding?. To
recapitulate this functional aspect, we designed soluble analogues
of the adenosine A2A receptor in a conformation-specific manner.
This entailed the preservation of the G-protein-binding site, includ-
ing evolutionarily conserved sequences, such as the DRY motif thatis
essential for receptor activation and G protein binding*. This resulted

therespective fits as dashed lines. f, Cartoon depiction of design model of
CLN4_20bound to cCpE toxin (coloured) overlaid with the target fold (grey).
g-i, SEC-MALS analysis of CLN4_20 mixed with 0x (g), 1x (h) or 4x (i) molar
excess of CpE toxin. j, Representative two-dimensional classes of CLN4_20
bound to cCpE toxin, COP2 Fab and ananobody. k, Model of CLN4_20 complex
dockedintoreconstructed cryo-EM density.

indesignsinboth the active®® and inactive® states with identical fixed
G-protein-interacting residues (Fig. 6e and Methods). The active state
is characterized by a shift of transmembrane helix 6 (TM6) in an out-
wards rotational motion, exposing the G-protein-binding site*®. We
characterized three constitutively active (aGLF) and three constitu-
tively inactive (iGLF) soluble GPCR analogues; all were found to be
monomeric and folded in solution (Extended Data Fig. 9a-c). SPR
binding experiments with mini-G,-414 (ref. 59) showed no binding to
theiGLFs (Fig. 6f and Extended Data Fig. 9d), whereas a clear binding
signal was observed for the aGLF designs (Fig. 6g and Extended Data
Fig.10a-d); however, exact affinities could not be determined owing
torapidinteractionkinetics. To validate the specificity of the binding
mode, we mutated the highly conserved DRY motif and observed that
binding to the aGLFs was completely abolished (Fig. 6h and Extended
DataFig.10d). Mutation of residuesin the G-protein-binding site, out-
side the DRY motif, were also found to diminish or impair binding of
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Fig. 6 | Functionalization of soluble analogues of GPCR proteins. a, Design
ofaworkflow for functionalization of soluble scaffolds through grafting of the
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that canbe probed with a Fab** (PDB 6KO5). b, Representative SPR sensorgram
displaying binding kinetics of increasing concentrations of ghrelin targeting
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mini-G,-414 to aGLFs (Extended Data Fig.10d). These results indicate
that specific functional states can be designed with high accuracy
while preserving critical evolutionarily conserved motifs in de novo
designed scaffolds.

In summary, we present here acomputational approach enabling
conformation-specific design and functionalization of soluble mem-
brane protein analogues through motif grafting and constrained design
procedures, which could have arange ofimportantapplicationsin the
computational design of functional proteins and accelerated discovery
of novel therapeutics.

456 | Nature | Vol 631 | 11July 2024

controls.d, Table summarizing experimental affinity constants from data
showninc.N.D.indicates that K values could not be extrapolated confidently.
e, Design of aworkflow for conformation-specific design of the active*® (PDB
5G53) and inactive” (PDB 3VGA) forms of the adenosine A2A receptor to
facilitate or preclude mini-G, protein binding. f-h, SPR sensorgram of the
inactive formiGLF_12 (f), active formaGLF_3 (g) and binding knockout mutant
of aGLF_3 soluble analogue (h).

Conclusions

The robust computational design of complex protein folds remains
a difficult endeavour. Here we present a computational approach
based on deep learning that enables efficient search of non-natural
sequences for a variety of protein topologies through generation of
high-quality protein backbones. The computational framework based
on AF2,.,-MPNN is flexible and generalizable, avoiding the need to
perform fold-specific retraining or provide tedious parametric and
symmetric design restraints for fold conditioning. We designed and


https://doi.org/10.2210/pdb6KO5/pdb
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characterized several folds that have been very challenging to engineer
with previous methods, achieving high experimental success rates in
terms of soluble and folded designs. Structural characterization of the
designs showed that the computational models had very high accuracy,
interms of both overall fold and the fine details of the side-chain con-
formations, whichare critical for the design of function. Inaddition, we
aimed to test the ability of the computational approach to expand the
soluble fold space and enable the design of analogues of protein topolo-
giesonly found in membrane environments. By allowing full sequence
design, we designed three different membrane fold analogues, includ-
ing two with highly elaborate helical topologies (rhomboid protease
and GPCR) and showed that such designs were folded and monomeric
in solution. The experimental structures showed once again that the
design method was very accurate, and that we had recreated solu-
ble analogues for both the rhomboid protease fold and the canonical
seven-helix GPCR fold, whichare not presentin the soluble fold space.
By doing so, we showed that membrane protein folds generally follow
the same design principles as soluble protein folds, and that many such
folds can be readily designed in soluble form.

Moreover, we propose that this could promote the designability of
functional proteins by enabling access to a plethora of folds that are
not present in the soluble fold space. Another exciting perspective is
the creation of soluble analogues of membrane proteins that retain
many of the native features of the original membrane proteins, such
asenzymaticor ligand-binding functions; this could greatly accelerate
the study of the function of these proteins inmore biochemically acces-
sible soluble formats. We demonstrated the potential of our method by
incorporating native structural motifs into designed soluble analogues.
By designing soluble analoguesin the context of the natural functional
site, we preserved even complex structural features of the sites, suchas
the extracellular 3-sheeted domains of claudins. Recent studies have
identified claudins as potential targets for treatment of certain types
of cancer**®?; therefore, the development of several classes of soluble
claudins could accelerate drug screening and serve as a basis for the
design of claudin-based biologics. Specifically in GPCR drug develop-
ment, it would be transformative to create soluble analogues in specific
functional states that could be used for small-molecule or antibody
discovery campaigns. The precision of our design approach enabled
conformational specific design for the active and inactive GPCR states,
differentiated by subtle conformational changes. Consequently, our
designs harboured identical G-protein-bindingsites, yet they uniquely
either constitutively facilitated or precluded G protein bindingin solu-
tion. The computational design of specific conformational states that
can mediate biological function remains an outstanding problem for
which we provide a flexible and broadly applicable methodological
workflow. Such an approach could constitute a basis for computational
design strategies of proteins that can populate multiple conformational
statesin a predictable fashion, which is animportant prerequisite for
embedding complex functionsin computationally designed proteins.
From an applied perspective, the ability to create membrane-soluble
analogues with native functional features could be critical in facili-
tating the development of new drugs and therapies that target these
challenging classes of protein, which are among the most important
drug targets. In summary, we present a deep learning approach for
computational protein design that demonstrates the usefulness of
high-quality structure representations in enabling effective exploration
of new sequence spaces that can yield viable proteins and contribute
to the expansion of the designable fold space, with implications for
our ability to design functional proteins.
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Methods

AF2,,, design protocol

Design target preparation. The design target structures were sourced
from the Protein Data Bank (PDB) and included the following protein
folds: IGF (3SD2), BBF (6DOT)*°, TBF (5BVL)*®, claudin (4P79)%, rhom-
boid protease (3ZEB)** and GPCR (6FFI)®2. Owing to missing residue
positions in the TBF, claudin and GPCR X-ray structures, we used AF2
to predict the protein structure using the X-ray structure as a tem-
plate. Disordered regions in the claudin (residues 34-40) and GPCR
(residues 875-896) targets were replaced by three-glycine and five-
glycinelinkers, respectively. The GPCR sequence was predicted using
the experimental structure as a template but without the endolysin
domain (residues 679-838) used for crystallization.

Loss function. For computation of error gradients, a composite loss
function was used:

loss = Weape Lrape + Waise Laise * Woropt Lpropt + WormLprv-

The loss function is represented as a combination of L, which
denotes the value of the loss, and W, which denotes the weight of
the loss. The frame aligned point error (FAPE) loss quantifies the L2
norm between the predicted C, atoms and the target structure. The
distogram (dist) loss is the cross entropy over the C; distogram for
non-glycine residues and the C, distance in the case of glycine. The
model confidence (pLDDT) loss of the C, positions is computed by
taking 1 - pLDDT, penalizing low confidence. Finally, the pTM score
loss is a prediction confidence metric focused on global structural
similarity. In this work, the designs were generated using loss terms
Weape = 1.0, Wy ppr = 0.2and W,y = 0.2. During initial trajectories, Wy,
was set to 0.5, whereas it was disabled during trajectory reseeding
(softstarts, described below).

Gradient descent. As previously described in ref. 7, amino acid seq-
uences were initialized on the basis of the secondary structure of
thetarget fold. The secondary structure assignments were encoded
in sequences, using alanines for helix, valines for 3-sheet and gly-
cines for loop residues. This introduces a bias towards the correct
local structure, aiding faster convergence of the design trajecto-
ries. To diversify the generated designs, 10% of the amino acids were
randomly mutated in the initial sequence of each design trajectory.
Subsequently, the sequence was passed through the AF2 networks,
which generated five structures. These structures were then used to
calculate the loss with the previously defined loss function. The error
gradient was obtained by backpropagating the errors to the one-
hot-encoded input, resultingin a5 x 20 x N error gradient, where N
represents the sequence length. We then took the average of the five
matrices to obtain the mean error gradient (20 x N), which was used
for gradient descent. A position-specific scoring matrix (PSSM) of
20 x N was updated using the ADAM optimizer®® with the normal-
ized error gradient. Following the update, the PSSM underwent a
softmax function that transforms the matrix into a probability dis-
tribution of the amino acid identity for each position. The argmax
function was subsequently used to determine the most probable
amino acid identities per position; these were then used to construct
the new input sequence for the next iteration. The cysteine residues
inthe PSSM were masked, so the designed sequences do not contain
any cysteines.

Model settings. AF2 was run in single sequence mode using the net-
work configuration of the original AF2 ‘model_5_ptm’ for all five AF2
models with mutiple sequence alignments (MSAs) and templates
disabled. For the design trajectories, we used zero recycles, mean-
ing that each AF2 network was only executed once. For the claudin-1

and claudin-4 designs, we only used models 1and 2 with the network
configuration of the original AF2 ‘model_1_ptm’ with templates ena-
bled. All design runs were executed on a single Nvidia Tesla V100
(32 GB) GPU.

Computational design protocol. Ineach AF2-sequence design trajec-
tory, 500 rounds of gradient descent optimization were performed
(https://github.com/bene837/af2seq). Not all design trajectories of the
claudin, rhomboid protease and GPCR converged. Hence, we sampled
sequences from successful trajectories and introduced mutations,
while disabling distogram loss. These sequences were then used as
starting points for new design trajectories, which we named soft starts,
resultinginahigher convergencerate. All generated sequences were
then predicted using AF2 with three recycles, followed by relaxation
in an AMBER force field®*, This resulted in high-quality structures
that were used as inputs to ProteinMPNN for sequence generation.
Thetotal numbers of designs and designs passinginsilico filtering are
summarized in Supplementary Table 1. For the design of the claudin-1
and claudin-4 functional analogues, we first predicted their struc-
tures using AF2 with MSAs and templates enabled, owing to the lack
of high-resolution experimental structures. The predictions were
then used as structural templates for both design and reprediction,
as the wild-type extracellular region could not be predicted by AF2
in single sequence mode. All sequence and side-chain information
was removed from the template to reduce folding bias. We tried sev-
eral design strategies for the functional claudin design, of which two
were successful: (1) redesigning only the transmembrane surface,
approximately 40% of the sequence; and (2) redesigning the entire
transmembrane region, including the core, approximately 60% of
the sequence. The residue positions that were fixed can be found in
Supplementary Table 2.

For conformation-specific design of GPCRs, we used the template of
theadenosine A2A GPCR in the active conformation bound to mini-G;
(PDB5G53) and the inactive conformation (PDB 3VGA) to design each
stateindividually. We fixed residues interacting with the G protein and
the evolutionarily conserved DRY motif during the design of each state,
resultingin designs withidentical length and identical functional sites.
For the design of the active conformation, we found that it was not
possible to generate high-confidence designs without the presence
of G protein; hence, gradient descent and prediction were performed
inthe presence of the mini-G, binder.

Training of MPNN,,,

The MPNN,,, model was trained on protein assemblies in the PDB (as
of 2 August 2021) determined by X-ray crystallography or cryo-EM to
aresolution of better than 3.5 A and with fewer than 10,000 residues.
We followed training as described in ref. 13, modified only by exclud-
ing annotated transmembrane PDB codes. The list of excluded PDB
codes and MPNN,,, model weights are available at https://github.com/
dauparas/ProteinMPNN/tree/main/soluble_model_weights.

ProteinMPNN sequence redesign

The backbones generated by AF2,., were used as inputs to Protein-
MPNN. For the vanilla ProteinMPNN, we used the provided model
weights trained on a dataset with 0.1 A Gaussian noise®. For the biased
ProteinMPNN (referred toin the main text as MPNNy;,,,), we used amodi-
fied version of the script ‘submit_example_8.sh’ as provided on the
ProteinMPNN github mentioned above. We found the best results by
giving a positive sampling bias to the polar amino acids and anegative
sampling bias to alanine. For MPNN,,,, we generated sequences with
two different models that had different levels of noise during train-
ing (0.1A and 0.2 A). For all ProteinMPNN models, we generated two
sequences per AF2,.,-designed backbone. No Gaussian noise was added
totheinputbackbone, and cysteine residues were masked during the
decoding process.
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Structural similarity calculations

The C,atoms of the structures were aligned using the Superimposer
from the Biopython package®®. The r.m.s.d.., was calculated as the
mean Euclidean distance between predicted and target C, atom coor-
dinates. The r.m.s.d.;, was calculated by first aligning all atoms with
the Superimposer, after which the mean Euclidean distance between
atoms was computed. The template modelling scores were determined
using TM-align®’.

Sequence diversity analysis

Sequence recovery was quantified as the number of positions at which
the corresponding residue matches the residue in the target fold
divided by the total number of residues in the sequence multiplied
by 100%. The core residues were defined as residues with less than
20 A?solvent-accessible surface area (SASA), and surface residues
were defined as residues with less than 20 A2SASA. The e-values were
obtained through aprotein BLAST search of the NCBIRefSeq database
of10ctober 2022 with a maximum hit value of1,000.

Surface hydrophobicity calculations

The fraction of surface hydrophobics was calculated using Rosetta®.
First, all surfaceresidues wereidentified using the layer selector; these
were defined as residues with SASA > 40 A% Of these surface residues,
we counted the number of apolar amino acids (defined as ‘GPAVILM-
FYW’) and divided it by the total number of surface residues.

Design filtering and selection

Allgenerated sequences were predicted with AF2 using threerecycles
and arelaxationstepinan AMBER force field. Next, the sequences were
filtered using the following criteria: (1) TM score > 0.80 for all designs
excepttherhomboid protease (the rhomboid protease yielded slightly
lower TM scores in the design trajectory; hence, we chose a cut-off
value 0.75instead); (2) pLDDT > 80 for all designs except the rhomboid
protease (pLDDT >75); and (3) ane-value threshold > 0.1 for sequence
novelty. Success rates are listed in Supplementary Table 1.

Structural fold similarity search

Thefold similarity search was performed using FoldSeek®® on the SCOP
database (downloaded March 2023). For each of the design target
folds, an exhaustive search on the basis of TM score alignment was per-
formed. The SCOP database contains globular and membrane domain
annotations, which were used for the hit classification.

Fold complexity calculations

Relative contact order was calculated at the secondary structure level
by computing the residue distance in the sequence between second-
ary structures for all pairs within 8 A of each other and then averaging
these distances for all contacts that were more than four residues apart.
To ensure consistency in secondary structure annotations across all
structures, we used DSSP for the determination of secondary structural
elements”. The de novo protein dataset comprised 70 helical proteins,
six B-sheet proteins and 42 proteins containing both a-helices and
B-sheets**®°, The natural protein dataset consisted of 1,000 proteins
randomly selected from the entire collection of proteins in the CATH
dataset (v.4.3)7.

Transplantation of natural epitopes on to soluble scaffolds

Compatible epitopes were identified by means of a Foldseek search of
the PDB, using soluble scaffolds as queries. Hits with TM scores above
0.7 and high structural similarity around the desired epitope were
superimposed using structure visualization software, such as PyMOL or
ChimeraX. Varyinglengths of the epitope were selected for transplanta-
tion, encompassing either only interaction sites, entire loops or over-
lapping parts of the supporting secondary structures. The sequence

of the overlaid epitope was then pasted into the overlapping region
of interest in the soluble scaffold. The resulting chimeric sequences
were predicted using AF2 in single sequence mode. Structures with
high pLDDT (greater than 90) and high TM scoresrelative to the start-
ing scaffold were manually inspected to verify the placement of the
epitope. Finally, a subset of constructs in different soluble scaffolds
were selected for experimental testing.

SPRbinding assay

SPR measurements were carried out on a Biacore 8K system (Cytiva) in
HBS-EP+buffer (10 MM HEPES pH7.4,150 mMNaCl,3 mMEDTA, 0.005%
(v/v) Surfactant P20 Cytiva). The antibody (5 pg ml™) was immobilized
on aCMS sensor chip (Cytiva) by amide couplingin 10 mM NaOAc pH
4.5(250 5,10 pl min™; 700-1500 response units immobilized). Purified
mini-G, was immobilized with a contact time of 200 s (300 response
units immobilized). Binding assays were carried out at a flow rate of
30 pl min™. Designed chimeras were injected as serial dilutions ranging
from18 uMto 0.1 nM, and O nM for 120 s, followed by dissociation for
400 s.Immobilized antibody was regenerated between cyclesin10 mM
glycine-HCIpH2.5(30's,30 pl min™). GPCRs designed in the active or
inactive state were injected at 0, 5,15 and 25 pM for 90 s, followed by
dissociation for120 s. Immobilized mini-G,ligand was not regenerated
between cycles. Binding curves were fitted with a1:1 Langmuir binding
modelinthe Biacore 8K analysis software. Steady-state response units
were plotted against analyte concentration, and asigmoid function was
fitted to the experimental datain Python 3.9 to derive the K.

Bio-layer interferometry

For BLI studies of claudins, synthetic claudin-His and tagless CpE in
20 mM Tris pH 7.4,100 mM NacCl, and 5% glycerol were used. BLI was
performed at 25 °Cin 96-well black flat-bottomed plates (Greiner) using
an acquisition rate of 5 Hz averaged by 20 using an Octet R8 System
(FortéBio/Sartorius), with assays designed and set up using BlitzPro1.3
software. Binding experiments consisted of the following steps: sensor
equilibration (30 s), loading (300 s), baseline (180 s), and association
and dissociation (120-300 s each). Experiments were conducted by
immobilizing 1.5-3.0 uM of synthetic claudin-His on NiNTA (Dip and
Read) sensors and quantifying their binding to 0.05-5.00 uM CpE.
Association and dissociation times for the two claudin-1designs were
performed for 120 s, as they exhibited rapid on and off rates, whereas
for the claudin-4 design, these times were extended to 300 s to capture
theslower offrates. Data were fitted to al:1binding model using Octet
Analysis Studio (Sartorius), which generated the K from the association
and dissociation rate constants. At the protein concentrations used, no
significant non-specific binding of CpE to NiNTA sensors was detected.

Protein crystallization and structure determination

The TBF_24 design was crystallized using sitting drop vapour diffusion
at4°Cin 0.1 M Na,citrate pH 4.0, 1 M LiCl, and 20% PEG 6000 buffer.
The CLF_4 design was crystallized using sitting drop vapour diffusion
at4°Cin 0.1 M Na, citrate pH 5.0, 0.1 M Na/K phosphate pH 5.5, 0.1M
RbCl, and 25% v/v PEG smear medium (BCS Screen, Molecular Dimen-
sions). The RPF_9 design was crystallized using sitting drop vapour
diffusion at4 °Cin 0.1 M HEPES pH 7.8, 0.15 M Na; citrate dihydrate,
and 25% v/v PEG smear low (BCS Screen, Molecular Dimensions). The
GLF_18 design was crystallized using sitting drop vapour diffusion at
4°CinNaphosphate-citrate pH 4.2, 0.2 M LiSO,, and 20% PEG 1000
buffer. The GLF_32 design was crystallized using sitting drop vapour
diffusion at 4 °Cin 0.1 M Na acetate pH 5.5, 0.2 M KBr, and 25% PEG
MME 2000 buffer. Crystals were cryoprotected in 20% glycerol and
flash-cooled in liquid nitrogen. Diffraction data were collected at the
beamline PXI (X06SA) of the Swiss Light Source (Paul Scherrer Insti-
tute, Villigen, Switzerland) and the MASSIF-1beamline of the European
Synchrotron Radiation Facility (Grenoble, France) at a temperature
of 100 K. Data were processed using the autoPROC package”.. Phases



were obtained by molecular replacement using Phaser’. Atomic model
refinement was completed using COOT”® and Phenix.refine’. The qual-
ity of refined models was assessed using MolProbity™. Structural figures
were generated using PyMOL (Schrédinger, LLC; https:/www.pymol.
org/) and ChimeraX”. Data collection and refinement statistics are
listed in Extended Data Table 1.

Cryo-EM structure determination of CLN4-20 in complex with
cCpE

Expression and purification of cCpE, COP-2 Fab and the anti-Fab nano-
bodywere performedas described previously’. Concentrated CLN4 20
was complexed with cCpE followed by COP-2in a1:1.2:1 molar excess.
Next, the anti-Fab nanobody was added at al.3 molar excess of COP-2,
followed by incubation onice for 30 min, concentrated and subjected
to SEC using a Superdex 200 increase 10/300 GL column (GE Health-
care) in20 mM HEPES pH 8.0,150 mM NacCl. The purified complex was
concentrated to 5 mg ml™.

UltraAuFoil 1.2/1.3 grids (Quantifoil) were glow discharged for 30 s
at15 mA and vitrified using a Leica GP2 instrument (Leica microsys-
tems). Then, 3.5 pl of the complex was applied to grids and blotted
for3 sat4 °Cunder100% humidity, before being plunge frozen into
liquid ethane. Grid screening and data collection were performed
on a 200 kV Glacios 2 Cryo-TEM (ThermoFisher Scientific) with a
Falcon 4i direct electron detector at Hauptman-Woodward Medical
Research Institute. A total of 1,159 videos were collected at a physical
pixel size of 0.884 A, with an electron dose of 49.4 e/A* fractioned
over 93 frames.

Videos were processed, patch motion corrected and patch CTF
estimated in cryoSPARC. Blob picking generated a suitable tem-
plate for an initial three-dimensional volume; this was used to pro-
duce two-dimensional projections for template picking, followed
by two-dimensional classification, ab initio reconstruction and
three-dimensional refinement, resultinginacryo-EM density resolved
to aresolution of 4.1 A. Structural coordinates for the complex of
CLN4_20, cCpE and COP-2 Fab from PDB ID 7TDM” were rigid body
docked. The nanobody from PDB 8U4V was docked on to the L chain
of COP-2. Each protein chain was then real-space refined in Coot.
Final model refinement was conducted with Namdinator”’, followed
by real-space refinement using Phenix phenix.real_space_refine”.
Extended Data Table 2 shows data collection and refinement statistics
for the CLN-4_20/cCpE/COP-2/Nb structure.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All data are available in the paper and its Supplementary Informa-
tion. Atomic coordinates and structure factors of the reported X-ray
structures have been deposited in the PDB under accession numbers
80YS (TBF_24),80YV (CLF_4), 80YW (RPF_9), 80YX (GLF_18) and 80YY
(GLF_32). Atomic coordinates and cryo-EM density of the CLN-4_20/
cCpE/COP-2/Nb complex have beendepositedinthe PDB underacces-
sionnumber 9BEl and in the Electron Microscopy Data Bank with entry
number 44479. Source data are provided with this paper.

Code availability

Af2seq code is available at GitHub (https://github.com/bene837/
af2seq). AF2 model weights used for design and predictions can
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alphafold_params_2021-07-14.tar. ProteinMPNN, with soluble trained

weights, is available at GitHub (https://github.com/dauparas/
ProteinMPNN).
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Extended DataFig.1|RMSD, of designed TIM-barrel structures vs the values of Gaussian noise applied to the backbone atoms. d, The e-values of the
targetfold crystal structure (PDBID: 5BVL). a, Backbone RMSD, deviations generated ProteinMPNN sequences with varying degrees of noise compared
of inputstructures used for ProteinMPNN sequence redesign. b, Backbone to AF2,., generated sequences. e, Backbone RMSD, deviations of predicted
RMSD, deviations of the highest ranked AF2 predicted structure derived from  structures of ProteinMPNN and AF2,., generated sequences. f, AF2 confidence
the ProteinMPNN-designed sequences from panel a. ¢, Sequence recovery (pLDDT) scores of predicted structures.

percentage by ProteinMPNN in the core and on the surface with different


https://doi.org/10.2210/pdb5BVL/pdb

a 6.0 . b 05
5.0 0.4-
2
_.4.0- . g
ﬁ N 8 03- o
9)”3.0- o 9
= g * §0.2-
x S
2.0 * . = A
e n ©
1.0 0.1
[e.co)
OO —I— T ) L) 00 T ) T 1
X-ray Backrub MD AF2Seq X-ray Backrub MD AF2seq
MPNN MPNN MPNN MPNN MPNN MPNN MPNN MPNN
c d
30~ 100
N oo °
o %,
S I A < 80
& ) e
—_— 20' ‘. LY @
=< 8 ? 1.: L 607 e
80 154 *. o oe 0
= : .’ & o = 40- : °
® 104 ° W ° o
5 " 204
0 T T T L) 0 T T T L)
X-ray Backrub MD AF2, X-ray Backrub MD AF2
MPNN MPNN MPNN MPNN MPNN MPNN MPNN MPNN
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proteins reported by Verkuil et al. > and Woolfson® (shown in circles) were
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Extended Data Table 1| Crystallographic data collection and refinement statistics (molecular replacement)

TBF 24 CLF 4 RPF 9 GLF 18 GLF 32
(PDB: 80YS)  (PDB: 80YV) (PDB: 8OYW) (PDB: 80YX) (PDB: 80YY)
Data collection
Space group P2i121 2, P1 P21212 P1 P2i1212
Cell dimensions
a, b, c(A) 36.63,44.41, 35.56, 50.77, 39.72, 66.68, 37.73, 52.08, 39.28, 56.78,
125.46 54.93 73.39 58.39 202.97
o, B,y (°) 90.00, 90.00, 107.61,90.50,  90.00, 90.00, 94.08, 104.36, 90.00, 90.00,
90.00 90.06 90.00 110.80 90.00
Resolution (A) 62.73 - 1.34 48.39 - 2.80 34.93 -1.50 3997 -2.11 49,55 -1.85
(1.39-1.34) (2.90 - 2.80) (1.55-1.50) (2.19-2.11) (1.92-1.85)
Rumerge 0.058 (1.422)  0.1069 (1.588) 0.0805 (1.196)  0.050 (0.335)  0.096 (1.526)
1/ ol 15.6 (1.4) 6.34 (1.42) 11.8 (1.5) 9.9 (3.4) 15.4 (1.7)
Completeness (%) 99.9 (100.0) 88.0 (95.1) 99.6 (99.7) 88.5(92.8) 97.7 (99.8)
Redundancy 9.2 (9.5) 2.52.7) 8.1(7.5) 1.7 (1.7) 11.6 (11.6)
Refinement
Resolution (A) 62.73-1.34 48.39 - 2.80 3493-1.5 39.97-2.11 49.55-1.85
No. reflections 46880 (4599) 7983 (858) 31846 (3158) 20185 (2144) 38882 (3924)
Rwork / Rifree 0.1673/0.1885 0.2725/0.3168 0.1967/0.2159  0.2021/0.2500 0.1936/0.2379
No. atoms
Protein 1390 2950 1502 3686 3749
Ligand/ion 2 0 1 10 6
Water 232 1 163 44 203
B-factors
Protein 28.5 97.7 38.6 53.5 41.1
Ligand/ion 46.8 - 55.1 74.7 58.4
Water 39.1 74.0 432 49.2 42.4
R.m.s. deviations
Bond lengths (A) 0.006 0.002 0.008 0.006 0.006
Bond angles (°) 0.840 0.480 0.680 0.880 0.750

Each dataset was collected from a single crystal. Values in parentheses are for highest-resolution shell.



Extended Data Table 2 | Cryo-EM data collection and
refinement statistics

CLN4-20/cCpE /COP-2/Nb
(PDB: 9BEI, EMDB: 44479)

Data collection and processing

Magnification 120,000
Voltage (kV) 200
Electron exposure (e—/A?) 49.4
Defocus range (um) -0.4-2.0
Pixel size (A) 0.884
Symmetry imposed Cl1
Initial particle images (no.) 1,848,208
Final particle images (no.) 21,296
Map resolution (A) 4.16

FSC threshold 0.143
Map resolution range (A) 3.7-62.7
Refinement
Initial model used (PDB code) 7DTM
Model resolution (A) 4.6

FSC threshold 0.5
Model resolution range (A) 39-4.6
Map sharpening B factor (A?) -74.2
Model composition

Non-hydrogen atoms 6652

Protein residues 862

Ligands -
B factors (A?)

Protein 321.9

Ligand -
R.m.s. deviations

Bond lengths (A) 0.003

Bond angles (°) 0.781
Validation

MolProbity score 2.35

Clashscore 21.04

Poor rotamers (%) 0.00
Ramachandran plot

Favored (%) 90.73

Allowed (%) 9.15

Disallowed (%) 0.12
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Data collection  Chromeleon (ThermoFischer Sci, v7.2.10) and Astra (Wyatt Tech., v8.0.2.5) for collecting SEC-MALS data
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Sample size For protein design expression and characterization, 20 designs were tested for IGF, 18 for BBF, 25 for TBF, 57 for GLF, 13 for CLF, 15 for RPF,
16 for GGC, 7 for CLN1, 6 for CLN4, 15 for iGLF, and 15 for aGLF. Designs were chosen according to top scoring in silico prediction metrics.

Data exclusions  Particles were excluded during 2D and 3D classification during cryoEM reconstruction. Removal of suboptimal particles is standard practice in
single-particle cryoEM and is necessary to obtain homogeneous reconstructions.

Replication Solubility expression experiments were performed a single time due to the robustness of expression conditions. SPR binding experiments
were measured a single time with multiple concentrations and a negative control in parallel on a separate channel, to rule out unspecific
binding events.

Randomization  Randomization is not applicable to this study as no live animals or human subjects were involved.

Blinding Analyses in this manuscript were not blinded, as no live animals or human subjects were involved. Blinding is not standard practice for the
presented in vitro experiments. In silico analyses were automated, no user intervention could introduce bias.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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