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Computational design of soluble and 
functional membrane protein analogues

Casper A. Goverde1,7, Martin Pacesa1,7, Nicolas Goldbach1,7, Lars J. Dornfeld1, Petra E. M. Balbi1, 
Sandrine Georgeon1, Stéphane Rosset1, Srajan Kapoor2, Jagrity Choudhury2, Justas Dauparas3,4, 
Christian Schellhaas1, Simon Kozlov5, David Baker3,4,6, Sergey Ovchinnikov5, Alex J. Vecchio2 & 
Bruno E. Correia1 ✉

De novo design of complex protein folds using solely computational means remains a 
substantial challenge1. Here we use a robust deep learning pipeline to design complex 
folds and soluble analogues of integral membrane proteins. Unique membrane 
topologies, such as those from G-protein-coupled receptors2, are not found in  
the soluble proteome, and we demonstrate that their structural features can be 
recapitulated in solution. Biophysical analyses demonstrate the high thermal stability 
of the designs, and experimental structures show remarkable design accuracy. The 
soluble analogues were functionalized with native structural motifs, as a proof of 
concept for bringing membrane protein functions to the soluble proteome, potentially 
enabling new approaches in drug discovery. In summary, we have designed complex 
protein topologies and enriched them with functionalities from membrane proteins, 
with high experimental success rates, leading to a de facto expansion of the functional 
soluble fold space.

Protein design enables the expansion of nature’s molecular machin-
ery, creating synthetic proteins with new functionalities. Traditionally, 
protein design has been dominated by physics-based approaches, 
such as Rosetta3. However, these methods require parametric and 
symmetric restraints to guide the design process and often extensive 
experimental screening and optimization. This proves problematic for 
the design of functional proteins with complex structural topologies. 
Recently, structure prediction pipelines, such as AlphaFold2 (AF2)4, 
have achieved unprecedented accuracy in predicting protein structure 
given the amino acid sequence. With the rise of deep learning-based 
methods, exploring the sequence space has become increasingly feasi-
ble, allowing the discovery of proteins with stable topologies and new 
functions. Deep learning-powered methods have also been influential 
in various tasks that include the generation of new designable back-
bones5–7, oligomeric protein assemblies8,9, proteins with embedded 
functional motifs10, new protein structural descriptors11, the sequence 
design problem12,13 and, more recently, the generation of a diverse 
range of protein topologies using diffusion models9,14,15. In addition, 
structure prediction networks can be inverted and used for protein 
design, resulting in the generation of plausible protein backbones6,7,16.

Nevertheless, designing protein folds with complex structures, 
including non-local topologies and large sizes, remains challenging; 
however, it is essential for creating new protein functions. In addi-
tion to design proficiency, the answers to many questions about the 
fundamental determinants of protein structure and folding remain 
elusive, particularly regarding the generalizability of deep learning 
methods beyond natural protein structures and sequences. To probe 
some of these questions, we analysed the protein fold space in the 

Structural Classification of Proteins (SCOP) database17 and observed 
a segregation at the structural level between proteins in the soluble 
proteome and those in the cell membrane environment (Fig. 1a). We 
observed that 1,075 membrane proteins exhibited unique topologies 
that were not found in soluble form, with only 189 folds being present 
in both soluble and membrane environments. This raises the question 
of whether integral membrane protein topologies have some funda-
mental structural features that preclude them from existing in the 
soluble fold space. Consequently, we investigated whether membrane 
folds could be designed as soluble analogues, thus achieving a de facto 
fold expansion of the soluble proteome and creating opportunities for 
designing new functions using these previously inaccessible protein 
folds. Although there has been previous work on the solubilization of 
near-native membrane proteins using physics-based and empirical 
methods18–21, no generalizable approach for the computational design 
of soluble membrane topologies with preserved functional aspects 
has been devised.

To this end, we developed a computational pipeline for robust 
de novo protein design, based on inversion of the AF2 network7 cou-
pled with sequence design using ProteinMPNN13 (Fig. 1b). Our approach 
allowed us to computationally design highly stable folds that were 
previously very challenging (Ig-like fold (IGF), β-barrel (BBF) and 
TIM-barrel (TBF)), as well as soluble analogues of integral membrane 
protein folds (claudin, rhomboid protease, G-protein-coupled recep-
tor (GPCR)) without the need for parametric design restraints or sub-
sequent experimental optimization. Finally, we demonstrated that 
the soluble analogues could be designed in a conformation-specific 
manner while preserving native functional motifs with structurally 
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elaborate features and of biological and therapeutic relevance, such 
as G-protein-binding interfaces and toxin–receptor interaction sites. 
Our findings showcase the remarkable success and accuracy of deep 
learning-based methods in protein design, paving the way for explora-
tion of new protein topologies and sequences for improved functional 
design strategies.

Structure–sequence generation using deep learning
AF2-based design approaches have been shown to generate plausible 
protein backbones7,22,23; however, their performance in sequence 
design has been suboptimal, as evidenced by low experimental suc-
cess rates7,8,13. Wicky and coworkers8 have demonstrated the effi-
ciency of using ProteinMPNN on AF2-generated structures to enhance 
their expression and solubility, but it remained unclear whether 
this approach could be successfully used to explore the sequence 
space of complex protein folds with intricate topological features, 
including those only found in membrane environments (Fig. 1a).  
To address this challenge, we integrated our previously developed 

AF2-based design approach (AF2seq)7 with the ProteinMPNN frame-
work (Fig. 1b).

In this pipeline, we use AF2seq to generate sequences that adopt a 
desired target fold. AF2seq optimizes a sequence on the basis of a loss 
function that comprises both topological and structural confidence 
loss components (Methods) until a sequence is found that folds to the 
desired topology. We then apply ProteinMPNN sequence optimization 
to the AF2seq-generated starting topologies. Finally, the structures of all 
resulting sequences are repredicted with AF2 and filtered on the basis 
of their structural similarity to the target topology (template model-
ling (TM) score > 0.8), confidence scores (predicted value of the local 
distance difference test (pLDDT) > 80) and sequence novelty relative 
to naturally occurring sequences (e-value > 0.1).

In silico assessment showed that despite the restricted structural 
diversity (Extended Data Fig. 1a,b), AF2seq-designed backbones enabled 
ProteinMPNN to generate much greater protein sequence diversity for 
a desired fold than that of classical backbone sampling methods such 
as Rosetta Backrub24 or molecular dynamics simulations (Fig. 1c and 
Extended Data Fig. 1a,b). To investigate the source of the diversity, we 
examined sequence conservation at the core and surface of the designs 
following ProteinMPNN optimization, which was originally reported 
to consistently recover approximately 50% of the starting sequence13. 
Sequence optimization using ProteinMPNN alone resulted in high 
sequence recoveries in the core of the designs, relative to the starting 
sequence (Fig. 1d). AF2seq-generated designs exhibited low sequence 
recoveries in both the core and the surface compared with the sequence 
of the target protein. This indicates that the novelty and designability of 
our backbones primarily stem from the new backbone templates gener-
ated by AF2seq. Increasing levels of Gaussian noise applied to the back-
bone before ProteinMPNN sequence design could also reduce sequence 
recovery (Extended Data Fig. 1c); however, this was at the expense of 
low-confidence predictions that deviated significantly from the target 
fold (Extended Data Fig. 1d–f). In addition, we found that for some more 
complex design tasks, the target structure could not be predicted in 
single sequence mode by AF2 after ProteinMPNN redesign. However, 
when using a combination of AF2seq and ProteinMPNN (AF2seq-MPNN), 
we found the input sequence to result in accurate structural predictions 
of the target folds (Extended Data Fig. 2a–d). Therefore, we sought 
to test whether our design strategy would be successful in designing 
protein folds that have thus far been challenging to other approaches.

Design of topologically complex folds
To identify challenging design targets for our pipeline, we quantified 
the topological complexity of protein folds using metrics of protein 
length and sequence contact order (Extended Data Fig. 3a,b and Meth-
ods). On the basis of this assessment, and given how challenging some 
folds have been for computational design, we selected three folds 
to test our approach: the IGF, BBF and TBF (Fig. 2a). The IGF is one of 
the most prevalent folds in nature and is an essential building block 
of immunological effectors and therapeutics such as antibodies and 
receptors25. The IGF consists of two stacked β-sheets, presenting a 
substantial design challenge. This is because of its non-local inter-
actions and susceptibility to aggregation through edge β-strands26, 
previously requiring strict parametric and symmetry restraints dur-
ing design27,28. Using our AF2seq-MPNN protocol (Fig. 1b), we designed 
IGFs that were significantly distant from natural protein sequences 
(Fig. 2b). We selected 19 designs for experimental characterization 
on the basis of AF2 confidence scores and sequence diversity (Supple-
mentary Figs. 1 and 2). Seven designs were soluble, with four designs 
exhibiting monodisperse peaks in solution (Supplementary Fig. 3). 
Exemplified by IGF_10 (Fig. 2c), the designed IGFs exhibited a typical 
β-sheet-rich secondary structure profile according to circular dichro-
ism spectroscopy, together with unusually high thermostability29 
(Fig. 2c and Supplementary Fig. 3).

b

c d

Final designs

a

TIM-barrel SCOP database

Soluble domains

Membrane domains

GPCR

β-barrel

Selection features

AF2 ProteinMPNN

Predict structure Pool of designs

Gradient descent

r.m.s.d.

Loss
function

Error gradient

Update
PSSM

Message passing
neural network

Sequence

Lo
ss

Sequence

Iterative
decodingStructure

Structural
con�dence

Sequence
diversity

Ig-like

Update
sequence

Ca
N

C
n

n + 1
n + 2

n – 1

Select

Con�dence

Sequence
diversity

r.m.s.d. 

103

e-
va

lu
e

10–4

X-ray
MPNN

Backrub
MPNN

MD
MPNN

AF2seq
MPNN

10–11

10–18

10–25

10–32

10–39

10–46

10–53

10–60

31.502 1075

AF2seq X-ray
MPNN

Backrub
MPNN

MD
MPNN

AF2seq
MPNN

AF2seq

100

S
eq

ue
nc

e 
re

co
ve

ry

80

60

40

20

0

Core
Surface

189

Fig. 1 | Overview of the fold space across different environments and 
computational design approach. a, Overview of the occurrence of soluble 
and membrane folds in the SCOP structural database, with depictions of 
selected representatives. b, Schematic representation of the integrated design 
pipeline for backbone and sequence generation. Given a target structure, an 
initial sequence is generated using AF2 through loss function optimization. 
The resulting structure is then passed to ProteinMPNN to sample new amino 
acid sequences for a given fold. ProteinMPNN designs are filtered on the basis 
of structural similarity to the target, confidence and sequence diversity.  
c, Novelty of generated sequences resulting from different backbone sampling 
methods, evaluated by e-values relative to the non-redundant protein sequence 
database. d, Sequence recovery of core and surface residues of TBF ProteinMPNN 
designs generated on the basis of the reference crystal X-ray structure (Protein 
Data Bank (PDB) 5BVL), Rosetta-perturbed backbones (backrub protocol), 
molecular dynamics simulation trajectories or AF2seq-generated structures.
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Next, we attempted to design a de novo BBF, a fold present both in the 
soluble and membrane proteomes, with applications in small-molecule 
binders, transporters and sensors30–33. It consists of eight antiparal-
lel β-strands with precise hydrogen bonding patterns30, making its 
design extremely challenging. Previously, Dou et al. used a set of design 
principles that involve the introduction of glycine kinks, β-bulges and 
tryptophan corners to alleviate backbone strain and allow continu-
ous hydrogen bonding connectivity30. We investigated whether our 
approach could be used to successfully design BBFs without explicitly 
defining such constraints. We experimentally characterized 25 designs, 

of which six were found to be folded and monomeric in solution while 
exhibiting high thermal stability (Fig. 2d and Supplementary Fig. 4). 
Sequence analysis of the designs showed high glycine residue recov-
ery at glycine kink positions (Extended Data Fig. 4a–c), as observed 
by Verkuil et al.34. This demonstrates that not all empirically derived 
features are necessary for successful BBF design, and that a larger 
uncharted sequence space can be explored.

Finally, we attempted to design a TBF, a challenging protein topology 
that is of paramount importance in biology, as its structure is highly 
proficient in supporting enzymatic active sites, making it an ideal 
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Fig. 2 | Experimental characterization of designed complex protein 
topologies. a, Cartoon depiction of three protein topologies that have been 
challenging for computational design: IGF, BBF and TBF. b, Closest e-value  
hits for the AF2seq and AF2seq-MPNN designs when searching a non-redundant 
protein sequence database. The significance threshold of 0.05 is  
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c–e, Characterization of designs IGF_10 (c), BBF_16 (d) and TBF_24 (e) showing 
superposition of the design (colour) and the target fold (grey), the corresponding 
SEC–MALS measurement, circular dichroism spectra at different incubation 
temperatures and the circular dichroism melting curve. f, X-ray structure of 
TBF_24 (coloured) superimposed on the design model (grey).
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candidate for the design of enzymes with new catalytic functions35. 
The TBF comprises eight parallel-paired β-strands, each separated by 
an α-helix, resulting in long-range interactions between the β-strands36. 
The TBF has been a longstanding challenge in protein design36,37, and 
it is only very recently that several studies have successfully designed 
this fold9,38,39. Previous TBF design strategies imposed symmetry and 
parametric restraints at both the structural and sequence levels38,39. 
With our pipeline, we could design TBFs without any constraints, allow-
ing greater structural and sequence diversity and even asymmetry, 
which could potentially accommodate more complex enzymatic sites 
(Supplementary Fig. 5). We experimentally assessed 25 designs, five 
of which were monomeric, folded and highly thermostable in solu-
tion (Fig. 2e and Supplementary Fig. 6). To confirm the accuracy of 
our design, we solved a crystal structure of TBF_24 at 1.34 Å resolu-
tion (Fig. 2f). Our asymmetric design showed noticeable structural 
deviations from the initial symmetric template (Fig. 2f), with an overall 
backbone r.m.s.d.Cα (root mean square deviation computed over the Cα 
atoms of the backbone) of 2.06 Å (Extended Data Fig. 4d). Comparison 
of the X-ray structure with the designed model showed the r.m.s.d.Cα 
and full-atom r.m.s.d.fa (root mean square deviation computed over all 
the atoms in the structure) were 0.80 Å and 2.12 Å, respectively (Fig. 2f). 
These structural comparisons demonstrate the remarkable accuracy 
of our design approach, further underlined by the almost identical 
side-chain placement in both the core and peripheral regions of the 
protein (Fig. 2f). Given the encouraging results obtained with our initial 
designs, we considered whether our approach would allow us to probe 
the sequence space of topologies not present in the soluble proteome, 
such as those of integral membrane proteins.

Solubilizing the membrane protein fold space
In a domain analysis performed over the SCOP database, we observed 
that both the soluble and membrane proteome each encompassed a 
group of unique structural protein topologies, with only a narrow over-
lap between the two (Figs. 1a and 3a). This prompted us to ask whether 
it was possible to design soluble analogues of such membrane-only 
folds or whether they contained intrinsic structural features that 
precluded them from existing in soluble form. Previous studies have 
demonstrated that simply substituting exposed hydrophobic residues 
for polar or charged amino acids might not be sufficient to solubilize 
these folds, as the interactions between the surface residues have to 
be carefully considered18,40–42. To address this question, we set out to 
design soluble analogues of membrane proteins using the AF2seq-MPNN 
pipeline (Methods). We selected three membrane folds to test the 
design strategy: the claudin fold43, the rhomboid protease fold44 and 
the GPCR fold2 (Fig. 3b).

Initial designs by AF2seq exhibited high sequence novelty compared 
with natural proteins (Fig. 3c) and a low fraction of surface hydro-
phobics (Fig. 3d); however, none could be expressed in soluble form 
(Fig. 3e). We attempted to optimize the sequences using the standard 
ProteinMPNN model, but the resulting sequences consistently recov-
ered the surface hydrophobics, probably owing to the similarity of the 
topology to that of membrane proteins encountered during training 
(Fig. 3d). Biasing the amino acid sampling towards hydrophilic amino 
acids (AF2seq-MPNNbias) only marginally improved the solubility of the 
designs (Fig. 3d). Therefore, we retrained the ProteinMPNN network 
using a dataset of only soluble proteins, which we named soluble 
MPNN (MPNNsol) (Fig. 3c–e). AF2seq-MPNNsol was able to produce new 
sequences with high confidence scores predicted by AF2 and low frac-
tion of surface hydrophobics (Fig. 3d and Supplementary Fig. 1f). As a 
result, we were able to generate high-confidence designs of membrane 
protein topologies that do not exist in the soluble proteome.

We started by designing soluble analogues of the claudin fold, a class 
of proteins involved in the formation of tight junctions, which are criti-
cal in controlling the flow of molecules between layers of epithelial and 

endothelial cells43. Claudin folds are composed of an α/β mixed second-
ary structure in which there are four transmembrane α-helices and an 
extracellular β-sheet43. The composition of the β-sheet determines the 
type of tight junction between cells that is being formed, resulting in 
highly selective permeability of ions and solutes43. Claudin-targeting 
therapies hold great promise as new cancer therapies, and soluble 
claudin analogues could represent a new route to screen for claudin 
binders45. We tested 13 designs for the claudin-like fold (CLF), of which 
ten were found to be expressed in soluble form (Fig. 3e). Five designs 
were further biochemically characterized; three were monomers in 
solution according to size-exclusion chromatography with multi-angle 
light scattering (SEC–MALS) and were folded, with two showing a melt-
ing temperature (Tm) above 90 °C (Fig. 3f and Supplementary Fig. 7). The 
CLF designs showed sequence identity below 13% relative to the native 
fold and nearest e-values to natural sequences below 0.063 (Fig. 3c and 
Supplementary Fig. 1). AF2-predicted structures, comparison with 
the designed models, exhibited r.m.s.d.Cα values ranging from 2.84 
to 4.03 Å (Supplementary Fig. 7). The CLF design series showed that 
our approach could be used successfully to design soluble analogues 
of membrane proteins with simple membrane-spanning topologies 
such as four-helix bundles.

Next, we attempted to design a larger fold and a more intricate 
topology, the rhomboid protease fold (RPF). The RPF comprises six 
transmembrane α-helices, with many structured loops and long-range 
contacts46 (Fig. 3b). In addition, it harbours a serine–histidine catalytic 
dyad buried in the cell membrane, allowing it to cleave transmem-
brane protein domains and play an important part in cell signalling, 
which makes it a therapeutically interesting target46. We selected  
15 designs for protein expression, of which 13 were found to be soluble 
(Fig. 3e) and five were selected for further experimental characteriza-
tion. Three of the five designs showed a single monomeric species in 
solution and the expected helical secondary structure as assessed 
by circular dichroism (Fig. 3g and Supplementary Fig. 8). All of the 
three monomeric species of RPFs exhibited high thermal stability, 
with Tm above 90 °C (Fig. 3g and Supplementary Fig. 8). Notably, the 
AF2 structure predictions for the designs were less accurate than those 
for the CLF designs, with the r.m.s.d.Cα values between models and 
predictions ranging from 3.34 to 5.57 Å (Fig. 3g and Supplementary 
Fig. 8). Overall, the high r.m.s.d.Cα values between design models and 
AF2 predictions highlight the inherent difficulty in designing folds 
with such structural complexity.

Then, we tested our design approach in one of the most prevalent 
membrane folds in nature: the GPCR fold. GPCRs are the largest and 
most diverse family of membrane receptors in eukaryotes, play-
ing important parts in signalling pathways2. About 34% of all drugs 
approved by the US Food and Drug Administration target GPCRs, and 
they remain the most studied drug target47. The core topology of GPCRs 
comprises seven transmembrane helices that facilitate numerous 
non-local interactions, enabling them to bind to a variety of ligands, 
including photoreceptors, odours, pheromones, hormones and neu-
rotransmitters2. De novo design of GPCR-like folds (GLFs) offers the 
potential to create new small-molecule receptors and protein scaffolds 
with functional sites of GPCRs. We tested 56 designs, of which 36 were 
expressed to be soluble, and we selected the ten most highly expressed 
designs for further biochemical characterization. Of these ten designs, 
nine were monodisperse monomers in solution, and all showed the 
characteristic circular dichroism signature of α-helix-rich proteins 
(Fig. 3h and Supplementary Fig. 9). All ten designs also showed high 
thermal stabilities (Tm > 90 °C) (Fig. 3h and Supplementary Fig. 9).

To assess the design accuracy, we attempted to crystallize the solu-
ble analogues of membrane topologies and obtained high-resolution 
X-ray structures for one claudin, one rhomboid protease and two 
GPCR designed folds (Fig. 4 and Extended Data Fig. 5a). The CLF_4 
structure exhibited exceptional design precision in both backbone 
and side chains, as indicated by an r.m.s.d.Cα of 0.73 Å and r.m.s.d.fa 
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of 1.28 Å (Fig. 4a). Comparison between CLF_4 and the native claudin 
demonstrated accurate secondary structural element positioning, 
with an r.m.s.d.Cα of 3.63 Å and most of the deviation arising from 
the β-sheet region (Fig. 4b and Extended Data Fig. 6a,b). In addition, 
the four helices were mostly hydrophilic, as evidenced by the low 

lipophilicity potential on the surface (Fig. 4c). In the case of the rhom-
boid protease design RPF_9, we observed high accuracy between the 
X-ray structure and the design model, with r.m.s.d.Cα of 0.97 Å and 
r.m.s.d.fa of 1.83 Å. However, the structural similarity was significantly 
lower compared with the target fold, as indicated by an r.m.s.d.Cα of 
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5.67 Å (Fig. 4d–e). Specifically, large structural deviations in the first 
extracellular loop (Extended Data Fig. 6c,d) were observed, which 
could have been due to its native positioning in the water–membrane 
interface46. The designed RPF_9 fold showed significantly increased 
hydrophobicity on the transmembrane surface compared with the 
native RPF fold (Fig. 4f). Last, the designed GLFs preserved the canoni-
cal seven-helical bundle characteristic of native GPCRs. Structurally, 
the crystal structures were in very good agreement with the design 
models, with r.m.s.d.Cα values of 1.05 Å and 0.88 Å for GLF_18 and 
GLF_32, respectively (Fig. 4g,h and Extended Data Fig. 5a). This accu-
racy further extended to the side-chain level, for which comparisons of 
crystal structures versus design models for GLF_18 and GLF_32 showed 
1.54 and 1.40 Å r.m.s.d.fa values, respectively. Comparing the structures 

of the soluble analogues with that of the reference native GPCR, the 
overall backbone r.m.s.d.Cα values were 3.08 and 3.51 Å for GLF_18 and 
GLF_32, respectively (Fig. 4g,h and Extended Data Fig. 5b). By analysing 
the lipophilicity potential at the surface48 of the designed proteins, we 
observed a clear transition from an initially hydrophobic surface to a 
hydrophilic one (Fig. 4i and Extended Data Fig. 5c). Interestingly, many 
of the sequence signatures of the GPCR fold were absent from our 
designs, including the evolutionarily conserved DRY motif in the first 
intracellular loop49, the (N/D)PxxY motif in the seventh helix50 and the 
transmembrane proline-rich domains51 (Extended Data Fig. 7a–c). This 
demonstrates that by design one can explore very diverse sequence 
spaces while removing potential evolutionary biases. At the structural 
level, we observed that the irregular local structure of the terminal 
helix was preserved, whereas the intracellular segment of the GPCR 
fold exhibited notable structural deviation in GLF_18 (Extended Data 
Fig. 7d–g). Our results demonstrate that integral membrane folds can 
be successfully designed in soluble form, hinting that these topologies 
share many of the designability principles and constraints of folds 
present in the soluble proteome.

Functional soluble membrane protein analogues
After validating the structural accuracy of our designs, we explored 
the possibility of functionalizing the designed soluble analogues. To 
this end, we devised an approach in which we explicitly fix structural 
segments and amino acid identities of the functional motifs during 
design, whereas the transmembrane segment is solubilized in their 
context (Fig. 5). We applied this strategy to the design of soluble 
analogues of human claudin-1 and claudin-4 (ref. 52), in which varying 
levels of the two extracellular segments were preserved (Methods).  
To verify structure and function, we tested their binding to Clostrid-
ium perfringens enterotoxin (CpE), a common foodborne pathogen 
to humans known to bind claudin-1 and claudin-4 differentially52. 
Binding assays using bio-layer interferometry (BLI) indicated that 
soluble claudin-1 and claudin-4 exhibit binding kinetics and affinities 
for CpE that are comparable with those of their membrane-bound 
counterparts52 (Fig. 5b–e). The claudin-1 designs exhibited lower 
binding affinity for CpE versus claudin-4, owing to the latter being 
a high-affinity CpE receptor. Notably, the higher proportion of 
native sequence preserved in claudin-1 design CLN1_14 resulted in 
a reduced melting temperature compared with CLN1_18 (Extended 
Data Fig. 8a–d).

Additionally, we observed that CLN4_20 assembled into soluble 
high-molecular-weight oligomeric species, according to SEC–MALS 
(Fig. 5f,g). The oligomeric assemblies could be disrupted by addi-
tion of the carboxy-terminal claudin-binding domain of CpE (cCpE) 
(Fig. 5g–i). This is analogous to the disassembly of high-order claudin 
oligomers within tight junctions by cCpE in the gut52,53. To confirm 
that the soluble analogue engaged the toxin in the same manner as the 
natural membrane-bound claudin-4, we reconstituted the complex 
together with a Fab and nanobody to increase its size and determined 
its structure using cryo-electron microscopy (cryo-EM) (Fig. 5j,k and 
Extended Data Fig. 8e). We observed that both the claudin topology 
and the toxin binding mode were comparable with those of the natural 
complex52. These results indicate that the designed soluble membrane 
protein analogues might accommodate natural sequences and func-
tional motifs in native-like conformations, and that certain mechanistic 
aspects could be recapitulated in solution.

To embed function in the soluble GPCR analogues, we used two dis-
tinct design approaches. First, we created chimeric proteins from GLFs 
and intracellular loop 3 (ICL3) of the ghrelin receptor54 (Fig. 6a). The 
residues grafted from ICL3 connect TM5 and TM6 and form hydro-
phobic interactions with the α subunit of Gi in the activated ghrelin 
receptor55. The GLF–ghrelin chimeras were generated using a sequence 
transplant of the natural epitope into the corresponding region of 
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the GLF scaffold (Fig. 6a). Using a pull-down assay, we prescreened  
16 chimeric designs for binding and found that nine designs bound  
to the ICL3-targeting antibody54, whereas GLF scaffolds without the 
ICL3 did not show any binding (Supplementary Fig. 10). We measured 
the binding affinity of five designs using surface plasmon resonance 
(SPR) and obtained affinity constant (Kd) values between 150 nM and 
790 nM (Fig. 6b–d), whereas knockout mutants and GLF scaffolds 
without the epitope did not exhibit binding to the ghrelin receptor 
ICL3-specific antibody (Fig. 6c,d).

An important part of GPCR receptor function is the activation of 
intracellular signalling pathways mediated by G protein binding2. To 
recapitulate this functional aspect, we designed soluble analogues 
of the adenosine A2A receptor in a conformation-specific manner. 
This entailed the preservation of the G-protein-binding site, includ-
ing evolutionarily conserved sequences, such as the DRY motif that is 
essential for receptor activation and G protein binding49. This resulted 

in designs in both the active56 and inactive57 states with identical fixed 
G-protein-interacting residues (Fig. 6e and Methods). The active state 
is characterized by a shift of transmembrane helix 6 (TM6) in an out-
wards rotational motion, exposing the G-protein-binding site58. We 
characterized three constitutively active (aGLF) and three constitu-
tively inactive (iGLF) soluble GPCR analogues; all were found to be 
monomeric and folded in solution (Extended Data Fig. 9a–c). SPR 
binding experiments with mini-Gs-414 (ref. 59) showed no binding to 
the iGLFs (Fig. 6f and Extended Data Fig. 9d), whereas a clear binding 
signal was observed for the aGLF designs (Fig. 6g and Extended Data 
Fig. 10a–d); however, exact affinities could not be determined owing 
to rapid interaction kinetics. To validate the specificity of the binding 
mode, we mutated the highly conserved DRY motif and observed that 
binding to the aGLFs was completely abolished (Fig. 6h and Extended 
Data Fig. 10d). Mutation of residues in the G-protein-binding site, out-
side the DRY motif, were also found to diminish or impair binding of 
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mini-Gs-414 to aGLFs (Extended Data Fig. 10d). These results indicate 
that specific functional states can be designed with high accuracy 
while preserving critical evolutionarily conserved motifs in de novo 
designed scaffolds.

In summary, we present here a computational approach enabling 
conformation-specific design and functionalization of soluble mem-
brane protein analogues through motif grafting and constrained design 
procedures, which could have a range of important applications in the 
computational design of functional proteins and accelerated discovery 
of novel therapeutics.

Conclusions
The robust computational design of complex protein folds remains 
a difficult endeavour. Here we present a computational approach 
based on deep learning that enables efficient search of non-natural 
sequences for a variety of protein topologies through generation of 
high-quality protein backbones. The computational framework based 
on AF2seq-MPNN is flexible and generalizable, avoiding the need to 
perform fold-specific retraining or provide tedious parametric and 
symmetric design restraints for fold conditioning. We designed and 
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characterized several folds that have been very challenging to engineer 
with previous methods, achieving high experimental success rates in 
terms of soluble and folded designs. Structural characterization of the 
designs showed that the computational models had very high accuracy, 
in terms of both overall fold and the fine details of the side-chain con-
formations, which are critical for the design of function. In addition, we 
aimed to test the ability of the computational approach to expand the 
soluble fold space and enable the design of analogues of protein topolo-
gies only found in membrane environments. By allowing full sequence 
design, we designed three different membrane fold analogues, includ-
ing two with highly elaborate helical topologies (rhomboid protease 
and GPCR) and showed that such designs were folded and monomeric 
in solution. The experimental structures showed once again that the 
design method was very accurate, and that we had recreated solu-
ble analogues for both the rhomboid protease fold and the canonical 
seven-helix GPCR fold, which are not present in the soluble fold space. 
By doing so, we showed that membrane protein folds generally follow 
the same design principles as soluble protein folds, and that many such 
folds can be readily designed in soluble form.

Moreover, we propose that this could promote the designability of 
functional proteins by enabling access to a plethora of folds that are 
not present in the soluble fold space. Another exciting perspective is 
the creation of soluble analogues of membrane proteins that retain 
many of the native features of the original membrane proteins, such 
as enzymatic or ligand-binding functions; this could greatly accelerate 
the study of the function of these proteins in more biochemically acces-
sible soluble formats. We demonstrated the potential of our method by 
incorporating native structural motifs into designed soluble analogues. 
By designing soluble analogues in the context of the natural functional 
site, we preserved even complex structural features of the sites, such as 
the extracellular β-sheeted domains of claudins. Recent studies have 
identified claudins as potential targets for treatment of certain types 
of cancer45,60; therefore, the development of several classes of soluble 
claudins could accelerate drug screening and serve as a basis for the 
design of claudin-based biologics. Specifically in GPCR drug develop-
ment, it would be transformative to create soluble analogues in specific 
functional states that could be used for small-molecule or antibody 
discovery campaigns. The precision of our design approach enabled 
conformational specific design for the active and inactive GPCR states, 
differentiated by subtle conformational changes. Consequently, our 
designs harboured identical G-protein-binding sites, yet they uniquely 
either constitutively facilitated or precluded G protein binding in solu-
tion. The computational design of specific conformational states that 
can mediate biological function remains an outstanding problem for 
which we provide a flexible and broadly applicable methodological 
workflow. Such an approach could constitute a basis for computational 
design strategies of proteins that can populate multiple conformational 
states in a predictable fashion, which is an important prerequisite for 
embedding complex functions in computationally designed proteins. 
From an applied perspective, the ability to create membrane-soluble 
analogues with native functional features could be critical in facili-
tating the development of new drugs and therapies that target these 
challenging classes of protein, which are among the most important 
drug targets. In summary, we present a deep learning approach for 
computational protein design that demonstrates the usefulness of 
high-quality structure representations in enabling effective exploration 
of new sequence spaces that can yield viable proteins and contribute 
to the expansion of the designable fold space, with implications for 
our ability to design functional proteins.
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Methods

AF2seq design protocol
Design target preparation. The design target structures were sourced 
from the Protein Data Bank (PDB) and included the following protein 
folds: IGF (3SD2), BBF (6D0T)30, TBF (5BVL)38, claudin (4P79)61, rhom-
boid protease (3ZEB)44 and GPCR (6FFI)62. Owing to missing residue 
positions in the TBF, claudin and GPCR X-ray structures, we used AF2 
to predict the protein structure using the X-ray structure as a tem-
plate. Disordered regions in the claudin (residues 34–40) and GPCR  
(residues 875–896) targets were replaced by three-glycine and five- 
glycine linkers, respectively. The GPCR sequence was predicted using 
the experimental structure as a template but without the endolysin 
domain (residues 679–838) used for crystallization.

Loss function. For computation of error gradients, a composite loss 
function was used:

W L W L W L W Lloss = + + + .FAPE FAPE dist dist pLDDT pLDDT pTM pTM

The loss function is represented as a combination of L, which 
denotes the value of the loss, and W, which denotes the weight of 
the loss. The frame aligned point error (FAPE) loss quantifies the L2 
norm between the predicted Cα atoms and the target structure. The 
distogram (dist) loss is the cross entropy over the Cβ distogram for 
non-glycine residues and the Cα distance in the case of glycine. The 
model confidence (pLDDT) loss of the Cα positions is computed by 
taking 1 − pLDDT, penalizing low confidence. Finally, the pTM score 
loss is a prediction confidence metric focused on global structural 
similarity. In this work, the designs were generated using loss terms 
WFAPE = 1.0, WpLDDT = 0.2 and WpTM = 0.2. During initial trajectories, Wdist 
was set to 0.5, whereas it was disabled during trajectory reseeding 
(soft starts, described below).

Gradient descent. As previously described in ref. 7, amino acid seq
uences were initialized on the basis of the secondary structure of 
the target fold. The secondary structure assignments were encoded 
in sequences, using alanines for helix, valines for β-sheet and gly-
cines for loop residues. This introduces a bias towards the correct 
local structure, aiding faster convergence of the design trajecto-
ries. To diversify the generated designs, 10% of the amino acids were 
randomly mutated in the initial sequence of each design trajectory. 
Subsequently, the sequence was passed through the AF2 networks, 
which generated five structures. These structures were then used to 
calculate the loss with the previously defined loss function. The error 
gradient was obtained by backpropagating the errors to the one- 
hot-encoded input, resulting in a 5 × 20 × N error gradient, where N 
represents the sequence length. We then took the average of the five 
matrices to obtain the mean error gradient (20 × N), which was used 
for gradient descent. A position-specific scoring matrix (PSSM) of 
20 × N was updated using the ADAM optimizer63 with the normal-
ized error gradient. Following the update, the PSSM underwent a 
softmax function that transforms the matrix into a probability dis-
tribution of the amino acid identity for each position. The argmax 
function was subsequently used to determine the most probable 
amino acid identities per position; these were then used to construct 
the new input sequence for the next iteration. The cysteine residues 
in the PSSM were masked, so the designed sequences do not contain  
any cysteines.

Model settings. AF2 was run in single sequence mode using the net-
work configuration of the original AF2 ‘model_5_ptm’ for all five AF2 
models with mutiple sequence alignments (MSAs) and templates 
disabled. For the design trajectories, we used zero recycles, mean-
ing that each AF2 network was only executed once. For the claudin-1 

and claudin-4 designs, we only used models 1 and 2 with the network 
configuration of the original AF2 ‘model_1_ptm’ with templates ena-
bled. All design runs were executed on a single Nvidia Tesla V100  
(32 GB) GPU.

Computational design protocol. In each AF2-sequence design trajec-
tory, 500 rounds of gradient descent optimization were performed 
(https://github.com/bene837/af2seq). Not all design trajectories of the 
claudin, rhomboid protease and GPCR converged. Hence, we sampled 
sequences from successful trajectories and introduced mutations, 
while disabling distogram loss. These sequences were then used as 
starting points for new design trajectories, which we named soft starts, 
resulting in a higher convergence rate. All generated sequences were 
then predicted using AF2 with three recycles, followed by relaxation 
in an AMBER force field64,65. This resulted in high-quality structures 
that were used as inputs to ProteinMPNN for sequence generation. 
The total numbers of designs and designs passing in silico filtering are 
summarized in Supplementary Table 1. For the design of the claudin-1 
and claudin-4 functional analogues, we first predicted their struc-
tures using AF2 with MSAs and templates enabled, owing to the lack 
of high-resolution experimental structures. The predictions were 
then used as structural templates for both design and reprediction, 
as the wild-type extracellular region could not be predicted by AF2 
in single sequence mode. All sequence and side-chain information 
was removed from the template to reduce folding bias. We tried sev-
eral design strategies for the functional claudin design, of which two 
were successful: (1) redesigning only the transmembrane surface, 
approximately 40% of the sequence; and (2) redesigning the entire 
transmembrane region, including the core, approximately 60% of 
the sequence. The residue positions that were fixed can be found in 
Supplementary Table 2.

For conformation-specific design of GPCRs, we used the template of 
the adenosine A2A GPCR in the active conformation bound to mini-Gs 
(PDB 5G53) and the inactive conformation (PDB 3VGA) to design each 
state individually. We fixed residues interacting with the G protein and 
the evolutionarily conserved DRY motif during the design of each state, 
resulting in designs with identical length and identical functional sites. 
For the design of the active conformation, we found that it was not 
possible to generate high-confidence designs without the presence 
of G protein; hence, gradient descent and prediction were performed 
in the presence of the mini-Gs binder.

Training of MPNNsol

The MPNNsol model was trained on protein assemblies in the PDB (as 
of 2 August 2021) determined by X-ray crystallography or cryo-EM to 
a resolution of better than 3.5 Å and with fewer than 10,000 residues. 
We followed training as described in ref. 13, modified only by exclud-
ing annotated transmembrane PDB codes. The list of excluded PDB 
codes and MPNNsol model weights are available at https://github.com/
dauparas/ProteinMPNN/tree/main/soluble_model_weights.

ProteinMPNN sequence redesign
The backbones generated by AF2seq were used as inputs to Protein
MPNN. For the vanilla ProteinMPNN, we used the provided model 
weights trained on a dataset with 0.1 Å Gaussian noise13. For the biased 
ProteinMPNN (referred to in the main text as MPNNbias), we used a modi-
fied version of the script ‘submit_example_8.sh’ as provided on the 
ProteinMPNN github mentioned above. We found the best results by 
giving a positive sampling bias to the polar amino acids and a negative 
sampling bias to alanine. For MPNNsol, we generated sequences with 
two different models that had different levels of noise during train-
ing (0.1 Å and 0.2 Å). For all ProteinMPNN models, we generated two 
sequences per AF2seq-designed backbone. No Gaussian noise was added 
to the input backbone, and cysteine residues were masked during the 
decoding process.

https://doi.org/10.2210/pdb3SD2/pdb
https://doi.org/10.2210/pdb6D0T/pdb
https://doi.org/10.2210/pdb5BVL/pdb
https://doi.org/10.2210/pdb4P79/pdb
https://doi.org/10.2210/pdb3ZEB/pdb
https://doi.org/10.2210/pdb6FFI/pdb
https://github.com/bene837/af2seq
https://doi.org/10.2210/pdb5G53/pdb
https://doi.org/10.2210/pdb3VGA/pdb
https://github.com/dauparas/ProteinMPNN/tree/main/soluble_model_weights
https://github.com/dauparas/ProteinMPNN/tree/main/soluble_model_weights
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Structural similarity calculations
The Cα atoms of the structures were aligned using the Superimposer 
from the Biopython package66. The r.m.s.d.Cα was calculated as the 
mean Euclidean distance between predicted and target Cα atom coor-
dinates. The r.m.s.d.fa was calculated by first aligning all atoms with 
the Superimposer, after which the mean Euclidean distance between 
atoms was computed. The template modelling scores were determined 
using TM-align67.

Sequence diversity analysis
Sequence recovery was quantified as the number of positions at which 
the corresponding residue matches the residue in the target fold 
divided by the total number of residues in the sequence multiplied 
by 100%. The core residues were defined as residues with less than 
20 Å2 solvent-accessible surface area (SASA), and surface residues 
were defined as residues with less than 20 Å2 SASA. The e-values were 
obtained through a protein BLAST search of the NCBI RefSeq database 
of 1 October 2022 with a maximum hit value of 1,000.

Surface hydrophobicity calculations
The fraction of surface hydrophobics was calculated using Rosetta3. 
First, all surface residues were identified using the layer selector; these 
were defined as residues with SASA > 40 Å2. Of these surface residues, 
we counted the number of apolar amino acids (defined as ‘GPAVILM-
FYW’) and divided it by the total number of surface residues.

Design filtering and selection
All generated sequences were predicted with AF2 using three recycles 
and a relaxation step in an AMBER force field. Next, the sequences were 
filtered using the following criteria: (1) TM score > 0.80 for all designs 
except the rhomboid protease (the rhomboid protease yielded slightly 
lower TM scores in the design trajectory; hence, we chose a cut-off 
value 0.75 instead); (2) pLDDT > 80 for all designs except the rhomboid 
protease (pLDDT > 75); and (3) an e-value threshold > 0.1 for sequence 
novelty. Success rates are listed in Supplementary Table 1.

Structural fold similarity search
The fold similarity search was performed using FoldSeek68 on the SCOP 
database17 (downloaded March 2023). For each of the design target 
folds, an exhaustive search on the basis of TM score alignment was per-
formed. The SCOP database contains globular and membrane domain 
annotations, which were used for the hit classification.

Fold complexity calculations
Relative contact order was calculated at the secondary structure level 
by computing the residue distance in the sequence between second-
ary structures for all pairs within 8 Å of each other and then averaging 
these distances for all contacts that were more than four residues apart. 
To ensure consistency in secondary structure annotations across all 
structures, we used DSSP for the determination of secondary structural 
elements17. The de novo protein dataset comprised 70 helical proteins, 
six β-sheet proteins and 42 proteins containing both α-helices and 
β-sheets34,69. The natural protein dataset consisted of 1,000 proteins 
randomly selected from the entire collection of proteins in the CATH 
dataset (v.4.3)70.

Transplantation of natural epitopes on to soluble scaffolds
Compatible epitopes were identified by means of a Foldseek search of 
the PDB, using soluble scaffolds as queries. Hits with TM scores above 
0.7 and high structural similarity around the desired epitope were 
superimposed using structure visualization software, such as PyMOL or 
ChimeraX. Varying lengths of the epitope were selected for transplanta-
tion, encompassing either only interaction sites, entire loops or over-
lapping parts of the supporting secondary structures. The sequence 

of the overlaid epitope was then pasted into the overlapping region 
of interest in the soluble scaffold. The resulting chimeric sequences 
were predicted using AF2 in single sequence mode. Structures with 
high pLDDT (greater than 90) and high TM scores relative to the start-
ing scaffold were manually inspected to verify the placement of the 
epitope. Finally, a subset of constructs in different soluble scaffolds 
were selected for experimental testing.

SPR binding assay
SPR measurements were carried out on a Biacore 8K system (Cytiva) in 
HBS-EP+ buffer (10 mM HEPES pH 7.4, 150 mM NaCl, 3 mM EDTA, 0.005% 
(v/v) Surfactant P20 Cytiva). The antibody (5 µg ml−1) was immobilized 
on a CM5 sensor chip (Cytiva) by amide coupling in 10 mM NaOAc pH 
4.5 (250 s, 10 µl min−1; 700–1500 response units immobilized). Purified 
mini-Gs was immobilized with a contact time of 200 s (300 response 
units immobilized). Binding assays were carried out at a flow rate of 
30 µl min−1. Designed chimeras were injected as serial dilutions ranging 
from 18 µM to 0.1 nM, and 0 nM for 120 s, followed by dissociation for 
400 s. Immobilized antibody was regenerated between cycles in 10 mM 
glycine-HCl pH 2.5 (30 s, 30 µl min−1). GPCRs designed in the active or 
inactive state were injected at 0, 5, 15 and 25 µM for 90 s, followed by 
dissociation for 120 s. Immobilized mini-Gs ligand was not regenerated 
between cycles. Binding curves were fitted with a 1:1 Langmuir binding 
model in the Biacore 8K analysis software. Steady-state response units 
were plotted against analyte concentration, and a sigmoid function was 
fitted to the experimental data in Python 3.9 to derive the Kd.

Bio-layer interferometry
For BLI studies of claudins, synthetic claudin-His and tagless CpE in 
20 mM Tris pH 7.4, 100 mM NaCl, and 5% glycerol were used. BLI was 
performed at 25 °C in 96-well black flat-bottomed plates (Greiner) using 
an acquisition rate of 5 Hz averaged by 20 using an Octet R8 System 
(FortéBio/Sartorius), with assays designed and set up using Blitz Pro 1.3 
software. Binding experiments consisted of the following steps: sensor 
equilibration (30 s), loading (300 s), baseline (180 s), and association 
and dissociation (120–300 s each). Experiments were conducted by 
immobilizing 1.5–3.0 µM of synthetic claudin-His on NiNTA (Dip and 
Read) sensors and quantifying their binding to 0.05–5.00 µM CpE. 
Association and dissociation times for the two claudin-1 designs were 
performed for 120 s, as they exhibited rapid on and off rates, whereas 
for the claudin-4 design, these times were extended to 300 s to capture 
the slower off rates. Data were fitted to a 1:1 binding model using Octet 
Analysis Studio (Sartorius), which generated the Kd from the association 
and dissociation rate constants. At the protein concentrations used, no 
significant non-specific binding of CpE to NiNTA sensors was detected.

Protein crystallization and structure determination
The TBF_24 design was crystallized using sitting drop vapour diffusion 
at 4 °C in 0.1 M Na3 citrate pH 4.0, 1 M LiCl, and 20% PEG 6000 buffer. 
The CLF_4 design was crystallized using sitting drop vapour diffusion 
at 4 °C in 0.1 M Na3 citrate pH 5.0, 0.1 M Na/K phosphate pH 5.5, 0.1 M 
RbCl, and 25% v/v PEG smear medium (BCS Screen, Molecular Dimen-
sions). The RPF_9 design was crystallized using sitting drop vapour 
diffusion at 4 °C in 0.1 M HEPES pH 7.8, 0.15 M Na3 citrate dihydrate, 
and 25% v/v PEG smear low (BCS Screen, Molecular Dimensions). The 
GLF_18 design was crystallized using sitting drop vapour diffusion at 
4 °C in Na phosphate-citrate pH 4.2, 0.2 M LiSO4, and 20% PEG 1000 
buffer. The GLF_32 design was crystallized using sitting drop vapour 
diffusion at 4 °C in 0.1 M Na acetate pH 5.5, 0.2 M KBr, and 25% PEG 
MME 2000 buffer. Crystals were cryoprotected in 20% glycerol and 
flash-cooled in liquid nitrogen. Diffraction data were collected at the 
beamline PXI (X06SA) of the Swiss Light Source (Paul Scherrer Insti-
tute, Villigen, Switzerland) and the MASSIF-1 beamline of the European 
Synchrotron Radiation Facility (Grenoble, France) at a temperature 
of 100 K. Data were processed using the autoPROC package71. Phases 



were obtained by molecular replacement using Phaser72. Atomic model 
refinement was completed using COOT73 and Phenix.refine72. The qual-
ity of refined models was assessed using MolProbity74. Structural figures 
were generated using PyMOL (Schrödinger, LLC; https://www.pymol.
org/) and ChimeraX75. Data collection and refinement statistics are 
listed in Extended Data Table 1.

Cryo-EM structure determination of CLN4-20 in complex with 
cCpE
Expression and purification of cCpE, COP-2 Fab and the anti-Fab nano-
body were performed as described previously76. Concentrated CLN4_20 
was complexed with cCpE followed by COP-2 in a 1:1.2:1 molar excess. 
Next, the anti-Fab nanobody was added at a 1.3 molar excess of COP-2, 
followed by incubation on ice for 30 min, concentrated and subjected 
to SEC using a Superdex 200 increase 10/300 GL column (GE Health-
care) in 20 mM HEPES pH 8.0, 150 mM NaCl. The purified complex was 
concentrated to 5 mg ml−1.

UltraAuFoil 1.2/1.3 grids (Quantifoil) were glow discharged for 30 s 
at 15 mA and vitrified using a Leica GP2 instrument (Leica microsys-
tems). Then, 3.5 µl of the complex was applied to grids and blotted 
for 3 s at 4 °C under 100% humidity, before being plunge frozen into 
liquid ethane. Grid screening and data collection were performed 
on a 200 kV Glacios 2 Cryo-TEM (ThermoFisher Scientific) with a 
Falcon 4i direct electron detector at Hauptman-Woodward Medical 
Research Institute. A total of 1,159 videos were collected at a physical 
pixel size of 0.884 Å, with an electron dose of 49.4 e/Å2 fractioned 
over 93 frames.

Videos were processed, patch motion corrected and patch CTF 
estimated in cryoSPARC. Blob picking generated a suitable tem-
plate for an initial three-dimensional volume; this was used to pro-
duce two-dimensional projections for template picking, followed 
by two-dimensional classification, ab initio reconstruction and 
three-dimensional refinement, resulting in a cryo-EM density resolved 
to a resolution of 4.1 Å. Structural coordinates for the complex of 
CLN4_20, cCpE and COP-2 Fab from PDB ID 7TDM76 were rigid body 
docked. The nanobody from PDB 8U4V was docked on to the L chain 
of COP-2. Each protein chain was then real-space refined in Coot. 
Final model refinement was conducted with Namdinator77, followed 
by real-space refinement using Phenix phenix.real_space_refine72. 
Extended Data Table 2 shows data collection and refinement statistics 
for the CLN-4_20/cCpE/COP-2/Nb structure.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
All data are available in the paper and its Supplementary Informa-
tion. Atomic coordinates and structure factors of the reported X-ray 
structures have been deposited in the PDB under accession numbers 
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Extended Data Fig. 1 | RMSDCα of designed TIM-barrel structures vs the 
target fold crystal structure (PDB ID: 5BVL). a, Backbone RMSDCα deviations 
of input structures used for ProteinMPNN sequence redesign. b, Backbone 
RMSDCα deviations of the highest ranked AF2 predicted structure derived from 
the ProteinMPNN-designed sequences from panel a. c, Sequence recovery 
percentage by ProteinMPNN in the core and on the surface with different 

values of Gaussian noise applied to the backbone atoms. d, The e-values of the 
generated ProteinMPNN sequences with varying degrees of noise compared  
to AF2seq generated sequences. e, Backbone RMSDCα deviations of predicted 
structures of ProteinMPNN and AF2seq generated sequences. f, AF2 confidence 
(pLDDT) scores of predicted structures.
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(colored) superimposed on the design model (gray). c, Molecular lipophilicity 
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RMSDCα - root mean square deviation computed over the Cα atoms of the 
backbone. RMSDfa - root mean square deviation computed over all the atoms in 
the structure.
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Extended Data Fig. 9 | Biophysical characterization of the inactive state GLFs 
containing G-protein binding sites. a, Cartoon depiction of design (colored) 
overlaid on the target fold (gray). b, SEC-MALS analysis of corresponding 

design in panel a. The expected Mw for the monomeric design ranges from  
33.3 to 33.7 kDa. c, SPR sensorgram of different MiniGs concentrations in the 
presence of the designs from panel a.
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Extended Data Fig. 10 | Biophysical characterization of the active state 
GLFs containing G-protein binding sites. a, Cartoon depiction of design 
(colored) overlaid on the target fold (gray). The point mutants of the aGLF 
(orange) show a zoom with the point mutation (red) in the presence of mini-gs 

(green). b, SEC-MALS analysis of corresponding design in panel a. The expected 
Mw for the monomeric design ranges from 33.1 to 34.1 kDa. c, SPR sensorgram 
of different MiniGs concentrations in the presence of the designs from panel a.



Article
Extended Data Table 1 | Crystallographic data collection and refinement statistics (molecular replacement)

Each dataset was collected from a single crystal. Values in parentheses are for highest-resolution shell.



Extended Data Table 2 | Cryo-EM data collection and 
refinement statistics
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