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Mapping the tidal marshes of coastal Virginia: a hierarchical transfer learning 
approach

Zhonghui Lv a,b, Karinna Nunezb, Ethan Brewerc and Dan Runfola a

aDepartment of Applied Science, William & Mary, Williamsburg, VA, USA; bVirginia Institute of Marine Science, William & Mary, Gloucester, VA, 
USA; cDepartment of Computer Science and Engineering, New York University, New York, USA

ABSTRACT

Coastal wetlands, especially tidal marshes, play a crucial role in supporting ecosystems and slowing 
shoreline erosion. Accurate and cost-effective identification and classification of various marsh 
types, such as high and low marshes, are important for effective coastal management and 
conservation endeavors. However, mapping tidal marshes is challenging due to heterogeneous 
coastal vegetation and dynamic tidal influences. In this study, we employ a deep learning 
segmentation model to automate the identification and classification of tidal marsh communities 
in coastal Virginia, USA, using seasonal, publicly available satellite and aerial images. This study 
leverages the combined capabilities of Sentinel-2 and National Agriculture Imagery Program (NAIP) 
imagery and a UNet architecture to accurately classify tidal marsh communities. We illustrate that 
by leveraging features learned from data abundant regions and small quantities of high-quality 
training data collected from the target region, an accuracy as high as 88% can be achieved in the 
classification of marsh types, specifically high marsh and low marsh, at a spatial resolution of 0.6 m. 
This study contributes to the field of marsh mapping by highlighting the potential of combining 
multispectral satellite imagery and deep learning for accurate and efficient marsh type 
classification.
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1. Introduction & literature review

Coastal salt marshes are among the world’s most 

dynamic and productive ecosystems, providing sig-

nificant services to humans and the natural environ-

ment across the globe (Murray et al. 2019; Slagter 

et al. 2020; Zedler and Kercher 2005). They are found 

between terrestrial and nearshore aquatic environ-

ments along sheltered coasts and estuaries and pro-

vide a variety of ecological, economic, and societal 

benefits (Barbier et al. 2011; Campbell, Wang, and Wu  

2020). Low marsh, in many areas mostly covered by 

Spartina alterniflora, is found below the mean high 

tide line and is regularly inundated by tides (CCRM  

2019a; Tiner 1987). High marsh, characterized by 

a community of specialized emergent vegetation 

(typically, Spartina patens and Distichlis spicata) that 

tolerates irregular tidal inundation, is mostly located 

above the Mean High Water (MHW) between the low 

marsh and upland (CCRM 2019a; Tiner 1987). Both 

high marsh and low marsh play an important role in 

water purification, coastal hazard reduction, 

protection against coastal erosion and storm surges, 

carbon sequestration, and shoreline stabilization 

(Feagin et al. 2010; Fisher and Acreman 2004; Li 

et al. 2021). Despite the many benefits of tidal 

marshes, they are currently considered one of the 

most stressed ecosystems and are under significant 

threat by natural and anthropogenic pressures such 

as coastal development, sea level rise, pollution, 

storm surge, and climate change (Barbier et al. 2011; 

Campbell and Wang 2019; Miller, Rodriguez, and Bost  

2021; Rodriguez and McKee 2021; Runfola et al. 2013; 

Zedler and Kercher 2005). According to Murray et al. 

(2019), 13; 700km2 of tidal wetlands were lost from 

1999 to 2019 due to these stressors. The ability to 

identify the spatial extent and distribution of tidal 

marshes – and monitor how they change over 

time – can aid our ability to understand how shifts 

in species distribution and abundance may occur, as 

well as to assess changes in the ecological services 

that these ecosystems provide (Kennish 2001). 
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Mapping and monitoring these shifts provide valu-

able insights for preservation and restoration plan-

ning and for prioritizing adaptation strategies (Carr, 

Guntenspergen, and Kirwan 2020).

Coastal tidal marshes can cover large geographic 

areas, be highly heterogeneous and dynamic, and are 

usually difficult to access (Lamb, Tzortziou, and 

McDonald 2019). These factors limit the ability to 

inventory and monitor them from field data alone. 

There are many publicly available and nationwide 

data sources developed by various agencies in the 

US providing geographic information and conditions 

about wetlands. The most well-known data sources 

are the National Wetland Inventory (NWI) (FWS 2023), 

the National Land Cover Database (NLCD) (Dewitz  

2021), and Coastal Change Analysis Program (C-CAP) 

(NOAA 2023). The NWI, developed by the US Fish and 

Wildlife Service dating back to the 1970s, was estab-

lished to provide biologists and other researchers 

with information on the distribution and types of 

wetlands to aid in conservation efforts. The NLCD 

(released by the US Geological Survey (USGS)) and 

C-CAP (released by the National Oceanic 

Atmospheric Administration (NOAA)) also provide 

regional and nationwide data on land cover and are 

widely used to measure land cover changes over time 

(Homer et al. 2020). However, these datasets are 

broad in scope, and come with a number of limita-

tions. For example, the NWI is rarely updated and has 

a number of known limitations such as underestima-

tion (Gale 2021; Matthews et al. 2016) and exclusion 

of some important wetland habitats (i.e. Southern 

Blue Ridge of Virginia (Stolt and Baker 1995)). While 

NLCD and C-CAP are consistently released (2 to 3  

years for NLCD and every 5 years for C-CAP), both of 

them are derived from the Landsat program, thus 

resulting in 30-m spatial resolution products; they 

also do not provide detailed delineations between 

marsh communities.

The conventional approach to surveying and map-

ping tidal marshes or wetlands typically involves 

a GPS field survey to gather coordinates and attribute 

information related to different marsh types, followed 

by manual digitization of marshes from remotely 

sensed data or available digital images (CCRM  

2019b; FWS 2023). These processes are time- 

consuming, resource-intensive, and necessitate 

skilled technicians for accurate execution. Since the 

1970s, satellite-based remote sensing has been 

utilized to monitor and map the distribution of salt 

marshes in US wetlands (Carter 1981). Due to satellite 

sensors’ ability to collect information over large spa-

tial areas with high temporal frequency (e.g. Sentinel- 

2 has a revisit time of 5 days at the equator; Landsat 

revisit time is 8 days), they are widely used to observe 

tidal marshes on the ground and monitor changes 

over time. For example, Amani et al. (2022) utilized 

the historical Landsat archives to detect wetlands and 

monitor their changes throughout the entire Great 

Lakes basin in Canada over the past four decades. 

Previous studies have shown the advantages of 

using multispectral imagery in tidal marsh mapping 

as the different spectral bands contain different infor-

mation (e.g. infrared and near-infrared), resulting in 

distinct spectral signatures for tidal marshes (Lamb, 

Tzortziou, and McDonald 2019; Slagter et al. 2020). 

However, in the highly heterogeneous coastal envir-

onment, it may be challenging to identify a mix of 

marsh vegetation types using moderate resolution 

imagery due to relatively similar spectral signatures 

and co-occurrence of marshland community types 

(Alam and Hossain 2021; Sun et al. 2021; Wang et al.  

2019; Xie, Sha, and Yu 2008). In addition to utilizing 

the spectral properties of each individual image band, 

a diverse range of satellite imagery-based approaches 

have been explored for monitoring different marsh 

habitats. The integration of vegetation indices and 

supplementary environmental data has proven to be 

highly effective in extracting valuable information 

and discerning key properties of marshes and wet-

lands (Khanna et al. 2013; Li et al. 2021; Sun, 

Fagherazzi, and Liu 2018). In this context, the ability 

to automatically delineate low marsh and high marsh 

boundaries based on high-resolution imagery can 

help to “fill in the gaps” between in-situ survey efforts, 

as well as provide more temporally explicit informa-

tion on the status of tidal marshes.

Several works have focused on using supervised 

and unsupervised machine learning algorithms such 

as random forests, support vector machines, and 

neural networks to classify land cover at the pixel 

level in coastal regions (Amani et al. 2022; Carle, 

Wang, and Sasser 2014; Lamb, Tzortziou, and 

McDonald 2019; Slagter et al. 2020). Such approaches 

have taken advantage of high spatial resolution satel-

lite data, vegetation indices, and other types of envir-

onmental ancillary data. However, mapping the 

heterogeneous coastal environment at high 
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resolution with pixel-based classification is inconsis-

tent and usually generates “salt-and-pepper” noise in 

the mapping result (Kelly et al. 2011). Object-based 

image analysis (OBIA) has emerged as a promising 

approach for vegetation mapping by grouping similar 

pixels to delineate objects and subsequently classify-

ing them into distinct vegetation types (Campbell and 

Wang 2019). However, the applicability of OBIA tech-

niques in large-scale mapping remains constrained 

due to several inherent limitations and to date has 

only achieved satisfactory results in small region stu-

dies (Gao and Mas 2008; Liu and Xia 2010; Whiteside, 

Boggs, and Maier 2011).

Since 2012, satellite imagery analysis using deep 

learning (DL) methods, specifically convolutional 

neural networks (CNNs), has grown in popularity 

(Krizhevsky, Sutskever, and Hinton 2012; Xie et al.  

2016), and provides a potential solution to large- 

scope marshland mapping and monitoring. Recent 

examples of the use of CNNs with satellite imagery 

include the detection of shoreline structures (Lv et al.  

2023), roads (Brewer et al. 2021; Narayan et al. 2017), 

marine debris (Kikaki et al. 2022), coastal vegetation 

mapping (Li et al. 2021; Mainali et al. 2023), land use 

mapping (Bhosle and Musande 2019), and other types 

of analysis and applications (Brewer, Lin, and Runfola  

2022; Goodman, BenYishay, and Runfola 2021; 

Runfola et al. 2022; Runfola, Stefanidis, and Baier  

2022). Such applications with overhead imagery 

have driven research into modeling techniques 

geared specifically for such data (Kang et al. 2022; 

Mukherjee and Liu 2021; Runfola 2022; Tian et al.  

2023). Concurrently, various techniques, including 

the application of CNN with transfer learning, have 

been employed to facilitate predictions in regions 

with limited data availability and to improve model 

performance across diverse domains, as corroborated 

by previous research (Brewer et al. 2021; Chaudhuri 

and Mishra 2023; Liu et al. 2021). As an example, the 

utilization of Convolutional Neural Networks (CNN) 

and the transfer learning approach by Chaudhuri 

and Mishra (2023) resulted in an accuracy ranging 

from 88% to 94% in the detection of aquatic invasive 

plants in wetlands.

A selection of recent studies have shown 

a significant improvement in accuracy when using 

convolutional neural networks approaches for tidal 

marsh mapping (Guirado et al. 2017; López-Tapia 

et al. 2021; Mainali et al. 2023; Morgan et al. 2022). 

However, previous work has mainly focused on the 

extraction or mapping of wetland or tidal marshes; to 

date, only one piece (Li et al. 2021) has explored the 

differentiation of high and low marshes using deep 

learning techniques. We build on this work, seeking to 

(1) provide additional evidence as to the external 

validity of these approaches by introducing a new 

domain of study and independent validation dataset; 

(2) explore the capability of these models with higher 

resolution (0.6 m) imagery than has previously been 

tested; and (3) assess the capability of a multi-stage 

approach to fusing sentinel and NAIP information.

This paper is organized as follows: In Section 2, we 

introduce our study area, imagery and annotation data; 

in Section 3, we discuss our methodology and model 

workflow. Next, we present our results in Section 4, and 

in Section 5, we provide a brief discussion of the 

potential of – and challenges to – deep learning 

approaches to tidal marsh community mapping.

2. Data

This section offers an overview of the data employed 

throughout the modeling process. Data preproces-

sing – notably, labeling datasets for use in modeling 

stages – is detailed here. Additional information 

regarding the specific methodologies employed 

with the data inputs and outputs can be found in 

the “Methods” section.

2.1. Study area

This study focuses on delineating high and low marsh 

communities within tidal marshes along the coast of 

the State of Virginia, USA. Our specific region of inter-

est is defined as a 5-km buffer surrounding the Virginia 

shoreline (NOAA 2021), which is the major area marsh-

land located in VA (see Figure 1). The majority of this 

coastal shoreline surrounds the Chesapeake Bay, an 

ecologically significant estuary that contributes to an 

annual economic output exceeding a hundred billion 

US dollars (Najjar et al. 2010; Phillips and McGee 2014).

2.2. Imagery

2.2.1. Sentinel imagery

The Copernicus Sentinel-2 mission, launched in 2015 

by the European Space Agency, provides high- 

resolution, multi-spectral imagery to support land 
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monitoring studies (ESA 2018). Sentinel-2 carries 13 

spectral bands with spatial resolution ranging from 

10 m to 60 m, and the imagery is collected in a 5-day 

revisit cycle throughout the year. The 10 m RGB and 

NIR band (B2, B3, B4, and B8), four 20 m visible and 

near-infrared (VNIR) (B5, B6, B7, and B8a), and two short 

wave infrared bands (B11, B12) are used in this study.1 

To ensure consistent resolution across all bands, all 

bands originally provided at 20 m or 60 m spatial reso-

lution were resampled to a 10 m resolution utilizing 

a bilinear resampling algorithm, implemented using 

the rasterio package in Python 3.7. This process was 

applied to each individual band. To account for intra- 

annual variability in the data, a collection of imagery 

was acquired for analysis, spanning different seasons in 

the period of 2017–2018.

2.2.2. Aerial imagery

Imagery from the National Agriculture Imagery 

Program (NAIP) dataset (collected by the United 

States Department of Agriculture (USDA)) was 

acquired in order to explore the value of high- 

resolution imagery for marsh community delinea-

tion (OCM-Partners 2022). The NAIP dataset is an 

aerial imagery database that has records starting in 

2003 (temporal frequency of 2–3 years), sponsored 

through a collaboration between the United States 

Geological Survey (USGS) and US state govern-

ments (OCM-Partners 2022). Historically, the 

images were captured at 1-m spatial resolution 

with 4-band spectral resolution (red, green, blue, 

and near-infrared) across the continental United 

States during the agricultural growth season. 

Since 2018, the US state of Virginia – covering 

the majority of our study area – additionally 

began providing NAIP imagery with a resolution 

of 0.6 m. In this study, we use both 1-m and 

0.6-m resolution NAIP imagery, spanning from 

2014 to 2018. Of note, NAIP imagery is acquired 

during “leaf-on” time periods, leading to potential 

seasonal biases in acquisitions; we discuss the 

Figure 1. Study area: shoreline (NOAA 2021) buffered with 5km distance along the state of Virginia (Runfola et al. 2020). Grid represent 
2018 NAIP image tiles which intersect with the study area. Two example high-resolution NAIP imagery tiles from the eastern Delmarva 
Peninsula are also presented.
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implications of this on model performance in the 

discussion.

2.2.3. Other ancillary information

Beyond the visual band information, during the train-

ing and testing phases, we also incorporated two 

satellite indices – NDVI and NDWI – into the network, 

acknowledging their historical significance in wetland 

classification (Sun, Fagherazzi, and Liu 2018).

2.3. Annotation resources

2.3.1. Tidal marsh inventory (TMI)

To label where marshes are located (i.e. the binary pre-

sence or absence of any type of marsh), we use the 

Virginia Tidal Marsh Inventory (TMI) (CCRM 2019b). The 

TMI is a comprehensive inventory of shoreline condi-

tions for tidal marsh localities. The inventory relies on 

field workers to manually delineate marsh boundaries 

via a GPS-enabled system. Each marsh boundary is later 

digitized using the latest available high-resolution ima-

gery from the Virginia Base Mapping Program.

2.3.2. Marsh habitat zonation map

The Marsh Habitat Zone Map (MHZM) (Correll et al.  

2019; SHARP 2017) is used to label imagery for 

high marsh and low marsh detection (expanding 

on the binary marsh/no marsh identification pro-

vided by TMI). The MHZM is a raster layer denoting 

salt marsh communities in the North Atlantic coast 

of the US, from northern Maine to Virginia, at 

a resolution of 3 m. It includes eight types of 

marsh communities: high marsh, low marsh, salt 

pool, terrestrial border, Phragmites australis (reed 

grass), mudflat, open water, and upland. The 

MHZM is subdivided into different ecological 

zones representing various geographic locations. 

For this study, zones that cover the eastern 

Figure 2. Visualization of MHZM data covering the eastern Delmarva Peninsula and the eastern shore of the Chesapeake Bay.
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Delmarva Peninsula and the eastern shore of the 

Chesapeake Bay are selected to initialize a deep 

learning model for high marsh and low marsh 

feature detection (Figure 2).

2.3.3. Chesapeake Bay National Estuarine Research 

Reserve (CBNERR)

One challenge with both TMI and MHZM is the 

relatively coarse granularity of the products (due 

to their relatively broad geographic scopes). In 

order to fine-tune and validate our model using 

high-resolution, locally collected information, we 

leverage landcover maps of two NOAA National 

Estuarine Research Reserves (NERRs) in Virginia, the 

Goodwin islands and Catlett islands (Lerberg 2021). 

Both NERRs include detailed land cover types col-

lected from fieldwork and digitized from high- 

resolution imagery by the Chesapeake Bay 

National Estuarine Research Reserve in Virginia 

(CBNERR-VA). The Goodwin islands, located on the 

southern side of the mouth of the York River, are 

a 777-acre archipelago of islands dominated by salt 

marshes, inter-tidal flats, and shallow open estuarine 

waters (Lerberg 2021). The salt marsh vegetation is 

dominated by Spartina alterniflora (low marsh) and 

Spartina patens (high marsh) and estuarine scrub/ 

shrub vegetation in the forested wetland ridges. 

The Catlett Islands encompass 690 acres and display 

a ridge-and-swale geomorphology. The islands con-

sist of multiple parallel ridges of forested wetland 

hammocks, forested upland hammocks, emergent 

wetlands, and tidal creeks surrounded by shallow 

sub-tidal areas that once supported beds of sub-

merged aquatic vegetation. The smooth cordgrass 

(Spartina alterniflora) prevails over much of the 

marsh area along with salt grass (Distichlis spicata), 

saltmeadow cordgrass (Spartina patens), black nee-

dlerush (Juncus roemerianus), and various halophytic 

forbs (Lerberg 2021). In this study, the data from 

Catlett Islands is used for model fine-tuning, while 

the Goodwin Islands’ land cover is used to construct 

a dataset for independent model validation (i.e. 

information from the Goodwin Islands is only used 

for validation, and never used in model training, 

providing a completely external validation dataset).

2.3.4. Validation data acquisition from UAV flight

As an additional source for a fully independent valida-

tion of the presented models, two separate 

Unmanned Aerial Vehicle (UAV) surveys were con-

ducted over Captain Sinclair and Maryus, Virginia, in 

November of 2022. The target site aerial imagery was 

acquired using DJI phantom-4 Multispectral drones. 

Filming was conducted at a 100 m altitude, primarily 

close to noon to minimize the impact of shadows. The 

orthographic image was generated by mosaicking the 

captured image tiles using Pix4Dmapper software 

(PIX4D 2022). These two sets of aerial drone imagery 

were employed to create an additional validation 

dataset for model predictions.

2.4. Data labeling procedures

The modeling procedures outlined in section 3 

require a number of labeled datasets (see Table 1 for 

an overview of each model and the labeled datasets 

employed and Table 2 for a more detailed description 

of each tuned model):

(1) Data for Marsh/No Marsh identification. We 

construct an independent model to identify the 

location of the marshland before categorizing it 

into high/low marsh; this requires labeled data 

sourced from the Tidal Marsh Inventory (TMI), 

and seasonal multi-band satellite imagery 

sourced from Sentinel-2.

(2) Data for Partial Tuning. We implement an 

initial tuning of a model based on ImageNet 

(Deng et al. 2009) using data labeled with the 

MHZM dataset for high marsh and low marsh 

classification.

Table 1. Data source summary.

Model Name Label Source Label Data Type Imagery Imagery Resolution (meters) Image Patches (counts)

Marsh Binary Tidal Marsh Inventory (TMI) vector polygons Sentinel-2 (10m) 10 2837
Partical Tuning Marsh Habitat Zonation Map (MHZM) raster (3-m) NAIP (1m) 1 10,060
Full Tuning Catlett Islands (CBNERR) vector polygons NAIP (0.6m) 0.6 103
Validation Goodwin Islands (CBNERR) vector polygons NAIP (0.6m) 0.6 106
Validation Captain Sinclair & Maryus (UAV) vector points UAV NA 300
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(3) Data for Full Tuning. We implement 

a secondary tuning using labeled data from 

a local island, Catlett, sourced from CBNERR 

for high marsh and low marsh classification.

(4) Data for Validation. Finally, we validate our 

models using two independently labeled data-

set from (1) Goodwin Islands, sourced from 

CBNERR, and (2) Captain Sinclair and Maryus, 

Virginia, collected by UAV.

Each of our modeling stages requires independent 

labeled datasets; the rest of this section details how 

these labeled datasets were constructed.

2.4.1. Labeling to support marshland binary 

modeling

The first stage of labeling is designed to provide 

labels to train a model which establishes the bin-

ary presence or absence of marshland. To con-

struct these labels, we leverage 10-m resolution 

seasonal Sentinel-2 imagery and TMI data for label-

ing. The re-sampled 10-m resolution Sentinel-2 

imagery is first cropped into a series of 128 � 128 

image patches, each of which has a dimension of 

128 � 128 � 10 (with 10 representing the number 

of bands). The TMI vector file is then overlapped 

with each image patch to create its corresponding 

labeling mask, with pixels covered by TMI bound-

aries labeled with value 1 representing marsh pre-

sence, and non-overlapped pixels labeled with 

value 0 representing marsh absence. This process 

results in 2,837 128 � 128 � 10 image patches that 

are used to train and test the binary marsh detec-

tion model.

2.4.2. Labeling to support partial tuning

The second stage of labeling is implemented with 

1-m resolution NAIP imagery and MHZM data to 

construct a dataset for marsh community classifica-

tion (specifically, high and low marshes). To improve 

compatibility with NAIP, the MHZM was first re- 

sampled from 3-m resolution to 1-m resolution 

using the nearest neighbor method. The re- 

sampled MHZM raster layer is then overlapped 

with the 1-m resolution NAIP imagery to generate 

a label mask; community types other than high 

marsh and low marsh are grouped into one back-

ground category, thus yielding a raster layer, with T
a
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labels including high marsh, low marsh, and 

“background.”

After creating the labeled mask layer, a series of 

256 � 256 image patches are generated from the 

mask labels and the corresponding NAIP imagery. To 

ensure a reasonable number of sampling locations 

representing the two marsh types, we retained 

image patches if the 256 � 256 pixel window con-

tained at least 25% pixels marked either high marsh 

or low marsh type pixels, resulting in a dataset of 

10,060 4 � 256 � 256 (4 is the number of image 

bands) tiles covering the eastern shore of the 

Chesapeake Bay and eastern Delmarva peninsula. 

This data is used to construct training datasets for 

the partial tuning model to learn features from high 

marsh, low marsh, and no marsh types.

2.4.3. Labeling to support full tuning

The third stage of labeling leverages 0.6-m resolution 

NAIP imagery from 2018 and high-resolution land 

cover maps from the Catlett Islands in VA. These 

images are used to further fine-tune the model. The 

NAIP tiles that cover the Catlett Islands were first 

retrieved and cropped into a series of 4 � 256 � 256 

image patches, and then these image patches are 

overlapped with the land cover types from CBNERRs 

to create the paired label patches. Within the label 

patches, all pixels that are not labeled as high marsh 

or low marsh are labeled as background (i.e. non- 

marsh). This process results in 103 256 � 256 image 

patch pairs for model fine-tuning, and we refer to 

these image patches generated from Catlett Islands 

as the full-tuning dataset in later sections.

2.4.4. Labeling to support external validation

Finally, to externally validate the model, we leverage 

two independently collected datasets. The first of 

these is a stand-alone dataset from Goodwin Islands 

in VA. The same image processing procedures applied 

to Catlett Islands (our full tuning dataset) are also 

applied to the land cover maps of Goodwin Islands 

and NAIP imagery to generate patch pairs for valida-

tion. The validation image patches include 106 

4 � 256 � 256 tiles covering Goodwin Islands, which 

includes 1,260,771 0.6-m resolution pixels represent-

ing high marsh, 1,277,593 pixels representing low 

marsh, and 4,408,452 pixels representing background. 

We refer to these image patches generated from the 

Goodwin Islands as the validation dataset in later 

sections.

The second independent validation dataset we 

employ is generated through visual interpretation of 

UAV imagery collected from Captain Sinclair and 

Maryus, Virginia. Initially, we identified and digitized 

a series of polygons representing land cover cate-

gories such as Juncus roemerianus, Spartina alterni-

flora, forest, water, and built-up areas. Subsequently, 

we randomly generated points within these digitized 

polygons using the open-source software QGIS (QGIS  

2023). Each point underwent further interpretation to 

ensure data quality and was categorized into one of 

the three classes: high marsh, low marsh, or back-

ground. This process yielded a total of 300 points, 

comprising 158 for high marsh, 95 for low marsh, 

and 47 for background points. These points are used 

in conjunction with 106 validation image patches to 

generate model estimates and provide another exter-

nal measurement of validity.

3. Methods

This study relies on a common procedure in the deep 

learning literature, transfer learning, which seeks to 

improve the performance of target models within 

specific domains by harnessing knowledge derived 

from distinct yet related source domains. This 

approach mitigates the need for an extensive 

amount of target domain data to construct effective 

target models (Zhuang et al. 2020). In this work, we 

train a U-Net model using a domain which has 

a large amount of information (data from the 

Delmarva Peninsula [MHZM]), and then “transfer” 

the weights learned in that region to our target 

domain by fully-tuning the model using a much 

smaller dataset from the Catlett Island (CBNERR). 

The overall workflow of this study is implemented 

in the following stages:

(1) Leveraging the seasonal Sentinel imagery 

(Section 2.2.1) and digitized labels from the 

TMI, a binary (marsh vs. non-marsh) detection 

model, MA, was trained over the entirety of 

coastal Virginia.

(2) Leveraging NAIP imagery and label data from 

the MHZM, model MB was trained for the detec-

tion of high vs. low marsh. This step is referred 

to as partial tuning.
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(3) Initialization with the weights learned from par-

tial tuning, MB is further fine-tuned with the in- 

situ high-resolution CBNERR data, generating 

a new model MC . This step is referred to as full 

tuning.

(4) Within areas identified as marshland by model 

MA, model MC is implemented to discriminate 

between low and high marsh. This step is 

referred to as the masked model.

3.1. Models

The primary algorithm used in this analysis is the 

U-Net, which is a well-established, relatively light-

weight deep learning algorithm for semantic seg-

mentation based on convolutional network 

architectures (Ronneberger, Fischer, and Brox  

2015). The algorithm’s architecture includes two 

parts: down-sampling and up-sampling, also called 

the encoder and decoder. The encoder extracts 

varying resolution feature maps through a series 

of convolutional, rectified linear units (ReLU), and 

max-pooling layers. The decoder stage contains 

and combines (a) each feature map from the 

down-sampling process, and (b) spatial information 

through an up-sampling and concatenation pro-

cess (Figure 3). The data flow of down-sampling 

and up-sampling forms a U-shaped architecture, 

and the output layer maintains the same resolution 

as the input layers.

3.1.1. Binary marsh modeling

In the binary marsh modeling MA stage, an U-Net 

model architecture with a Resnet-34 convolutional 

model is implemented to handle the encoding and 

decoding tasks. The model is initialized with weights 

pretrained with ImageNet (Deng et al. 2009). It takes 

70% of the 2837 12 � 128 � 128 (10 spectral bands, 

NDVI and NDWI) image patches from Sentinel-2, and 

generates two types of pixel-level outputs: marsh and 

non-marsh. 30% of the image patches are later used 

to validate the model prediction accuracy (Abdi 2020; 

Campos-Taberner et al. 2020).

3.1.2. Partial tuning modeling

Once the location of the marshland is identified using 

model MA, we seek to further classify the marsh as 

either “high” or “low”; the model presented in this 

subsection (MB) provides the baseline for this step. 

Figure 3. The U-Net architecture (example of a 3-band input image with 256 � 256 pixel-size) (Lv et al. 2023). The boxes indicate the 
feature maps at each layer, and the number on the top of each feature map shows the depth of feature map (channel). Numbers on 
the right side of each feature map are image/feature maps dimension.
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Model MB is comprised of a separate U-Net model 

with Resnet-34 as backbone.2 Network MB is then 

trained with 70% of the image patches from NAIP 

and MHZM (7042 patches). In this application, the 

model classifies each pixel as one of three types: 

high marsh, low marsh, and background (non- 

marsh).

3.1.3. Full tuning modeling

In the full tuning (MC) model, a Resnet-34 U-Net is 

initialized using the optimal weights found in 

model MB, and further trained with imagery col-

lected from ground-truth by CBNERR (Catlett 

Islands). As in model MB, each pixel is classified 

as high marsh, low marsh, or background. In this 

stage, all 103 6 � 256 � 256 image patches from 

CBNERR are used to train the model. The best 

performing model is saved for further investigation 

and validation.

3.1.4. Masked modeling

The masked modeling stage is a combination of the 

binary marsh detection model MA and the full tuning 

model MC results. In this stage, the MA is first leveraged 

to extract locations where the marshland has been 

detected. Within the areas identified as marshland, 

the MC is then leveraged to further classify the high- 

resolution NAIP imagery into different marsh types.

3.2. Data augmentation

In each training stage, we employ data augmentation 

techniques to enhance the standardization of the model 

input and augment the variability of the data observed 

by the model. To achieve standardization, we normal-

ized the multispectral band within each image patch by 

dividing each band value by the maximum band value, 

resulting in a range between 0 and 1 for each band. As 

part of the data augmentation process, we generated 

the NDVI and NDWI bands for each image patch prior to 

inputting them into the model. Consequently, a total of 

six bands were used as inputs for model training, valida-

tion, and testing when employing NAIP imagery. In 

order to introduce greater diversity within the training 

images, we also applied morphological augmentation 

by randomly rotating the training images and their 

corresponding labels by 0, 90, 180, or 270 degrees.

3.3. Optimization & loss

In this study, we implement a multi-class cross- 

entropy loss function to evaluate the algorithm per-

formance for each model described in section 3. The 

loss function is defined as: 

loss ¼ �
XN

c¼1

yo;c logðpo;cÞ (1) 

where N is the total number of mapping objects (N = 2 

in the model MA detecting marsh from Sentinel ima-

gery, and N = 3 in MB and MC with high and low marsh 

detection) and y is the binary indicator (0 or 1) if class 

label c is the correct classification for observation, o. p 

is the predicted probability observation o is of class c. 

Due to the imbalance of our pixel-level data distribu-

tion, a weighting scheme is used in the training pro-

cess, in which classes are weighted according to their 

representation in the labeled data (Kikaki et al. 2022; 

Paszke et al. 2016): 

Wclass ¼
1

lnðc þ pclassÞ
(2) 

where Wclass is a multiplicative weight applied to the 

loss function for observations of a given class, c is 

a hyper-parameter set to 1.03 (following past litera-

ture; see Kikaki et al. (2022)), and 

pclass ¼
Npixels of class

Ntotal pixels

(3) 

where Ntotal pixels includes background pixels. During 

the training process, the Adam optimization is used to 

minimize the cross-entropy loss with an initial learn-

ing rate of 0.001. The learning rate is reduced by 

a factor of 10 when the models do not show any 

progress in validation performance for five consecu-

tive epochs. To help avoid over-fitting, we use the 

best-scoring model after early stopping conditioned 

on no improvement in validation accuracy for 10 

consecutive epochs. The overall workflow of the 

model process can be seen in Figure 4.

3.4. Accuracy assessment

We implement a wide range of validation metrics to 

assess pixel-level semantic segmentation perfor-

mance. First and foremost, we present overall accu-

racy (Equation (4)) to give guidance on the overall 

performance a user might expect. In addition, we 
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evaluate the precision (Equation (5)) and recall 

(Equation (6)) at the pixel level for each class and 

the overall F1 score (Congalton and Green 2019; 

Rwanga and Ndambuki 2017). 

Accuracy ¼
TP þ TN

TP þ TN þ FP þ FN
(4) 

Precision ¼
TP

TP þ FP
(5) 

Recall ¼
TP

TP þ FN
(6) 

F1 ¼
2 � Precision � Recall

Precision þ Recall
(7) 

In Equations (4), (5), (6) and (7), TP (true positive) 

represents the number of pixels in which the model 

correctly predicts ground truth, TN (true negative) 

represents outcomes in which the model correctly 

predicts cases that are different than ground truth, 

FP (false positive) is predictions to a class that do 

actually not belong to that class, and FN (false 

negative) are the number of predictions belonging 

to a class but were predicted to be in a different 

class (Rwanga and Ndambuki 2017). The F1 score is 

a harmonic mean between precision and recall. 

Finally, a cross-validation matrix (Congalton and 

Green 2019) for each model is additionally generated 

to compare the prediction accuracy for each type of 

marsh class.

4. Results & analysis

The results of binary detection of tidal marshes with 

Sentinel imagery are presented in Table 3; the results 

of the classification of the marsh community (high 

marsh vs. low marsh) are presented in Table 5. We 

further explain each result in the following sections.

4.1. Model performance of sentinel marsh 

detection

Table 3 provides a pixel-level accuracy assess-

ment, based on a randomized 30% split of 

Figure 4. The workflow of the mapping process.

Table 3. Accuracy assessment of binary marsh detection with Sentinel imagery and TMI 
(pixel-level).

Prediction Classes

A
ct

u
al

 C
la

ss
es

Non-marsh Marsh Sum Recall (%)

Non-marsh 11,664,832 541,468 12,206,300 0.96
Marsh 203,882 1,548,986 1,752,868 0.88
Sum 11,868,714 2,090,454
Precision 0.98 0.74

Overall Accuracy 0.95 Overall F1 0.89

GISCIENCE & REMOTE SENSING 11



Sentinel data withheld for validation. Out of the 

2,090,454 pixels predicted as marsh by the model, 

1,548,986 pixels are marsh according to the vali-

dation data. This accounts for 74% of the pixels 

labeled as marsh. Out of the total 1,752,868 pixels 

labeled as marsh in the ground truth data, the 

model correctly identifies 1,548,986 of them as 

marsh, which corresponds to 88%. The model 

achieves an overall accuracy of 95% and an over-

all F1 score of 0.89.

To test whether spatial resolution would improve 

or impede the model performance in marsh detec-

tion, we construct another dataset with the 

0.6-m resolution NAIP and TMI labels. The results 

(based on a withheld subset of 30% of the data) are 

presented in Table 4. The prediction accuracy for the 

Table 4. Accuracy assessment of binary marsh detection with NAIP imagery and TMI 
(pixel-level).

Prediction Classes

A
ct

u
al

 C
la

ss
es

Non-marsh Marsh Sum Recall (%)

No-marsh 54,909,848 3,996,778 58,906,626 0.93
Marsh 2,025,841 9,977,485 12,003,326 0.83
Sum 56,935,689 13,974,263
Precision 0.96 0.71

Overall Accuracy 0.92 Overall F1 0.86

Table 5. Accuracy assessment results tested using all data from the Goodwin Islands. Four prediction results are presented: baseline 
model, direct prediction from partial tuning, full tuning, and masked modeling. Each tested class is presented with two statistics: 
precision and recall. Each model is presented with overall accuracy and F1 score.

Background High Marsh Low Marsh Overall Accuracy F1

Baseline Precision 0.99 0.31 0.5 0.63 0.52
Recall 0.77 0.98 0.15

Partial Tuning Precision 0.98 0.34 0.47 0.66 0.48
Recall 0.88 0.95 0.01

Full Tuning Precision 0.99 0.71 0.66 0.85 0.81
Recall 0.84 0.91 0.82

Masked Modeling Precision 0.96 0.77 0.74 0.88 0.83
Recall 0.91 0.85 0.79

Figure 5. The distribution of data used in full-tuning and validation. The blue bars are the number of pixels counts calculated from the 
full-tuning dataset, and the orange bars are pixel counts from the validation dataset (in Section 2.3).
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marsh and non-marsh detections is 71% and 96%, 

respectively. The recalls for the two classes – marsh 

and non-marsh – are 83% and 93%. Using high spatial 

resolution NAIP imagery, the model achieves 92% 

overall accuracy and an overall F1 score of 0.86 (a 

small decrease from the sentinel models presented 

in Table 3).

4.2. Model performance and accuracy of marsh 

community mapping

Here, we present the results of our models designed 

to distinguish between high and low marsh (as 

described in sections 3.1.2, 3.1.3 and 3.1.4).

The models are each initially tested using a stand- 

alone testing dataset representing the Goodwin Islands 

(an area intentionally omitted from any training stage; 

see section 2.3); later in this section we provide results 

from an additional, independent UAV survey. Results 

from the Goodwin Islands are summarized in Table 5.3

The first model presented in Table 5 (the “Baseline 

Model”) provides a baseline as to the accuracy that 

might be expected if a researcher only used one 

locally collected dataset (Catlett Islands) to tune the 

model. As anticipated, this approach has poor perfor-

mance in predicting both high marsh and low marsh, 

with 31% and 50% precision, respectively. Although 

the prediction accuracy for the non-marsh type (back-

ground) is 99%, the recall is only 77%, meaning 23% 

of the background pixels in the ground truth are mis- 

classified as marsh (i.e. overestimating the amount of 

marshland in the prediction). Considering that the 

number of background pixels in the testing dataset 

make up more than 50% of the entire testing set (see 

Figure 5), this is a large discrepancy at the pixel level. 

This baseline method achieves 63% overall accuracy 

and an overall F1 score of 0.52.

The second model presented in Table 5 - the “Partial 

Tuning” model – is also tested using the stand-alone 

validation dataset. In this model, we are training based 

on the relatively coarse-resolution, but data rich Marsh 

Habitation Zonation Map (MHZM), but without any 

further training with in-situ collected data. Similar to 

the baseline model, partial tuning results in relatively 

poor performance in predicting all three categories, 

with a 66% overall accuracy and a F1 score of 0.48.

Figure 6. A visualization of model prediction in a selected area in the validation region (Goodwin Islands). A) the raw NAIP imagery 
(0.6-m spatial resolution); B) ground truth label; C) prediction output of full tuning model; D) prediction output of masked model.
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The next model presented in Table 5 - the “full 

tuning” model – sought to establish the improvement 

in accuracy that may be possible given the in-situ 

collection of small amounts of high-quality data. The 

full tuning model improves the model performance 

dramatically, with 22% and 29% improvement in 

overall accuracy and F1 score, respectively. The pre-

diction accuracy of high marsh and low marsh 

increased from 0.31 to 0.71, and from 0.50 to 0.66, 

respectively. Although there is a slight decrease in 

recall in high marsh prediction (from 0.98 to 0.91), 

the recall of low marsh is increased from 0.15 to 

0.82. The recall value for the background increased 

7% (from 77% to 84%). This leads to a significant 

improvement in the model’s overall performance on 

each land cover category.

In the final model implementation (“masked 

model”), we first leverage the binary marsh model to 

mask regions for consideration, and then apply the 

full tuning model for high and low marsh identifica-

tion to the resultant area. This model improves the 

overall accuracy by 3% and F1 score by 2%. The model 

precision in predicting high marsh and low marsh 

increased by 6% and 8%, respectively.

Overall, there is a 25% improvement in overall 

accuracy and 31% improvement in F1 score between 

the baseline model and the final masked model 

(with full tuning and marsh presence detection). 

Table 6. A summary of the accuracy assessment results obtained from the 
masked modeling approach using UAV-interpreted data collected in 
Captain Sinclair and Maryus, Virginia.

Precision Recall F1 Total

Background 0.98 0.89 0.93 47
High Marsh 0.73 0.98 0.84 158
Low Marsh 0.93 0.43 0.59 95
Overall Accuracy 0.79

Figure 7. Prediction error of each patch (Goodwin Islands).
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The difference in precision is 46% and 24% for high 

marsh and low marsh, respectively. No particular 

class correlates closely with overall performance. 

Figure 6 shows the comparison of different predic-

tion results, compared with ground truth labeling.

To validate the robustness of the model predic-

tions, Table 6 summarizes the results for data inter-

preted from UAV imagery using the masked 

modeling technique. The model exhibits an overall 

accuracy of 79% in predicting these samples. The 

model achieves a prediction accuracy of 73% and 

93% for high marsh and low marsh, respectively. 

Notably, the recall value of high marsh is 98%, 

while the recall value of low marsh is 43%.

4.3. Error distribution across space

To explore the potential bias in the spatial distri-

bution of errors (and thus provide a better under-

standing of which features may correlate with 

accuracy or inaccuracy), we generated a spatially 

gridded metric of error, which is presented in 

Figure 7. Each grid cell in this figure shows the 

overall percentage of misclassified pixels in the 

underlying validation dataset. As this figure illus-

trates, in regions with more complex land cover 

mixtures, the prediction error tends to be higher 

compared to regions with more homogeneous or 

distinct land cover types. We also find 

a relationship between an increased percentage 

of non-marsh in image patches and the total 

amount of error; broadly, as non-marsh areas 

increase, error tends to decrease, as shown in 

Figure 8.

5. Discussion

The overall results of this study illustrate that lever-

aging features learned from locations where data are 

abundant, the classification accuracy of marsh types – 

high marsh, low marsh, and non-marsh – can reach 

approximately 85% in the Virginia study area. The 

combination of data from multiple sources with var-

ious spatial resolutions – Sentinel and NAIP – can 

improve the overall accuracy of marsh community 

classification to 88%. Notably, this accuracy is a pixel- 

level metric, i.e. the number of approximately 60-cm 

pixels that are classified correctly. In this section, we 

explore model performance and highlight a number 

of directions for future research.

5.1. Discrepancies across data sources

One significant issue in the approach we present in this 

paper is the temporal mismatch between the image 

and annotation data for marsh detection. The binary 

marsh label data (TMI) were manually collected from 

high-resolution images between 2010 and 2018, vary-

ing across different sites. In contrast, the input imagery 

consists of data from 2017 to 2018 (Sentinel with dif-

ferent seasonal coverages) and 2018 (NAIP collected 

during leaf-on periods). Consequently, in some cases, 

the model attempts to correlate the state of marshland 

at one point in time with images from another time. 

This temporal mismatch can have a negative effect on 

model performance due to changes wetlands undergo 

over time, due to both natural and human-driven pro-

cesses (Mainali et al. 2023). This is illustrated in Figure 9, 

where column (B) displays tidal marsh labels from TMI; 

as can be seen, these labels do not precisely align with 

the ground truth shown in the imagery in column (A). 

Given this discrepancy, it is possible that our validation 

understates the overall accuracy of the model’s perfor-

mance because the validation and calibration data 

itself contain apparent errors, thus influencing the 

overall model performance reported earlier. 

Interestingly, models such as those presented in this 

piece could potentially be employed to retrospectively 

improve long-term records such as those provided 

by TMI.

Figure 8. The relationship between prediction error and the 
percentage of no marsh type of images patches in the validation 
data.
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A separate, but interrelated challenge is that the 

extent of marshland inundation exhibits regular tem-

poral variability attributable to natural hydrological 

processes. The tidal wetland area is subject to notable 

alterations during storm events, as well as gradual 

shifts resulting from phenomena such as sea level 

rise and land subsidence. Unfortunately, the NAIP 

imagery, which serves as our primary data source for 

mapping the marsh communities, is collected specifi-

cally during the leaf-on season. As a result, the influ-

ence of tidal dynamics on model performance, 

particularly for accurately mapping low marsh areas, 

is neglected. To address this limitation, future endea-

vors could involve employing alternative high- 

resolution imagery sources with higher temporal fre-

quency. However, we note that the model perfor-

mance we present here is very promising, 

suggesting that – despite this limitation – NAIP- 

based modeling approaches may still be a strong 

pathway forward for modeling efforts focused on 

the United States. This is notable, as NAIP is a public 

good which managers or analysts can retrieve free of 

cost; similar products from commercial companies 

can easily cost tens to hundreds-of-thousands of dol-

lars depending on the scope of data required.

5.2. Comparison of results from different sources

In the context of binary marsh detection, the opti-

mal model achieves an overall accuracy of 95% 

when utilizing the multispectral seasonal imagery 

acquired from Sentinel-2. By employing the four- 

band high-resolution imagery obtained from NAIP, 

the model achieves an overall accuracy of 92%. 

The observed 3% increase in overall accuracy, 

attained through the utilization of Sentinel-2 ima-

gery, can likely be attributed to the information 

captured by the additional spectral bands that are 

not available in NAIP imagery. While there is 

a disparity in image patch sizes between 

Sentinel-2 (128 � 128) and NAIP (256 � 256) during 

the training phase, potentially resulting in varia-

tions in model performance, the effect of image 

size on classification accuracy is unknown and an 

avenue for future research.

Figure 9. A visualization of samples of images with the corresponding ground truth labels using high-resolution NAIP imagery. A) the 
raw NAIP imagery; B) annotations from TMI; C) model prediction of marsh presence (yellow pixels are marsh).
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However, it is important to note that the NAIP 

dataset offers a high-resolution data source that 

enables the measurement of the more detailed dis-

tribution of marsh communities within the study area. 

This provides valuable information that cannot be 

obtained from Sentinel-2 imagery alone. The combi-

nation of both resources for marsh community map-

ping allows for leveraging the benefits of both data 

sources, enhancing the accuracy and detail of the 

mapping results.

In the context of marsh community mapping, 

employing partial tuning on the testing dataset results 

in relatively poor performance, with an overall accuracy 

of 66% and an F1 score of 0.48. This lower performance 

can be attributed to the disparity in spatial resolution 

between the images used for model training and test-

ing. Specifically, the model is trained using a series of 

1-m resolution NAIP imagery, while evaluation is car-

ried out on 0.6-m resolution imagery obtained from the 

study area. Notably, recent research conducted by 

Thambawita et al. (2021) underscores the impact of 

image resolution on model performance, highlighting 

the tendency for decreased performance when gener-

alizing to spatial resolutions outside the scope of the 

training dataset.

To address this limitation, conducting full tuning 

using 0.6-m data collected from the study area leads 

to a significant improvement in performance, boost-

ing the overall accuracy from 66% to 85%. This obser-

vation may help guide future efforts: while using off- 

the-shelf models is not a suitable solution today, col-

lecting relatively small amounts of local data to fine- 

tune existing models to different locales is an effec-

tive pathway forward, even in the context of image 

resolution differences between the source and target 

modeling domains.

5.3. Feature importance – model interpretation

A frequent criticism of deep learning models high-

lights the difficulty of interpreting the relative impor-

tance of features in estimation. To explore the 

mechanisms driving the presented models, we apply 

Figure 10. Three random correctly classified test images are in the first column. The second, third, and fourth columns show the pixels/ 
features that contributed for and against classification into each of the three classes. For example, the upper-left image is a low marsh 
image that was predicted by the model most likely to be a low marsh, then background, then high marsh. Blue pixels represent areas 
that contribute against classification to a given class and red pixels represent areas that contribute toward. In this case, the Resnet-34 
based network for image classification was investigated.
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a SHAP visualization (SHapley Additive exPlanations 

visualization technique (Lundberg and Lee 2017)) to 

explore what factors contribute to the model’s cap-

ability to distinguish different marsh types. Figure 10 

provides an illustrative example of the factors influen-

cing the accurate classification of three images within 

the ResNet-34-based network. In Figure 10, example 

images are in the first column, while the second, third, 

and fourth columns show pixel-level features that 

either contribute positively (highlighted in red) or 

negatively (highlighted in blue) to classification into 

the respective categories indicated above each.

The visual examination of the SHAP examples, as 

illustrated in Figure 10, highlights the discernible 

influence of specific geographic characteristics on 

model classification. Notably, in Figures 10A,B, which 

pertain to the low marsh category, the boundary 

between water and land (i.e. marsh bank) exhibits 

a relatively high contribution compared to other sur-

face areas in identifying low marsh regions. This con-

tribution is represented by the presence of red- 

colored pixels along the shorelines. Relatedly, the 

final columns of the top two rows demonstrate that 

indicators along the shoreline exert a negative influ-

ence on the classification of high marsh. A more com-

plex example is shown in Figure 10C, in which the true 

class (high marsh) is identified, but the information 

used for distinguishing between high marsh and low 

marsh shows a more diffuse pattern, i.e. contextual 

information is being leveraged, rather than only pixels 

proximate to the shoreline.

In the SHAP evaluation, because the underlying 

images are not themselves segmented, the SHAP 

values are constructed on a pixel-by-pixel basis, and 

thus do not inherently have semantic meanings. This 

study would benefit from more robust explainability 

techniques that identify (e.g. through natural lan-

guage or generative interpretation) the most influen-

tial features affecting marsh classification.

5.4. Advantages as contrasted to alternative 

techniques for marsh monitoring in Virginia

Traditional tidal marsh mapping involves resource- 

intensive GPS field surveys and manual digitization 

from remotely sensed data. For instance, the most 

recent Tidal Marsh Inventory (TMI) for Virginia 

spanned a nine-year period from 2011 to 2019 

(CCRM 2019b). While the TMI provides 

a comprehensive inventory of tidal marsh locations, 

it lacks detailed information about the specific spatial 

distribution of marsh types, such as distinguishing 

between high marsh and low marsh. In contrast, this 

study explores the application of deep learning tech-

niques using high-resolution imagery. By leveraging 

these methods, we not only accurately map the 

marshland but also detect and differentiate marsh 

types, providing more detailed and comprehensive 

information compared to traditional approaches at 

significantly lower labor costs.

The proposed method in this study achieves an 

overall accuracy of 95% in binary marsh detection 

and 88% in marsh type classification for the Virginia 

region. The training process leverages an NVIDIA 

GPU Quadro RTX 6000 with 24 GB memory. After 

training, individual tiles (i.e. a 128 � 128 Sentinel-2 

image patch covering roughly 1,638,400m2) can be 

processed with estimates provided in less than 

a second. If these techniques can be made to gen-

eralize without local training information, the pro-

cessing time for an entire study area could be 

decreased from years to hours.

5.5. Limitations in the use of high-resolution 

imagery

5.5.1. Seasonality

Tidal marshes demonstrate unique spectral attributes 

across diverse seasons and tidal conditions. Moreover, 

the spectral signatures and attributes of identical marsh 

types can undergo variations as a result of the influence 

of tidal inundation. Researchers conducting similar stu-

dies typically adhere to specific guidelines when dealing 

with tidal influences for analysis. For instance, some opt 

for images captured during low tide periods (Alam and 

Hossain 2021), while others have developed specialized 

filtering techniques to isolate the tidal influence in marsh 

classification studies (Sun et al. 2021).

One of the notable strengths of the U-Net architecture 

is its capability to learn and represent a wide range of 

image features that are correlated with phenomena of 

interest, a characteristic that proves especially advanta-

geous in the context of regularly inundated coastal areas 

(Li et al. 2021). However, in the work presented in this 

paper, limitations arise from the utilization of publicly 

available high-resolution imagery, specifically NAIP, 

which lacks a high temporal coverage and repetitive 

data acquisition schedule. Consequently, the 
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classification of high marsh and low marsh from such 

imagery may not fully capture the nuances of seasonal 

variations and tidal influences. It is important to acknowl-

edge that this limitation is inherent to the use of publicly 

accessible high-resolution image sources today and can-

not be entirely circumvented using open-source infor-

mation. Although commercial high-resolution satellite 

imagery that also has temporal regularity is available 

from some private providers, not every government 

agency or environmental protection agency has the 

resources to make such purchases. Thus, we note that 

despite the inherent limitations of NAIP, the work pre-

sented in this study suggests that its use remains a viable 

pathway for mapping and modeling marsh types in 

fiscally constrained environments.

5.5.2. Shadows

Shadows stemming from cloud cover or tree canopies 

constitute an additional factor impacting the accurate 

classification of high-resolution imagery. Shaded 

regions frequently exhibit spectral characteristics 

that closely resemble those of water, primarily due 

to the influence of shadows cast by tree canopies, and 

can thus introduce significant errors into wetland 

detection algorithms. As the U-Net model is adept at 

identifying multiple features that may correlate with 

a feature of interest, one way to address this chal-

lenge is through the incorporation of images cap-

tured at different seasons or times.

However, in this study, we leverage NAIP, which 

provides only one image during a leaf-on period, 

suggesting that shadows may be a significant source 

of errors. In future studies, we suggest the integration 

of shadow-detection algorithms (i.e. Liasis and 

Stavrou (2016); Shi, Fang, and Zhao (2023)) into sup-

plementary pre-processing stages. More generally, 

a fruitful avenue for future inquiry could be the inte-

gration of such shadow detection and removal stra-

tegies into the U-Net model itself.

6. Conclusion

Efforts to map tidal marshes play a crucial role in 

coastal resource management, offering valuable 

insights into the trends and overall health of essential 

vegetation. These data serve as a valuable resource 

for scientists, coastal planners, and managers, helping 

them identify specific areas where resources can be 

allocated, facilitating the implementation of 

monitoring, protection, and restoration initiatives 

aimed at enhancing the resilience of these habitats.

Despite the importance of these data, current prac-

tices of tidal marsh inventory mapping face several lim-

itations, including the necessity for on-site data 

collection, manual image digitization, and restricted 

access to remote areas. These challenges can result in 

data products that are rarely – if ever – updated, 

a particularly detrimental factor in the context of 

dynamic processes like sea level rise. In this paper, our 

objective is to explore the capability of overhead ima-

gery and deep learning-based segmentation models to 

identify marsh types – specifically, the degree to 

which it is possible to distinguish between high 

marsh and low marsh when using mixed- 

resolution imagery. To achieve this, we leverage 

multispectral Sentinel-2 imagery and high spatial 

resolution NAIP imagery for the classification of 

marsh plant communities. This study presents 

a benchmark accuracy of 88% for deep learning- 

based marsh community classification in coastal 

Virginia, achieved at a spatial resolution of 60 cm. 

Limitations arise when using static high-resolution 

NAIP imagery, including challenges related to tidal 

inundation and the influence of shadows (see sec-

tion 5.5). The findings, proposed workflow, and 

methodology presented in this study offer 

a novel approach for regional governments to gen-

erate high-resolution tidal marsh inventories using 

only open-access imagery.

Notes

1. The B1, B9, and B10 bands were not leveraged, as they 

are mainly used for atmospheric correction.

2. Pretrained weights from ImageNet are used for 

initialization.

3. Results from a baseline model are also included by 

training a U-Net model with only the 103 image 

patches from Catlett Islands in Virginia, in order to 

establish the value of the more complex training pro-

cedure outlined in this piece; results from the UAV 

survey are presented in Table 6
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