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ABSTRACT

Coastal wetlands, especially tidal marshes, play a crucial role in supporting ecosystems and slowing
shoreline erosion. Accurate and cost-effective identification and classification of various marsh
types, such as high and low marshes, are important for effective coastal management and
conservation endeavors. However, mapping tidal marshes is challenging due to heterogeneous
coastal vegetation and dynamic tidal influences. In this study, we employ a deep learning
segmentation model to automate the identification and classification of tidal marsh communities
in coastal Virginia, USA, using seasonal, publicly available satellite and aerial images. This study
leverages the combined capabilities of Sentinel-2 and National Agriculture Imagery Program (NAIP)
imagery and a UNet architecture to accurately classify tidal marsh communities. We illustrate that
by leveraging features learned from data abundant regions and small quantities of high-quality
training data collected from the target region, an accuracy as high as 88% can be achieved in the
classification of marsh types, specifically high marsh and low marsh, at a spatial resolution of 0.6 m.
This study contributes to the field of marsh mapping by highlighting the potential of combining
multispectral satellite imagery and deep learning for accurate and efficient marsh type
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1. Introduction & literature review

Coastal salt marshes are among the world’s most
dynamic and productive ecosystems, providing sig-
nificant services to humans and the natural environ-
ment across the globe (Murray et al. 2019; Slagter
et al. 2020; Zedler and Kercher 2005). They are found
between terrestrial and nearshore aquatic environ-
ments along sheltered coasts and estuaries and pro-
vide a variety of ecological, economic, and societal
benefits (Barbier et al. 2011; Campbell, Wang, and Wu
2020). Low marsh, in many areas mostly covered by
Spartina alterniflora, is found below the mean high
tide line and is regularly inundated by tides (CCRM
2019a; Tiner 1987). High marsh, characterized by
a community of specialized emergent vegetation
(typically, Spartina patens and Distichlis spicata) that
tolerates irregular tidal inundation, is mostly located
above the Mean High Water (MHW) between the low
marsh and upland (CCRM 2019a; Tiner 1987). Both
high marsh and low marsh play an important role in

water purification, coastal hazard reduction,

protection against coastal erosion and storm surges,
carbon sequestration, and shoreline stabilization
(Feagin et al. 2010; Fisher and Acreman 2004; Li
et al. 2021). Despite the many benefits of tidal
marshes, they are currently considered one of the
most stressed ecosystems and are under significant
threat by natural and anthropogenic pressures such
as coastal development, sea level rise, pollution,
storm surge, and climate change (Barbier et al. 2011;
Campbell and Wang 2019; Miller, Rodriguez, and Bost
2021; Rodriguez and McKee 2021; Runfola et al. 2013;
Zedler and Kercher 2005). According to Murray et al.
(2019), 13,700km? of tidal wetlands were lost from
1999 to 2019 due to these stressors. The ability to
identify the spatial extent and distribution of tidal
marshes - and monitor how they change over
time — can aid our ability to understand how shifts
in species distribution and abundance may occur, as
well as to assess changes in the ecological services
that these ecosystems provide (Kennish 2001).
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Mapping and monitoring these shifts provide valu-
able insights for preservation and restoration plan-
ning and for prioritizing adaptation strategies (Carr,
Guntenspergen, and Kirwan 2020).

Coastal tidal marshes can cover large geographic
areas, be highly heterogeneous and dynamic, and are
usually difficult to access (Lamb, Tzortziou, and
McDonald 2019). These factors limit the ability to
inventory and monitor them from field data alone.
There are many publicly available and nationwide
data sources developed by various agencies in the
US providing geographic information and conditions
about wetlands. The most well-known data sources
are the National Wetland Inventory (NWI) (FWS 2023),
the National Land Cover Database (NLCD) (Dewitz
2021), and Coastal Change Analysis Program (C-CAP)
(NOAA 2023). The NWI, developed by the US Fish and
Wildlife Service dating back to the 1970s, was estab-
lished to provide biologists and other researchers
with information on the distribution and types of
wetlands to aid in conservation efforts. The NLCD
(released by the US Geological Survey (USGS)) and
C-CAP (released by the National Oceanic
Atmospheric Administration (NOAA)) also provide
regional and nationwide data on land cover and are
widely used to measure land cover changes over time
(Homer et al. 2020). However, these datasets are
broad in scope, and come with a number of limita-
tions. For example, the NWI is rarely updated and has
a number of known limitations such as underestima-
tion (Gale 2021; Matthews et al. 2016) and exclusion
of some important wetland habitats (i.e. Southern
Blue Ridge of Virginia (Stolt and Baker 1995)). While
NLCD and C-CAP are consistently released (2 to 3
years for NLCD and every 5 years for C-CAP), both of
them are derived from the Landsat program, thus
resulting in 30-m spatial resolution products; they
also do not provide detailed delineations between
marsh communities.

The conventional approach to surveying and map-
ping tidal marshes or wetlands typically involves
a GPS field survey to gather coordinates and attribute
information related to different marsh types, followed
by manual digitization of marshes from remotely
sensed data or available digital images (CCRM
2019b; FWS 2023). These processes are time-
consuming, resource-intensive, and necessitate
skilled technicians for accurate execution. Since the
1970s, satellite-based remote sensing has been

utilized to monitor and map the distribution of salt
marshes in US wetlands (Carter 1981). Due to satellite
sensors’ ability to collect information over large spa-
tial areas with high temporal frequency (e.g. Sentinel-
2 has a revisit time of 5 days at the equator; Landsat
revisit time is 8 days), they are widely used to observe
tidal marshes on the ground and monitor changes
over time. For example, Amani et al. (2022) utilized
the historical Landsat archives to detect wetlands and
monitor their changes throughout the entire Great
Lakes basin in Canada over the past four decades.
Previous studies have shown the advantages of
using multispectral imagery in tidal marsh mapping
as the different spectral bands contain different infor-
mation (e.g. infrared and near-infrared), resulting in
distinct spectral signatures for tidal marshes (Lamb,
Tzortziou, and McDonald 2019; Slagter et al. 2020).
However, in the highly heterogeneous coastal envir-
onment, it may be challenging to identify a mix of
marsh vegetation types using moderate resolution
imagery due to relatively similar spectral signatures
and co-occurrence of marshland community types
(Alam and Hossain 2021; Sun et al. 2021; Wang et al.
2019; Xie, Sha, and Yu 2008). In addition to utilizing
the spectral properties of each individual image band,
a diverse range of satellite imagery-based approaches
have been explored for monitoring different marsh
habitats. The integration of vegetation indices and
supplementary environmental data has proven to be
highly effective in extracting valuable information
and discerning key properties of marshes and wet-
lands (Khanna et al. 2013; Li et al. 2021; Sun,
Fagherazzi, and Liu 2018). In this context, the ability
to automatically delineate low marsh and high marsh
boundaries based on high-resolution imagery can
help to “fill in the gaps” between in-situ survey efforts,
as well as provide more temporally explicit informa-
tion on the status of tidal marshes.

Several works have focused on using supervised
and unsupervised machine learning algorithms such
as random forests, support vector machines, and
neural networks to classify land cover at the pixel
level in coastal regions (Amani et al. 2022; Carle,
Wang, and Sasser 2014; Lamb, Tzortziou, and
McDonald 2019; Slagter et al. 2020). Such approaches
have taken advantage of high spatial resolution satel-
lite data, vegetation indices, and other types of envir-
onmental ancillary data. However, mapping the
heterogeneous coastal environment at high



resolution with pixel-based classification is inconsis-
tent and usually generates “salt-and-pepper” noise in
the mapping result (Kelly et al. 2011). Object-based
image analysis (OBIA) has emerged as a promising
approach for vegetation mapping by grouping similar
pixels to delineate objects and subsequently classify-
ing them into distinct vegetation types (Campbell and
Wang 2019). However, the applicability of OBIA tech-
niques in large-scale mapping remains constrained
due to several inherent limitations and to date has
only achieved satisfactory results in small region stu-
dies (Gao and Mas 2008; Liu and Xia 2010; Whiteside,
Boggs, and Maier 2011).

Since 2012, satellite imagery analysis using deep
learning (DL) methods, specifically convolutional
neural networks (CNNs), has grown in popularity
(Krizhevsky, Sutskever, and Hinton 2012; Xie et al.
2016), and provides a potential solution to large-
scope marshland mapping and monitoring. Recent
examples of the use of CNNs with satellite imagery
include the detection of shoreline structures (Lv et al.
2023), roads (Brewer et al. 2021; Narayan et al. 2017),
marine debris (Kikaki et al. 2022), coastal vegetation
mapping (Li et al. 2021; Mainali et al. 2023), land use
mapping (Bhosle and Musande 2019), and other types
of analysis and applications (Brewer, Lin, and Runfola
2022; Goodman, BenYishay, and Runfola 2021;
Runfola et al. 2022; Runfola, Stefanidis, and Baier
2022). Such applications with overhead imagery
have driven research into modeling techniques
geared specifically for such data (Kang et al. 2022;
Mukherjee and Liu 2021; Runfola 2022; Tian et al.
2023). Concurrently, various techniques, including
the application of CNN with transfer learning, have
been employed to facilitate predictions in regions
with limited data availability and to improve model
performance across diverse domains, as corroborated
by previous research (Brewer et al. 2021; Chaudhuri
and Mishra 2023; Liu et al. 2021). As an example, the
utilization of Convolutional Neural Networks (CNN)
and the transfer learning approach by Chaudhuri
and Mishra (2023) resulted in an accuracy ranging
from 88% to 94% in the detection of aquatic invasive
plants in wetlands.

A selection of recent studies have shown
a significant improvement in accuracy when using
convolutional neural networks approaches for tidal
marsh mapping (Guirado et al. 2017; Lépez-Tapia
et al. 2021; Mainali et al. 2023; Morgan et al. 2022).

GISCIENCE & REMOTE SENSING (&) 3

However, previous work has mainly focused on the
extraction or mapping of wetland or tidal marshes; to
date, only one piece (Li et al. 2021) has explored the
differentiation of high and low marshes using deep
learning techniques. We build on this work, seeking to
(1) provide additional evidence as to the external
validity of these approaches by introducing a new
domain of study and independent validation dataset;
(2) explore the capability of these models with higher
resolution (0.6 m) imagery than has previously been
tested; and (3) assess the capability of a multi-stage
approach to fusing sentinel and NAIP information.
This paper is organized as follows: In Section 2, we
introduce our study area, imagery and annotation data;
in Section 3, we discuss our methodology and model
workflow. Next, we present our results in Section 4, and
in Section 5, we provide a brief discussion of the
potential of — and challenges to — deep learning
approaches to tidal marsh community mapping.

2. Data

This section offers an overview of the data employed
throughout the modeling process. Data preproces-
sing — notably, labeling datasets for use in modeling
stages - is detailed here. Additional information
regarding the specific methodologies employed
with the data inputs and outputs can be found in
the “Methods” section.

2.1. Study area

This study focuses on delineating high and low marsh
communities within tidal marshes along the coast of
the State of Virginia, USA. Our specific region of inter-
est is defined as a 5-km buffer surrounding the Virginia
shoreline (NOAA 2021), which is the major area marsh-
land located in VA (see Figure 1). The majority of this
coastal shoreline surrounds the Chesapeake Bay, an
ecologically significant estuary that contributes to an
annual economic output exceeding a hundred billion
US dollars (Najjar et al. 2010; Phillips and McGee 2014).

2.2. Imagery

2.2.1. Sentinel imagery

The Copernicus Sentinel-2 mission, launched in 2015
by the European Space Agency, provides high-
resolution, multi-spectral imagery to support land
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Sample tile 1

Sample tile 2

771 CUSP shoreline 5k buffer
] NAIP tiles geometry

[] VA boundary

[] US bounday

Figure 1. Study area: shoreline (NOAA 2021) buffered with 5km distance along the state of Virginia (Runfola et al. 2020). Grid represent
2018 NAIP image tiles which intersect with the study area. Two example high-resolution NAIP imagery tiles from the eastern Delmarva

Peninsula are also presented.

monitoring studies (ESA 2018). Sentinel-2 carries 13
spectral bands with spatial resolution ranging from
10 m to 60 m, and the imagery is collected in a 5-day
revisit cycle throughout the year. The 10 m RGB and
NIR band (B2, B3, B4, and B8), four 20 m visible and
near-infrared (VNIR) (B5, B6, B7, and B8a), and two short
wave infrared bands (B11, B12) are used in this study.
To ensure consistent resolution across all bands, all
bands originally provided at 20 m or 60 m spatial reso-
lution were resampled to a 10 m resolution utilizing
a bilinear resampling algorithm, implemented using
the rasterio package in Python 3.7. This process was
applied to each individual band. To account for intra-
annual variability in the data, a collection of imagery
was acquired for analysis, spanning different seasons in
the period of 2017-2018.

2.2.2. Aerial imagery

Imagery from the National Agriculture Imagery
Program (NAIP) dataset (collected by the United
States Department of Agriculture (USDA)) was

acquired in order to explore the value of high-
resolution imagery for marsh community delinea-
tion (OCM-Partners 2022). The NAIP dataset is an
aerial imagery database that has records starting in
2003 (temporal frequency of 2-3years), sponsored
through a collaboration between the United States
Geological Survey (USGS) and US state govern-
ments (OCM-Partners 2022). Historically, the
images were captured at 1-m spatial resolution
with 4-band spectral resolution (red, green, blue,
and near-infrared) across the continental United
States during the agricultural growth season.
Since 2018, the US state of Virginia - covering
the majority of our study area - additionally
began providing NAIP imagery with a resolution
of 0.6 m. In this study, we use both 1-m and
0.6-m resolution NAIP imagery, spanning from
2014 to 2018. Of note, NAIP imagery is acquired
during “leaf-on” time periods, leading to potential
seasonal biases in acquisitions; we discuss the



implications of this on model performance in the
discussion.

2.2.3. Other ancillary information

Beyond the visual band information, during the train-
ing and testing phases, we also incorporated two
satellite indices — NDVI and NDWI - into the network,
acknowledging their historical significance in wetland
classification (Sun, Fagherazzi, and Liu 2018).

2.3. Annotation resources

2.3.1. Tidal marsh inventory (TMI)

To label where marshes are located (i.e. the binary pre-
sence or absence of any type of marsh), we use the
Virginia Tidal Marsh Inventory (TMI) (CCRM 2019b). The
TMI is a comprehensive inventory of shoreline condi-
tions for tidal marsh localities. The inventory relies on
field workers to manually delineate marsh boundaries
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via a GPS-enabled system. Each marsh boundary is later
digitized using the latest available high-resolution ima-
gery from the Virginia Base Mapping Program.

2.3.2. Marsh habitat zonation map

The Marsh Habitat Zone Map (MHZM) (Correll et al.
2019; SHARP 2017) is used to label imagery for
high marsh and low marsh detection (expanding
on the binary marsh/no marsh identification pro-
vided by TMI). The MHZM is a raster layer denoting
salt marsh communities in the North Atlantic coast
of the US, from northern Maine to Virginia, at
a resolution of 3 m. It includes eight types of
marsh communities: high marsh, low marsh, salt
pool, terrestrial border, Phragmites australis (reed
grass), mudflat, open water, and upland. The
MHZM is subdivided into different ecological
zones representing various geographic locations.
For this study, zones that cover the eastern

Marsh Habitat Zonation Map
I High marsh

[ Low marsh

I Terrestrial border
[ Phragmites australis
I Mudflat

I Open water

I Upland

States Boundary

[ Delaware

[ Maryland

[ Virginia

Figure 2. Visualization of MHZM data covering the eastern Delmarva Peninsula and the eastern shore of the Chesapeake Bay.
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Delmarva Peninsula and the eastern shore of the
Chesapeake Bay are selected to initialize a deep
learning model for high marsh and low marsh
feature detection (Figure 2).

2.3.3. Chesapeake Bay National Estuarine Research
Reserve (CBNERR)

One challenge with both TMI and MHZM is the
relatively coarse granularity of the products (due
to their relatively broad geographic scopes). In
order to fine-tune and validate our model using
high-resolution, locally collected information, we
leverage landcover maps of two NOAA National
Estuarine Research Reserves (NERRs) in Virginia, the
Goodwin islands and Catlett islands (Lerberg 2021).
Both NERRs include detailed land cover types col-
lected from fieldwork and digitized from high-
resolution imagery by the Chesapeake Bay
National Estuarine Research Reserve in Virginia
(CBNERR-VA). The Goodwin islands, located on the
southern side of the mouth of the York River, are
a 777-acre archipelago of islands dominated by salt
marshes, inter-tidal flats, and shallow open estuarine
waters (Lerberg 2021). The salt marsh vegetation is
dominated by Spartina alterniflora (low marsh) and
Spartina patens (high marsh) and estuarine scrub/
shrub vegetation in the forested wetland ridges.
The Catlett Islands encompass 690 acres and display
a ridge-and-swale geomorphology. The islands con-
sist of multiple parallel ridges of forested wetland
hammocks, forested upland hammocks, emergent
wetlands, and tidal creeks surrounded by shallow
sub-tidal areas that once supported beds of sub-
merged aquatic vegetation. The smooth cordgrass
(Spartina alterniflora) prevails over much of the
marsh area along with salt grass (Distichlis spicata),
saltmeadow cordgrass (Spartina patens), black nee-
dlerush (Juncus roemerianus), and various halophytic
forbs (Lerberg 2021). In this study, the data from
Catlett Islands is used for model fine-tuning, while
the Goodwin Islands’ land cover is used to construct

Table 1. Data source summary.

a dataset for independent model validation (i.e.
information from the Goodwin Islands is only used
for validation, and never used in model training,
providing a completely external validation dataset).

2.3.4. Validation data acquisition from UAV flight
As an additional source for a fully independent valida-
tion of the presented models, two separate
Unmanned Aerial Vehicle (UAV) surveys were con-
ducted over Captain Sinclair and Maryus, Virginia, in
November of 2022. The target site aerial imagery was
acquired using DJI phantom-4 Multispectral drones.
Filming was conducted at a 100 m altitude, primarily
close to noon to minimize the impact of shadows. The
orthographic image was generated by mosaicking the
captured image tiles using Pix4Dmapper software
(PIX4D 2022). These two sets of aerial drone imagery
were employed to create an additional validation
dataset for model predictions.

2.4. Data labeling procedures

The modeling procedures outlined in section 3
require a number of labeled datasets (see Table 1 for
an overview of each model and the labeled datasets
employed and Table 2 for a more detailed description
of each tuned model):

(1) Data for Marsh/No Marsh identification. We
construct an independent model to identify the
location of the marshland before categorizing it
into high/low marsh; this requires labeled data
sourced from the Tidal Marsh Inventory (TMI),
and seasonal multi-band satellite imagery
sourced from Sentinel-2.

(2) Data for Partial Tuning. We implement an
initial tuning of a model based on ImageNet
(Deng et al. 2009) using data labeled with the
MHZM dataset for high marsh and low marsh
classification.

Model Name Label Source Label Data Type Imagery Imagery Resolution (meters) Image Patches (counts)
Marsh Binary Tidal Marsh Inventory (TMI) vector polygons Sentinel-2 (10m) 10 2837

Partical Tuning  Marsh Habitat Zonation Map (MHZM) raster (3-m) NAIP (1m) 1 10,060

Full Tuning Catlett Islands (CBNERR) vector polygons NAIP (0.6m) 0.6 103
Validation Goodwin Islands (CBNERR) vector polygons NAIP (0.6m) 0.6 106
Validation Captain Sinclair & Maryus (UAV) vector points UAV NA 300




Table 2. Data and model summary.

Validation Dataset

Training Dataset(s)

Imagery

Imagery Label Source

Label Source

Target Classification Description Weights Initialization

Model Name
Marsh

Sentinel-2 Tidal Marsh Inventory

(10m resolution)

Tidal Marsh Inventory

2837 Image Patches

U-Net w/ResNet34 ImageNet

Marsh/No marsh

(TMI; 30% Split)
Goodwin Islands

(TMI; 70% split)

Binary

106 Image Patches
(~6.9M 0.6m Pixels)

NAIP
(0.6m resolution) (CBNERR)

Catlett Islands
Random (CBNERR)

U-Net w/original
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(3) Data for Full Tuning. We implement
a secondary tuning using labeled data from
a local island, Catlett, sourced from CBNERR
for high marsh and low marsh classification.

(4) Data for Validation. Finally, we validate our
models using two independently labeled data-
set from (1) Goodwin Islands, sourced from
CBNERR, and (2) Captain Sinclair and Maryus,
Virginia, collected by UAV.

Each of our modeling stages requires independent
labeled datasets; the rest of this section details how
these labeled datasets were constructed.

2.4.1. Labeling to support marshland binary
modeling

The first stage of labeling is designed to provide
labels to train a model which establishes the bin-
ary presence or absence of marshland. To con-
struct these labels, we leverage 10-m resolution
seasonal Sentinel-2 imagery and TMI data for label-
ing. The re-sampled 10-m resolution Sentinel-2
imagery is first cropped into a series of 128 x 128
image patches, each of which has a dimension of
128 x 128 x 10 (with 10 representing the number
of bands). The TMI vector file is then overlapped
with each image patch to create its corresponding
labeling mask, with pixels covered by TMI bound-
aries labeled with value 1 representing marsh pre-
sence, and non-overlapped pixels labeled with
value 0 representing marsh absence. This process
results in 2,837 128 x 128 x 10 image patches that
are used to train and test the binary marsh detec-
tion model.

2.4.2. Labeling to support partial tuning

The second stage of labeling is implemented with
1-m resolution NAIP imagery and MHZM data to
construct a dataset for marsh community classifica-
tion (specifically, high and low marshes). To improve
compatibility with NAIP, the MHZM was first re-
sampled from 3-m resolution to 1-m resolution
using the nearest neighbor method. The re-
sampled MHZM raster layer is then overlapped
with the 1-m resolution NAIP imagery to generate
a label mask; community types other than high
marsh and low marsh are grouped into one back-
ground category, thus yielding a raster layer, with
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labels including high marsh, low marsh, and
“background.”

After creating the labeled mask layer, a series of
256 x 256 image patches are generated from the
mask labels and the corresponding NAIP imagery. To
ensure a reasonable number of sampling locations
representing the two marsh types, we retained
image patches if the 256 x 256 pixel window con-
tained at least 25% pixels marked either high marsh
or low marsh type pixels, resulting in a dataset of
10,060 4 x 256 x 256 (4 is the number of image
bands) tiles covering the eastern shore of the
Chesapeake Bay and eastern Delmarva peninsula.
This data is used to construct training datasets for
the partial tuning model to learn features from high
marsh, low marsh, and no marsh types.

2.4.3. Labeling to support full tuning

The third stage of labeling leverages 0.6-m resolution
NAIP imagery from 2018 and high-resolution land
cover maps from the Catlett Islands in VA. These
images are used to further fine-tune the model. The
NAIP tiles that cover the Catlett Islands were first
retrieved and cropped into a series of 4 x 256 x 256
image patches, and then these image patches are
overlapped with the land cover types from CBNERRs
to create the paired label patches. Within the label
patches, all pixels that are not labeled as high marsh
or low marsh are labeled as background (i.e. non-
marsh). This process results in 103 256 x 256 image
patch pairs for model fine-tuning, and we refer to
these image patches generated from Catlett Islands
as the full-tuning dataset in later sections.

2.4.4. Labeling to support external validation

Finally, to externally validate the model, we leverage
two independently collected datasets. The first of
these is a stand-alone dataset from Goodwin Islands
in VA. The same image processing procedures applied
to Catlett Islands (our full tuning dataset) are also
applied to the land cover maps of Goodwin Islands
and NAIP imagery to generate patch pairs for valida-
tion. The validation image patches include 106
4 x 256 x 256 tiles covering Goodwin Islands, which
includes 1,260,771 0.6-m resolution pixels represent-
ing high marsh, 1,277,593 pixels representing low
marsh, and 4,408,452 pixels representing background.
We refer to these image patches generated from the

Goodwin Islands as the validation dataset in later
sections.

The second independent validation dataset we
employ is generated through visual interpretation of
UAV imagery collected from Captain Sinclair and
Maryus, Virginia. Initially, we identified and digitized
a series of polygons representing land cover cate-
gories such as Juncus roemerianus, Spartina alterni-
flora, forest, water, and built-up areas. Subsequently,
we randomly generated points within these digitized
polygons using the open-source software QGIS (QGIS
2023). Each point underwent further interpretation to
ensure data quality and was categorized into one of
the three classes: high marsh, low marsh, or back-
ground. This process yielded a total of 300 points,
comprising 158 for high marsh, 95 for low marsh,
and 47 for background points. These points are used
in conjunction with 106 validation image patches to
generate model estimates and provide another exter-
nal measurement of validity.

3. Methods

This study relies on a common procedure in the deep
learning literature, transfer learning, which seeks to
improve the performance of target models within
specific domains by harnessing knowledge derived
from distinct yet related source domains. This
approach mitigates the need for an extensive
amount of target domain data to construct effective
target models (Zhuang et al. 2020). In this work, we
train a U-Net model using a domain which has
a large amount of information (data from the
Delmarva Peninsula [MHZM]), and then “transfer”
the weights learned in that region to our target
domain by fully-tuning the model using a much
smaller dataset from the Catlett Island (CBNERR).
The overall workflow of this study is implemented
in the following stages:

(1) Leveraging the seasonal Sentinel imagery
(Section 2.2.1) and digitized labels from the
TMI, a binary (marsh vs. non-marsh) detection
model, My, was trained over the entirety of
coastal Virginia.

(2) Leveraging NAIP imagery and label data from
the MHZM, model Mg was trained for the detec-
tion of high vs. low marsh. This step is referred
to as partial tuning.



(3) Initialization with the weights learned from par-
tial tuning, Mg is further fine-tuned with the in-
situ high-resolution CBNERR data, generating
a new model Mc. This step is referred to as full
tuning.

(4) Within areas identified as marshland by model
My, model Mc is implemented to discriminate
between low and high marsh. This step is
referred to as the masked model.

3.1. Models

The primary algorithm used in this analysis is the
U-Net, which is a well-established, relatively light-
weight deep learning algorithm for semantic seg-
mentation based on convolutional network
architectures (Ronneberger, Fischer, and Brox
2015). The algorithm’s architecture includes two
parts: down-sampling and up-sampling, also called
the encoder and decoder. The encoder extracts
varying resolution feature maps through a series
of convolutional, rectified linear units (ReLU), and
max-pooling layers. The decoder stage contains
and combines (a) each feature map from the
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down-sampling process, and (b) spatial information
through an up-sampling and concatenation pro-
cess (Figure 3). The data flow of down-sampling
and up-sampling forms a U-shaped architecture,
and the output layer maintains the same resolution
as the input layers.

3.1.1. Binary marsh modeling

In the binary marsh modeling M, stage, an U-Net
model architecture with a Resnet-34 convolutional
model is implemented to handle the encoding and
decoding tasks. The model is initialized with weights
pretrained with ImageNet (Deng et al. 2009). It takes
70% of the 2837 12 x 128 x 128 (10 spectral bands,
NDVI and NDWI) image patches from Sentinel-2, and
generates two types of pixel-level outputs: marsh and
non-marsh. 30% of the image patches are later used
to validate the model prediction accuracy (Abdi 2020;
Campos-Taberner et al. 2020).

3.1.2. Partial tuning modeling

Once the location of the marshland is identified using
model M,, we seek to further classify the marsh as
either “high” or “low”; the model presented in this
subsection (Mg) provides the baseline for this step.

32 16 16 4

256 X 256
Output masks

4
e
128 X 128

128

2
| -

Conv 3X3, Batch

256 128 L o Normalization, ReLU

Max-pooling 2X2

4
L
32X 32

26 Up-conv 2X2

16 X 16

Concatenation

H Feature maps

Figure 3. The U-Net architecture (example of a 3-band input image with 256 x 256 pixel-size) (Lv et al. 2023). The boxes indicate the
feature maps at each layer, and the number on the top of each feature map shows the depth of feature map (channel). Numbers on
the right side of each feature map are image/feature maps dimension.
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Model Mg is comprised of a separate U-Net model
with Resnet-34 as backbone.? Network Mg is then
trained with 70% of the image patches from NAIP
and MHZM (7042 patches). In this application, the
model classifies each pixel as one of three types:
high marsh, low marsh, and background (non-
marsh).

3.1.3. Full tuning modeling

In the full tuning (M¢) model, a Resnet-34 U-Net is
initialized using the optimal weights found in
model Mg, and further trained with imagery col-
lected from ground-truth by CBNERR (Catlett
Islands). As in model Mg, each pixel is classified
as high marsh, low marsh, or background. In this
stage, all 103 6 x 256 x 256 image patches from
CBNERR are used to train the model. The best
performing model is saved for further investigation
and validation.

3.1.4. Masked modeling

The masked modeling stage is a combination of the
binary marsh detection model M, and the full tuning
model M¢ results. In this stage, the M, is first leveraged
to extract locations where the marshland has been
detected. Within the areas identified as marshland,
the Mc is then leveraged to further classify the high-
resolution NAIP imagery into different marsh types.

3.2. Data augmentation

In each training stage, we employ data augmentation
techniques to enhance the standardization of the model
input and augment the variability of the data observed
by the model. To achieve standardization, we normal-
ized the multispectral band within each image patch by
dividing each band value by the maximum band value,
resulting in a range between 0 and 1 for each band. As
part of the data augmentation process, we generated
the NDVI and NDWI bands for each image patch prior to
inputting them into the model. Consequently, a total of
six bands were used as inputs for model training, valida-
tion, and testing when employing NAIP imagery. In
order to introduce greater diversity within the training
images, we also applied morphological augmentation
by randomly rotating the training images and their
corresponding labels by 0, 90, 180, or 270 degrees.

3.3. Optimization & loss

In this study, we implement a multi-class cross-
entropy loss function to evaluate the algorithm per-
formance for each model described in section 3. The
loss function is defined as:

N
loss = —

Yo.clog(po.c) M
c=1

where N is the total number of mapping objects (N =2
in the model M, detecting marsh from Sentinel ima-
gery, and N =3 in Mg and Mc¢ with high and low marsh
detection) and y is the binary indicator (0 or 1) if class
label c is the correct classification for observation, o. p
is the predicted probability observation o is of class c.
Due to the imbalance of our pixel-level data distribu-
tion, a weighting scheme is used in the training pro-
cess, in which classes are weighted according to their
representation in the labeled data (Kikaki et al. 2022;
Paszke et al. 2016):

1
Wetgss = —F——— )
class In(c + pclass)
where W, is a multiplicative weight applied to the
loss function for observations of a given class, c is
a hyper-parameter set to 1.03 (following past litera-
ture; see Kikaki et al. (2022)), and

o Npixels of class
Pclass = (3)
Ntotal pixels

where Niotaipixels includes background pixels. During
the training process, the Adam optimization is used to
minimize the cross-entropy loss with an initial learn-
ing rate of 0.001. The learning rate is reduced by
a factor of 10 when the models do not show any
progress in validation performance for five consecu-
tive epochs. To help avoid over-fitting, we use the
best-scoring model after early stopping conditioned
on no improvement in validation accuracy for 10
consecutive epochs. The overall workflow of the
model process can be seen in Figure 4.

3.4. Accuracy assessment

We implement a wide range of validation metrics to
assess pixel-level semantic segmentation perfor-
mance. First and foremost, we present overall accu-
racy (Equation (4)) to give guidance on the overall
performance a user might expect. In addition, we
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Figure 4. The workflow of the mapping process.

evaluate the precision (Equation (5)) and recall
(Equation (6)) at the pixel level for each class and
the overall F; score (Congalton and Green 2019;
Rwanga and Ndambuki 2017).

TP+ TN
TP+ TN + FP + FN

Accuracy = 4)

TP

P . . _
recision 7_”3 TFP

(5)

TP

TP+ N ©)

Recall =

Fo_ 2 x Precision * Recall
'™ " Precision + Recall

(7)

In Equations (4), (5), (6) and (7), TP (true positive)
represents the number of pixels in which the model
correctly predicts ground truth, TN (true negative)
represents outcomes in which the model correctly
predicts cases that are different than ground truth,
FP (false positive) is predictions to a class that do
actually not belong to that class, and FN (false

negative) are the number of predictions belonging
to a class but were predicted to be in a different
class (Rwanga and Ndambuki 2017). The F; score is
a harmonic mean between precision and recall.
Finally, a cross-validation matrix (Congalton and
Green 2019) for each model is additionally generated
to compare the prediction accuracy for each type of

marsh class.

4. Results & analysis

The results of binary detection of tidal marshes with
Sentinel imagery are presented in Table 3; the results
of the classification of the marsh community (high
marsh vs. low marsh) are presented in Table 5. We
further explain each result in the following sections.

4.1. Model performance of sentinel marsh
detection

Table 3 provides a pixel-level accuracy assess-
ment, based on a randomized 30% split of

Table 3. Accuracy assessment of binary marsh detection with Sentinel imagery and TMI

(pixel-level).
Prediction Classes
Non-marsh Marsh Sum Recall (%)
D Non-marsh 11,664,832 541,468 12,206,300 0.96
§ Marsh 203,882 1,548,986 1,752,868 0.88
E Sum 11,868,714 2,090,454
< Precision 0.98 0.74
< Overall Accuracy 0.95 Overall F; 0.89
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Table 4. Accuracy assessment of binary marsh detection with NAIP imagery and TMI

(pixel-level).
Prediction Classes
Non-marsh Marsh Sum Recall (%)
4 No-marsh 54,909,848 3,996,778 58,906,626 0.93
ﬁ Marsh 2,025,841 9,977,485 12,003,326 0.83
E Sum 56,935,689 13,974,263
< Precision 0.96 0.71
< Overall Accuracy 0.92 Overall F; 0.86

Table 5. Accuracy assessment results tested using all data from the Goodwin Islands. Four prediction results are presented: baseline
model, direct prediction from partial tuning, full tuning, and masked modeling. Each tested class is presented with two statistics:
precision and recall. Each model is presented with overall accuracy and F; score.

Background High Marsh Low Marsh Overall Accuracy Fy

Baseline Precision 0.99 0.31 0.5 0.63 0.52
Recall 0.77 0.98 0.15

Partial Tuning Precision 0.98 0.34 0.47 0.66 0.48
Recall 0.88 0.95 0.01

Full Tuning Precision 0.99 0.71 0.66 0.85 0.81
Recall 0.84 0.91 0.82

Masked Modeling Precision 0.96 0.77 0.74 0.88 0.83
Recall 0.91 0.85 0.79

Sentinel data withheld for validation. Out of the
2,090,454 pixels predicted as marsh by the model,
1,548,986 pixels are marsh according to the vali-
dation data. This accounts for 74% of the pixels
labeled as marsh. Out of the total 1,752,868 pixels
labeled as marsh in the ground truth data, the
model correctly identifies 1,548,986 of them as
marsh, which corresponds to 88%. The model

§

Pixel Counts

EEEE

Background

achieves an overall accuracy of 95% and an over-
all F; score of 0.89.

To test whether spatial resolution would improve
or impede the model performance in marsh detec-
tion, we construct another dataset with the
0.6-m resolution NAIP and TMI labels. The results
(based on a withheld subset of 30% of the data) are
presented in Table 4. The prediction accuracy for the

High Marsh Low Marsh

Axis Title

M Training W Testing

Figure 5. The distribution of data used in full-tuning and validation. The blue bars are the number of pixels counts calculated from the
full-tuning dataset, and the orange bars are pixel counts from the validation dataset (in Section 2.3).



marsh and non-marsh detections is 71% and 96%,
respectively. The recalls for the two classes - marsh
and non-marsh — are 83% and 93%. Using high spatial
resolution NAIP imagery, the model achieves 92%
overall accuracy and an overall F; score of 0.86 (a
small decrease from the sentinel models presented
in Table 3).

4.2. Model performance and accuracy of marsh
community mapping

Here, we present the results of our models designed
to distinguish between high and low marsh (as
described in sections 3.1.2, 3.1.3 and 3.1.4).

The models are each initially tested using a stand-
alone testing dataset representing the Goodwin Islands
(an area intentionally omitted from any training stage;
see section 2.3); later in this section we provide results
from an additional, independent UAV survey. Results
from the Goodwin Islands are summarized in Table 5.

The first model presented in Table 5 (the “Baseline
Model”) provides a baseline as to the accuracy that
might be expected if a researcher only used one

- Low Marsh
- High Marsh
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locally collected dataset (Catlett Islands) to tune the
model. As anticipated, this approach has poor perfor-
mance in predicting both high marsh and low marsh,
with 31% and 50% precision, respectively. Although
the prediction accuracy for the non-marsh type (back-
ground) is 99%, the recall is only 77%, meaning 23%
of the background pixels in the ground truth are mis-
classified as marsh (i.e. overestimating the amount of
marshland in the prediction). Considering that the
number of background pixels in the testing dataset
make up more than 50% of the entire testing set (see
Figure 5), this is a large discrepancy at the pixel level.
This baseline method achieves 63% overall accuracy
and an overall F; score of 0.52.

The second model presented in Table 5 - the “Partial
Tuning” model - is also tested using the stand-alone
validation dataset. In this model, we are training based
on the relatively coarse-resolution, but data rich Marsh
Habitation Zonation Map (MHZM), but without any
further training with in-situ collected data. Similar to
the baseline model, partial tuning results in relatively
poor performance in predicting all three categories,
with a 66% overall accuracy and a F; score of 0.48.

(c) (d)

Figure 6. A visualization of model prediction in a selected area in the validation region (Goodwin Islands). A) the raw NAIP imagery
(0.6-m spatial resolution); B) ground truth label; C) prediction output of full tuning model; D) prediction output of masked model.
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Table 6. A summary of the accuracy assessment results obtained from the
masked modeling approach using UAV-interpreted data collected in

Captain Sinclair and Maryus, Virginia.

Precision Recall F1 Total
Background 0.98 0.89 0.93 47
High Marsh 0.73 0.98 0.84 158
Low Marsh 0.93 043 0.59 95
Overall Accuracy 0.79

The next model presented in Table 5 - the “full
tuning” model - sought to establish the improvement
in accuracy that may be possible given the in-situ
collection of small amounts of high-quality data. The
full tuning model improves the model performance
dramatically, with 22% and 29% improvement in
overall accuracy and F; score, respectively. The pre-
diction accuracy of high marsh and low marsh
increased from 0.31 to 0.71, and from 0.50 to 0.66,
respectively. Although there is a slight decrease in
recall in high marsh prediction (from 0.98 to 0.91),
the recall of low marsh is increased from 0.15 to
0.82. The recall value for the background increased
7% (from 77% to 84%). This leads to a significant

Figure 7. Prediction error of each patch (Goodwin Islands).

improvement in the model’s overall performance on
each land cover category.

In the final model implementation (“masked
model”), we first leverage the binary marsh model to
mask regions for consideration, and then apply the
full tuning model for high and low marsh identifica-
tion to the resultant area. This model improves the
overall accuracy by 3% and F; score by 2%. The model
precision in predicting high marsh and low marsh
increased by 6% and 8%, respectively.

Overall, there is a 25% improvement in overall
accuracy and 31% improvement in F; score between
the baseline model and the final masked model
(with full tuning and marsh presence detection).

Prediction Error
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I 0.35-0.408
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Figure 8. The relationship between prediction error and the
percentage of no marsh type of images patches in the validation
data.

The difference in precision is 46% and 24% for high
marsh and low marsh, respectively. No particular
class correlates closely with overall performance.
Figure 6 shows the comparison of different predic-
tion results, compared with ground truth labeling.

To validate the robustness of the model predic-
tions, Table 6 summarizes the results for data inter-
preted from UAV imagery using the masked
modeling technique. The model exhibits an overall
accuracy of 79% in predicting these samples. The
model achieves a prediction accuracy of 73% and
93% for high marsh and low marsh, respectively.
Notably, the recall value of high marsh is 98%,
while the recall value of low marsh is 43%.

4.3. Error distribution across space

To explore the potential bias in the spatial distri-
bution of errors (and thus provide a better under-
standing of which features may correlate with
accuracy or inaccuracy), we generated a spatially
gridded metric of error, which is presented in
Figure 7. Each grid cell in this figure shows the
overall percentage of misclassified pixels in the
underlying validation dataset. As this figure illus-
trates, in regions with more complex land cover
mixtures, the prediction error tends to be higher
compared to regions with more homogeneous or
distinct land cover types. We also find
a relationship between an increased percentage
of non-marsh in image patches and the total
amount of error; broadly, as non-marsh areas
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increase, error tends to decrease, as shown in
Figure 8.

5. Discussion

The overall results of this study illustrate that lever-
aging features learned from locations where data are
abundant, the classification accuracy of marsh types -
high marsh, low marsh, and non-marsh - can reach
approximately 85% in the Virginia study area. The
combination of data from multiple sources with var-
ious spatial resolutions - Sentinel and NAIP - can
improve the overall accuracy of marsh community
classification to 88%. Notably, this accuracy is a pixel-
level metric, i.e. the number of approximately 60-cm
pixels that are classified correctly. In this section, we
explore model performance and highlight a number
of directions for future research.

5.1. Discrepancies across data sources

One significant issue in the approach we present in this
paper is the temporal mismatch between the image
and annotation data for marsh detection. The binary
marsh label data (TMI) were manually collected from
high-resolution images between 2010 and 2018, vary-
ing across different sites. In contrast, the input imagery
consists of data from 2017 to 2018 (Sentinel with dif-
ferent seasonal coverages) and 2018 (NAIP collected
during leaf-on periods). Consequently, in some cases,
the model attempts to correlate the state of marshland
at one point in time with images from another time.
This temporal mismatch can have a negative effect on
model performance due to changes wetlands undergo
over time, due to both natural and human-driven pro-
cesses (Mainali et al. 2023). This is illustrated in Figure 9,
where column (B) displays tidal marsh labels from TMI;
as can be seen, these labels do not precisely align with
the ground truth shown in the imagery in column (A).
Given this discrepancy, it is possible that our validation
understates the overall accuracy of the model’s perfor-
mance because the validation and calibration data
itself contain apparent errors, thus influencing the
overall model performance reported earlier.
Interestingly, models such as those presented in this
piece could potentially be employed to retrospectively
improve long-term records such as those provided
by TMI.
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Figure 9. A visualization of samples of images with the corresponding ground truth labels using high-resolution NAIP imagery. A) the
raw NAIP imagery; B) annotations from TMI; C) model prediction of marsh presence (yellow pixels are marsh).

A separate, but interrelated challenge is that the
extent of marshland inundation exhibits regular tem-
poral variability attributable to natural hydrological
processes. The tidal wetland area is subject to notable
alterations during storm events, as well as gradual
shifts resulting from phenomena such as sea level
rise and land subsidence. Unfortunately, the NAIP
imagery, which serves as our primary data source for
mapping the marsh communities, is collected specifi-
cally during the leaf-on season. As a result, the influ-
ence of tidal dynamics on model performance,
particularly for accurately mapping low marsh areas,
is neglected. To address this limitation, future endea-
vors could involve employing alternative high-
resolution imagery sources with higher temporal fre-
quency. However, we note that the model perfor-
mance we present here is very promising,
suggesting that — despite this limitation - NAIP-
based modeling approaches may still be a strong
pathway forward for modeling efforts focused on
the United States. This is notable, as NAIP is a public
good which managers or analysts can retrieve free of
cost; similar products from commercial companies

can easily cost tens to hundreds-of-thousands of dol-
lars depending on the scope of data required.

5.2. Comparison of results from different sources

In the context of binary marsh detection, the opti-
mal model achieves an overall accuracy of 95%
when utilizing the multispectral seasonal imagery
acquired from Sentinel-2. By employing the four-
band high-resolution imagery obtained from NAIP,
the model achieves an overall accuracy of 92%.
The observed 3% increase in overall accuracy,
attained through the utilization of Sentinel-2 ima-
gery, can likely be attributed to the information
captured by the additional spectral bands that are
not available in NAIP imagery. While there is
a disparity in image patch sizes between
Sentinel-2 (128 x 128) and NAIP (256 x 256) during
the training phase, potentially resulting in varia-
tions in model performance, the effect of image
size on classification accuracy is unknown and an
avenue for future research.



However, it is important to note that the NAIP
dataset offers a high-resolution data source that
enables the measurement of the more detailed dis-
tribution of marsh communities within the study area.
This provides valuable information that cannot be
obtained from Sentinel-2 imagery alone. The combi-
nation of both resources for marsh community map-
ping allows for leveraging the benefits of both data
sources, enhancing the accuracy and detail of the
mapping results.

In the context of marsh community mapping,
employing partial tuning on the testing dataset results
in relatively poor performance, with an overall accuracy
of 66% and an F1 score of 0.48. This lower performance
can be attributed to the disparity in spatial resolution
between the images used for model training and test-
ing. Specifically, the model is trained using a series of
1-m resolution NAIP imagery, while evaluation is car-
ried out on 0.6-m resolution imagery obtained from the
study area. Notably, recent research conducted by
Thambawita et al. (2021) underscores the impact of
image resolution on model performance, highlighting

Low Marsh
(a)
Low Marsh
(b)
High Marsh
-0.06 -0.04 -0.02
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the tendency for decreased performance when gener-
alizing to spatial resolutions outside the scope of the
training dataset.

To address this limitation, conducting full tuning
using 0.6-m data collected from the study area leads
to a significant improvement in performance, boost-
ing the overall accuracy from 66% to 85%. This obser-
vation may help guide future efforts: while using off-
the-shelf models is not a suitable solution today, col-
lecting relatively small amounts of local data to fine-
tune existing models to different locales is an effec-
tive pathway forward, even in the context of image
resolution differences between the source and target
modeling domains.

5.3. Feature importance - model interpretation

A frequent criticism of deep learning models high-
lights the difficulty of interpreting the relative impor-
tance of features in estimation. To explore the
mechanisms driving the presented models, we apply

Background High Marsh
Background High Marsh
Low Marsh Background
o i R
SHAP value

Figure 10. Three random correctly classified test images are in the first column. The second, third, and fourth columns show the pixels/
features that contributed for and against classification into each of the three classes. For example, the upper-left image is a low marsh
image that was predicted by the model most likely to be a low marsh, then background, then high marsh. Blue pixels represent areas
that contribute against classification to a given class and red pixels represent areas that contribute toward. In this case, the Resnet-34

based network for image classification was investigated.
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a SHAP visualization (SHapley Additive exPlanations
visualization technique (Lundberg and Lee 2017)) to
explore what factors contribute to the model’s cap-
ability to distinguish different marsh types. Figure 10
provides an illustrative example of the factors influen-
cing the accurate classification of three images within
the ResNet-34-based network. In Figure 10, example
images are in the first column, while the second, third,
and fourth columns show pixel-level features that
either contribute positively (highlighted in red) or
negatively (highlighted in blue) to classification into
the respective categories indicated above each.

The visual examination of the SHAP examples, as
illustrated in Figure 10, highlights the discernible
influence of specific geographic characteristics on
model classification. Notably, in Figures 10A,B, which
pertain to the low marsh category, the boundary
between water and land (i.e. marsh bank) exhibits
a relatively high contribution compared to other sur-
face areas in identifying low marsh regions. This con-
tribution is represented by the presence of red-
colored pixels along the shorelines. Relatedly, the
final columns of the top two rows demonstrate that
indicators along the shoreline exert a negative influ-
ence on the classification of high marsh. A more com-
plex example is shown in Figure 10C, in which the true
class (high marsh) is identified, but the information
used for distinguishing between high marsh and low
marsh shows a more diffuse pattern, i.e. contextual
information is being leveraged, rather than only pixels
proximate to the shoreline.

In the SHAP evaluation, because the underlying
images are not themselves segmented, the SHAP
values are constructed on a pixel-by-pixel basis, and
thus do not inherently have semantic meanings. This
study would benefit from more robust explainability
techniques that identify (e.g. through natural lan-
guage or generative interpretation) the most influen-
tial features affecting marsh classification.

5.4. Advantages as contrasted to alternative
techniques for marsh monitoring in Virginia

Traditional tidal marsh mapping involves resource-
intensive GPS field surveys and manual digitization
from remotely sensed data. For instance, the most
recent Tidal Marsh Inventory (TMI) for Virginia
spanned a nine-year period from 2011 to 2019
(CCRM  2019b). While the TMI provides

a comprehensive inventory of tidal marsh locations,
it lacks detailed information about the specific spatial
distribution of marsh types, such as distinguishing
between high marsh and low marsh. In contrast, this
study explores the application of deep learning tech-
niques using high-resolution imagery. By leveraging
these methods, we not only accurately map the
marshland but also detect and differentiate marsh
types, providing more detailed and comprehensive
information compared to traditional approaches at
significantly lower labor costs.

The proposed method in this study achieves an
overall accuracy of 95% in binary marsh detection
and 88% in marsh type classification for the Virginia
region. The training process leverages an NVIDIA
GPU Quadro RTX 6000 with 24 GB memory. After
training, individual tiles (i.e. a 128 x 128 Sentinel-2
image patch covering roughly 1,638,400m?) can be
processed with estimates provided in less than
a second. If these techniques can be made to gen-
eralize without local training information, the pro-
cessing time for an entire study area could be
decreased from years to hours.

5.5. Limitations in the use of high-resolution
imagery

5.5.1. Seasonality

Tidal marshes demonstrate unique spectral attributes
across diverse seasons and tidal conditions. Moreover,
the spectral signatures and attributes of identical marsh
types can undergo variations as a result of the influence
of tidal inundation. Researchers conducting similar stu-
dies typically adhere to specific guidelines when dealing
with tidal influences for analysis. For instance, some opt
for images captured during low tide periods (Alam and
Hossain 2021), while others have developed specialized
filtering techniques to isolate the tidal influence in marsh
classification studies (Sun et al. 2021).

One of the notable strengths of the U-Net architecture
is its capability to learn and represent a wide range of
image features that are correlated with phenomena of
interest, a characteristic that proves especially advanta-
geous in the context of regularly inundated coastal areas
(Li et al. 2021). However, in the work presented in this
paper, limitations arise from the utilization of publicly
available high-resolution imagery, specifically NAIP,
which lacks a high temporal coverage and repetitive
data acquisition schedule. Consequently, the



classification of high marsh and low marsh from such
imagery may not fully capture the nuances of seasonal
variations and tidal influences. It is important to acknowl-
edge that this limitation is inherent to the use of publicly
accessible high-resolution image sources today and can-
not be entirely circumvented using open-source infor-
mation. Although commercial high-resolution satellite
imagery that also has temporal regularity is available
from some private providers, not every government
agency or environmental protection agency has the
resources to make such purchases. Thus, we note that
despite the inherent limitations of NAIP, the work pre-
sented in this study suggests that its use remains a viable
pathway for mapping and modeling marsh types in
fiscally constrained environments.

5.5.2. Shadows

Shadows stemming from cloud cover or tree canopies
constitute an additional factor impacting the accurate
classification of high-resolution imagery. Shaded
regions frequently exhibit spectral characteristics
that closely resemble those of water, primarily due
to the influence of shadows cast by tree canopies, and
can thus introduce significant errors into wetland
detection algorithms. As the U-Net model is adept at
identifying multiple features that may correlate with
a feature of interest, one way to address this chal-
lenge is through the incorporation of images cap-
tured at different seasons or times.

However, in this study, we leverage NAIP, which
provides only one image during a leaf-on period,
suggesting that shadows may be a significant source
of errors. In future studies, we suggest the integration
of shadow-detection algorithms (i.e. Liasis and
Stavrou (2016); Shi, Fang, and Zhao (2023)) into sup-
plementary pre-processing stages. More generally,
a fruitful avenue for future inquiry could be the inte-
gration of such shadow detection and removal stra-
tegies into the U-Net model itself.

6. Conclusion

Efforts to map tidal marshes play a crucial role in
coastal resource management, offering valuable
insights into the trends and overall health of essential
vegetation. These data serve as a valuable resource
for scientists, coastal planners, and managers, helping
them identify specific areas where resources can be
allocated, facilitating the implementation of
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monitoring, protection, and restoration initiatives
aimed at enhancing the resilience of these habitats.

Despite the importance of these data, current prac-
tices of tidal marsh inventory mapping face several lim-
itations, including the necessity for on-site data
collection, manual image digitization, and restricted
access to remote areas. These challenges can result in
data products that are rarely - if ever — updated,
a particularly detrimental factor in the context of
dynamic processes like sea level rise. In this paper, our
objective is to explore the capability of overhead ima-
gery and deep learning-based segmentation models to
identify marsh types - specifically, the degree to
which it is possible to distinguish between high
marsh and low marsh when using mixed-
resolution imagery. To achieve this, we leverage
multispectral Sentinel-2 imagery and high spatial
resolution NAIP imagery for the classification of
marsh plant communities. This study presents
a benchmark accuracy of 88% for deep learning-
based marsh community classification in coastal
Virginia, achieved at a spatial resolution of 60 cm.
Limitations arise when using static high-resolution
NAIP imagery, including challenges related to tidal
inundation and the influence of shadows (see sec-
tion 5.5). The findings, proposed workflow, and
methodology presented in this study offer
a novel approach for regional governments to gen-
erate high-resolution tidal marsh inventories using
only open-access imagery.

Notes

1. The B1, B9, and B10 bands were not leveraged, as they
are mainly used for atmospheric correction.

2. Pretrained weights from ImageNet are used for
initialization.

3. Results from a baseline model are also included by
training a U-Net model with only the 103 image
patches from Catlett Islands in Virginia, in order to
establish the value of the more complex training pro-
cedure outlined in this piece; results from the UAV
survey are presented in Table 6
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