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9 A B S T R A C T10

11

The process of mapping shoreline structures (i.e., riprap, groins, breakwaters or bulkheads) is12

heavily reliant on in-situ field surveys and manual delineation using orthoimagery or aerial im-13

agery. These processes are time and resource intensive, resulting in update times of longer than14

a decade for larger waterbodies. In this study, we explore the effectiveness of a deep learning ap-15

proach to map shoreline armoring structures from remotely sensed high-resolution imagery. We16

focus on computationally efficient techniques which can be deployed in desktop environments17

similar to those used by human coders today, with the goal of providing a semi-automated tech-18

nique which reduces the total amount of time required to delineate shoreline structures. We test19

a range of architectures using a dataset of over 10,000 observations of four classes of shoreline20

structure, finding that a ResNet18 based Pyramid Attention Network (PAN) architecture achieves21

72% overall accuracy (60 cm resolution), with 80% and 94% prediction accuracy in breakwater22

and groins, respectively. This relatively lightweight implementation enabled a 1.5 kilometers of23

shoreline to be processed in 1.4 seconds (GPU) to 2.16 seconds (CPU) in simulated user envi-24

ronments. Finally, we present pyShore, an implementation of this deep learning algorithm made25

available for human coders to apply as a part of a semi-automated workflow.26

27
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1. Introduction & Related Work33

Maintaining a current inventory of shoreline structures is essential to assessing shoreline stabilization and the health34

of nearshore habitats (Berman and Hershner, 1999; Nunez et al., 2020). Shoreline hardening structures that protect35

upland property from erosion act not only as barriers which inhibit marsh migration (Titus et al., 2009; Gittman et al.,36

2015; Hill, 2015; Enwright et al., 2016), but also represent barriers for sediment exchange between the marsh habitat37

and the upland (Hill, 2015). Data on the location and nature of shoreline structures is thus an important element in38

coastline management strategies (Nunez et al., 2022; Enwright et al., 2016; Hill, 2015; Gittman et al., 2015; Titus et al.,39

2009).40

Today, this data is primarily provided by shoreline inventory reports generated by government bodies (for example,41
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in the United States these are produced by the state of Virginia (CCRM, 2019), Delaware (Berman et al., 2013),42

Washington (State of Washington, 2009) and others (Fontenault et al., 2013; MGS, 2000)). These reports describe a43

range of shoreline structures, including erosion control structures such as riprap, bulkheads, and breakwaters; structures44

such as groins, designed to accumulate sand in transport; and recreational structures, built to enhance public or private45

use of the water (CCRM, 2019; Fontenault et al., 2013).46

The traditional approach to collecting and mapping shoreline structures consists of a GPS field survey to collect47

coordinates and attribute information of coastal structures, and then manually delineating the structures and extracting48

basic feature information (e.g., type, material, and length) from remotely sensed data or other available digital images49

(CCRM, 2019; Fontenault et al., 2013). These processes require time-intensive in-situ surveys and well-trained tech-50

nicians to carry them out. For example, the latest shoreline inventory for Virginia was a 12-year process (from 2007 to51

2019), including in-situ surveys by trained fieldworkers as well as image digitization by experts. This process resulted52

in updated historic shoreline reports for Virginia and new inventories in locations with no historic information (CCRM,53

2019). As another example of the cost of such efforts, the first Massachusetts Inventory of Publically-owned Coastal54

Infrastructure was collected over a eight-year period beginning in 2002 using a similar approach including GPS field55

surveys and desktop interpretation of remotely sensed imagery. In this case, the in-situ survey work took 5 years, while56

the digitization and GIS data production stage took 3 years of effort (Fontenault et al., 2013). While this approach to57

assessing the coastal shoreline inventory can generate spatially explicit and highly-resolved outputs, the decade-long58

process of generating such information can also inhibit contemporary accuracy as shoreline structures are removed or59

added due to shoreline erosion, sea-level rise, or construction (Gittman et al., 2015; Enwright et al., 2016). This can60

produce a large gap between the generated data product and the real-world shoreline structure topography (Niculescu61

et al., 2021).62

Over the past three decades, a variety of different techniques have been developed for the extraction of shoreline63

from remotely sensed imagery. Imagery sources used in the literature range from coarse resolution (Bagli and Soille,64

2004; Ghorai and Mahapatra, 2020; Kuleli et al., 2011; Spinosa et al., 2021) to high-resolution (Sekovski et al., 2014;65

Tarmizi et al., 2014), and include LiDAR-derived data (Palaseanu-Lovejoy et al., 2016; Eboigbe et al., 2020; Liu et al.,66

2011), Synthetic Aperture Radar (SAR) imagery (Mason and Davenport, 1996; Spinosa et al., 2021), and Multispectral67

Satellite Imagery (MSI) (Sekovski et al., 2014). A common methodology includes classification of pixels in satellite68

imagery to segment the image into different features (Bagli and Soille, 2004; Di et al., 2003; Kuleli et al., 2011),69

then using machine learning (Kumar et al., 2020; McAllister et al., 2022a) or threshold analysis (Kuleli et al., 2011;70

Ghorai and Mahapatra, 2020; Mason and Davenport, 1996) to classify the features into different categories of land or71

water body, extracting the shorelines from the boundaries between the two. During analysis of the data, techniques72

such as image enhancement (adjustment of brightness and contrast of individual features (Loos and Niemann, 2002)),73
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edge detection (Mason and Davenport, 1996; Loos and Niemann, 2002; Kumar et al., 2020; Spinosa et al., 2021),74

morphological operations (Spinosa et al., 2021; Ghorai and Mahapatra, 2020), water indexing (Ghorai and Mahapatra,75

2020; McAllister et al., 2022b), and GIS processing (Ghorai and Mahapatra, 2020; Zarillo et al., 2008) may be applied76

to improve the primary technique and achieve higher accuracy.77

Some studies use object-based image analysis (OBIA) which first groups individual pixels into groups of pixels78

likely reflective of the same objects using a range of algorithms (McAllister et al., 2022a; Gong et al., 2013), treating79

the grouped pixels as the unit of analysis. The spectral information of the grouped pixels, shapes, texture, and other80

topological features are then used to classify the segments into different categories (McAllister et al., 2022b; Niculescu81

et al., 2021). Application-specific tools and metrics are also commonly developed such as beachtool (Zarillo et al.,82

2008) to extract shoreline locations, and cliffmetric to extract cliffs in coastal areas (Liu et al., 2011; Payo et al., 2018).83

However, to date the existing literature has focused on the extraction of shorelines from satellite images — to our84

knowledge, no studies have focused on automatically extracting different types of shoreline armoring structures, the85

focus of this study.86

In this context, the automatic delineation of shoreline armoring structure based on orthographic imagery can help to87

“fill in the gaps” between in-situ survey efforts, as well as provide more temporally-explicit information on the creation88

and removal of coastal features. Such automated delineation would benefit many different research fields, including89

hazard management and mitigation, coastal vulnerability and erosion assessment, environmental risk analysis, and90

coastal spatial planning and management.91

Advances in computer vision for remote sensing applications suggest promise for shoreline structure detection al-92

gorithms. In recent years, object detection via remotely sensed images has received considerable attention due to the93

availability of Very High-Resolution (VHR; i.e., sub-meter) and multispectral sensors (NOAA, 2018; DigitalGlobe,94

2018). Since 2012, orthographic imagery analysis using deep learning methods, specifically convolutional neural95

networks (CNNs) has grown in popularity (Krizhevsky et al., 2012). Recent examples of the use of CNNs with or-96

thoimagery include the detection of buildings (Yang et al., 2017), roads (Brewer et al., 2021; Narayan et al., 2017),97

marine debris (Kikaki et al., 2022), coastal vegetation mapping (Li et al., 2021; Guirado et al., 2017), landuse mapping98

(Bhosle and Musande, 2019), and other types of analysis and applications (Runfola et al., 2022, 2021; Goodman et al.,99

2021; Brewer et al., 2022). The wide range of applications of deep learning techniques more broadly have driven a100

number of research groups to explore ways to tailor approaches to orthoimagery, with a wide range of modeling ap-101

proaches being promoted in recent years (Runfola, 2022; Wang et al., 2022; An et al., 2021; Roberts et al., 2022; Tran102

et al., 2022; Aravena Pelizari et al., 2021).103

In this study, we compare multiple state-of-the-art deep learning techniques, specifically an adapted U-Net archi-104

tecture (Ronneberger et al., 2015), DeeplabV3 (Chen et al., 2016), and Pyramid Attention Network (PAN) (Li et al.,105
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2018) to estimate the spatial location of shoreline structures using high resolution orthographic imagery. The proposed106

methodology will advance shoreline inventory protocols by identifying and mapping shoreline structures at a regional107

scale, but with a high spatially explicit resolution within an efficient time frame. We specifically seek to introduce a108

technique that can be used as a part of a semi-automated pipeline for shoreline inventory collection, aiding individuals109

digitizing orthoimagery in delineating line features more efficiently than would be feasible without automated shoreline110

feature detection.111

Our paper is organized as follows: in section 1.1 (“Related Work”), we provide a brief overview of relevant literature112

on mapping and detection tasks, including structure detection, using orthoimagery and deep neural networks (DNNs).113

In section 2 (“Material & Methods”), we discuss the data and technical approach we use in the experiment. We114

introduce our results and provide a discussion in sections 3 and 4. In the discussion, we further present a semi-115

automated toolkit, pyShore, for shoreline armoring structure classification in the ArcGIS Pro software with a user-116

friendly interface to facilitate the data collection of future work (section 4.5). Finally, we provide a brief conclusion117

summarizing our findings in section 5.118

1.1. Related Work119

A significant body of literature exists on the use of segmentation and object detection algorithms with remotely120

sensed imagery (for a review, see Cheng and Han (2016)). Object detection algorithms have been applied for detection121

and extraction of features of interest including roads (Wan et al., 2021), buildings (Etten et al., 2021), and vehicles122

(Chen et al., 2014). Several issues - such as varying size, background, and orientation of target objects - make the123

automatic detection of features in remotely sensed imagery a challenging problem (Brewer et al., 2022; Bhil et al.,124

2022). Over the past few years, U-Nets (Ronneberger et al., 2015), and variants of region-based convolutional neural125

networks (R-CNNs) (He et al., 2017), have become popular deep neural network (DNN) based approaches for object126

detection and segmentation in the greater computer vision community, including within the computer vision remote127

sensing (CVRS) domain. Some examples of the use of deep learning architectures in CVRS include building detection128

from high-resolution multispectral imagery (Prathap and Afanasyev, 2018), and building footprint and road detection129

within OpenStreetMap (OSM) fused with Sentinel-1 and 2 imagery (Ayala et al., 2021).130

A small number of studies have been conducted extending specifically to marine science. In 2021, Li et al. em-131

ployed a U-Net and developed an adaptive deep learning approach to map salt marshes in estuarine emergent wetlands132

in South Carolina, USA from 20 Sentinel-2 images with an accuracy of 90% (Li et al., 2021). In 2022, marine debris133

was identified from sentinel-2 imagery using a random forest model (Breiman, 2001) and a deep learning architecture134

(Kikaki et al., 2022). Other work has explored the effectiveness of deep learning to identify marine objects such as135

ships (Stofa et al., 2020) and whales (81% detection accuracy) (Guirado et al., 2019). No work to-date has explored136
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shoreline structure detection from remotely sensed imagery using deep learning, the topic of this article.137

2. Material & Methods138

2.1. Study area139

In this study, we focus on 17,239 kilometers of shoreline located in the state of Virginia in the United States (see140

Figure 1). The majority of this shoreline surrounds the Chesapeake Bay, a protected estuary responsible for over141

a hundred billion US dollars of economic output every year, predominantly related to commercial fishing, tourism,142

recreation, and timber (Phillips and McGee, 2014). The Chesapeake Bay is a focus of estuary protection and renewal143

activities from the State of Virginia, and also many US federal agencies (Phillips and McGee, 2014). It is further a144

region with multiple climate mitigation efforts to protect both natural and human built structures (Najjar et al., 2010;145

Toft et al., 2017; Du et al., 2016).146

Figure 1: Shoreline structures extracted from CUSP (NOAA, 2021a) along Virginia’s coastal regions (Runfola et al., 2020).
Basemap is Landsat imagery downloaded from the Global Land Analysis and Discovery (GLAD, 2018).
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2.2. Data - Labels147

Two different datasets are leveraged to identify the geographic location of shoreline features (i.e., to label areas148

as belonging to a class of shoreline structure). This information is used to train the proposed deep learning approach149

regarding what geometric features and colors are associated with each type of shoreline structure. The two datasets150

we use for labeling are the NOAA Continually Updated Shoreline Product (CUSP), and the Massachusetts Private151

Shoreline Stabilization Structures dataset.152

2.2.1. NOAA’s Continually Updated Shoreline Product153

The Continually Updated Shoreline Product (CUSP) published by the National Oceanic and Atmospheric Ad-154

ministration (NOAA) National Geodetic Survey (NGS) provides a complete shoreline representation along the U.S.155

coastline and its territories (NOAA, 2021a,b). It was created to deliver accurate, contemporary shoreline information156

across the continental U.S to support various applications including coastal planning, hazard management and miti-157

gation, storm management, environmental studies, and informing policy and decision makers in coastal management158

(NOAA, 2021b). The geographic location of shoreline along the coast of Virginia were extracted from CUSP to es-159

tablish the geographic location of eligible pixels to consider for classification. It has an average line resolution of 103160

meters, and covers a total of 17,239 kilometers of coastline in Virginia.161

From the full coastline, we subset to 945 kilometers of shoreline at which one of four hardened shoreline structure162

types was identified - the focus structures of this study. These four shoreline structure types - breakwater, rip rap,163

groin, and bulkhead - make up the majority of shoreline structures that are built in Virginia to defend against sea level164

rise, flooding, and coastal erosion (CCRM, 2019). Breakwater (Fig. 3d) is an always-dry (not covered at high water165

under average meteorological conditions) structure protecting a shore area, harbor, anchorage, or basin from waves.166

Riprap, as seen in Fig. 3c, is a shoreline structure built by layers of broken rock, cobbles, boulders, or fragments of167

sufficient size to resist the erosive forces of flowing water and wave action. Groin (Fig. 3b) is an always-dry, shallow,168

artificial, wall-like structure of durable material extending from the land to seaward for a particular purpose, such as169

to prevent coast erosion. Bulkheads (or sea walls; Fig. 3a) are embankments or walls for protection against waves or170

tidal action along a shore or waterfront. The shoreline structures metadata within CUSP was used to label pixels to its171

corresponding shoreline structure category. Fig. 2 summarizes the number of features (i.e., discrete lines representing172

shore features) used to label each pixel.173

2.2.2. Massachusetts Private Shoreline Stabilization Structures174

As figure 2 illustrates, the data labels from CUSP in Virginia are highly imbalanced, largely due to a limited number175

of labeled features for groins and breakwater. In order to increase the number of training dataset examples and create176

a more balanced dataset for training, we extract additional groins features from a secondary dataset published by the177

Lv et al.: Preprint submitted to Elsevier Page 6 of 30



pyShore: A deep learning toolkit for shoreline structure mapping with high-resolution orthographic imagery and

convolutional neural networks

Figure 2: CUSP data distribution in Virginia.

Figure 3: A visualization of the four shoreline armoring techniques we focus on in this study. The upper four images are
taken on-site, and the lower four images are from VA orthoimagery

Massachusetts Coastal Infrastructure Inventory (Fontenault et al., 2013). This dataset was developed for Massachusetts178

Office of Coastal Zone Management to monitor coastal structures that were built to protect public and private devel-179

opment in dynamic coastal areas (Fontenault et al., 2013). There are 1,957 geocoded groins available in this dataset,180

collected in 2013 and digitized using 30 cm resolution 2008/2009 USGS color orthographic imagery. The digitized181

groins are combined with CUSP features to construct a broader dataset for model training and validation.182

2.3. Data - Imagery183

2.3.1. Virginia Base Mapping Program (VBMP)184

The Virginia Base Mapping Program (VBMP) was initiated in 2001 to develop orthoimagery for the Common-185

wealth of Virginia. The purpose of this program is to create a consistent, accurate base map that all state, local, and186

federal government agencies, as well as private sectors and academic intuitions can use for spatial data applications187
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(VGIN, 2018). The VBMP imagery leveraged was captured at a 12-inch (30.48cm) ground sample distance and ac-188

quired during the leaf-off period in 2021 with 3-band spectral resolution (red, green, blue) across the Commonwealth189

of Virginia.190

We specifically leverage a total of 1,103 image tiles (the size of each image tiles varied, and the average image size191

is 5000×5000 pixels) that intersect with the CUSP coastal line data. Files were retrieved from VGIN in MrSID format,192

converted to geotiffs, and then labeled using the georeferenced CUSP data for further analysis as described above.193

2.3.2. Massachusetts High-Resolution Orthoimagery194

Thirty-centimeter resolution 2008/2009 USGS Color Ortho Imagery was retrieved for all areas covered by the Mas-195

sachusetts Coastal Infrastructure Inventory Groins, representative of the same imagery used for digitization (Fontenault196

et al., 2013). These images are 3-band (Red, Green, Blue) natural color. A map of the bounding boxes of these images197

can be seen in figure 4.198

Figure 4: A map of the bounding boxes of imagery in Massachusetts with a cluster of groins near Plymouth, MA expanded.
Basemap is from geoboundaries.org (Runfola et al., 2020) and imagery is from Mass.gov (USGS, 2012)

2.3.3. National Agricultural Imagery Program199

Aerial images collected by the United States Department of Agriculture’s (USDA) National Agricultural Imagery200

Program (NAIP) (OCM-Partners, 2022) were also acquired for this study in order to analyze the relationship between201

imagery resolution and model accuracy, as well as to explore the potential benefits of datasets incorporating a near-202

infrared band for shoreline structure identification.203

The NAIP dataset is a time series aerial imagery database that has records extending to 2003, sponsored through a204

collaboration between the United States Geological Survey (USGS) and U.S. state governments (OCM-Partners, 2022).205

The initial NAIP acquisition cycle was five years, before changing to three years in 2009. NAIP imagery is generally206

acquired at a 1-meter spatial resolution with 4-band spectral resolution (red, green, blue and near-infrared) across the207

continental United States during the agricultural growing season. In recent years, some states began publishing the208
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dataset with higher spatial resolution (including Virginia). Imagery is provided orthorectified; for our study, we use209

the NAIP imagery acquired 2018 in Virginia with 0.6 m spatial resolution. A total of 316 image tiles (standardized to210

a size of 5000 × 5000 pixels) provided complete coverage of all coastal features in the CUSP database.211

2.4. Data processing - annotation process & protocol212

A python processing script was developed to automate data pre-processing, labelling, and generation of training213

and validation data. Of the 10,194 filtered shoreline structures identified in CUSP coastal lines (1,055 km), 5,040 (529214

km) were labeled bulkhead, 4,519 (489 km) riprap, 221 (6 km) groin, and 414 (31 km) breakwater. A 3-meter buffer215

was constructed along the filtered shoreline structures in order to provide context for image classification as well as216

mitigate minor errors or differences in georeferencing across imagery and shoreline label sources.217

Here we present a brief example of our processing procedures, using NAIP imagery as an illustrative case. First,218

each 5000×5000 pixel NAIP image tile is cropped into 400 256×256 image patches. Only image patches that intersect219

with CUSP features are kept for further data processing and analysis, resulting in a dataset of 4,532 256 × 256 tiles220

covering coastal Virginia. The pixels in these image patches are labeled using the CUSP dataset, by first masking all221

pixels that are not shoreline as background, and then labeling the remaining pixels according to the corresponding222

class values in CUSP (bulkhead, riprap, groin, and breakwater). This procedure results in a series of 256 × 256 masks223

with each shoreline pixel labelled. Fig. 5 is an example of an original NAIP tile, cropped to 256 × 256 pixels, and the224

corresponding label mask on the right. This data is used to construct training, validation, and testing datasets for the225

model development, calibration, and validation.226

Figure 5: An example case of cropped image patch and its associated mask.

In addition, for each 256×256 tile, a secondary dataset is generated in which the entire image is labeled as a single227

class based on the most common shoreline structure. This secondary dataset is used to establish baseline accuracy of228
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Table 1
Summary of the number of pixels (and percentage) in each dataset used in model training
and testing. The green column represents number of pixels labeled as bulkhead, the red
column represents number of pixels labeled as riprap, the yellow column indicates the
number of pixels labeled as groin, and the blue column shows the number of pixels labeled
as breakwater.

Dataset Name
Training Data

(pixel count and percentage per class)
Testing Data

(pixel count and percentage per class)

VA CUSP/VBMP
1806539

47%
1704174

45%
91117
2%

214871
6%

391008
49%

330605
42%

23377
3%

50356
6%

VA CUSP/VBMP & MA
1806539

44%
1704174

42%
374952

9%
214871

5%
406597
29%

427725
24%

270849
43%

81867
4%

VA CUSP/NAIP
2727071

48%
2660187

47%
60866
1%

242668
4%

599562
50%

536705
46%

14662
1%

54891
6%

methodologies that do not involve localization (i.e., to contrast pixel vs. scene resolution classification accuracy).229

This process is repeated for three datasets - VBAP images, MA high-resolution orthoimagery, and NAIP. We230

leveraged these datasets to conduct a wide range of tests regarding the performance of our approach under a range of231

different circumstances.232

Of the collected shoreline structure images and labels in the three datasets, the number of pixels per each class233

in the training and testing subsets are summarized in Table 1. Observed data imbalance is taken into account in the234

training process with a weighting scheme on the loss function; we present details of our approach in section 2.5.235

2.5. Methodology236

2.5.1. Architectures for image segmentation237

Three predefined state-of-the-art semantic segmentation architectures are tested and compared considering their238

generalization capacities, U-Net (Ronneberger et al., 2015), DeeplabV3 (Chen et al., 2016), as well as Pyramid Atten-239

tion Network (PAN) (Li et al., 2018).240

U-Net: The U-Net is a well-established, relatively light weight (under 10 million parameters and forward-pass tim-241

ings of less than a second for 256 × 256 images) deep learning algorithm for semantic segmentation based on con-242

volutional network architectures (Ronneberger et al., 2015). The algorithm’s architecture includes two parts: down-243

sampling and up-sampling, also called the encoder and decoder. The encoder extracts varying resolution feature maps244

through a series of convolutional, rectified linear units (ReLU), and max-pooling layers (Li et al., 2021). The decoder245

stage contains and combines (a) each feature map from the down-sampling process, and (b) spatial information through246

an up-sampling and concatenation process (Fig. 6). This data flow of down-sampling and up-sampling constructs a247

U-shape of architecture, thus the output layer maintains the same resolution as the input layers. One key benefit of248

using this learning architecture is that it has been shown to be effective in cases with few training images, while still249
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retaining high levels of segmentation accuracy (Ronneberger et al., 2015).250

Figure 6: The U-Net architecture (Example of a 3-band input image with 256 × 256 pixel-size). The boxes indicate the
feature maps at each layer, and the number on the top of each feature map shows the depth of feature map (channel).
Numbers on the right side of each feature map are image/feature maps dimension.

In this piece, we modify the U-Net architecture in order to identify a deep learning model that can both accurately251

delineate shoreline structures, and do so in a way that is computationally suitable for deployment on contemporary252

desktops and laptops. We modify the U-Net in two key ways: (a) we provision alternative classifiers to handle en-253

coding and decoding tasks, and (b) we adapt the algorithm to dynamically accept either 4-band (RGB,NIR) or 3-band254

(RGB) high-resolution imagery (noting our labeled data is sourced from both three and four band sensors). The spe-255

cific alternative classifiers that are contrasted in this piece to assess their capabilities in shoreline structure detection256

include modifications to the U-Net which leverage a small set of convolutional approaches chosen for their relative257

computational efficiency - Resnet-18, Xception, and the original U-Net implementation (Ronneberger et al., 2015) -258

as well as two deeper (i.e., more computationally intensive) networks to provide contrasting cases - Resnet-101 and259

InceptionResNet-v2.260

DeeplabV3: The DeeplabV3 algorithm is designed for image segmentation. It introduces atrous convolution (Chen261

et al., 2016) in the down-sampling process to efficiently produce high level feature maps while keeping accurate lo-262

cation information, which can effectively enlarge the field of view of filters without increasing the number of training263

parameters. The deeplabV3 also uses atrous spatial pyramid pooling (ASPP) to capture objects and useful image con-264

text at multiple scales (Chen et al., 2016). This method has recently been applied in many semantic segmentation tasks265
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with remote sensing data and proved to be an effective technique in many fields (Wang et al., 2022; Liu et al., 2021).266

Pyramid Attention Network: Different from U-Net and DeeplabV3, PAN is built on an attention mechanism, which267

aims to imitate human visual systems to effectively find salient regions in a complex scene. The attention mechanism268

is combined with spatial pyramid to extract precise dense features for pixel labeling (Li et al., 2018), instead of using269

atrous convolution like DeeplabV3 and artificially designed decoder networks like U-Net.270

Within each of these architectures, we further test a range of up- and down-sampling convolutional strategies,271

including Resnet-18, Resnet-101, xception, and InceptionResnet.272

2.5.2. Loss functions273

The loss function is the proximity between the ground truth label data and the predicted class. In this study, we274

implement a multi-class cross-entropy loss:275

Ăąĉĉ = −

ĉ1

ā=1

ďą,ā log(Ćą,ā) (1)

where M is the total number of shoreline structure classes (M = 4 in this study, background is excluded from the loss)276

and y is the binary indicator (0 or 1) if class label c is the correct classification for observation o, p is the predicted277

probability observation o is of class c. Due to the imbalance of our pixel-level data distribution, a weighting scheme is278

used in the training process, in which classes are weighed according to their representation in the labeled data (Kikaki279

et al., 2022; Paszke et al., 2016):280

ēāĂÿĉĉ =
1

ln(ā + ĆāĂÿĉĉ)
(2)

whereēāĂÿĉĉ is a multiplicative weight applied to the loss function for observations of a given class, ĆāĂÿĉĉ = ĊĆÿĎăĂĉąĄāĂÿĉĉ281

∕ĊĊąĊÿĂĆÿĎăĂĉ, whereĊĊąĊÿĂĆÿĎăĂĉ excludes the background pixels in the training set, and ā is an additional hyper-parameter282

set to 1.03 (following past literature; see Kikaki et al. (2022)). During the training process, Adam optimization is used283

to minimize the cross-entropy loss with an initial learning rate of 1 × 10−3.284

2.5.3. Model validation and application285

We implement a wide range of validation metrics to assess pixel-level semantic segmentation performance. First286

and foremost, we present overall accuracy (equation 3) to give guidance to the overall performance a user might expect.287

In addition, we evaluate the intersection-over-union (IoU) (equation 4), the average F1 score for each class (Macro-F1)288
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(equation 5), and the precision (equation 6) and recall (equation 7) at the pixel level for each class.289

Accuracy =
ĐČ + ĐĊ

ĐČ + ĐĊ + ĂČ + ĂĊ
(3)

IoU(đ, Ē ) =
|đ K Ē |
|đ L Ē |

(4)

F1 =
2 ∗ ČĈăāÿĉÿąĄ ∗ ĎăāÿĂĂ

Č ĈăāÿĉÿąĄ + ĎăāÿĂĂ
=

2 ∗ ĐČ

2 ∗ ĐČ + ĂČ + ĂĊ
(5)

Precision =
ĐČ

ĐČ + ĂČ
(6)

Recall =
ĐČ

ĐČ + ĂĊ
(7)

In equations 3, 5, 6, and 7, TP (true positive) represents the number of pixels in which the model correctly predicts290

ground truth, TN (true negative) represents outcomes in which the model correctly predicts cases that are different291

than ground truth, FP (false positive) is predictions to a class that do actually not belong to that class, and FN (false292

negative) are the number of predictions belonging to a class but were predicted to be in a different class. The F1 score293

is a harmonic mean between precision and recall.294

The IoU (equation 4), defined as the size of the intersection divided by the size of the union of two label sets, is295

used to compare the set of predictions for a sample to the corresponding set of ground truth labels. IoU provides a296

conservative estimate of model performance, penalizing for both FP and FN at the pixel level (Rezatofighi et al., 2019).297

Lastly, a cross-validation matrix for each model is additionally generated to compare the prediction accuracy for each298

type of shoreline structure.299
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3. Results & Analysis300

The results of each test, including permutations of the datasets described in section 2.3 and the architectures de-301

scribed in section 2.5.1, are presented in Table 2; the results for tests using NAIP imagery are summarized in Table302

3.303

The first set of results (the first three rows) in Table 2 present a U-Net implementation in which the encoder and304

decoder is the same as in the original definition of the architecture (Ronneberger et al., 2015) (i.e., a “Backbone”305

of “Original”). In Table 2, in order to evaluate model performance in the Virginia region specifically, we delineate306

between models that are tested solely on coastal features in Virginia, and those that are tested on a dataset which307

includes both Virginia and Massachusetts features. For example, the results indicate that when the “Original” U-Net308

implementation is tested (with the default encoder and decoder):309

1. When trained and tested on the integrated Virginia and Massachusetts (VA and MA) datasets, the overall accu-310

racy (OA) is 75%; the best performing class is Groins (F1 = 0.96); worst is Breakwater (F1 = 0.4).311

2. When trained on VA and MA, but then tested only on VA, the overall accuracy is 59%.312

3. When trained on VA data alone, and then tested on VA alone, the overall accuracy is 61%.313

Thus, the first set of our results provides evidence that suggests that - if a default U-Net implementation is leveraged -314

the best overall model performance across all of our data is found if all data from VA and MA is pooled. However, for315

the model we are most interested in - a model that succeeds in classifying the Chesapeake Bay and related shorelines316

in Virginia - we find that limiting training data to Virginia can result in a slightly better performing model based on317

overall accuracy.318

We expand this study to a range of alternative classifiers (“backbones”), in which we exchange the default encoder319

and decoder of the U-Net, DeeplabV3, PAN architecture with a range of popular network architectures (Resnet-18 and320

Resnet-101 for all three architectures, xception and inceptionResnetV2 for U-Net, with transfer learning weights based321

on ImageNet). Across all of these permutations, we identify PAN-resnet101 as the best global classifiers, achieving322

83% overall accuracy when trained and tested on the integrated Virginia and Massachusetts dataset. The performance of323

PAN-resnet18 is particularly notable in this scenario, as it achieved 81% overall accuracy, but with far less complexity324

(11M parameters) than the best classifier (43M). This indicates that a lighter-weight architecture may be appropriate325

for shoreline structure delineation, which can enable deployment on - for example - lower memory environments.326

When focusing only on validation with Virginia basemap (3-band) imagery data, we find the highest overall vali-327

dation accuracy is 72% (using PAN-resnet101 implementations). Using the lighter weight PAN-resnet18, the overall328

validation accuracy achieved was 69%. Similar to the joint Massachusetts and Virginia case, this highlights the value329
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Table 2
Results of Architecture Tests. Results are presented broken out by model implementation,
test and training datasets, and each of the four tested classes. Each tested class is presented
with four statistics: F1 score (F1), Intersection over Union (IoU), Precision (Prec.), and
Recall (Rec.). Global statistics are presented in the final four columns, including mean
Intersection over Union (mIOU), Overall Accuracy (OA), and Macro-Averaged F1 score
(F1-macro).

Model Details Dataset Name Bulkhead Riprap Groins Breakwater
Architecture Decoder Trained Tested F1 IOU Prec. Rec. F1 IOU Prec. Rec. F1 IOU Prec. Rec. F1 IOU Prec. Rec.

mIOU OA F1-macro

VA&MA VA&MA 0.66 0.5 0.68 0.65 0.54 0.37 0.55 0.53 0.96 0.93 0.99 0.94 0.4 0.25 0.29 0.6 0.51 0.75 0.64
VA&MA VA 0.67 0.5 0.68 0.65 0.55 0.38 0.57 0.53 0.27 0.16 0.42 0.2 0.41 0.26 0.31 0.6 0.32 0.59 0.47UNet

Original
param: 0.8M

VA VA 0.67 0.51 0.71 0.64 0.59 0.42 0.57 0.6 0.28 0.16 0.4 0.21 0.42 0.26 0.34 0.54 0.34 0.61 0.49

VA&MA VA&MA 0.68 0.52 0.71 0.65 0.61 0.44 0.59 0.63 0.96 0.93 0.96 0.97 0.55 0.38 0.52 0.58 0.57 0.78 0.7
VA&MA VA 0.68 0.52 0.71 0.65 0.61 0.44 0.6 0.63 0.35 0.21 0.3 0.41 0.56 0.39 0.53 0.58 0.39 0.63 0.55UNet

Resnet-18
14.3M

VA VA 0.73 0.57 0.73 0.72 0.64 0.47 0.63 0.65 0.41 0.25 0.73 0.28 0.52 0.35 0.47 0.59 0.41 0.67 0.57

VA&MA VA&MA 0.72 0.56 0.74 0.69 0.66 0.49 0.62 0.69 0.97 0.94 0.97 0.96 0.56 0.39 0.59 0.54 0.59 0.8 0.73
VA&MA VA 0.72 0.56 0.75 0.69 0.66 0.49 0.63 0.69 0.41 0.26 0.4 0.42 0.57 0.4 0.61 0.54 0.43 0.68 0.59UNet

Resnet-101
51.5M

VA VA 0.75 0.6 0.75 0.75 0.68 0.51 0.67 0.68 0.53 0.36 0.68 0.44 0.6 0.43 0.57 0.64 0.48 0.71 0.64

VA&MA VA&MA 0.73 0.58 0.78 0.69 0.69 0.53 0.63 0.77 0.98 0.96 0.99 0.97 0.58 0.41 0.69 0.5 0.62 0.82 0.75
VA&MA VA 0.73 0.58 0.79 0.69 0.69 0.53 0.63 0.77 0.55 0.38 0.64 0.49 0.59 0.42 0.71 0.5 0.48 0.7 0.64UNet

xception
29M

VA VA 0.77 0.62 0.76 0.77 0.7 0.54 0.69 0.7 0.47 0.31 0.43 0.52 0.6 0.43 0.7 0.53 0.47 0.72 0.63

VA&MA VA&MA 0.74 0.58 0.76 0.71 0.68 0.52 0.64 0.73 0.98 0.96 0.99 0.97 0.59 0.42 0.67 0.52 0.62 0.82 0.75
VA&MA VA 0.74 0.58 0.77 0.71 0.69 0.52 0.65 0.73 0.58 0.41 0.63 0.53 0.59 0.42 0.69 0.52 0.48 0.7 0.65UNet

inceptionresnetv2
62M

VA VA 0.75 0.6 0.76 0.73 0.69 0.52 0.66 0.72 0.53 0.36 0.74 0.42 0.51 0.34 0.52 0.5 0.46 0.7 0.62

VA&MA VA&MA 0.66 0.49 0.7 0.62 0.58 0.41 0.55 0.62 0.95 0.9 0.95 0.94 0.48 0.31 0.44 0.53 0.53 0.76 0.67
VA&MA VA 0.66 0.49 0.7 0.62 0.59 0.42 0.56 0.62 0.41 0.26 0.32 0.56 0.54 0.37 0.56 0.53 0.38 0.61 0.55DeeplabV3

Resnet-18
16M

VA VA 0.68 0.52 0.7 0.67 0.61 0.44 0.59 0.63 0.36 0.22 0.42 0.31 0.56 0.39 0.59 0.53 0.39 0.64 0.55

VA&MA VA&MA 0.7 0.54 0.72 0.68 0.61 0.44 0.59 0.63 0.95 0.91 0.96 0.94 0.46 0.3 0.41 0.53 0.55 0.78 0.68
VA&MA VA 0.7 0.54 0.73 0.68 0.62 0.45 0.61 0.63 0.36 0.22 0.32 0.41 0.51 0.34 0.49 0.53 0.39 0.64 0.55DeeplabV3

Resnet-101
59M

VA VA 0.74 0.58 0.76 0.72 0.67 0.51 0.64 0.7 0.49 0.33 0.53 0.46 0.52 0.35 0.55 0.5 0.44 0.69 0.61

VA&MA VA&MA 0.74 0.58 0.72 0.75 0.65 0.48 0.65 0.65 0.97 0.94 0.97 0.96 0.6 0.43 0.66 0.55 0.61 0.81 0.74
VA&MA VA 0.74 0.58 0.73 0.75 0.65 0.48 0.65 0.65 0.47 0.31 0.45 0.5 0.64 0.48 0.78 0.55 0.46 0.69 0.63PAN

Resnet-18
11M

VA VA 0.73 0.57 0.72 0.74 0.66 0.49 0.65 0.67 0.52 0.35 0.83 0.38 0.7 0.54 0.83 0.6 0.49 0.69 0.65

VA&MA VA&MA 0.76 0.61 0.76 0.75 0.69 0.53 0.69 0.7 0.98 0.95 0.99 0.97 0.63 0.46 0.57 0.7 0.64 0.83 0.76
VA&MA VA 0.76 0.61 0.76 0.75 0.69 0.53 0.69 0.7 0.51 0.34 0.56 0.46 0.65 0.48 0.61 0.7 0.49 0.72 0.65PAN

Resnet-101
43M

VA VA 0.75 0.6 0.75 0.76 0.68 0.51 0.66 0.7 0.51 0.34 0.79 0.37 0.56 0.39 0.66 0.49 0.46 0.7 0.63

of the lighter weight PAN-resnet18 implementation; further, we note that UNet-xception came in a close second with330

70% accuracy (29M parameters).331

In the results presented in Table 2, the models trained on the Virginia dataset have no particular class correlated332

closely with overall performance. The overall accuracy in Virginia shoreline features ranges from 61% to 72%, with333

each model performing relatively poorly with groins (noting model performance varies most in this class). With334

391,008 pixels labeled as bulkhead in the Virginia test set, each model performed relatively well at prediction of the335

class, with relatively little variance (0.05%) across models.336

Introducing additional examples of groin features into the training dataset proved to be relatively inefficient in337

improving overall accuracy for the Virginia data, suggesting that groin features in Massachusetts and those in Virginia338

may be distinct enough to require specialized approaches to cross-domain learning. However, for model development339

that may be focusing on global results (i.e., not domain specific to Virginia), the additional samples had a range of340

advantages. Adding the geocoded groin features from MA into training, the precision for predicting groins improved341

dramatically - for UNet-xception tested on VA to the same model tested on the merged MA and VA dataset - from 43%342

to 99%. For groin features specifically, the best model tested on the merged dataset achieves 99% accuracy, 97% recall,343

and 98% F1 score. Figure 7 presents the visualization of predictions from models trained on Virginia VBMP dataset.344

Table 3 highlights results when models are tested using only Virginia imagery (testing and training) with the NAIP345

dataset. We find broadly comparable results to the cases presented in Table 2, with a slight performance gain in the346
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Figure 7: Result visualization predicted by different models trained on VBMP 3-band imagery.

Table 3
Architecture results with NAIP imagery. Each tested class is presented with four statistics:
F1 score (F1), Intersection over Union (IoU), Precision (Prec.), and Recall (Rec.). Global
statistics are presented in the final four columns, including mean Intersection over Union
(mIoU), Overall Accuracy (OA), and Macro-Averaged F1 score (F1-macro).

Model Details Dataset Name Bulkhead Riprap Groins Breakwater
Architecture Decoder Trained Tested F1 IOU Prec. Rec. F1 IOU Prec. Rec. F1 IOU Prec. Rec. F1 IOU Prec. Rec.

mIOU OA F1-macro

UNet
Original

params: 0.8M
VA VA 0.7 0.54 0.73 0.68 0.65 0.5 0.67 0.67 0.4 0.29 0.38 0.55 0.65 0.48 0.53 0.84 0.45 0.68 0.62

UNet
Resnet-18

14.3M
VA VA 0.73 0.57 0.72 0.74 0.67 0.51 0.67 0.67 0.54 0.37 0.76 0.42 0.7 0.54 0.79 0.63 0.5 0.7 0.66

UNet
Resnet-101

51.5M
VA VA 0.73 0.58 0.73 0.74 0.68 0.51 0.68 0.68 0.58 0.41 0.67 0.51 0.71 0.56 0.75 0.68 0.51 0.71 0.68

UNet
Xception

29M
VA VA 0.74 0.58 0.72 0.76 0.68 0.51 0.69 0.67 0.6 0.43 0.76 0.5 0.74 0.58 0.85 0.65 0.53 0.71 0.69

UNet
InceptionResnetV2

62M
VA VA 0.76 0.62 0.74 0.79 0.71 0.55 0.73 0.69 0.68 0.52 0.77 0.61 0.75 0.6 0.85 0.68 0.57 0.72 0.73

DeeplabV3
Resnet-18

16M
VA VA 0.72 0.56 0.7 0.74 0.66 0.49 0.67 0.64 0.57 0.4 0.67 0.5 0.68 0.51 0.72 0.64 0.49 0.69 0.66

DeeplabV3
Resnet-101

59M
VA VA 0.73 0.58 0.72 0.74 0.68 0.52 0.69 0.67 0.49 0.32 0.48 0.5 0.66 0.49 0.67 0.65 0.48 0.7 0.64

PAN
Resnet-18

11M
VA VA 0.75 0.6 0.71 0.8 0.68 0.51 0.72 0.64 0.55 0.38 0.94 0.39 0.76 0.61 0.8 0.72 0.53 0.72 0.69

PAN
Resnet-101

43M
VA VA 0.75 0.6 0.72 0.78 0.68 0.5 0.7 0.67 0.54 0.37 0.86 0.4 0.67 0.5 0.79 0.57 0.5 0.71 0.66

best overall accuracy at 74% (UNet-inceptionResnetV2, 62 million parameters). Each model performs relatively well347

at predicting bulkhead and riprap features, with significantly less variance between the models than observed in the348

models trained and validated based on the Virginia basemap and Massachusetts 3-band orthoimagery. Of note is that349

the PAN-Resnet18 model achieves 94% and 80% precision in groins and breakwater, despite the relatively small number350

of labeled cases available (see Fig.2). Fig. 8 summarizes the precision improvement for each class when contrasting351

models fit in Virginia using the VBMP orthoimagery and NAIP imagery.352

To better understand the contribution of the NIR band in NAIP imagery to model performance compared to using353

only RGB orthoimagery, we further trained each model with 3-band (RGB) NAIP imagery - excluding the fourth354
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Figure 8: Performance comparison between models trained on VBMP and NAIP

The values in this chart are calculated by subtracting the model prediction accuracy of each class trained on VBMP
imagery from the prediction accuracy trained on NAIP imagery. Positive values correspond to improvement after using
NAIP imagery.

Table 4
Model performance using 3-band NAIP imagery (excluding near infrared).

Model Details Dataset Name Bulkhead Riprap Groins Breakwater
Architecture Decoder Trained Tested F1 IOU Prec. Rec. F1 IOU Prec. Rec. F1 IOU Prec. Rec. F1 IOU Prec. Rec.

mIOU OA Fa-macro

UNet Resnet-18 RGB RGB 0.7 0.54 0.71 0.7 0.66 0.49 0.64 0.67 0.59 0.42 0.83 0.46 0.69 0.53 0.79 0.61 0.5 0.68 0.66
UNet Resnet-101 RGB RGB 0.72 0.56 0.7 0.73 0.66 0.5 0.67 0.66 0.48 0.31 0.63 0.38 0.65 0.48 0.75 0.58 0.46 0.69 0.63
UNet Xception RGB RGB 0.74 0.59 0.72 0.76 0.69 0.52 0.7 0.68 0.62 0.45 0.86 0.48 0.75 0.6 0.86 0.67 0.54 0.72 0.7
UNet InceptionResnetV2 RGB RGB 0.76 0.61 0.74 0.77 0.71 0.55 0.71 0.71 0.7 0.53 0.87 0.58 0.73 0.57 0.85 0.64 0.57 0.72 0.72

DeeplabV3 Resnet-18 RGB RGB 0.71 0.55 0.69 0.73 0.64 0.47 0.65 0.63 0.53 0.36 0.65 0.45 0.68 0.52 0.75 0.63 0.47 0.67 0.64
DeeplabV3 Resnet-101 RGB RGB 0.74 0.59 0.73 0.76 0.69 0.52 0.7 0.68 0.54 0.37 0.63 0.48 0.68 0.51 0.74 0.62 0.5 0.71 0.66

PAN Resnet-18 RGB RGB 0.74 0.59 0.71 0.78 0.67 0.51 0.71 0.64 0.6 0.43 0.89 0.45 0.74 0.59 0.81 0.69 0.53 0.71 0.69
PAN Resnet-101 RGB RGB 0.73 0.58 0.73 0.73 0.68 0.52 0.68 0.68 0.54 0.37 0.69 0.45 0.67 0.5 0.69 0.65 0.49 0.71 0.66

infrared band (see table 4). Compared to table 3, overall accuracy varied by 1% to 2%, depending on the model. Models355

with complex structures such as UNet-xception and DeeplabV3-Resnet101 tended to have a decrease in accuracy. The356

change in model performance for each architecture varies, with a small decrease in precision on groins in the more357

complex model architecture. However, when using PAN-resnet18, the prediction accuracy on groins increased to 94%.358

4. Discussion359

The overall results of this study illustrate that, leveraging NAIP 4-band NIR imagery, classification accuracy of360

bulkhead, riprap, groins and breakwater shoreline structures can reach approximately 74% in the Virginia study area;361

accuracy of up to 83% was observed in the models pooling Virginia and Massachussets shoreline structure data. No-362

tably, this accuracy is a pixel-level metric - i.e., the number of approximately 60 centimeter pixels that are classified363

correctly. While higher levels of accuracy may be required for a fully automated approach, by integrating this into364
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a semi-automated pipeline in which first the presented algorithm is applied, and second a human coder corrects the365

output, significant time savings can be gained as contrasted to the multiple-year process currently being used by state366

and federal agencies. In this section, we explore model performance, highlight a number of directions for future re-367

search, and introduce a new ArcGIS python based toolkit that enables practitioners to leverage these algorithms in a368

semi-automated fashion.369

4.1. Feature Detection370

One frequent criticism of deep learning models is their black-box approach to image recognition, in which it can be371

difficult to ascertain why the model is performing (or failing) at a given task. To explore the mechanisms driving the372

presented models, we apply a SHAP visualization (SHapley Additive exPlanations visualization technique (Lundberg373

and Lee, 2017)) to understand what factors contribute to the model’s capability to distinguish different shoreline fea-374

tures. Figure 9 shows an example of what factors played into the correct classification of two images in the ResNet-18375

based network. In Figure 9A, an example of riprap is shown in the first row, and to the right are the features that were376

important for a given classification - i.e., the correct classification (riprap) was due to features shown in red on the im-377

age map. As this image shows, the algorithm leverages feature information spatially proximate to the class of interest.378

Conversely, the final column of Figure 9A also shows that indicators of riprap contribute negatively to classifications379

of groins - i.e., the algorithm can clearly distinguish between riprap and groin features. A more complex example380

is shown in Figure 9B, in which the true class (breakwater) is identified, but the information used for distinguishing381

between breakwater and groin is more diffuse - i.e., contextual information is being leveraged, rather than only pixels382

explicitly containing the breakwater feature.383

4.2. Computational Efficiency as a product of Imagery Source & Bands384

Our findings suggest that relatively less complex networks are some of the strongest performers for the task of385

shoreline feature detection. This is shown by the strong performance of PAN-Resnet18 in the NAIP tests, providing386

one of the highest levels of accuracy 72% in the Virginia case despite having one of the lowest number (11 million) of387

parameters to fit. While the other network architectures were able to achieve similar levels of accuracy in the context388

of a fourth band (UNet-InceptionResnetV2 achieved 72% accuracy), it does so with more model overhead (62 million389

parameters). This suggests that PAN-Resnet18 based implementations provide a strong balance between accuracy and390

computational costs for end-user deployment.391

However, if the user only has 3-band information available to them, UNet-xception may provide the best combina-392

tion of accuracy and complexity - providing similar levels of accuracy ( 82% in the MA/VA joint case) at a much lower393

parameter count than the similarly performing UNet-inceptionresnetV2 (29M vs. 62M in UNet-InceptionresnetV2).394

In terms of practical implementation, we find that our fully fit PAN-resnet18 model can be deployed with a memory395
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Figure 9: Virginia shoreline structure prediction analysis.

The above shows two random correctly classified test images in the first column. The second, third, fourth, and fifth
columns show the pixels/features that contributed against and in favor of prediction for each of the four classes. For
example, the upper-left image is a riprap structure that was predicted by the model most likely to be a riprap, then
bulkhead, breakwater, and groin. Blue pixels represent areas that work against classification in a given class and the red
pixels represent areas that work for classification. In this case, the Resnet-18 based network for image classification was
investigated.

footprint of only 43.4 megabytes, and an estimate for 1.5 kilometers of shoreline can be generated in between 1.4 sec-396

onds (GPU) and 2.16 seconds (CPU), indicating it is suitable for general use in desktop environments. For users that397

do not have a near-infrared band available, the UNet-xception implementation requires 110 megabytes of memory to398

load, and can generate estimates for 1.5 kilometers of shoreline in between 2 seconds (GPU) and 9.52 seconds (CPU),399

see Table 5 for computational time tested using 3-band VBMP imagery. This highlights the importance of identifying400

the fourth band of information to enhance efficiency, but we also note that both models are reasonable to consider for401

deployment relative to the decades-long time periods fully manual workflows require.402

4.3. Difference in Shoreline Structure Data Sources403

When comparing groin structures from the VA CUSP and MA data, we find that the features in MA are consistently404

labeled as perpendicular to the shoreline; this contrasts to the CUSP data, in which many groin features are coded405

along the shoreline and difficult to distinguish from other structures by eye (see Figure 10). Additionally, we found406

that digitization in the VA dataset is frequently not fully aligned with the structures visible in imagery (see Figure 11).407

These differences result in a number of limitations - and future directions - for this study. Because the Virginia data408
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Table 5
A summary of computational time when making the 5 km prediction with 3-band VBMP imagery

Model Name Computational Time (seconds)

UNet-Resnet18 5.27

UNet-Resnet101 13.07

UNet-xception 9.52

UNet-InceptionResnetV2 15.12

DeeplabV3-Resnet18 11.59

DeeplabV3-Resnet101 36.89

PAN-Resnet18 3.66

PAN-Resnet101 11.27

Figure 10: A comparision of geocoded groins from VA CUSP and MA data. (A) shows the groins (red lines) from VA
CUSP overlaid with VBMP imagery, and (B) shows the groins from MA data overlaid with MA orthoimagery.

is not directly aligned in all cases, the three-meter buffer applied may have been insufficient to capture the contextual409

pixels required to accurately classify all cases; this is in contrast to Massachusetts (Figure 10B) where such errors did410

not exist across most observations. Because the overall model accuracy was significantly higher (up to 83% overall411

accuracy) when Massachusetts data was included, it is feasible that our validation is understating the overall accuracy412

of the model in Virginia simply because our validation and calibration data itself has apparent errors. Future testing413

across separately digitized datasets could help to test this hypothesis; alternatively, work to correct the errors across414

the VA CUSP dataset could bear useful fruit for this and other similar initiatives.415

4.4. Scale of Classification416

The primary unit of classification in this work was the pixel - i.e., we sought to train an algorithm to take in an417

image tile, and output which pixels belonged to each of four classes. In practice, this level of spatial precision is higher418

than what may be required for some tasks: i.e., if one has a shoreline defined by a line feature, one could break that419

shoreline up with an object-based strategy, and then classify each resultant subset of the shoreline as belonging to420
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Figure 11: Example of features from VA CUSP not fully aligned with the imagery. On the left is a riprap, and on the right
is two breakwater structures from VA CUSP.

a given class (rather than classify each pixel). More broadly, many small errors - especially errors on the landward421

side of a given coastal feature - may not negatively influence decision making. Future work exploring the semantic422

definition of shoreline, and how that may interrelate with the appropriate scale and unit of observation for automated423

approaches to classification, could provide a fruitful pathway forward.424

4.5. pyShore: A semi-automated toolkit for shoreline structure classification in ArcGIS425

A core motivation for this work is to mitigate the total amount of time required to digitize vast amounts of shoreline;426

as noted in our introduction, today shoreline mapping processes take around a decade (CCRM, 2019; Fontenault et al.,427

2013). While future iterations of the work presented here may enable a fully automated pipeline for shoreline feature428

detection, the accuracy of the presented approach renders it best suited to a semi-automated approach in which human429

experts correct the output of the automated procedures. To enable this, here we present pyShore, a semi-automated430

toolkit for shoreline structure classification in the ArcGIS Pro (ESRI, 2022) software package.431

This tool is designed to take in two files - imagery and a definition of shoreline - and output for each pixel in the432

shoreline a best estimate of the type of shoreline feature present. Using PAN-Resnet18 as an example, these files are433

passed into the pre-trained PAN-Resnet18 model presented in this work, specifically the best performing NAIP 4-band434

model with 72% overall accuracy.1 The user must set a single parameter - buffer distance.435

The full workflow of the tool follows a multiple step procedure in which (see Fig. 12):436

1. The user defines a working folder (Ă ) in which to save all processing and result data.437

2. The user defines a folder with all source imagery in a georeferenced geoTiff format (Ă ÿăą).438

3. The user defines a single geometry file (i.e., shapefile) that defines the geographic locations of shoreline within439

1Of note, depending on the spatial resolution of input imagery, for some users it may make sense to implement one of the VA or MA orthoimagery

pre-trained models. We provide an optional download of the best performing weights for these data to enable such an analysis.
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the provided imagery (ď).440

4. The user provides a buffer distance (þ), or the distance from the shoreline that should be extracted from the441

imagery to serve as the target for the classification.442

5. All images in folder Ă ÿăą are cut into non-overlapping 256 × 256 patches (defined as Č ) suitable for input into443

the trained PAN model architecture.444

6. Taking in all patches Č , line ď, and buffer þ, we identify the image patches in Č that have overlap with buffered445

line ď; image patches with no overlap and dimension smaller than 256 × 256 are discarded.446

7. Each patch is subjected to a forward pass through the Resnet-18-based PAN trained in this paper, creating an447

output (ċ) of the same dimensions (256 × 256) in which each pixel is classified as one of four classes (four448

shoreline structures).449

8. Pixels intersecting with the shoreline feature (ď) with buffer distance, þ, are extracted from output, ċ, and then450

vectorized to provide a final shoreline output.451

Figure 12 summarizes the workflow of image processing, prediction, and post-processing. In addition to outputting452

the shoreline, a metric of confidence is generated to help guide user efforts, i.e., identifying the areas where the algo-453

rithm was least confident in its prediction so a human coder may select those areas for editing during a post-processing454

stage. This confidence level for each line segment (represented as a 3-meter buffered polygon) is generated by:455

Confidence =
1

Ą

Ą1

ÿ=1

Ĕÿ −ĔăÿĄ

ĔăÿĎ −ĔăÿĄ

(8)

where Ĕÿ is the absolute score the PAN-Resnet18 estimates for the class a given pixel (ÿ) was predicted as. ĔăÿĄ and456

ĔăÿĎ are the smallest and largest such estimate across all pixels in a target region. To calculate the confidence value for457

a given 3-meter buffered polygon, we define Ą as the set of pixels a buffered polygon overlaps. The confidence value458

for any target polygon is defined as the average confidence value of pixels in the layer that overlap with the polygon.459

4.6. Contributions to the Literature460

The work presented in this paper provides four core contributions. First, we introduce the first application of shore-461

line structure classification and mapping using deep learning techniques with pixel-scale localization, illustrating that462

accuracy of up to 83% is possible with contemporary deep learning techniques. Second, we provide some of the first463

evidence of the value of near-infrared spectral data in the context of deep learning for shoreline feature identification,464

specifically finding that NIR information can help reduce the computational complexity of algorithms required for gen-465

erating sufficiently accurate estimates for use in semi-automated workflows. Third, we introduce a toolkit to employ a466

deep learning framework within the ArcGIS Pro environment to facilitate rapid shoreline feature identification. Fourth,467
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Figure 12: Workflow of shoreline structure detection using the pyShore ArcGIS Pro toolkit.

from a shoreline management and sedimentation modeling perspective, the generated shoreline structure locations and468

types would be used as input for a shoreline management model (Nunez et al., 2022) which provides recommendations469

for the best management practices for defended and undefended shorelines. These contributions will enable more rapid470

digitization of shoreline features than was previously possible, aiding in increasing the rate at which shoreline maps471

can be generated and updated.472

5. Conclusion473

Accurate and precise low-cost shoreline structure mapping has the potential to improve the baseline information474

supporting shoreline management, thus improving the decision-making capacity of local, state, and national govern-475

ments. Today, shoreline structure mapping is a challenging task due to requirements for in-situ data collection, manual476
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image digitization, and the inevitability of concurrent shoreline change during years-long production processes.477

In this paper, we sought to explore the capability of convolutional neural network architectures to identify shore-478

line structures from remotely sensed imagery. This study provides (1) an initial benchmark accuracy (72%) for deep479

learning-based shoreline structure localization in Virginia (82% across a combination of Virginia and Massachusetts480

datasets), and (2) a computationally efficient toolkit that can be deployed in desktop environments which harnesses481

the proposed method for applied use. These findings, and the related toolkit provide a new method for local and state482

governments in the United States to generate shoreline inventories, and improve the management of coastal resources483

and infrastructure.484
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