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ARTICLE INFO ABSTRACT

Keywords: The process of mapping shoreline structures (i.e., riprap, groins, breakwaters or bulkheads) is
deep learning heavily reliant on in-situ field surveys and manual delineation using orthoimagery or aerial im-
coastal management agery. These processes are time and resource intensive, resulting in update times of longer than
remote sensing a decade for larger waterbodies. In this study, we explore the effectiveness of a deep learning ap-
semantic segmentation proach to map shoreline armoring structures from remotely sensed high-resolution imagery. We

focus on computationally efficient techniques which can be deployed in desktop environments
similar to those used by human coders today, with the goal of providing a semi-automated tech-
nique which reduces the total amount of time required to delineate shoreline structures. We test
arange of architectures using a dataset of over 10,000 observations of four classes of shoreline
structure, finding that a ResNet18 based Pyramid Attention Network (PAN) architecture achieves
72% overall accuracy (60 cm resolution), with 80% and 94% prediction accuracy in breakwater
and groins, respectively. This relatively lightweight implementation enabled a 1.5 kilometers of
shoreline to be processed in 1.4 seconds (GPU) to 2.16 seconds (CPU) in simulated user envi-
ronments. Finally, we present pyShore, an implementation of this deep learning algorithm made
available for human coders to apply as a part of a semi-automated workflow.

CRediT authorship contribution statement

Zhonghui Lv: conceptualized the project, selected and refined relevant algorithms, algorithmic development,
data preparation and testing, drafted the paper. Karinna Nunez: conceptualized the project, and paper editing. Ethan
Brewer: data and paper editing. Dan Runfola: conceptualized the project, selected and refined relevant algorithms,
and paper editing.

1. Introduction & Related Work

Maintaining a current inventory of shoreline structures is essential to assessing shoreline stabilization and the health
of nearshore habitats (Berman and Hershner, 1999; Nunez et al., 2020). Shoreline hardening structures that protect
upland property from erosion act not only as barriers which inhibit marsh migration (Titus et al., 2009; Gittman et al.,
2015; Hill, 2015; Enwright et al., 2016), but also represent barriers for sediment exchange between the marsh habitat
and the upland (Hill, 2015). Data on the location and nature of shoreline structures is thus an important element in
coastline management strategies (Nunez et al., 2022; Enwright et al., 2016; Hill, 2015; Gittman et al., 2015; Titus et al.,
2009).

Today, this data is primarily provided by shoreline inventory reports generated by government bodies (for example,
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in the United States these are produced by the state of Virginia (CCRM, 2019), Delaware (Berman et al., 2013),

Washington (State of Washington, 2009) and others (Fontenault et al., 2013; MGS, 2000)). These reports describe a
range of shoreline structures, including erosion control structures such as riprap, bulkheads, and breakwaters; structures
such as groins, designed to accumulate sand in transport; and recreational structures, built to enhance public or private
use of the water (CCRM, 2019; Fontenault et al., 2013).

The traditional approach to collecting and mapping shoreline structures consists of a GPS field survey to collect
coordinates and attribute information of coastal structures, and then manually delineating the structures and extracting
basic feature information (e.g., type, material, and length) from remotely sensed data or other available digital images
(CCRM, 2019; Fontenault et al., 2013). These processes require time-intensive in-situ surveys and well-trained tech-
nicians to carry them out. For example, the latest shoreline inventory for Virginia was a 12-year process (from 2007 to
2019), including in-situ surveys by trained fieldworkers as well as image digitization by experts. This process resulted
in updated historic shoreline reports for Virginia and new inventories in locations with no historic information (CCRM,
2019). As another example of the cost of such efforts, the first Massachusetts Inventory of Publically-owned Coastal
Infrastructure was collected over a eight-year period beginning in 2002 using a similar approach including GPS field
surveys and desktop interpretation of remotely sensed imagery. In this case, the in-situ survey work took 5 years, while
the digitization and GIS data production stage took 3 years of effort (Fontenault et al., 2013). While this approach to
assessing the coastal shoreline inventory can generate spatially explicit and highly-resolved outputs, the decade-long
process of generating such information can also inhibit contemporary accuracy as shoreline structures are removed or
added due to shoreline erosion, sea-level rise, or construction (Gittman et al., 2015; Enwright et al., 2016). This can
produce a large gap between the generated data product and the real-world shoreline structure topography (Niculescu
et al., 2021).

Over the past three decades, a variety of different techniques have been developed for the extraction of shoreline
from remotely sensed imagery. Imagery sources used in the literature range from coarse resolution (Bagli and Soille,
2004; Ghorai and Mahapatra, 2020; Kuleli et al., 2011; Spinosa et al., 2021) to high-resolution (Sekovski et al., 2014;
Tarmizi et al., 2014), and include LiDAR-derived data (Palaseanu-Lovejoy et al., 2016; Eboigbe et al., 2020; Liu et al.,
2011), Synthetic Aperture Radar (SAR) imagery (Mason and Davenport, 1996; Spinosa et al., 2021), and Multispectral
Satellite Imagery (MSI) (Sekovski et al., 2014). A common methodology includes classification of pixels in satellite
imagery to segment the image into different features (Bagli and Soille, 2004; Di et al., 2003; Kuleli et al., 2011),
then using machine learning (Kumar et al., 2020; McAllister et al., 2022a) or threshold analysis (Kuleli et al., 2011;
Ghorai and Mahapatra, 2020; Mason and Davenport, 1996) to classify the features into different categories of land or
water body, extracting the shorelines from the boundaries between the two. During analysis of the data, techniques

such as image enhancement (adjustment of brightness and contrast of individual features (Loos and Niemann, 2002)),
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edge detection (Mason and Davenport, 1996; Loos and Niemann, 2002; Kumar et al., 2020; Spinosa et al., 2021),

morphological operations (Spinosa et al., 2021; Ghorai and Mahapatra, 2020), water indexing (Ghorai and Mahapatra,
2020; McAllister et al., 2022b), and GIS processing (Ghorai and Mahapatra, 2020; Zarillo et al., 2008) may be applied
to improve the primary technique and achieve higher accuracy.

Some studies use object-based image analysis (OBIA) which first groups individual pixels into groups of pixels
likely reflective of the same objects using a range of algorithms (McAllister et al., 2022a; Gong et al., 2013), treating
the grouped pixels as the unit of analysis. The spectral information of the grouped pixels, shapes, texture, and other
topological features are then used to classify the segments into different categories (McAllister et al., 2022b; Niculescu
et al., 2021). Application-specific tools and metrics are also commonly developed such as beachtool (Zarillo et al.,
2008) to extract shoreline locations, and cliffmetric to extract cliffs in coastal areas (Liu et al., 2011; Payo et al., 2018).
However, to date the existing literature has focused on the extraction of shorelines from satellite images — to our
knowledge, no studies have focused on automatically extracting different types of shoreline armoring structures, the
focus of this study.

In this context, the automatic delineation of shoreline armoring structure based on orthographic imagery can help to
“fill in the gaps” between in-situ survey efforts, as well as provide more temporally-explicit information on the creation
and removal of coastal features. Such automated delineation would benefit many different research fields, including
hazard management and mitigation, coastal vulnerability and erosion assessment, environmental risk analysis, and
coastal spatial planning and management.

Advances in computer vision for remote sensing applications suggest promise for shoreline structure detection al-
gorithms. In recent years, object detection via remotely sensed images has received considerable attention due to the
availability of Very High-Resolution (VHR; i.e., sub-meter) and multispectral sensors (NOAA, 2018; DigitalGlobe,
2018). Since 2012, orthographic imagery analysis using deep learning methods, specifically convolutional neural
networks (CNN5s) has grown in popularity (Krizhevsky et al., 2012). Recent examples of the use of CNNs with or-
thoimagery include the detection of buildings (Yang et al., 2017), roads (Brewer et al., 2021; Narayan et al., 2017),
marine debris (Kikaki et al., 2022), coastal vegetation mapping (Li et al., 2021; Guirado et al., 2017), landuse mapping
(Bhosle and Musande, 2019), and other types of analysis and applications (Runfola et al., 2022, 2021; Goodman et al.,
2021; Brewer et al., 2022). The wide range of applications of deep learning techniques more broadly have driven a
number of research groups to explore ways to tailor approaches to orthoimagery, with a wide range of modeling ap-
proaches being promoted in recent years (Runfola, 2022; Wang et al., 2022; An et al., 2021; Roberts et al., 2022; Tran
et al., 2022; Aravena Pelizari et al., 2021).

In this study, we compare multiple state-of-the-art deep learning techniques, specifically an adapted U-Net archi-

tecture (Ronneberger et al., 2015), DeeplabV3 (Chen et al., 2016), and Pyramid Attention Network (PAN) (Li et al.,
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2018) to estimate the spatial location of shoreline structures using high resolution orthographic imagery. The proposed

methodology will advance shoreline inventory protocols by identifying and mapping shoreline structures at a regional
scale, but with a high spatially explicit resolution within an efficient time frame. We specifically seek to introduce a
technique that can be used as a part of a semi-automated pipeline for shoreline inventory collection, aiding individuals
digitizing orthoimagery in delineating line features more efficiently than would be feasible without automated shoreline
feature detection.

Our paper is organized as follows: in section 1.1 (“Related Work™), we provide a brief overview of relevant literature
on mapping and detection tasks, including structure detection, using orthoimagery and deep neural networks (DNNs).
In section 2 (“Material & Methods™), we discuss the data and technical approach we use in the experiment. We
introduce our results and provide a discussion in sections 3 and 4. In the discussion, we further present a semi-
automated toolkit, pyShore, for shoreline armoring structure classification in the ArcGIS Pro software with a user-
friendly interface to facilitate the data collection of future work (section 4.5). Finally, we provide a brief conclusion

summarizing our findings in section 5.

1.1. Related Work

A significant body of literature exists on the use of segmentation and object detection algorithms with remotely
sensed imagery (for a review, see Cheng and Han (2016)). Object detection algorithms have been applied for detection
and extraction of features of interest including roads (Wan et al., 2021), buildings (Etten et al., 2021), and vehicles
(Chen et al., 2014). Several issues - such as varying size, background, and orientation of target objects - make the
automatic detection of features in remotely sensed imagery a challenging problem (Brewer et al., 2022; Bhil et al.,
2022). Over the past few years, U-Nets (Ronneberger et al., 2015), and variants of region-based convolutional neural
networks (R-CNNs) (He et al., 2017), have become popular deep neural network (DNN) based approaches for object
detection and segmentation in the greater computer vision community, including within the computer vision remote
sensing (CVRS) domain. Some examples of the use of deep learning architectures in CVRS include building detection
from high-resolution multispectral imagery (Prathap and Afanasyev, 2018), and building footprint and road detection
within OpenStreetMap (OSM) fused with Sentinel-1 and 2 imagery (Ayala et al., 2021).

A small number of studies have been conducted extending specifically to marine science. In 2021, Li et al. em-
ployed a U-Net and developed an adaptive deep learning approach to map salt marshes in estuarine emergent wetlands
in South Carolina, USA from 20 Sentinel-2 images with an accuracy of 90% (Li et al., 2021). In 2022, marine debris
was identified from sentinel-2 imagery using a random forest model (Breiman, 2001) and a deep learning architecture
(Kikaki et al., 2022). Other work has explored the effectiveness of deep learning to identify marine objects such as

ships (Stofa et al., 2020) and whales (81% detection accuracy) (Guirado et al., 2019). No work to-date has explored
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shoreline structure detection from remotely sensed imagery using deep learning, the topic of this article.

2. Material & Methods

2.1. Study area

In this study, we focus on 17,239 kilometers of shoreline located in the state of Virginia in the United States (see
Figure 1). The majority of this shoreline surrounds the Chesapeake Bay, a protected estuary responsible for over
a hundred billion US dollars of economic output every year, predominantly related to commercial fishing, tourism,
recreation, and timber (Phillips and McGee, 2014). The Chesapeake Bay is a focus of estuary protection and renewal
activities from the State of Virginia, and also many US federal agencies (Phillips and McGee, 2014). It is further a
region with multiple climate mitigation efforts to protect both natural and human built structures (Najjar et al., 2010;

Toft et al., 2017; Du et al., 2016).

— CUSP
1 virginia

GLAD Landsat

Figure 1: Shoreline structures extracted from CUSP (NOAA, 2021a) along Virginia's coastal regions (Runfola et al., 2020).
Basemap is Landsat imagery downloaded from the Global Land Analysis and Discovery (GLAD, 2018).
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2.2. Data - Labels

Two different datasets are leveraged to identify the geographic location of shoreline features (i.e., to label areas
as belonging to a class of shoreline structure). This information is used to train the proposed deep learning approach
regarding what geometric features and colors are associated with each type of shoreline structure. The two datasets
we use for labeling are the NOAA Continually Updated Shoreline Product (CUSP), and the Massachusetts Private

Shoreline Stabilization Structures dataset.

2.2.1. NOAA’s Continually Updated Shoreline Product

The Continually Updated Shoreline Product (CUSP) published by the National Oceanic and Atmospheric Ad-
ministration (NOAA) National Geodetic Survey (NGS) provides a complete shoreline representation along the U.S.
coastline and its territories (NOAA, 2021a,b). It was created to deliver accurate, contemporary shoreline information
across the continental U.S to support various applications including coastal planning, hazard management and miti-
gation, storm management, environmental studies, and informing policy and decision makers in coastal management
(NOAA, 2021b). The geographic location of shoreline along the coast of Virginia were extracted from CUSP to es-
tablish the geographic location of eligible pixels to consider for classification. It has an average line resolution of 103
meters, and covers a total of 17,239 kilometers of coastline in Virginia.

From the full coastline, we subset to 945 kilometers of shoreline at which one of four hardened shoreline structure
types was identified - the focus structures of this study. These four shoreline structure types - breakwater, rip rap,
groin, and bulkhead - make up the majority of shoreline structures that are built in Virginia to defend against sea level
rise, flooding, and coastal erosion (CCRM, 2019). Breakwater (Fig. 3d) is an always-dry (not covered at high water
under average meteorological conditions) structure protecting a shore area, harbor, anchorage, or basin from waves.
Riprap, as seen in Fig. 3c, is a shoreline structure built by layers of broken rock, cobbles, boulders, or fragments of
sufficient size to resist the erosive forces of flowing water and wave action. Groin (Fig. 3b) is an always-dry, shallow,
artificial, wall-like structure of durable material extending from the land to seaward for a particular purpose, such as
to prevent coast erosion. Bulkheads (or sea walls; Fig. 3a) are embankments or walls for protection against waves or
tidal action along a shore or waterfront. The shoreline structures metadata within CUSP was used to label pixels to its
corresponding shoreline structure category. Fig. 2 summarizes the number of features (i.e., discrete lines representing

shore features) used to label each pixel.

2.2.2. Massachusetts Private Shoreline Stabilization Structures
As figure 2 illustrates, the data labels from CUSP in Virginia are highly imbalanced, largely due to a limited number
of labeled features for groins and breakwater. In order to increase the number of training dataset examples and create

a more balanced dataset for training, we extract additional groins features from a secondary dataset published by the
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groin

breakwater

nprap

bulkhead

0 1000 2000 3000 4000 5000

Figure 2: CUSP data distribution in Virginia.

(A) Bulkhead (B) Groins (C) Riprap (D) Breakwater

Figure 3: A visualization of the four shoreline armoring techniques we focus on in this study. The upper four images are
taken on-site, and the lower four images are from VA orthoimagery

Massachusetts Coastal Infrastructure Inventory (Fontenault et al., 2013). This dataset was developed for Massachusetts
Office of Coastal Zone Management to monitor coastal structures that were built to protect public and private devel-
opment in dynamic coastal areas (Fontenault et al., 2013). There are 1,957 geocoded groins available in this dataset,
collected in 2013 and digitized using 30 cm resolution 2008/2009 USGS color orthographic imagery. The digitized

groins are combined with CUSP features to construct a broader dataset for model training and validation.

2.3. Data - Imagery
2.3.1. Virginia Base Mapping Program (VBMP)

The Virginia Base Mapping Program (VBMP) was initiated in 2001 to develop orthoimagery for the Common-
wealth of Virginia. The purpose of this program is to create a consistent, accurate base map that all state, local, and

federal government agencies, as well as private sectors and academic intuitions can use for spatial data applications
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(VGIN, 2018). The VBMP imagery leveraged was captured at a 12-inch (30.48cm) ground sample distance and ac-
quired during the leaf-off period in 2021 with 3-band spectral resolution (red, green, blue) across the Commonwealth
of Virginia.

We specifically leverage a total of 1,103 image tiles (the size of each image tiles varied, and the average image size
is 5000 5000 pixels) that intersect with the CUSP coastal line data. Files were retrieved from VGIN in MrSID format,

converted to geotiffs, and then labeled using the georeferenced CUSP data for further analysis as described above.

2.3.2. Massachusetts High-Resolution Orthoimagery

Thirty-centimeter resolution 2008/2009 USGS Color Ortho Imagery was retrieved for all areas covered by the Mas-
sachusetts Coastal Infrastructure Inventory Groins, representative of the same imagery used for digitization (Fontenault
et al., 2013). These images are 3-band (Red, Green, Blue) natural color. A map of the bounding boxes of these images

can be seen in figure 4.

2 Fas

T

Figure 4: A map of the bounding boxes of imagery in Massachusetts with a cluster of groins near Plymouth, MA expanded.
Basemap is from geoboundaries.org (Runfola et al., 2020) and imagery is from Mass.gov (USGS, 2012)

2.3.3. National Agricultural Imagery Program

Aerial images collected by the United States Department of Agriculture’s (USDA) National Agricultural Imagery
Program (NAIP) (OCM-Partners, 2022) were also acquired for this study in order to analyze the relationship between
imagery resolution and model accuracy, as well as to explore the potential benefits of datasets incorporating a near-
infrared band for shoreline structure identification.

The NAIP dataset is a time series aerial imagery database that has records extending to 2003, sponsored through a
collaboration between the United States Geological Survey (USGS) and U.S. state governments (OCM-Partners, 2022).
The initial NAIP acquisition cycle was five years, before changing to three years in 2009. NAIP imagery is generally
acquired at a 1-meter spatial resolution with 4-band spectral resolution (red, green, blue and near-infrared) across the

continental United States during the agricultural growing season. In recent years, some states began publishing the
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dataset with higher spatial resolution (including Virginia). Imagery is provided orthorectified; for our study, we use

the NAIP imagery acquired 2018 in Virginia with 0.6 m spatial resolution. A total of 316 image tiles (standardized to

a size of 5000 x 5000 pixels) provided complete coverage of all coastal features in the CUSP database.

2.4. Data processing - annotation process & protocol

A python processing script was developed to automate data pre-processing, labelling, and generation of training
and validation data. Of the 10,194 filtered shoreline structures identified in CUSP coastal lines (1,055 km), 5,040 (529
km) were labeled bulkhead, 4,519 (489 km) riprap, 221 (6 km) groin, and 414 (31 km) breakwater. A 3-meter buffer
was constructed along the filtered shoreline structures in order to provide context for image classification as well as
mitigate minor errors or differences in georeferencing across imagery and shoreline label sources.

Here we present a brief example of our processing procedures, using NAIP imagery as an illustrative case. First,
each 5000x 5000 pixel NAIP image tile is cropped into 400 256 X256 image patches. Only image patches that intersect
with CUSP features are kept for further data processing and analysis, resulting in a dataset of 4,532 256 x 256 tiles
covering coastal Virginia. The pixels in these image patches are labeled using the CUSP dataset, by first masking all
pixels that are not shoreline as background, and then labeling the remaining pixels according to the corresponding
class values in CUSP (bulkhead, riprap, groin, and breakwater). This procedure results in a series of 256 X 256 masks
with each shoreline pixel labelled. Fig. 5 is an example of an original NAIP tile, cropped to 256 X 256 pixels, and the
corresponding label mask on the right. This data is used to construct training, validation, and testing datasets for the

model development, calibration, and validation.

Image Image Label

Bulkhead

Background

Figure 5: An example case of cropped image patch and its associated mask.

In addition, for each 256 X 256 tile, a secondary dataset is generated in which the entire image is labeled as a single

class based on the most common shoreline structure. This secondary dataset is used to establish baseline accuracy of
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Table 1
Summary of the number of pixels (and percentage) in each dataset used in model training
and testing. The green column represents number of pixels labeled as bulkhead, the red
column represents number of pixels labeled as riprap, the yellow column indicates the
number of pixels labeled as groin, and the blue column shows the number of pixels labeled
as breakwater.

Training Data Testing Data

Dataset Name . .
(pixel count and percentage per class) | (pixel count and percentage per class)

1806530 | 1704174 | 91117 | 214871 |391008|330605| 23377 | 50356

U SR EI 47% | 45% | 2% 6% | 49% | 42% | 3% 6%
1806539 | 1704174 | 374952 | 214871 |406597 |427725|270849 81867

VA CUSP/VBMP & MA| =00, | 400, | 0% 5% | 29% | 24% | 43% 2%
2727071 | 2660187 | 60866 242668 |599562 536705 | 14662 54891

VA CUSP/NAIP 8% | 4% | 1% 4% | 50% | 46% | 1% 6%

methodologies that do not involve localization (i.e., to contrast pixel vs. scene resolution classification accuracy).
This process is repeated for three datasets - VBAP images, MA high-resolution orthoimagery, and NAIP. We
leveraged these datasets to conduct a wide range of tests regarding the performance of our approach under a range of
different circumstances.
Of the collected shoreline structure images and labels in the three datasets, the number of pixels per each class
in the training and testing subsets are summarized in Table 1. Observed data imbalance is taken into account in the

training process with a weighting scheme on the loss function; we present details of our approach in section 2.5.

2.5. Methodology
2.5.1. Architectures for image segmentation

Three predefined state-of-the-art semantic segmentation architectures are tested and compared considering their
generalization capacities, U-Net (Ronneberger et al., 2015), DeeplabV3 (Chen et al., 2016), as well as Pyramid Atten-
tion Network (PAN) (Li et al., 2018).

U-Net: The U-Net is a well-established, relatively light weight (under 10 million parameters and forward-pass tim-
ings of less than a second for 256 X 256 images) deep learning algorithm for semantic segmentation based on con-
volutional network architectures (Ronneberger et al., 2015). The algorithm’s architecture includes two parts: down-
sampling and up-sampling, also called the encoder and decoder. The encoder extracts varying resolution feature maps
through a series of convolutional, rectified linear units (ReLU), and max-pooling layers (Li et al., 2021). The decoder
stage contains and combines (a) each feature map from the down-sampling process, and (b) spatial information through
an up-sampling and concatenation process (Fig. 6). This data flow of down-sampling and up-sampling constructs a
U-shape of architecture, thus the output layer maintains the same resolution as the input layers. One key benefit of

using this learning architecture is that it has been shown to be effective in cases with few training images, while still
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retaining high levels of segmentation accuracy (Ronneberger et al., 2015).
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Figure 6: The U-Net architecture (Example of a 3-band input image with 256 x 256 pixel-size). The boxes indicate the
feature maps at each layer, and the number on the top of each feature map shows the depth of feature map (channel).
Numbers on the right side of each feature map are image/feature maps dimension.

In this piece, we modify the U-Net architecture in order to identify a deep learning model that can both accurately
delineate shoreline structures, and do so in a way that is computationally suitable for deployment on contemporary
desktops and laptops. We modify the U-Net in two key ways: (a) we provision alternative classifiers to handle en-
coding and decoding tasks, and (b) we adapt the algorithm to dynamically accept either 4-band (RGB,NIR) or 3-band
(RGB) high-resolution imagery (noting our labeled data is sourced from both three and four band sensors). The spe-
cific alternative classifiers that are contrasted in this piece to assess their capabilities in shoreline structure detection
include modifications to the U-Net which leverage a small set of convolutional approaches chosen for their relative
computational efficiency - Resnet-18, Xception, and the original U-Net implementation (Ronneberger et al., 2015) -
as well as two deeper (i.e., more computationally intensive) networks to provide contrasting cases - Resnet-101 and

InceptionResNet-v2.

DeeplabV3: The DeeplabV3 algorithm is designed for image segmentation. It introduces atrous convolution (Chen
et al., 2016) in the down-sampling process to efficiently produce high level feature maps while keeping accurate lo-
cation information, which can effectively enlarge the field of view of filters without increasing the number of training
parameters. The deeplabV3 also uses atrous spatial pyramid pooling (ASPP) to capture objects and useful image con-

text at multiple scales (Chen et al., 2016). This method has recently been applied in many semantic segmentation tasks
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with remote sensing data and proved to be an effective technique in many fields (Wang et al., 2022; Liu et al., 2021).
Pyramid Attention Network: Different from U-Net and DeeplabV3, PAN is built on an attention mechanism, which
aims to imitate human visual systems to effectively find salient regions in a complex scene. The attention mechanism
is combined with spatial pyramid to extract precise dense features for pixel labeling (Li et al., 2018), instead of using
atrous convolution like DeeplabV3 and artificially designed decoder networks like U-Net.
Within each of these architectures, we further test a range of up- and down-sampling convolutional strategies,

including Resnet-18, Resnet-101, xception, and InceptionResnet.

2.5.2. Loss functions
The loss function is the proximity between the ground truth label data and the predicted class. In this study, we

implement a multi-class cross-entropy loss:

M
loss == y,.10g(p,) 0))

c=1

where M is the total number of shoreline structure classes (M = 4 in this study, background is excluded from the loss)
and y is the binary indicator (0 or 1) if class label c is the correct classification for observation o, p is the predicted
probability observation o is of class ¢. Due to the imbalance of our pixel-level data distribution, a weighting scheme is
used in the training process, in which classes are weighed according to their representation in the labeled data (Kikaki

et al., 2022; Paszke et al., 2016):

1
W, = 2
class ln(c+pclass) ( )

where W, 1s amultiplicative weight applied to the loss function for observations of a given class, p,;,5s =

lass pixelsofclass

/N, where N, excludes the background pixels in the training set, and c is an additional hyper-parameter

otalpixels> otalpixels

set to 1.03 (following past literature; see Kikaki et al. (2022)). During the training process, Adam optimization is used

to minimize the cross-entropy loss with an initial learning rate of 1 x 1073.

2.5.3. Model validation and application
We implement a wide range of validation metrics to assess pixel-level semantic segmentation performance. First
and foremost, we present overall accuracy (equation 3) to give guidance to the overall performance a user might expect.

In addition, we evaluate the intersection-over-union (IoU) (equation 4), the average F1 score for each class (Macro-F1)
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(equation 5), and the precision (equation 6) and recall (equation 7) at the pixel level for each class.

TP+TN
Accuracy = 3)
TP+TN+FP+FN

[lUNV|

IoUWU,V) = 4
w,v) Uov] 4
Fl = 2 % Precision * Recall _ 2xTP )
Precision + Recall 2«TP+FP+FN
Precision = _TIP__ 6)
TP+ FP
Recall = —1 2 @)
TP+ FN

In equations 3, 5, 6, and 7, TP (true positive) represents the number of pixels in which the model correctly predicts
ground truth, TN (true negative) represents outcomes in which the model correctly predicts cases that are different
than ground truth, FP (false positive) is predictions to a class that do actually not belong to that class, and FN (false
negative) are the number of predictions belonging to a class but were predicted to be in a different class. The F1 score
is a harmonic mean between precision and recall.

The IoU (equation 4), defined as the size of the intersection divided by the size of the union of two label sets, is
used to compare the set of predictions for a sample to the corresponding set of ground truth labels. IoU provides a
conservative estimate of model performance, penalizing for both FP and FN at the pixel level (Rezatofighi et al., 2019).
Lastly, a cross-validation matrix for each model is additionally generated to compare the prediction accuracy for each

type of shoreline structure.
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3. Results & Analysis

The results of each test, including permutations of the datasets described in section 2.3 and the architectures de-
scribed in section 2.5.1, are presented in Table 2; the results for tests using NAIP imagery are summarized in Table
3.

The first set of results (the first three rows) in Table 2 present a U-Net implementation in which the encoder and
decoder is the same as in the original definition of the architecture (Ronneberger et al., 2015) (i.e., a “Backbone”
of “Original”). In Table 2, in order to evaluate model performance in the Virginia region specifically, we delineate
between models that are tested solely on coastal features in Virginia, and those that are tested on a dataset which
includes both Virginia and Massachusetts features. For example, the results indicate that when the “Original” U-Net

implementation is tested (with the default encoder and decoder):

1. When trained and tested on the integrated Virginia and Massachusetts (VA and MA) datasets, the overall accu-

racy (OA) is 75%; the best performing class is Groins (F1 = 0.96); worst is Breakwater (F1 = 0.4).
2. When trained on VA and MA, but then tested only on VA, the overall accuracy is 59%.
3. When trained on VA data alone, and then tested on VA alone, the overall accuracy is 61%.

Thus, the first set of our results provides evidence that suggests that - if a default U-Net implementation is leveraged -
the best overall model performance across all of our data is found if all data from VA and MA is pooled. However, for
the model we are most interested in - a model that succeeds in classifying the Chesapeake Bay and related shorelines
in Virginia - we find that limiting training data to Virginia can result in a slightly better performing model based on
overall accuracy.

We expand this study to a range of alternative classifiers (“backbones”), in which we exchange the default encoder
and decoder of the U-Net, DeeplabV3, PAN architecture with a range of popular network architectures (Resnet-18 and
Resnet-101 for all three architectures, xception and inceptionResnetV2 for U-Net, with transfer learning weights based
on ImageNet). Across all of these permutations, we identify PAN-resnetl101 as the best global classifiers, achieving
83% overall accuracy when trained and tested on the integrated Virginia and Massachusetts dataset. The performance of
PAN-resnet18 is particularly notable in this scenario, as it achieved 81% overall accuracy, but with far less complexity
(11M parameters) than the best classifier (43M). This indicates that a lighter-weight architecture may be appropriate
for shoreline structure delineation, which can enable deployment on - for example - lower memory environments.

When focusing only on validation with Virginia basemap (3-band) imagery data, we find the highest overall vali-
dation accuracy is 72% (using PAN-resnet101 implementations). Using the lighter weight PAN-resnet18, the overall

validation accuracy achieved was 69%. Similar to the joint Massachusetts and Virginia case, this highlights the value
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Table 2
Results of Architecture Tests. Results are presented broken out by model implementation,
test and training datasets, and each of the four tested classes. Each tested class is presented
with four statistics: F1 score (F1), Intersection over Union (loU), Precision (Prec.), and
Recall (Rec.). Global statistics are presented in the final four columns, including mean
Intersection over Union (mlIOU), Overall Accuracy (OA), and Macro-Averaged F1 score

(F1-macro).
Model Details Dataset Name Ikhead Riprap Groins k

Architecture Decoder Trained | Tested | F1 | 10U | Prec. | Rec. | FL | 10U | Prec. | Rec. | FL | 10U | Prec. | Rec. | F1 | 10U | Prec. | Rec } miOU  OA  Flmacro

Original VA&MA | VAZMA | 066 05 068 | 0.65 | 054 | 0.37 055 053 | 0.06 | 0.03 | 000 | 0.94 | 0.4 | 0.25 | 020 | 06 051 075 064

UNet param, 0.gM | VARMA | VA | 067 05 068 | 0.65 | 055 | 038 057 053|027 |016| 042 | 02 | 041|026 | 031 | 06 032 050 047

s VA VA | 067 051 071 | 064|059 |042 057 06 | 028|016 | 04 |021 | 042|026 | 034 | 054 034 061 049

Reanct 18 VA&MA | VA&MA | 0.68 0.52 0.71 | 0.65 | 0.61 | 0.44 059 063 | 096 | 093 | 0.96 | 0.97 | 055 | 038 | 0.52 | 0.58 057 078 0.7

UNet T VAXMA | VA 068 052 071 | 065|061 | 044 06 063035021 | 03 |04L| 056|039 053 | 0.58 039 063  0.55

VA VA |073 057 073 | 072 | 064|047 063 065 041|025 073 | 028 | 052 | 035 | 047 | 059 041 067 057

Reenet 101 VAZMA | VAZMA | 0.72 056 0.74 | 0.60 | 0.66 | 049 0.62 0.69 | 0.97 | 0.04 | 0.97 | 0.96 | 0.56 | 0.39 | 0.50 | 054 059 08 073

UNet o5 VAXMA | VA | 072 056 0.75 | 0.69 | 0.66 | 0.49 0.63 0.69 | 0.41 | 026 | 0.4 | 0.42 | 0.57 | 0.4 | 0.61 | 0.54 043 068  0.59

: VA VA | 075 06 075 | 075|068 | 051 067 068 | 053|036 | 068 | 044 | 06 | 043 | 0.57 | 064 048 071 064

- VA&MA | VA&MA | 0.73 0.58  0.78 | 0.69 | 0.60 | 0.53 0.63 077 | 0.98 | 0.96 | 0.99 | 0.07 | 058 | 0.41 | 060 | 0.5 062 08 075

UNet XC;;:;“ VAXMA | VA [ 073 058 0.79 | 0.69 | 069 | 053 063 077 | 055 | 0.38 | 0.64 | 0.49 | 0.59 | 0.42 | 071 | 05 048 0.7 0.64

VA VA 077 062 076 | 077 | 07 |054 069 07 | 047|031 | 043 [052| 06 | 043 | 07 | 053 047 072 063

— VA&MA | VAZMA | 074 056 076 | 071 | 0.66 | 052 064 0.73 | 0.8 | 0.96 | 0.99 | 0.07 | 0.50 | 042 | 0.67 | 0.52 062 082  0.75

UNet '”CEpt'g';,'js"e“’z VARMA | VA [ 074 058 0.77 | 0.71 | 069 | 052 0.65 0.73 | 0.58 | 0.41 | 0.63 | 0.53 | 0.59 | 0.42 | 069 | 0.52 048 0.7 0.65

VA VA |o075 06 076 | 073|069 |052 066 072 053|036 | 074 | 042 | 051|034 | 052 | 05 046 07 0.62

Reanct 18 VAZMA | VA&MA | 0.66 049 0.7 | 062 | 0.58 | 041 055 062 | 095 | 00 | 0.95 | 0.04 | 048 | 031 | 044 | 0563 053 076 067

DeeplabV3 oM VA&MA | VA | 066 049 0.7 | 062|050 | 042 056 062|041 |026| 032 |056 | 054|037 | 0.56 | 053 038 061 055

VA VA | 068 052 07 |067|061]044 059 063|036 |02 | 042 | 031 ] 056|030 | 050 | 053 039 0.64 055

Resnet 101 VARMA | VA&MA | 0.7 054 0.72 | 0.68 | 0.61 | 044 050 063 | 0.05 | 0.01 | 0.96 | 0.04 | 0.46 | 0.3 | 041 | 0.53 055 0.8  0.68

DeeplabV/3 oM VA&MA | VA 07 054 073 | 068 | 0.62 | 045 061 063|036 |022| 032 | 041 | 0.51 | 0.34 | 049 | 053 039 064 055

VA VA |o074 058 076 | 072|067 | 051 064 07 | 049|033 053 | 046|052 035| 055 | 05 044 069 061

Reenct 18 VAZMA | VA&MA | 0.74 058 0.72 | 0.75 | 0.65 | 0.48 065 065 | 0.97 | 0.04 | 0.97 | 0.96 | 0.6 | 0.43 | 0.66 | 055 061 081  0.74

PAN M VAXMA | VA [ 074 058 0.73 | 0.75 | 0.65 | 048 065 065 | 0.47 | 031 | 045 | 05 | 0.64 | 0.48 | 0.78 | 0.55 046 069  0.63

VA VA | 073 057 072 | 0.74 | 0.66 | 049 065 067 | 052|035 | 083 | 038 | 07 | 054 | 083 | 0.6 049 069 065

Resnct101 | VAGMA [ VAGMA [ 076 061 076 | 075 | 060 | 053 060 07 | 098 | 0.05 | 099 | 0.7 | 0.63 | 046 | 057 | 0.7 064 083 076

PAN vam VA&MA | VA | 076 061 076 | 075 | 0.60 | 053 060 0.7 | 051 | 0.34 | 056 | 0.46 | 0.65 | 048 | 0.61 | 0.7 049 072 0.5

VA VA |o075 06 075 | 076|068 051 066 07 | 051|034 079 | 037 | 056|039 | 066 | 049 046 07 0.63

of the lighter weight PAN-resnet18 implementation; further, we note that UNet-xception came in a close second with
70% accuracy (29M parameters).

In the results presented in Table 2, the models trained on the Virginia dataset have no particular class correlated
closely with overall performance. The overall accuracy in Virginia shoreline features ranges from 61% to 72%, with
each model performing relatively poorly with groins (noting model performance varies most in this class). With
391,008 pixels labeled as bulkhead in the Virginia test set, each model performed relatively well at prediction of the
class, with relatively little variance (0.05%) across models.

Introducing additional examples of groin features into the training dataset proved to be relatively inefficient in
improving overall accuracy for the Virginia data, suggesting that groin features in Massachusetts and those in Virginia
may be distinct enough to require specialized approaches to cross-domain learning. However, for model development
that may be focusing on global results (i.e., not domain specific to Virginia), the additional samples had a range of
advantages. Adding the geocoded groin features from MA into training, the precision for predicting groins improved
dramatically - for UNet-xception tested on VA to the same model tested on the merged MA and VA dataset - from 43%
to 99%. For groin features specifically, the best model tested on the merged dataset achieves 99% accuracy, 97% recall,
and 98% F1 score. Figure 7 presents the visualization of predictions from models trained on Virginia VBMP dataset.

Table 3 highlights results when models are tested using only Virginia imagery (testing and training) with the NAIP

dataset. We find broadly comparable results to the cases presented in Table 2, with a slight performance gain in the
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UNet-InceptionResnetv2

DeeplabV3-Resnet101

PAN-Resnet101

Figure 7: Result visualization predicted by different models trained on VBMP 3-band imagery.

Table 3

Architecture results with NAIP imagery. Each tested class is presented with four statistics:
F1 score (F1), Intersection over Union (loU), Precision (Prec.), and Recall (Rec.). Global
statistics are presented in the final four columns, including mean Intersection over Union
(mloU), Overall Accuracy (OA), and Macro-Averaged F1 score (F1-macro).

Model Details  Dataset Name Bulkhead ) Riprap ) Groins Breakwater miou | OA | Fl-macr
Architecture Decoder Trained | Tested F1 I0U | Prec. | Rec. F1 I0U | Prec. | Rec. F1 I0U | Prec. | Rec. F1 IOU Prec. Rec. acro
UNet Original VA VA | 07 | 054|073 | 068 |065| 05 | 067 | 0.67 | 04 | 029 | 0.38 | 0.55 | 0.65 | 0.48 | 0.53 | 0.84 | 045 | 0.68 | 062

params: 0.8M
Resnet-18
UNet T VA VA 073|057 | 072 | 0.74 | 067 | 0.51 | 0.67 | 0.67 | 0.54 | 0.37 | 0.76 | 0.42 | 0.7 | 054 | 0.79 [ 063 | 05 | 0.7 0.66
Resnet-101
UNet o1 5M VA VA |073|058| 073 | 0.74 | 068 | 0.51 | 0.68 | 0.68 | 0.58 | 0.41 | 0.67 | 051 | 0.71 | 0.56 | 0.75 | 0.68 | 0.51 | 0.71 | 0.68
Xception
UNet on VA VA |074|058| 072 | 0.76 | 0.68 | 0.51 | 0.69 | 0.67 | 0.6 | 0.43 | 0.76 | 05 | 0.74 | 0.58 | 0.85 | 0.65 | 0.53 | 0.71 | 0.69
UNet '”ce"“‘;';':ﬂes"ﬁw VA VA | 076|062 | 074 | 079 | 071 | 0.55 | 0.73 | 0.69 | 0.68 | 0.52 | 0.77 | 0.61 | 0.75 | 0.6 | 0.85 | 0.68 | 057 | 0.72 | 073
DeeplabV3 Resl"ﬁ‘;\;'lg VA VA 072|056 | 07 | 074 | 066|049 | 067 | 0.64 | 0.57 | 0.4 | 067 | 05 | 0.68 | 0.51 | 0.72 | 0.64 | 049 | 0.69 | 0.66
Resnet-101
DeeplabV3 o VA VA 073|058 | 072 | 0.74 | 068 | 0.52 | 0.69 | 0.67 | 0.49 | 0.32 | 0.48 | 0.5 | 0.66 | 0.49 | 0.67 | 0.65 | 0.48 | 0.7 0.64
Resnet-18
PAN 1M VA VA |075| 06 | 071 | 08 | 068|051 | 072 | 0.64 | 0.55 | 0.38 | 0.94 | 039 | 0.76 | 0.61 | 08 | 072 | 053 | 072 | 0.69
PAN Res:;;;lml VA VA | 075| 06 | 072 | 0.78 | 0.68 | 05 | 0.7 | 067 | 0.54 | 0.37 | 0.86 | 0.4 | 067 | 0.5 | 079 | 0.57 | 05 | 0.71 0.66

best overall accuracy at 74% (UNet-inceptionResnetV2, 62 million parameters). Each model performs relatively well
at predicting bulkhead and riprap features, with significantly less variance between the models than observed in the
models trained and validated based on the Virginia basemap and Massachusetts 3-band orthoimagery. Of note is that
the PAN-Resnet18 model achieves 94% and 80% precision in groins and breakwater, despite the relatively small number
of labeled cases available (see Fig.2). Fig. 8 summarizes the precision improvement for each class when contrasting
models fit in Virginia using the VBMP orthoimagery and NAIP imagery.

To better understand the contribution of the NIR band in NAIP imagery to model performance compared to using

only RGB orthoimagery, we further trained each model with 3-band (RGB) NAIP imagery - excluding the fourth
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Difference of Model Prediction Accuracy Compared
by VBMP and NAIP Imagery Over Each Class
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Figure 8: Performance comparison between models trained on VBMP and NAIP

The values in this chart are calculated by subtracting the model prediction accuracy of each class trained on VBMP
imagery from the prediction accuracy trained on NAIP imagery. Positive values correspond to improvement after using
NAIP imagery.

Table 4
Model performance using 3-band NAIP imagery (excluding near infrared).

Model Details Dataset Name Bulkhead Riprap Groins Breakwater mioU | 0A | Fa-macro

Archi Decoder Trained Tested | F1 | IOU | Prec. | Rec. | F1 | IOU Prec. | Rec. F1 | IOU | Prec. | Rec. | F1 | IOU Prec. | Rec.

UNet Resnet-18 RGB RGB 0.7 | 054 | 0.71 0.7 | 0.66 | 0.49 | 0.64 | 0.67 | 059 | 0.42 | 0.83 | 0.46 | 0.69 | 0.53 | 0.79 | 0.61 0.5 0.68 0.66

UNet Resnet-101 RGB RGB 0.72 [ 0.56 0.7 073 | 066 | 05 0.67 | 0.66 | 0.48 [ 031 | 063 | 0.33 | 0.65 | 0.48 | 0.75 | 0.58 0.46 | 0.69 0.63

UNet Xception RGB RGB 0.74 | 059 | 0.72 | 0.76 | 0.69 | 0.52 0.7 0.68 | 062 | 045 | 0.86 | 048 | 0.75 | 0.6 0.86 | 0.67 0.54 0.72 0.7

UNet InceptionResnetV2 RGB RGB 076 | 061 | 0.74 | 0.77 | 0.71 | 055 | 0.71 | 0.71 0.7 | 053 | 0.87 | 058 | 0.73 | 0.57 | 0.85 | 0.64 0.57 0.72 0.72
DeeplabV3 Resnet-18 RGB RGB 0.71 [ 055 | 0.69 | 0.73 | 0.64 | 0.47 | 0.65 | 0.63 | 0.53 | 0.36 | 0.65 | 0.45 | 0.68 | 0.52 | 0.75 | 0.63 0.47 | 0.67 0.64
DeeplabV3 Resnet-101 RGB RGB 0.74 | 059 | 0.73 | 0.76 | 0.69 | 0.52 0.7 0.68 | 0.54 | 0.37 | 0.63 | 0.48 | 0.68 | 0.51 | 0.74 | 0.62 0.5 0.71 0.66

PAN Resnet-18 RGB RGB 074 [ 059 | 071 | 078 | 067 [ 051 | 0.71 | 064 | 0.6 | 043 ]| 089 | 045 | 0.74 | 0.59 | 0.81 | 0.69 053 [ 071 0.69

PAN Resnet-101 RGB RGB 0.73 {058 | 073 | 0.73 | 0.68 | 0.52 | 0.68 | 0.68 | 0.54 | 0.37 | 0.69 | 0.45 | 0.67 | 0.5 0.69 | 0.65 049 071 0.66

infrared band (see table 4). Compared to table 3, overall accuracy varied by 1% to 2%, depending on the model. Models
with complex structures such as UNet-xception and DeeplabV3-Resnet101 tended to have a decrease in accuracy. The
change in model performance for each architecture varies, with a small decrease in precision on groins in the more

complex model architecture. However, when using PAN-resnet18, the prediction accuracy on groins increased to 94%.

4. Discussion

The overall results of this study illustrate that, leveraging NAIP 4-band NIR imagery, classification accuracy of
bulkhead, riprap, groins and breakwater shoreline structures can reach approximately 74% in the Virginia study area;
accuracy of up to 83% was observed in the models pooling Virginia and Massachussets shoreline structure data. No-
tably, this accuracy is a pixel-level metric - i.e., the number of approximately 60 centimeter pixels that are classified

correctly. While higher levels of accuracy may be required for a fully automated approach, by integrating this into
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a semi-automated pipeline in which first the presented algorithm is applied, and second a human coder corrects the

output, significant time savings can be gained as contrasted to the multiple-year process currently being used by state
and federal agencies. In this section, we explore model performance, highlight a number of directions for future re-
search, and introduce a new ArcGIS python based toolkit that enables practitioners to leverage these algorithms in a

semi-automated fashion.

4.1. Feature Detection

One frequent criticism of deep learning models is their black-box approach to image recognition, in which it can be
difficult to ascertain why the model is performing (or failing) at a given task. To explore the mechanisms driving the
presented models, we apply a SHAP visualization (SHapley Additive exPlanations visualization technique (Lundberg
and Lee, 2017)) to understand what factors contribute to the model’s capability to distinguish different shoreline fea-
tures. Figure 9 shows an example of what factors played into the correct classification of two images in the ResNet-18
based network. In Figure 9A, an example of riprap is shown in the first row, and to the right are the features that were
important for a given classification - i.e., the correct classification (riprap) was due to features shown in red on the im-
age map. As this image shows, the algorithm leverages feature information spatially proximate to the class of interest.
Conversely, the final column of Figure 9A also shows that indicators of riprap contribute negatively to classifications
of groins - i.e., the algorithm can clearly distinguish between riprap and groin features. A more complex example
is shown in Figure 9B, in which the true class (breakwater) is identified, but the information used for distinguishing
between breakwater and groin is more diffuse - i.e., contextual information is being leveraged, rather than only pixels

explicitly containing the breakwater feature.

4.2. Computational Efficiency as a product of Imagery Source & Bands

Our findings suggest that relatively less complex networks are some of the strongest performers for the task of
shoreline feature detection. This is shown by the strong performance of PAN-Resnet18 in the NAIP tests, providing
one of the highest levels of accuracy 72% in the Virginia case despite having one of the lowest number (11 million) of
parameters to fit. While the other network architectures were able to achieve similar levels of accuracy in the context
of a fourth band (UNet-InceptionResnetV2 achieved 72% accuracy), it does so with more model overhead (62 million
parameters). This suggests that PAN-Resnet18 based implementations provide a strong balance between accuracy and
computational costs for end-user deployment.

However, if the user only has 3-band information available to them, UNet-xception may provide the best combina-
tion of accuracy and complexity - providing similar levels of accuracy ( 82% in the MA/VA joint case) at a much lower
parameter count than the similarly performing UNet-inceptionresnetV2 (29M vs. 62M in UNet-InceptionresnetV2).

In terms of practical implementation, we find that our fully fit PAN-resnet18 model can be deployed with a memory
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riprap bulkhead breakwater groin
breakwater groin nprap bulkhead
-0.03 -0.02 ~0.01 0.00 0.01 002 003
SHAP value

Figure 9: Virginia shoreline structure prediction analysis.

The above shows two random correctly classified test images in the first column. The second, third, fourth, and fifth
columns show the pixels/features that contributed against and in favor of prediction for each of the four classes. For
example, the upper-left image is a riprap structure that was predicted by the model most likely to be a riprap, then
bulkhead, breakwater, and groin. Blue pixels represent areas that work against classification in a given class and the red
pixels represent areas that work for classification. In this case, the Resnet-18 based network for image classification was
investigated.

footprint of only 43.4 megabytes, and an estimate for 1.5 kilometers of shoreline can be generated in between 1.4 sec-
onds (GPU) and 2.16 seconds (CPU), indicating it is suitable for general use in desktop environments. For users that
do not have a near-infrared band available, the UNet-xception implementation requires 110 megabytes of memory to
load, and can generate estimates for 1.5 kilometers of shoreline in between 2 seconds (GPU) and 9.52 seconds (CPU),
see Table 5 for computational time tested using 3-band VBMP imagery. This highlights the importance of identifying
the fourth band of information to enhance efficiency, but we also note that both models are reasonable to consider for

deployment relative to the decades-long time periods fully manual workflows require.

4.3. Difference in Shoreline Structure Data Sources

When comparing groin structures from the VA CUSP and MA data, we find that the features in MA are consistently
labeled as perpendicular to the shoreline; this contrasts to the CUSP data, in which many groin features are coded
along the shoreline and difficult to distinguish from other structures by eye (see Figure 10). Additionally, we found
that digitization in the VA dataset is frequently not fully aligned with the structures visible in imagery (see Figure 11).

These differences result in a number of limitations - and future directions - for this study. Because the Virginia data
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Table 5
A summary of computational time when making the 5 km prediction with 3-band VBMP imagery
Model Name Computational Time (seconds)

UNet-Resnet18 5.27

UNet-Resnet101 13.07

UNet-xception 9.52

UNet-InceptionResnetV2 15.12

DeeplabV3-Resnet18 11.59

DeeplabV3-Resnet101 36.89

PAN-Resnet18 3.66

PAN-Resnet101 11.27

(A) (B)

Figure 10: A comparision of geocoded groins from VA CUSP and MA data. (A) shows the groins (red lines) from VA
CUSP overlaid with VBMP imagery, and (B) shows the groins from MA data overlaid with MA orthoimagery.

is not directly aligned in all cases, the three-meter buffer applied may have been insufficient to capture the contextual
pixels required to accurately classify all cases; this is in contrast to Massachusetts (Figure 10B) where such errors did
not exist across most observations. Because the overall model accuracy was significantly higher (up to 83% overall
accuracy) when Massachusetts data was included, it is feasible that our validation is understating the overall accuracy
of the model in Virginia simply because our validation and calibration data itself has apparent errors. Future testing
across separately digitized datasets could help to test this hypothesis; alternatively, work to correct the errors across

the VA CUSP dataset could bear useful fruit for this and other similar initiatives.

4.4. Scale of Classification

The primary unit of classification in this work was the pixel - i.e., we sought to train an algorithm to take in an
image tile, and output which pixels belonged to each of four classes. In practice, this level of spatial precision is higher
than what may be required for some tasks: i.e., if one has a shoreline defined by a line feature, one could break that

shoreline up with an object-based strategy, and then classify each resultant subset of the shoreline as belonging to
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Figure 11: Example of features from VA CUSP not fully aligned with the imagery. On the left is a riprap, and on the right
is two breakwater structures from VA CUSP.

a given class (rather than classify each pixel). More broadly, many small errors - especially errors on the landward
side of a given coastal feature - may not negatively influence decision making. Future work exploring the semantic
definition of shoreline, and how that may interrelate with the appropriate scale and unit of observation for automated

approaches to classification, could provide a fruitful pathway forward.

4.5. pyShore: A semi-automated toolkit for shoreline structure classification in ArcGIS

A core motivation for this work is to mitigate the total amount of time required to digitize vast amounts of shoreline;
as noted in our introduction, today shoreline mapping processes take around a decade (CCRM, 2019; Fontenault et al.,
2013). While future iterations of the work presented here may enable a fully automated pipeline for shoreline feature
detection, the accuracy of the presented approach renders it best suited to a semi-automated approach in which human
experts correct the output of the automated procedures. To enable this, here we present pyShore, a semi-automated
toolkit for shoreline structure classification in the ArcGIS Pro (ESRI, 2022) software package.

This tool is designed to take in two files - imagery and a definition of shoreline - and output for each pixel in the
shoreline a best estimate of the type of shoreline feature present. Using PAN-Resnet18 as an example, these files are
passed into the pre-trained PAN-Resnet18 model presented in this work, specifically the best performing NAIP 4-band
model with 72% overall accuracy.' The user must set a single parameter - buffer distance.

The full workflow of the tool follows a multiple step procedure in which (see Fig. 12):

1. The user defines a working folder (F) in which to save all processing and result data.

2. The user defines a folder with all source imagery in a georeferenced geoTiff format (Fimg).

3. The user defines a single geometry file (i.e., shapefile) that defines the geographic locations of shoreline within

10f note, depending on the spatial resolution of input imagery, for some users it may make sense to implement one of the VA or MA orthoimagery
pre-trained models. We provide an optional download of the best performing weights for these data to enable such an analysis.
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the provided imagery (.S).

4. The user provides a buffer distance (B), or the distance from the shoreline that should be extracted from the
imagery to serve as the target for the classification.

5. All images in folder Fimg are cut into non-overlapping 256 X 256 patches (defined as P) suitable for input into
the trained PAN model architecture.

6. Taking in all patches P, line .S, and buffer B, we identify the image patches in P that have overlap with buffered
line .S'; image patches with no overlap and dimension smaller than 256 X 256 are discarded.

7. Each patch is subjected to a forward pass through the Resnet-18-based PAN trained in this paper, creating an
output (O) of the same dimensions (256 X 256) in which each pixel is classified as one of four classes (four
shoreline structures).

8. Pixels intersecting with the shoreline feature (.5) with buffer distance, B, are extracted from output, O, and then
vectorized to provide a final shoreline output.

Figure 12 summarizes the workflow of image processing, prediction, and post-processing. In addition to outputting

the shoreline, a metric of confidence is generated to help guide user efforts, i.e., identifying the areas where the algo-
rithm was least confident in its prediction so a human coder may select those areas for editing during a post-processing

stage. This confidence level for each line segment (represented as a 3-meter buffered polygon) is generated by:

Confidence =

S =

n
Z Xi = Xoin 8)
i=1 Xomax = Xmin

where X; is the absolute score the PAN-Resnet18 estimates for the class a given pixel (i) was predicted as. X,,;, and
X ,.ax are the smallest and largest such estimate across all pixels in a target region. To calculate the confidence value for

a given 3-meter buffered polygon, we define n as the set of pixels a buffered polygon overlaps. The confidence value

for any target polygon is defined as the average confidence value of pixels in the layer that overlap with the polygon.

4.6. Contributions to the Literature

The work presented in this paper provides four core contributions. First, we introduce the first application of shore-
line structure classification and mapping using deep learning techniques with pixel-scale localization, illustrating that
accuracy of up to 83% is possible with contemporary deep learning techniques. Second, we provide some of the first
evidence of the value of near-infrared spectral data in the context of deep learning for shoreline feature identification,
specifically finding that NIR information can help reduce the computational complexity of algorithms required for gen-
erating sufficiently accurate estimates for use in semi-automated workflows. Third, we introduce a toolkit to employ a

deep learning framework within the ArcGIS Pro environment to facilitate rapid shoreline feature identification. Fourth,
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Figure 12: Workflow of shoreline structure detection using the pyShore ArcGIS Pro toolkit.

from a shoreline management and sedimentation modeling perspective, the generated shoreline structure locations and
types would be used as input for a shoreline management model (Nunez et al., 2022) which provides recommendations
for the best management practices for defended and undefended shorelines. These contributions will enable more rapid
digitization of shoreline features than was previously possible, aiding in increasing the rate at which shoreline maps

can be generated and updated.

5. Conclusion

Accurate and precise low-cost shoreline structure mapping has the potential to improve the baseline information
supporting shoreline management, thus improving the decision-making capacity of local, state, and national govern-

ments. Today, shoreline structure mapping is a challenging task due to requirements for in-situ data collection, manual
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image digitization, and the inevitability of concurrent shoreline change during years-long production processes.

In this paper, we sought to explore the capability of convolutional neural network architectures to identify shore-
line structures from remotely sensed imagery. This study provides (1) an initial benchmark accuracy (72%) for deep
learning-based shoreline structure localization in Virginia (82% across a combination of Virginia and Massachusetts
datasets), and (2) a computationally efficient toolkit that can be deployed in desktop environments which harnesses
the proposed method for applied use. These findings, and the related toolkit provide a new method for local and state
governments in the United States to generate shoreline inventories, and improve the management of coastal resources

and infrastructure.
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Code availability section

Name of the code/library

Contact: zlv@wm.edu

Hardware requirements: Python 3.7.10
Program language: Python

Software required: ArcGIS Pro 2.3.0
Github size: 107MB

The source codes are available for downloading at the link: https://github.com/MirandaL.v/pyShore
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