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Abstract—Neuromorphic computing, mimicking the neural
structure of the brain, has made strides towards efficient data
processing through the use of memristive devices, especially
for sequential data challenges. In this innovative study, a cost-
effective fabrication technique for flexible memristive devices
utilizing inkjet printing technology is introduced. The devices
feature the characteristic pinched hysteresis loop indicative of
memristive behavior and are analyzed with a MATLAB empirical
model, further visualized through a physical Simscape simulation.
Leveraging these advancements, an Echo State Network with
a memristor-based crossbar array is constructed, effectively
demonstrating the practicality of Echo State Network deployment
on flexible substrates with the potential to simplify training
processes. This network, tested with a Mackey-Glass input, yields
eight distinctive state vectors that serve as a foundation for signal
output prediction. With a root-mean-square error of 2.4% in
the initial reconstruction output, applying linear regression on
the state vectors mirrors the functionality of an autoencoder,
suggesting an inherent capability for feature extraction and
dimensionality reduction. The resemblance to autoencoder be-
havior underscores the potential of the proposed system to refine
signal reconstruction accuracy through unsupervised learning.

Index Terms—Neuromorphic computing, Memristors, Inkjet
printing, MATLAB modeling, Echo State Network, Autoencoders

I. INTRODUCTION

Neuromorphic computing, inspired by the neural architec-
ture of the human brain, represents a frontier in modern
computational technology [1]. At its core, this approach seeks
to transcend the limitations of traditional computing paradigms
through the development of systems that mimic biological
processes, enabling more efficient processing of complex,
data-intensive tasks. Central to the realization of neuromorphic
computing are memristive devices, components whose resis-
tance varies according to the history of voltage and current
that has been applied to them [2]. Memristors, first theorized
by Leon Chua in 1971 and realized by HP Labs in 2008, are
crucial for neuromorphic computing [3]. These devices offer
a compact and energy-efficient means for advancing artificial
neural networks [4], [5].

Among the various architectures proposed for neuromor-
phic computing, Echo State Networks (ESNs), a subset of
recurrent neural networks (RNNSs), are increasingly recognized
for their straightforward design and effectiveness in managing
sequential data [6]. These networks utilize a dynamic reservoir
of neurons to process inputs in a way that reflects certain
cognitive processing features of the brain [7], [8], making

them particularly adept at tasks like time-series prediction and
pattern recognition—areas where traditional methods struggle
with data complexity and timing issues. Recent advancements
in neuromorphic computing have seen the development of
memristor-based ESNs, which utilize the natural dynamics
of memristive devices to emulate synaptic activity. Notable
improvements in ESN performance and robustness have been
achieved through new hardware designs by Hassan et al.
[9], while Wang et al. have significantly enhanced energy
efficiency and simplified training processes using a hardware-
software co-designed echo state graph neural network [10].
The inherent structure and dynamics of ESNs also allow them
to function effectively as autoencoders. Similar to how autoen-
coders compress data into a more compact form, ESNs can be
trained to transform input data into the high-dimensional space
of the reservoir to extract crucial features and subsequently
learn to reduce these back to their original dimensionality or
lower [11].

Despite the promise of echo state networks and memristive
devices in advancing neuromorphic computing, these technolo-
gies” widespread adoption and implementation face significant
challenges [12]. A primary obstacle is the fabrication of
memristive devices, which often require complex, expensive
processes that are not amenable to large-scale production or
flexible computing applications. Addressing this challenge, our
research introduces an innovative approach to constructing
memristive devices using inkjet printing technology [13]-[18].
This method significantly reduces the cost and complexity
associated with device fabrication and opens new avenues
for integrating memristive devices into flexible electronic
systems [19]. Recent studies have focused on developing novel
materials, printing techniques, and device architectures for
inkjet-printed memristors. Duraisamy et al. created a TiO2
thin film memristor device using electrohydrodynamic inkjet
printing, demonstrating bipolar resistive switching behavior
at low voltages [20]. Bessonov et al. created memristive
and memcapacitive switches with tunable resistance and low
programming voltages using solution-processed MoO,/MoS2
and WO_,/WSy heterostructures [21]. Yoon et al. inducing
memristor behavior in silver nanoparticle devices demon-
strated controllable resistive switching behaviors for low-
power flexible memory and synaptic learning applications
[22]. The transition of memristors from theoretical to practical
neuromorphic systems faces challenges like the absence of a



behavior-level simulator and reducing traditional fabrication
techniques without compromising power efficiency.

This paper presents developing and characterizing an inkjet-
printed flexible memristor device, demonstrating memristive
behavior through its distinctive I-V curve. Simscape is used
to build a physical model, while MATLAB’s Curve Fitting
tool (CFtool), is used to produce an empirical model. In
this study, all simulations were carried out using MATLAB
(version R2023b). The modeled memristor is integrated into
a crossbar array structure to implement an ESN. The results
show the potential of inkjet-printed memristive devices on flex-
ible substrates for neuromorphic computing, reducing training
complexity of ESNs. The network produces eight unique state
vectors for predicting signal output, mimicking the operation
of an autoencoder. The system’s behavior is similar to autoen-
coders, demonstrating its ability to improve forecast accuracy
through unsupervised learning. This approach demonstrates
the feasibility of inkjet-printed memristive devices on flexible
substrates for neuromorphic computing.

II. STRUCTURAL DESIGN AND FABRICATION

Using Matlab for numerical modeling, the study investi-
gates the utilization of inkjet printing for the creation of an
inexpensive, nonlinear, voltage-controlled graphene memristor
device. Circuits that are inkjet printed (iJP) can be applied
in nonuniform environments, like curved or uneven surfaces,
textiles, and nonrigid objects. Fig. 1 depicts an iJP Memristor
schematic. The memristor’s development involved a trial and
error approach, involving manual experimentation with various
dimensions to ensure stability and manufacturability, with
plans to refine them further.

The printing process involves assessing conductivity, align-
ing the gap with the print head’s movement axis, and de-
positing silver plates spaced approximately 130 wm apart.
The channel area is then coated with hexagonal boron nitride
(hBN) and cured at 150 °C for five minutes to solidify it.
This layer serves to insulate and manage the channel region.
One challenge with iJP technology is the coffee-ring effect,
which reduces the uniformity and reliability of the nanoparticle
distribution. To counteract this, a novel approach has been
developed where a well is created in the hBN layer to control
the spreading and interaction of GN ink with the adjacent
silver plates. This well can be created automatically using a
V-One PCB printer. Finally, to mitigate the coffee-ring effect,
the GN ink is carefully applied to the well.

ITI. I-V CHARACTERISTICS

The memristive behavior of the iJP memristor device—a
memory effect that results in a loop rather than a single
line on the I-V curve—was examined. Two great examples
of hysteretic devices are Schmitt triggers and memristors,
whose output signals can change into numerous states based
on the signal’s past. These devices are perfect candidates to
be used as reservoirs because of their high non-linearity with
varying states and natural time-series features. The hBN and
GN/PEDOT: PSS mixture, which has a distinct I-V curve,
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Fig. 1: Schematic of the memristor fabricated using inkjet
printing. (a) A 3D view of the iJP memristor device; and (b)
a top view of the device, complete with measurements.
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Fig. 2: Measured iJP memristor device’s I-V characteristic. A
complete pinched-hysteresis loop is seen.

was utilized as the semiconductor in the iJP memristors. The
memristive activity of the device is accurately represented by
the I-V curve of the iJP memristos, as illustrated in Fig. 2.
The positive voltage steadily rises while the current abruptly
jumps between 30 V and 40 V.

The device alternates between the low resistance state (LRS)
and the high resistance state (HRS) throughout the SET
process. It then returns to the LRS between -30 and 40 volts.



Due to complex exponential regressions, the signal is more
challenging to simulate for simulation investigations. It dis-
plays noteworthy non-linearity and a characteristic hysteresis
curve. This behavior is more linearly erratic than previous
device results.

IV. MEMRISTOR MODELING IN MATLAB

The literature has reported on a number of memristor
models. According to [23], the Ion-Drift model demonstrates
no-threshold conduction. Yakopcic [24] reported a new model
that exhibits a threshold in the forward pass but none in
the backward pass. The designed iJP memristor displays
thresholds in both forward and backward passes, in contrast
to the other two methods. Therefore, in order to appropriately
fit the experimental data, this study uses an empirical model
created with MATLAB CFtool. The model creates separate
equations for the forward (-40 V to 40 V) and backward (40
V to -40 V) runs of the I-V curve. After that, these equations
are combined to create a 6! order polynomial that represents a
perfect pinched hysteresis loop. The empirical equation looks
like this:

y = pl.a® +p2.2° + p3.at + pd.a® + p5.2? + pb.x + p7 (1)

Table I provides specifics on how the variable values
(pl,p2,p3, p4, p5, pb, p7) vary for forward and reverse passes.
Fig. 3 displays the fitted curve and the experimental curve.
Memristor behavior is replicated using empirical equations,
demonstrating the usefulness of memristor modeling in MAT-
LAB.

TABLE I: Parameters list

Parameters | Forward Pass Backward Pass
pl 1.51 x 10~ | —1.45 x 10~ 16
p2 —1.04 x 10715 | —1.02 x 10~ 1®
p3 —2.37 x 10~ 13 1.82 x 10713
p4 4.7 x 10~ 12 3.99 x 10~ 12
ps —357x 10~ | 867 x 10~ 1T
P6 6.14 x 10— 10 1.43 x 1079
p7 151 x 10710 | —1.43 x 10~ 10

Exact simulation outcomes for input voltages ranging from
-40 V to 40 V are depicted in Fig. 4. The simulation data,
achieving an R2-value of 0.9972 in the forward direction and
0.9961 in the reverse, closely align with the experimental
findings. It is advantageous to represent the memristor as an
element within complex systems using a Simulink framework.

The Simulink environment includes the Simscape block
library, intended for multidomain physical system modeling.
We have created a physical Simscape model that may be
applied to reservoir networks. Fig. 5 shows this model, where
a Simscape script file containing the memristor model was
used, and a Simscape component block was employed. Fig. 6
shows the output current of the Simulink model in response
to a sinusoidal input voltage. As illustrated in Fig. 6, pinched
hysteresis threshold voltages that arise during both forward
and backward conduction processes cause the output current
to be skewed.
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Fig. 3: Fitted curve to the measured data of the iJP memristor.

V. ECHO STATE NETWORK USING THE MEMRISTOR
MODEL

Within the architecture of an ESN, memristors serve the role
of synapses, forming connections between neurons. Arranged
in a crossbar grid formation, these memristors provide tunable
resistance levels — or memristance — corresponding to synap-
tic strength. This configuration permits the dynamic adaptation
of synaptic weights, informed by previous signal activity,
thereby augmenting the network’s capacity for learning and
processing temporal sequences.

For the construction of the ESN, we have seamlessly
integrated our empirically derived model into a Simscape
component, effectively transforming it into a dual-terminal
device that serves as the fundamental building block of our
network. Utilizing this building block, we assembled an 8 x 8
memristor crossbar array. Our ESN is designed with a reservoir
comprising 144 neurons, strategically connected in a sparsely
populated pattern to strike a delicate balance between the
intricacies of network architecture and the practicality of com-
putational efficiency, essential for processing data in real-time
scenarios. The architecture of the memristor-based crossbar
array, which forms the core of the ESN, is illustrated in



0.4 -

& Fitted Data
Measured Data
0.2 1
=
=
€ 0.0
@
E
F
&}
-0.2 4
-0-4 T T T T T T T T T

-40 -30 -20 -10 0 10 20 30 40
Voltage (V)

Fig. 4: Simulated I-V profile of the iJP memristor model
showing pinched hysteresis.
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Fig. 5: Simscape model of the physical iJP memristor.

Figure 7. The study uses an 8x8 crossbar array for optimal
complexity and performance in neuromorphic computing ap-
plications, with 144 neurons for robust pattern recognition and
input signal prediction or autoencoding application.

For the input, we employed the Mackey-Glass signal, a
common choice in time series prediction and chaotic system
analysis, and a standard in training and testing neural networks
like Echo State Networks (ESNs). Outputs were sampled from
various nodes within the network, as depicted in Figure 8§,
which illustrates the input and output states of the ESN.

The state vectors generated by the ESN were utilized in
a linear regression model to reconstruct the input signal.
The model achieved an impressive Root Mean Square Error
(RMSE) of 2.4%, demonstrating an autoencoding function-
ality. This indicates the potential of the proposed ESN to
function as a Vanilla autoencoder. Within the ESN framework,
by fine-tuning the readout weights, the network can effec-
tively learn to encode significant features from inputs into
the reservoir. These features are then decoded to regenerate
the input, mirroring the function of the hidden layer in a
traditional autoencoder. Figure 9 shows the input signal and
the reconstructed signal through the ESN.
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Fig. 6: Time response of the iJP memristor showing the
input sinusoidal voltage and the corresponding skewed output
current due to the pinched hysteresis behaviour of the device.

Fig. 7: The iJP memristor based crossbar array as a reservoir
for the ESN.

VI. CONCLUSION

This research represents a notable breakthrough in devel-
oping flexible, affordable memristive devices utilizing inkjet
printing technology, a step in line with the escalating demand
for scalable neuromorphic computing systems. By successfully
demonstrating the production of memristive devices on flex-
ible substrates, we address significant challenges in cost and
adaptability for neuromorphic applications. The inkjet-printed
memristors featured in this study display characteristic pinched
hysteresis loops, a definitive sign of genuine memristive be-
havior essential for the effective operation of ESNs. Both
empirical and physical modeling, particularly using MATLAB
and Simscape, confirm these devices’ capabilities in simu-
lating synaptic activities crucial to neuromorphic computing.
Integrating these memristors into a crossbar array structure
for ESNs is anticipated to reduce training complexity and
enhance computational efficiency, potentially paving the way
toward more energy-efficient, high-performance neuromorphic
systems. Furthermore, this ESN demonstrates potential as a
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Fig. 8: The output state vectors of the Mackey-Glass signal
from the iJP memristor based ESN.
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Fig. 9: The reconstructed Mackey-Glass signal using the state
vectors from the iJP memristor based ESN.

Vanilla autoencoder. This study contributes significantly to

the

overarching aim of developing scalable, cost-effective

neuromorphic systems capable of processing data-intensive
operations with exceptional energy efficiency, marking a crit-
ical advancement in computing technology evolution.
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