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When a cubic lattice packaged by a boundary layer is subjected to a mechanical and temperature load, the force
and length change of the bonds are equivalently evaluated by the average stress and strain of the unit cell.
Provided a displacement gradient variation at a certain stress state, the variation of stress related to the strain
variation provides the effective stiffness of the material at the corresponding configuration. It is discovered
that the effective elasticity and thermal expansion coefficient can be tailored by the prestress through the
boundary layer, which generates a configurational stress. Because the bonds of a cubic lattice depend on the
material types, we consider the harmonic potential of springs for cellular lattices and Hertz’s contact potential
of balls for granular lattices, respectively. The cubic symmetry of effective elasticity is demonstrated for the
three types of cubic lattices. By taking the orientational average, isotropic elastic constants can be obtained for
randomly oriented lattices. As the bond length changes with the prestress of the boundary layer and controls
the thermoelastic behavior, a novel design method of lattice-based materials confined in a spherical shell is

demonstrated to achieve zero thermal expansion and a positive temperature derivative of elasticity.

1. Introduction

Cubic structures, such as face-centered cubic (FCC), body-centered
cubic (BCC), and simple cubic (SC), are popular lattice structures, which
are found in crystals, granular materials, or cellular lattices [1-3].
The emerging three-dimensional (3D) printing technology can fabricate
materials with lattice structures in the laboratory as well [4-7]. The
recent discovery showed that applying a prestress to lattice-based ultra-
lightweight composites (ULWC) can change the thermoelastic behavior
through the configurational stress [8,9], which creates a new way to
fabricate a composite with zero thermal expansion coefficient and zero
temperature derivative of stiffness, which may not exist in the natural
materials.

For example, Fig. 1 shows an application of lattice materials to the
Artemis project [10,11], which requires the transportation of building
materials from the earth and the erection of the foldable tall struc-
ture on the south pole of the moon. The large temperature variation
from —175 to 125°C or even more exists in the structure during the
service lifetime due to the nonuniform irradiation exposure in a vac-
uum environment [12-14]. It is crucial to use a lightweight, stiff,
and temperature-insensitive material with a high buckling resistance
to achieve the stability and economics of the structure [15,16]. In
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Fig. 1(a), the ULWC balls are filled an aluminum tube, and a pre-
stress is applied by the cap of the tube which causes compression in
the granular lattice and tension in the tube in Fig. 1(b). One can tailor
the thermoelastic constants and buckling resistance of the bar for the
ultra-lightweight structural member and fabricate the foldable frame of
the 50 kW PV array. Fig. 1(c) and (d) show the overview of the innova-
tive technology of foldable structure and the entire system, respectively.
This paper will show the mechanism of how to achieve zero thermal ex-
pansion coefficient and zero temperature derivative of stiffness of the
composites.

The force transfer in the structure of a lattice material is through
the bonds between the nodes of the network. At the macroscale, the
lattice can be treated as a homogeneous material with a certain effective
stiffness, which should be correlated with the forces and displacements
of the bonds given the characteristics of the lattice structure.

A lattice-based material contains one-dimensional (1D) bonds con-
nected into a 2D or 3D solid at the macroscale, and the stress transfer
through the lattice is different from the continuum solids [17] that is
typically modelled by the classical micromechanical models based on
the stress homogenization of reinforcements in a continuous matrix
[18-20]. For example, micromechanics-based models [21,22] treated
the 1D components such as fibers as dispersed slender ellipsoids inter-
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Fig. 1. Design of a lattice material based solar array structure for the Artemis Project: (a) The ULWC balls filled in a metal tube; (b) Prestress induced by the screw
cap of the tube; (c) The ULWC filled tube used for a foldable frame, and; (d) The entire photovoltaic system.

acting with the matrix directly; while the lattice-based materials exhibit
a continuous network of bonds for the force transfer, and no matrix
phase is required. Although many papers in the literature addressed
specific lattices with numerical simulations of the large truss frame-
works [23-26], the models highly depended on the material design and
computational resources.

Analytically modeling granular lattices dates back to the middle of
the last century when Duffy and Mindlin studied the stress-strain re-
lation for identical spheres packed in the face-centered cubic array
[27], in which the contact force and displacements of a cubic unit
cell are correlated through equilibrium and compatibility relations.
This work was generalized to other regular packing patterns, such as
simple cubic, tetrahedral, etc. [28-30]. With the use of the energy con-
servation approach, the secant stiffness tensor has been obtained for
all regular packing patterns [31] as well. However, granular and cel-
lular lattices have often been studied separately due to the different
force-displacement relationships, for example, by finite element method
(FEM) [25] and discrete element method (DEM) [32,33], respectively.

Considering the periodic structure of lattice-based materials, if the
force-displacement relationship is well defined, the effective stiffness
shall be unique and an exact solution may exist and be generic to differ-
ent lattice-based materials. Actually, the lattice element method (LEM)
[34] has been proposed to simulate a continuum solid by a connected
truss frame of lattice elements, which can be considered as a DEM ap-
proach [35] to simplification of the mechanical behavior of solids. On
the contrary, as lattice-based materials already have information avail-
able about the lattice structure and bond, the effective elasticity can
surely be simulated by LEM, FEM, or DEM, among others [25,32,36],
which often require an array of many unit cells and render numerical
results with a certain accuracy. Using the unit cell of actual lattice, LEM
can derive the effective elasticity based on the strain energy equiva-
lency, but it limits to the linear elasticity [37] and the effect of prestress
is not considered. An explicit, exact solution of the effective elasticity
is still of significant interest in the material design and analysis of such
lattice-based materials.

The singum model [38] uses the Wigner Seitz (WS) cell of the cubic
structure as a continuum particle to represent the material and applies
the potential-based bond forces for the lattice structure. Although the
lattice-based solids can be evaluated by stress and strain at the over-
all material level, the force is essentially transferred through the bonds
between the nodes. The singum model correlates singular forces in the
discrete structure with the stress over the continuous volume. There-
fore, the cubic structure with singular bond forces can be simulated
by the fully contacted continuum particle system with stresses, and
the singum model does provide the exact solution for the lattices with
potential-based bond forces. For an example of metamaterials made of
a physical truss system [39], the bonds are represented by springs with
a harmonic potential. The singum model indeed provided an analytical

form of elasticity for the metamaterials and predicted the effect of the
prestress on the elasticity [39]. The forces between the nodes of the cu-
bic structure depend on the material types. Hertz’s potential [40] and
harmonic potential [39] have been demonstrated for 2D cellular and
granular materials.

This paper generalizes the singum model to FCC, BCC, and SC lat-
tices, and derives the effective stiffness based on the potential of the
bonds. Cellular and granular materials are demonstrated with the lin-
ear elastic and Hertz’s contact bonds, respectively. The effective elastic
properties are verified with the numerical simulation. Using the spring
length changing with pressure and temperature, we can predict the
elasticity changing with pressure and temperature given the thermal
expansion coefficient of the bond materials. The singum model can cor-
relate the potential with the elastic moduli in a very straightforward
fashion. When the lattice orientation randomly changes due to defects,
by taking the orientational average, isotropic elastic constants can be
obtained.

Particularly, a singum-based invention for material design [8] is
introduced to package a lattice material with a boundary layer that
provides a prestress to the lattice during the fabrication. Interestingly,
the effective stiffness can be tailored by the prestress. When the temper-
ature changes, the thermal expansion of the bond material will change
the bond length as well as the confining stress in the boundary layer,
which provides a novel design approach to zero thermal expansion and
positive temperature derivative of elasticity of materials.

In the remainder of the paper, Section 2 introduces the construction
of a singum particle using an FCC lattice as an example, and derives the
elastic constants in terms of the derivatives of bond potential functions,
which are generalized to BCC and SC as well. Section 3 demonstrates the
model through a lattice material with linear spring bonds and granular
material with Hertz’s contact bonds. The explicit form of the effective
elasticity of the lattices is provided. The effect of the configurational
stress caused by the prestressing is discussed. Section 4 conducts a nu-
merical simulation of the cubic lattices and verifies the exactness of the
singum model. Section 5 demonstrates the applications of the singum
model to lattice-based material design considering the effect of thermal
expansion of materials with prestress. Some interesting results for the
lattice-based material design for zero thermal expansion coefficient and
positive temperature derivative of elasticity are demonstrated. A novel
ultra-lightweight material with tailorable thermoelasticity is invented
through a hierarchical lattice-based manufacturing process using cellu-
lar balls for a granular lattice.

2. Construction of the singum model for cubic lattices
2.1. The singum model for FCC cubic structure

Following the recent paper [41], we consider an FCC lattice in
Fig. 2(a). Depending on the lattice material types, the bonds between



C. Liu and H. Yin

Fig. 2. The singum model of a face-centered cubic lattice: (a) the unit cell for
the singum construction at the front central node with four more members not
shown and; (b) the FCC singum of the WS Cell of the 0" member in the initial
configuration X (black lines) and the deformed configuration x (gray lines) [41].

the nodes can be Hertz’s contacts, linear springs, or interatomic bonds.

In the undeformed configuration, the unit cell of an FCC lattice exhibits

the cubic edge length a°, so that the bond length between two neighbor
0

nodes is 212 = % when the bond force is zero. We set up the Carte-

sian coordinate system with the origin at the 0" node, and 12 closest

. 0 0 0 0 0 0
neighbor nodes are located at (i%,i%,O), (1“7,0,1“—), (O,i%,i%),

which are corresponding to the directional vectors n! (I1=1,2,.,12)
= (i%,i%,o), (iﬁ,o,i%), or (O’ié’ ié)' The singum particle
is constructed by the Wigner Seitz (WS) cell [42] of the 0"" node in
Fig. 2(b) as a rhombic dodecahedron, in which each bond between the
0" node at the center and the 12 closest neighbor nodes is cut at the
midpoint by a perpendicular plane. As shown in Fig. 2(b), a Cartesian
coordinate X is set up at the initial condition, i.e. the Lagrangian coor-
dinates. After a homogeneous deformation of the lattice, the material
points in X are referred to x at the deformed state, or the Eulerian coor-
dinates, in which the lattice still keeps periodic, so that the whole space
is still be filled with the deformed singums. Here because the outer sur-
faces of the singum particle are defined by the vertical planes of each
bond, the singum particle maintains a polyhedral shape. Due to the cen-
tral symmetry of the lattice, the nodes always keep in equilibrium under
a uniform deformation. Without any loss of generality, the origins of x
and X are both selected at the center of Node 0.

The above construction of the singum particle is simple and straight-
forward. The same procedure can be applied to all internal nodes of the
lattice. However, the surface nodes cannot form singums because no
bond exists beyond the surface. Instead, a boundary layer will be physi-
cally bonded to the surface nodes, which will be discussed in Section 5.
Therefore, the singum particles are only constructed inside the material
surface layer.

To formulate the singum model, we provide the following assump-
tions:

1. The interaction between nodes is governed by the bond potential
V(A) where 4 is the stretch ratio of the bond referred to as the
undeformed bond length. At the zero-force bond length, 1 = 1; the
hydrostatic deformation can be described by the bond length A =
1,/19.

2. The interaction between two neighboring singums is through the
surface stress vector along their interface edge, whose resultant

. . . . |4
force is equivalent to their bond force, i.e. F; = ﬁ” ;- Here F and
P

n denote the bond force and directional norm vector, respectively,
along the same direction.

3. The bonds form between the closest nodes only so that each node in
FCC, BCC, and SC connects by 12, 8, and 6 bonds with the closest
nodes accordingly. Therefore, each bond exhibits the same bond
length.
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Note that the resultant force on a singum from all neighboring
singums is always zero due to the central symmetry of the bond forces
so that the singum can maintain equilibrium automatically.

Consider Node 0 in the current lattice structure is in equilibrium.
It is replaced by a singum particle in Fig. 2(b). Notice that although
nodes 1-12 are located outside the singum, they are necessary parts to
define the singum located at node 0, which are called “members” of the
singum.

Consider the solid is made of the singums periodically and seam-
lessly filled in the space. The equilibrium equation in the absence of the
body force or inertia force is written as:

0;;;=0 (@)

where o;; is the stress tensor in a solid, which is applicable to the singum
particle. The stress integral of the singum can be written as [19]

- _yl2 IpI
5= [ oix=x2,5!, @

vy

where x,.I indicates the coordinate of the cutting point of the bond, and
;oxh . . . .

n, = W is the normalized direction vector component corresponding to
x!. The distance between two neighboring nodes is defined as r = 21, =
2|x1|. The bond force can be written in terms of the derivative of the

potential energy V as follows:

I,1
;_ovlioa Vil

ov!
Fl="2 =22 22,0 =
R P VI 200

3

The displacement distribution can be described by the displacement
gradient (DG) tensor, namely d;; = u;,. Similarly, the integral of DG
over the singum can be written as:

E,-jz/dijdx=/uj'[dx=/n,-ujdx=Z}2=la£ni’u; @
Us Us

dug

where a! is the plane surface area of the singum associated with the
I'" bond, so ¥;_, 12a’ = ov,. Here because all points on the same plane
surface share the same n’ and the displacement in a flat plane is linear,
the displacement integral can be represented by the central point.

Therefore, the singum of Node 0 is constructed with the stress and
DG integrals defined by the force and displacement of the cutting points
on the singum surface. Note that the volume integrals of stress and DG
in a continuum domain are transferred to its boundary [19]. Due to the
flat plane of singum surface planes and Dirac Delta function as the point
forces at the cutting points, the stress and DG are exactly obtained for
the lattices with hinge connections, which creates a way to derive the
stiffness of the lattices exactly.

To find the stiffness tensor C;;;,, which correlates the stress and
strain tensors, a DG variation, namely &d; s 1s applied to the singum,
which produces the displacement variation on the singum through the
Cauchy-Born rule [43] as

Su;(X) = 6dy ;X = 6x; (5)

The Eulerian strain variation caused by éu can be written as [41]:
8d,; +5d),

T

in which the higher order term of §d is disregarded because the paper

aims to provide a simplified and analytical solution for the tangential

stiffness. Compared to the above terms, the higher order term shall be

disregarded as it is very small under small §u. Note that the assumption

might not be suitable for relatively large strain conditions or nonlinear

elastic analysis [44].

Note that the singum size of the cubic lattices changes with A but
maintains the same shape. However, the DG variation is an arbitrary

be (6)
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infinitesimal tensor to test the tangential elastic constants. The variation
of volume can be described by DG variation as

oy
— =5dy, @)
US
Given a variation of the cutting point 5x/, the force variation on the
bond can be written as 6F/ = Fi’jéx; , where F,I, is the derivation of the
force, from Eq. (3) as:

1 ot L, 19
V/u,oa i V/l ()x AV/{A":I"I"'VJI(&J‘_”{"")
Fl = 2 : ! (8)
v 210 21075
P p
where the following equation is used
S 0—p 6 nlInd
n . = 9
W oxd 02 ©)
J P

Note that the origin of the coordinates is taken at the singum node.
Although the stress distribution cannot be well defined on the singum,
it can be measured on the singum through the average of the above
stress integral as:
s 212 xIFl
o= ===t (10)
U.Y U.Y
where v, = 4300 is the current volume of the singum. Because x! =1,n!,
one can write

x,.I = }JgniI 11D

The average stress can be obtained by taking the variation of
Eq. (10) as
5oy, = L3512 (%I FL s 4 Flox! —x! 1 2% 12)
ij v, I=1 ik k Jj o ijUS
Note that the Cauchy stress variation includes three parts: the first part
related to F’ is caused by the force variation; whereas the second part

5x and thlrd part —‘ related to F’ are the configurational stress caused

by the existing force with the materlal configuration change. For the
classic elasticity based on the infinitesimal deformation assumption, the
effect of the configuration change on the material behavior has often
been disregarded, but its effect is real and physical for lattice-based ma-
terials [40]. Substitution of Egs. (3), (7), (8), and (11) into (12) yields:

212 (/IZV’ —AV )nl n!’n,'( , +/1V (5kn n; +6/knllni’ —Sk,n‘.'n;) ody,
56'7 = 2v
s

13

Because each bond exhibits the same length the summation in Eq. (13)

is reduced to the summation of n,. n! and n n. ni ny, which can be written

in the following identities for the FCC in Flg 2 [41],

22 nlint =46, 212 nininin! = (1=6;5)8,;6, +21 14)
where I, = %(5,.,(5]., +6;16;), and the terms with subscript indices in-

cluding both uppercase and lowercase letters follow Mura’s extended
index notation as follows [18,20]:

1. Repeated lowercase indices are summed up as usual index notation;
2. Uppercase indices take on the same numbers as the corresponding
lowercase ones but are not summed.

Therefore, with the aid of Egs. (6) and (14), Eq. (13) can be rewritten
as:

2[RV 00 = 54V 106,84 — (A2V 15 = AV )81 8,6, + 22V 1 + 34V )14 | Se

= 2v

s

(15)

Materials & Design 233 (2023) 112223

° . .

| ! ‘
N Ls Ly

/: \\o e e =

Fig. 3. The unit cells for the singum model construction at Atom 0: a body-
centered cubic lattice with 8 members (a) and a simple cubic lattice with 6
members (b).

Table 1
The singum variables for FCC, BCC & SC lattice with unit cell edge length ;.
Entities FCC BCC SC
N (member #) 12 8 6
1 Vaa, Vaa a
P EN 4_ . 2.
ﬁl;:‘ 4\/513‘ an’
« h
N \3 9 3
W= Nay L or 4/21° 2 or #123 a3 or 819°
N I l
21 " 45'/ i 26, i
AN (1= 6758, 80 + 21 5 [(1=26,1)8,6, +2L] 26,566y
VitV W, Wy
‘n 4210’ 8310 810°
W5V, Wiy, v,
‘2 2108 83107 _W
Wurdv, P v,
Ca4 2107 8v/310° s
K = a2V Wby, Wby, W2,
T IBay 6v/21° 831" 241
Identity 2c;y =cp+3cy cp=Cy Clp = —Cyy

Considering the relationship between the variations of average stress
and average strain in Eq. (15) use the volume of singum v, = 4\/5(112)3,
one can obtain the stiffness tensor of the singum as

(AV 30 =SV )8i;61 = (AV 15 = V )01k 656y + 2(AV 15+ 3V D i

8V2019)3

Cijki =

(16)

which exhibits a cubic symmetry depending on the interatomic po-
tential function and the geometry of the lattice or singum. The three
independent elastic constants for the cubic symmetric lattice can be
written as [41]:

W+, WV, =5V, WV, +3V,
cjp=— =, Cp=— =, Gy = - a7

4y/210° 8v/210° 8210’

where the Voigt notation is used as ¢;; = C|jjj.¢jp = C120, and ¢y =
C|51»- The bulk modulus can be obtained as K = (¢;; +2¢,)/3.

2.2. The singum model for general cubic lattices

The FCC singum model can be straightforwardly extended to other
cubic lattices in the same fashion for BCC and SC lattices. In Fig. 3(a)
of the BCC lattice, Node 0 has 8 closest neighbors. By cutting the bond
length at its midpoint, a truncated octahedral singum can be obtained;
whereas in Fig. 3(b) of the SC lattice, the singum shares the same shape
and size as the cubic unit cell. Following the singum construction pro-
cedure in Egs. (2)—-(17), one can calculate the variables and list the in
Table 1. Because the three lattices exhibit different packing efficiency,
a new parameter of ay =v?/N is introduced as a measurement of the
packing efficiency.

Mathematically, three independent elastic constants of ¢, ¢;, and
cqs exist for solids with the cubic symmetry. However, the prediction
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of them in Table 1 depends on only two quantities of ¥, and V,, for
each type of cubic lattice. Therefore, the three elastic constants are not
truly independent for the cubic lattices with short-range interactions,
but satisfy the identities shown in the last line of Table 1 [39].

Atl, =19 or A=1, V,(4) = 0. The SC lattice exhibits ¢;’ = ¢/ =0,
which is physical because such a lattice structure is loose and cannot
resist the shear load. When a prestress is considered with a boundary
layer, it will generate a configurational stress [39,45] with the displace-
ment variation and then contribute to the stiffness. For example, one
can conduct an imaginary experiment with an SC lattice packaged by a
membrane of the boundary layer. When the membrane is in a natural
state without tension at /, = 19, the SC exhibits zero shear moduli; when
the outside pressure is lower down, the membrane will expand like a
balloon, and it will be able to resist a certain shear load; when the out-
side pressure increases, the lattice is compressed by the pressure and
the SC is highly unstable, and a tiny shear strain may cause the collapse
of the lattice unless opposite shear stress is applied for the equilibrium,
which is corresponding to a negative shear modulus.

Given a lattice configuration and the corresponding bond potential,
the singum model can predict the three elastic constants from Table 1.
In the following, cellular materials with linear spring bonds and granu-
lar materials with Hertz’s contacts are demonstrated with bond poten-
tials that can be physically characterized.

3. Prediction of elasticity for cellular and granular lattices

The bond potential can be physically measured for cellular and gran-
ular lattices. Here we assume the bonds in the cellular lattices are
connected by hinges so that the force will be along the bonds. Sim-
ilarly, the granular lattices are packed with smooth spheres of equal
diameters, so that the force will be along the center-center line of any
pairs of contacted balls. The springs or balls are linear elastic so that
the bond potential can be explicitly provided by the elastic constants of
the springs or balls in cubic lattices.

3.1. Elastic behavior of cellular lattices with cubic structure

For linear elastic fibers in a cubic lattice, the potential function can
be written as [39]:

V)= g(r 210y (18)

where k can be the spring coefficient of the fiber bond with the original
length at 212. It can be rewritten in terms of the stretch ratio A as:

V(d) = 2k(12)2(/1 —1)? (19)

Given Young’s modulus E and cross-sectional area A at the stress-free
state of the fibers, one can write

EA
_EA 20
270 (20)
p
with lg > \/Z The derivatives of V(1) can be written as
V()= 4k(12)2(,1 -1 and V(M= 4k(12)2 (21)

which provides the effective elastic constants for FCC, BCC and SC, re-
spectively, as follows:

Y s G Y R 7
1n= 5 ST
V219 2310 2
S5—4i 4-31  k(1-2)
clz=k sk 5 20
2V219 24/310 1
kXT3, 32 kG- 22)

221

2v31 2
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22-4, ,2-4. k2-4
3V 23 6

where, by using Eq. (20), the parameter k/ 12 can be written as

K=k

o EAD  pw B, Eay .
02 T 2007 T 2N 2000

in which M and p denote the mass and density of the fiber with the
length 12; p is the effective density of the cubic lattice; ay depends on
the number of the closest neighbor nodes at N = 12,8 and 6 for FCC,
BCC, and SC, respectively at

03 03 03
V200 . 4300 A
3 7 9 3
which can be found in Table 1 as well. Given a fiber type for a certain
cubic structure, f(‘;(’,v) - is a constant so that the stiffness is proportional
p(lp)’
to the effective density p at a certain stretch ratio A.

ay = 24)

3.2. Elastic behavior of granular materials with cubic structure

When many spherical elastic balls with the same diameter are
packed in a cubic lattice, the force transfer through the contacts can
be modeled with Hertz’s contact [46]. If the balls are not smooth, the
frictional force between the balls may be induced along the contacting
surface [47]. However, for simplicity, this paper assumes the balls are
smooth, so only normal forces are induced at the contact. Similarly to
the 2D problem [40], Hertz’s contact model provides the corresponding
mutual approach of the two centers as [48]:

1/3
9P%(1 —v?)? 0
6=2 [W =20)~1,) (25)
P
or
P=dyl?(1 - )2 with y= —E (26)
4 3(1—=v2)

from which the potential function V(1) can be derived as

r A
V= —/ P(r)dr = —212/ P(NdAi= 15—6}/(/2)3(1 - /1)% 27)

0 1

in which = 212 and r = 212/1 are used. The derivatives of V(1) and
V ;,(4) are written as below:

V()= =8y (1)1~ D2V = 1271 - 2 (28)

which provides the effective elastic constants for FCC, BCC, and SC,
respectively, as follows:

_y(l—/l)%(S/l—Z). y(l—/l)%(7/1—4). 3y/1(1—/{)%

C N >
1 \/5 2\/5 3
1 L
clzzy(l—aiz\%o-w; y(l—/lz)\Z/(;—le); v —
1 1 (29)
44=3y(1—,1)z(3,1—2); WA=

242 2¢/3
V2 -DE-d) y1=D2@E=2) (1= )2E— 1)
3 ’ N 6

Note that given the material properties of the balls and the cubic lattice
type of the granular lattice, because the size of the singum is defined by
the radius of the balls as well, the effective density of the granular lat-
tice with identical balls is independent of the ball radius, but inversely
proportional to the packing efficiency. Therefore, the effective elasticity
of the granular lattices is independent of the ball size as well.
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(b) (c)

Fig. 4. The cubic lattice with 5x 5 x 5 unit cells for: (a) FCC lattice; (b) BCC lattice; (c) SC lattice.

3.3. Elastic behavior of randomly oriented cubic lattices

In engineering applications, some defects may easily distort the lat-
tice in such a fashion that although on the microscale the material still
exhibits cubic symmetry, on the macroscale the orientation of the local
cubes varies randomly, which leads to an isotropic symmetry with two
independent elastic constants, such as Young’s modulus and Poisson’s
ratio. Consider the randomness of the cube’s orientation, an orienta-
tional average [49,50] is applied to Eq. (14), the anisotropic terms will
be averaged out, so that one can obtain isotropic elasticity.

Note that for a cubic symmetric elastic tensor with three indepen-
dent elastic constants of ¢, ¢|, and ¢y, by applying the orientational
average on the elastic tensor, one can also obtain the isotropic elastic
tensor with two independent parameters [38]:

_ent2e AV =2V, cp—cpt3ey AV +4V,

K = = = 30
3 8ay " 5 30a, (30)

For cellular and granular lattices, using Egs. (21) and (28), one can
rewrite them explicitly as:

2k(12)2(2 - 2k(12)2(5,1 —4)

cell _ cell (31)
K Oa 15ay
and
03 i 043 5
KgngZ}'(lp) 1-H2¢d-21 _ly(lp) (1=22(112-8) (32)

9ay ’ K ay
Therefore, all isotropic elastic constants, such as Young’s modulus
and Poisson’s ratio, can be calculated [20], respectively, as follows:

9K u 3K —2u
- _ k-2 33
3K+ VI 26K+ (33)

Particularly, Poisson’s ratio for the cellular and granular lattices can be
explicitly written as:

0\2(7 _ _
KPC-DGI=H 6-52

Ecell — (34)
3ay 4
and
1
paran _ 7(12)3(1 - AH2@E-H1i-8) _3(4-32) (35)

32+ Day YOIy

where the Poisson’s ratio is 0.25 at A =1 and decreases with A.

4. Verification of the singum model with the numerical
simulation

The elastic constants can be verified with the structural analysis with
lattices containing periodically distributed singums by applying a dis-
placement load on the boundary [40]. A MATLAB code is developed to

verify the singum model prediction of elasticity compared to the nu-
merical simulation.

4.1. Numerical simulation algorithm and implementation

The algorithm is structured and implemented as follows:

1. Initialize the simulation box by periodically extending the singum
along x;, x,, x3 direction with N, N,, N; replications. The surfaces
of the box are made of loading boards as a boundary layer. The
node on the boundary is connected to them. The initial bond length
and force are at r = 212 and F! =0, respectively, so 2= 1.

2. Given a testing mode, such as tension or shearing, apply the cor-
responding uniform Displacement Gradient (DG) &d,; = 1076 to the
box according to the Cauchy-Born’s rule. The new positions of all
nodes and cutting points are updated with Eq. (5).

3. Calculate the length change of each fiber and 4, and use the poten-
tial function V(1) to calculate the bond force. For each loading
board, collect all bond forces and calculate the effective stress
vector on each board with the deformed surface area. Using the
effective stress vector on the 6 surfaces, one can obtain the stress
variation caused by éd;; = 1076 at 1 = 1, and thus calculate the elas-
tic tensor.

4. For any stretch ratio, namely A’, the coordinate of each node and
the force in each bond can be calculated with Eq. (3). Repeat Steps
2 and 3 to calculate the elastic tensor at A’. Therefore, the relation
of elastic tensor and A can be calculated.

The above numerical simulation can be used for any type of poten-
tial, including the harmonic or Hertz’s contact potential. In the follow-
ing, we use the cellular lattices to demonstrate the implementation of
the numerical simulation.

A unit cell with a center node and its members is used to construct
the lattice structure. For instance, a 5 x 5 x 5 FCC lattice contains 5 unit
cells along x;, x,, x5 directions, will have 666 nodes. Fig. 4 shows the
three types of lattice structures but the actual simulations use much
more unit cells in each direction.

After applying a uniform DG, following the procedures we described
above, and repeating them until each node reaches equilibrium, the
whole system will have a converged result after every node is balanced.
For the central symmetric lattice, the equilibrium is guaranteed in one
step following the Cauchy-Born rule [43].

Once all internal nodes are in equilibrium, one can collect the ex-
ternal forces on each loading board. Comparing them with the initial
forces on each loading board, one can obtain the stress variation caused
by the DG variation, and thus obtain the elastic modulus at the cur-
rent configuration state and compare it with the predictions from the
singum model.
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Fig. 5. The comparison between the singum model and numerical simulation
with the varying number of the unit cells for the FCC lattice of the normalized
elastic constants ¢|, and ¢, at 1=1.

In the following case study, we assume an FCC lattice with spring
coefficient k = 10° N/m and A = 1. By applying a displacement gradient
8dy, = 107, the stress variation 6o, ; can be obtained. Here we use an
error threshold equal to 10~ for the numerical simulations. From 6o},
the corresponding components of the stiffness tensor can be computed
through C;;y, = 60,;/6¢,, (6;, = A728d,,), and can be compared with
the singum model’s predictions. Note that in the simulation box, several
nodes are on the boundary of the planes, like on the edges, so a dis-
crepancy exists between the numerical results and the singum results.
However, the difference reduces with the increase in the number of unit
cells. Fig. 5 shows the numerical simulation results compared with the
singum model results for different sizes from 5x 5 x5 to 60 x 60 x 60.

Here the normalized stiffness tensor C by a factor of lg/k is used as
e, =enl0/ks ey =0k, ¢,y = cyld/k, and K’ = KI9/k. Therefore,
one can eliminate the influence of k and {° and obtain a dimensionless
stiffness for the comparison between numerical simulation and singum
model prediction.

The numerical results are getting closer to the singum model’s pre-
dictions when the size increases, which is because the singum model
provides the exact solutions under small strain while the numerical re-
sults exhibit the boundary effect as we mentioned. When the FCC lattice
increases its size from 5 x5 x5 to 60 x 60 x 60, the relative difference re-
duces from 5.6% to < 0.5% for ¢}, and c|, at the similar convergent rate
although their values are fairly different as shown in Fig. 5.

The boundary effect has different influences for the three different
types of lattice. To guarantee accurate results from the numerical simu-
lation, 30x30x 30 or more unit cells are used to minimize the boundary
effect, which exhibits an error less than 1% in Fig. 5.

4.2. Verification of elastic constants for cellular lattices

When a large number of unit cells are used, the effective stiffness
calculated from the numerical simulation converges to the unique value
for an infinite large lattice, which shows the exactness of the singum
model at =1 in Fig. 5. When the cubic lattices are under hydrostatic
stress, A changes with the stress states. The singum model predicts the
tangential stiffness tensor, whose exactness can also be demonstrated as
follows:

Fig. 6 demonstrates the comparisons between the singum prediction
and numerical simulation for three cellular lattices, in which 30x30x 30
unit cells are simulated for FCC and SC cellular lattices and 80 x 80 x 80
unit cells are used for BCC simulations. Excellent agreement between
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the numerical simulation and the singum formulation in Eq. (22), which
shows that the singum model indeed provides the exact solution. Note
that although we focus on tensile loading for cellular lattices physically,
here a larger range of 4 € (0.6,2) is illustrated including a compressive
range. The following features are highlighted for the effective elasticity
changing with A:

1. The normalized elastic moduli c;l and ch increases with 4; whereas
¢, and K’ decrease with 4.

2. When an elastic constant is zero or negative, the solid generally be-
comes unstable and may collapse or break down. However, it is not
caused by buckling or fracture of the bonds but by configurational
stress, so that the negative elastic constant still exhibits a physical
meaning. For example, when 1 is small than 1, ¢/, can reach nega-
tive first, at which a shear strain variation may produce a moment
requiring an opposite shear stress to balance the lattice, which is
obvious for SC lattices. When 4 is large, an increase of the volu-
metric strain may cause the reduction of the stress by the increased
surface area and thus leads to a negative bulk modulus.

3. The three lattices exhibit different patterns of the elastic constant
variations with A: ¢}, and ¢/, are parallel to each other but over-
lapped for BCC.

4. Because c; b ciz, and K’ are not independent from each other, when

12, K’ shall be the same as them. Therefore, they share an

intersection point for FCC, BCC, and SC lattices at (7/8,3\/5/8),

(1, \/3 /6), and (0.5,0.25) projected, respectively.

/o —
Cll_c

Although the spring coefficient is a constant, the effective stiffness of
the lattice is not a constant anymore but linearly changes with 4. When
the bond potential is not harmonic for granular lattices, the effective
stiffness can also be analytically predicted as follows.

4.3. Verification of elastic constants for granular lattices

Similarly, the granular lattices can be well simulated when applying
the Hertz contact potential. The effective stiffness tensor can be normal-
ized by y as: c1’l =c11/7, c1’2 =¢;,/y and c4'4 = ¢44/7. The bulk modulus
K can be normalized as K’ = K /y as well. 30 x 30 x 30 simulation box is
used for FCC granular lattice, and 80 x 80 x 80 simulation box is used for
SC and BCC to achieve well-convergent results. Although Hertz’s con-
tact is typically applicable to the infinitesimal deformation, 4 € (0.8, 1)
is used to compute corresponding stiffness tensor values and bulk mod-
ulus.

The singum model shows high consistency predictions for granular
lattices too. Its predictions excellently agree with the numerical sim-
ulation results, which show the exactness of the singum model. The
following features can be observed in Fig. 7:

1. When 4 =1, all the elastic moduli become zero. The phenom-
ena can be understood physically: without any prestress applied
to the granular structure, the contacts between each node are not
established at all. All the granular units are just simply stacked to-
gether and there are no forces to hold them. If applied prestress to
the granular structure, contacts can transform the forces into each
other, and such interactions provide stiffness for the whole struc-
ture.

2. When 4 < 1 but close to 1, except Cz/m for the SC lattice, all other
elastic moduli for the three cubic lattices nonlinearly increase from
zero to positive values, which is different from the cellular lattices
in Fig. 6. Here the four elastic moduli linearly change with 4 as
¢/, and ¢;, monotonically increase while ¢/, and K’ monotonically
decrease.

3. Essentially, the elastic moduli are polynomial functions of 1-4; ¢|,
and K’ decreases with 4 so they are positive under compression;
and ¢/, and ¢/, shows strong nonlinear behavior with the maximum

11 44
values can be found between 1 and 0.5 for A.
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Fig. 7. Comparison of normalized elastic constants between the singum model and numerical simulation for (a) FCC, (b) BCC, and (c) SC granular lattices.

4. Similarly to the cellular lattices, ¢],, ¢|, and K’ share the same in-

tersection at (0.824,0.629) and (0.4, 0.465) for FCC and SC; whereas
they do not have any intersection other than (0,0) for BCC.

Note that Hertz’s contact area and the center-center distance change
with the compression force nonlinearly, and the stress distribution is
not uniform, which causes material yielding at a relatively small force.
Moreover, multiple contact points on one ball may change the poten-
tial function as well. The present formulation based on Hertz’s contact
model requires experimental validation and may only apply to a very
small range of A.

5. Results and discussion

As verified by the numerical simulation, the singum model provides
the exact prediction of elasticity for the cubic lattice materials with
potential-based bonds. It can be applied in lattice material design and
analysis. Without loss of any generality, aluminum fibers or balls are
chosen for material design with the following material constants [41,
51] at the room temperature and atmospheric pressure:

Young’s modulus E = 69 Gpa; Density p =2.710 x 10’ Kg/m?; Bulk
modulus K =76.3 GPa; Poisson’s ratio v = 0.33; Thermal expansion co-
efficient a =23.4x 1070°C~1.

The lattice materials are packaged by a boundary layer of different
materials for different designs. Although aluminum typically yields at
about 300 MPa, this paper will consider the linear elastic behavior only
for simplicity, but the plastic deformation should be carefully addressed

in the actual applications. The method or results can be generalized
to other materials in the same way by replacing the above material
constants. To study the effect of the prestress, the lattice is packaged by
a boundary layer, which is similar to the loading board in the numerical
simulation and can provide confining stress when a prestress is applied.
The aluminum fiber diameter is 0.5 mm and the ball diameter is 10 mm,
unless they are specifically changed for parametric studies.

5.1. Effects of singum size or effective density at A =1

Given the fiber diameter, the effective density of the cellular lattice
changes with the singum size of 12 and the lattice types. ¢, ¢;, ¢4y and
K for different cellular lattices are computed and compared in Fig. 8(a):

1. When 12 decreases, stiffness tensor elements, and K value increase.
It is because when /9 decreases, the effective density increases ac-
cordingly. The similar phenomena can be seen in Fig. 9 for E, K,
and u as well.

2. When no prestress is applied, A=1and V,; =0, so ¢}, ¢j; and ¢y
only depend on V,,, ¢, and ¢y share the same value for SC at
zero, so they are not shown. The four curves for BCC overlap. The
curves of ¢;, and ¢, for FCC overlaps.

3. Given a value of 19, FCC exhibits the highest values of all four elas-
tic moduli among the three lattices, but ¢;; of SC is higher than
that of BCC, whereas K of BCC has a larger value than SC.
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Fig. 9. Elastic moduli ¢, ¢;,,¢,4 and K versus 4 for cellular FCC, BCC, and SC lattices (a) and granular lattices (b).

Note that the densities of FCC, BCC, and SC are in a decreasing order
at the same 12. Obviously, ¢;; changing with the three lattices does not
follow the trend of density, particularly for BCC and SC with different
cubic symmetry.

When the orientation of the lattices randomly changes, using the
orientational average, one can obtain the elastic modulus of E, K, and
u. Fig. 8(b) shows their variations with the density of the lattice with
the following highlights:

1. When logarithmic relative density log,,(p) increases, E, K and u
increase, as discussed for Fig. 8. Their variation is linear in the log
scale, which is reasonable because the strain energy density will
follow the density of the lattice as each bond is subjected to the
same strain statistically with the orientational average.

2. E, K, and u only depend on the relative density, no matter which
lattice structure is used. In other words, with the orientational aver-
age, the anisotropic nature is lost, so that FCC, BCC, and SC exhibit
the same isotropic properties in terms of the lattice effective den-
sity as follows:

Kcell — E(Z_’i);’”cell — E(5&_4)E

36
9 15p (36)

which is obtained by Egs. (31) and (23). Then one can calculate
Young’s modulus by Eq. (33) as
EQ-A)B1-4)_
—_— )
6p
3. The three elastic moduli exhibit E > K > u as Egs. (36) and (37)
show x4 =0.6K and E = 1.5K, respectively, at A =1.

Ecell — (37)

For granular lattice, when A=1, ¢, ¢j5 ¢4 and E, K, u equal to
0, because contacts are not established as we mentioned in the last
section, so the hertz potential and its derivatives are all equal to 0. For
both cellular and granular lattices, when A = 1, Poisson’s ratio v — 0.25,
which is irrelevant to the lattice types as shown in the next section.

5.2. Effects of the prestress or A at a given singum size

Although the bond materials are linear elastic for either springs or
balls, the effective stiffness of the lattices change with 4 or prestress
in the bonds significantly. Here we fix [ =5 mm and show the elastic
moduli changing with A for both cellular and granular lattices. Fig. 9(a)
shows ¢;;,¢5,¢44 and K for cellular lattices when A changes from 1 to
1.25. Applying the method, we could study the 4 changes on a larger
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Fig. 10. Elastic moduli K, E and y versus 4 for cellular FCC, BCC, and SC lattices (a) and granular lattices (b).

scale, but consider if the pre-stress exceeds the material elastic limit,
plastic deformation might exist on the lattice. Especially, for cellular
materials, if the aspect ratio indicates bars are slender, then under a
certain compression load, the bars will lose their stability and the local
buckling effect might be observed as well. [52] These effects were out of
the scope of this manuscript and not evaluated in results, so we plotted
the graphics under a relatively small range of A. For all three lattices,
¢;; and ¢y increases; while ¢, and K decreases with 1. However, dif-
ferent lattices show different changing rate. For example, although ¢/,
of FCC is higher than that of BCC at A= 1, when 1= 1.15, FCC exhibits
a lower c¢y,.

Fig. 9(b) demonstrates the effective elastic moduli of granular lat-
tices when A changes from 0.8 to 1. The linear variation of the effective
elastic moduli with 4 in Fig. 9(a) does not exist for granular lattice any-
more. All elastic moduli exhibit a value of zero at 4 = 1. In general, FCC
shows higher elastic moduli than BCC, and then SC. However, SC pro-
vides a high value of ¢|; and a negative value of ¢, in comparison with
those for BCC.

When an orientational average is used, one can also obtain the vari-
ations of E,K and p with A for both cellular and granular lattices in
Figs. 10(a) and 10(b) for cellular and granular lattices, respectively. In
Fig. 10(a), although K and u linearly change with 4, Young’s modulus
exhibits nonlinear trends for the three types of the cubic lattice. Again,
the isotropic elastic moduli follow the density of the lattices, so that the
elastic moduli for FCC, BCC and SC exhibit a decreasing order as their
density decrease.

Similarly, Poisson’s ratio can be determined as well when 1 is given.
Fig. 11 provides the results of Poisson’s ratio changing with: 2 € (0.8, 1)
for granular lattices and 4 € (1,1.25) for cellular lattices, respectively.
The three cubic lattices exhibit the same Poisson’s ratio changing with
4, but the cellular lattices and granular lattices do not share the same
trend, although they both provide v=0.25at A1=1.

5.3. Effect of temperature on the thermoelasticity of packaged cubic lattices

As the singum model provides the exact solution of the effective stiff-
ness of cubic lattices in terms of prestress or 4, it provides a powerful
tool for material design with tailorable thermoelastic properties.

Similarly to our previous work for 2D granular lattices with a wrap-
ping layer [40], this subsection provides a simple demonstration with
a lattice-based material packaged by a spherical boundary layer with
a prestress. Under the unstressed state, the aluminum lattice material
forms a spherical domain with radius R, and is packaged by a boundary
layer of a membrane with Young’s modulus EZ, Poisson’s ratio v&, ther-
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Fig. 11. Poisson’s ratio versus A for cellular lattices and granular lattices.

mal expansion coefficient o, thickness ¢, and inner radius R’ (t < R')
at the room temperature. When R’ # R/, a prestress of ¢ = 6"§; ; is re-
quired to make the lattice and boundary layer bounded to each other
with a final radius R € (R', R). The membrane stress in the boundary
layer can be calculated by the equilibrium of the semi-spherical sec-
tional area:

_o"zR? _ ¢"R
27 Rt 2t

The bi-directional membrane stress is related to the membrane strain
as:

B

(38)

B

B

m _ Ri
. B:_saR:R R

2t R

where s = 1;‘;3 and Eq. (38) is used.

The hydrostatic stress of the lattice is related to the stretch ratio
change as

=50

(39

Vg A

Ly,
US

0 1

o XD 4,
A

(40)

where K(4) is given in the singum model by V(1) in Eq. (30) with A=
R/R!. For cellular lattices, Eq. (40) can be rewritten as:

2k(19?2InA—A+1)
on=—2r

e (41)
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Fig. 12. FCC aluminum lattices packaged by a titanium boundary layer at + = 0.1 and 0.5 mm for (a) Effective thermal expansion coefficients a*®' (b) Effective

temperature derivatives of Young’s modulus (E£%4").

Similarly, for granular lattices, one can obtain:

3
-7,

1

1 1

0n3 = 1+(1-2)2
2y(lp) [8(1 =42 —4In — + 3 42)

1-(1-2)2
o=

3ay
Substituting Eq. (41) or (42) into Eq. (39) yields R as:

R 1
Re (412 + 8stR'c™)2 — 2t
N 2so™M

43

Therefore, given R', R/, and t as well as the material elastic constants
at room temperature 7, one can solve R(T;) and A(T;) by the above
equations. Note that Eq. (43) is an implicit equation as 4 in ¢ depends
on R as well. An iteration method can be used to solve for R as follows:
First assume R = (R’ + R%)/2 to calculate 4 and ¢” and update R, and
repeat the step until R is convergent. The stiffness of the lattice can be
obtained based on A(T}), namely, C(T).

When this composite ball is subjected to a temperature change 57,
R', R', and t will be updated with the thermal expansion coefficient of
the boundary layer and the lattice material at 7| = T;) + 67. The tem-
perature derivative of the stiffness for aluminum and boundary layer
is typically negative, a measurement value of the temperature deriva-
tive of aluminum’s Young’s modulus under room temperature (20°C to
40°C) is —0.1 GPa/°C [53], and for titanium, the temperature deriva-
tive of Young’s modulus under room temperature (20°C to 205°C) is
—0.054 GPa/°C with Young’s modulus at room temperature at 110 GPa
[54]. Here the Poisson’s ratio is assumed to be constant. Reusing the
above equations, one can solve R(T}) and A(T}). The stiffness of the
lattice can be updated with A(T}) and new elasticity of the materials,
namely, C(T)).

Therefore, one can calculate the effective thermal expansion coeffi-
cient of the ball as

grat — BRI — R(To)

= 44
R(T,)5T (44
and the thermal derivative of the elasticity can also be derived as
C(Ty) — C(Ty)
chall — 1 45
T sT ( )

Using a small temperature change, namely 67 = 1/°C or smaller, one
can calculate the above values with convergent results. Obviously, a??/!
and C’]T“” depends on the design of R/, R’, and t once the lattice type
and bond material is given. The above equations can be applicable to
both the cubic and isotropic elasticity.

11

In the following, we demonstrate aluminum FCC cellular and gran-
ular lattices packaged by a titanium boundary layer with the following
parameters: R' =100 mm, r=0.1 or 0.5 mm, R’ € (99.5-100 mm) for
cellular and granular lattices. Fig. 12(a) and (b) provide the results for
cellular and granular lattices, respectively, at r =0.1 and 0.5 mm.

With the temperature increase, two mechanisms contribute to the
effective thermoelastic behavior: First, because aluminum exhibits a
larger negative temperature derivative of the Young’s modulus, as the
lattice core becomes softer, the tensile stress in the titanium will de-
crease, which leads to the reduction of the dimension of the ball. On
the other hand, the thermal expansions of both lattice and boundary
layer lead to the increase of the ball size. Therefore, effective thermal
expansion is the combination of the two effects. The following features
can be observed:

1. Negative a®® obtained for both cellular and granular materials,
and when R’ increases, a®®! increases as well.

2. When the thickness increases from 0.1 to 0.5 mm, a?¥ for the
granular core nearly overlaps with each other as the stiffness of the
core is dominant; whereas for the cellular core, the small thickness
yields a higher variation of %/’

3. For the thermal derivative of Young’s modulus, granular lattices ex-
hibit positive values at a smaller R’ and non-linearly change with
R'; whereas cellular lattices show small changes with negative val-
ues.

4. When the thickness increases from 0.1 to 0.5 mm, the temperature
derivative of Young’s modulus for the cellular core overlaps with
each other; whereas the granular core produces a large difference.

The singum model provides a powerful tool to understand cellular
and granular lattice, and their thermoelastic performances can be well
predicted and tailored by the prestress. Although the concept of pre-
stress has been commonly used in steel-reinforced concrete to shift the
compressive and tensile stresses and thus increase the overall material
strength, it has never been used to change the material’s stiffness or
thermoelasticity yet. The above study shows that the elastic and ther-
moelastic performance of the lattice-based materials can be altered by
adjusting their prestress or A, which creates a new way to fabricate
ultra-lightweight smart materials and structures with pre-stressed lat-
tice materials [8]. Particularly, in space applications, lightweight but
stiff materials are needed to save propulsion energy in transportation,
and stability under different temperature ranges is crucial to keep the
integrity and shape of the materials and structures. The design of a
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hierarchical lattice material with cellular balls for granular lattices
can achieve nearly zero thermal expansion coefficient and temperature
derivative of Young’s modulus [9].

6. Conclusions

The singum model has been extended to 3 types of cubic lattices,
namely FCC, BCC, and SC, for both cellular and granular materials with
the harmonic potential and Hertz’s contact potential for the bonds, re-
spectively. A numerical method is developed to verify the singum model
for all cases, which show that the singum model provides exact solu-
tions for cubic lattice-based materials. Using the boundary layer, one
can change the prestress in the bonds to tailor the effective elasticity,
thermal expansion coefficient, and temperature derivative of elasticity
of the lattice-based materials. The following conclusions are highlighted
from the analysis:

1. The cubic symmetric elasticity for FCC, BCC, and SC is formulated
explicitly in terms of the potential of the bond and the lattice char-
acteristics. The 3 cubic elastic constants are not fully independent
but satisfy one identity for each type of cubic symmetry.

2. The elastic moduli change with the prestress or stretch ratio 4 of
the bonds due to the configurational stress: for the cellular lattices,
¢y; and ¢y, increase while ¢, and K decrease with A linearly; while
for granular lattices, the elasticity shows strong nonlinearity with
zero elasticity at A=1.

3. When the lattice orientation randomly changes, the cubic lattice
may exhibit isotropic elasticity, which is predicted by the orienta-
tional average of the cubic elasticity. The Poisson’s ratio is 0.25 at
A =1 for all cases. Under compression, it is higher than 0.25, while
under tension it is lower than 0.25.

4. For cellular lattices, given the cross-sectional area of the bond ma-
terial, the effective elasticity is proportional to the effective density
of the lattices under the undeformed configuration.

5. Given the configuration of the lattice packaged by a boundary
layer, the effective thermal expansion and temperature derivative
of elasticity can be calculated, and are tailorable by the prestress
that depends on the thickness of the boundary layer and initial mis-
match between the lattice core and boundary layer.

Overall, the singum model interprets the fundamental mechanics and
physics of cubic lattice-based materials and can be extended to other
types of lattices. It provides a powerful tool for material design and
analysis and creates a new way to fabricate ultra-lightweight smart
materials and structures, which can achieve zero effective thermal ex-
pansion coefficient and temperature derivative of Young’s modulus.
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