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When a cubic lattice packaged by a boundary layer is subjected to a mechanical and temperature load, the force 
and length change of the bonds are equivalently evaluated by the average stress and strain of the unit cell. 
Provided a displacement gradient variation at a certain stress state, the variation of stress related to the strain 
variation provides the effective stiffness of the material at the corresponding configuration. It is discovered 
that the effective elasticity and thermal expansion coefficient can be tailored by the prestress through the 
boundary layer, which generates a configurational stress. Because the bonds of a cubic lattice depend on the 
material types, we consider the harmonic potential of springs for cellular lattices and Hertz’s contact potential 
of balls for granular lattices, respectively. The cubic symmetry of effective elasticity is demonstrated for the 
three types of cubic lattices. By taking the orientational average, isotropic elastic constants can be obtained for 
randomly oriented lattices. As the bond length changes with the prestress of the boundary layer and controls 
the thermoelastic behavior, a novel design method of lattice-based materials confined in a spherical shell is 
demonstrated to achieve zero thermal expansion and a positive temperature derivative of elasticity.

1. Introduction

Cubic structures, such as face-centered cubic (FCC), body-centered 
cubic (BCC), and simple cubic (SC), are popular lattice structures, which 
are found in crystals, granular materials, or cellular lattices [1–3]. 
The emerging three-dimensional (3D) printing technology can fabricate 
materials with lattice structures in the laboratory as well [4–7]. The 
recent discovery showed that applying a prestress to lattice-based ultra-
lightweight composites (ULWC) can change the thermoelastic behavior 
through the configurational stress [8,9], which creates a new way to 
fabricate a composite with zero thermal expansion coefficient and zero 
temperature derivative of stiffness, which may not exist in the natural 
materials.

For example, Fig. 1 shows an application of lattice materials to the 
Artemis project [10,11], which requires the transportation of building 
materials from the earth and the erection of the foldable tall struc-
ture on the south pole of the moon. The large temperature variation 
from −175 to 125 ◦C or even more exists in the structure during the 
service lifetime due to the nonuniform irradiation exposure in a vac-
uum environment [12–14]. It is crucial to use a lightweight, stiff, 
and temperature-insensitive material with a high buckling resistance 
to achieve the stability and economics of the structure [15,16]. In 
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Fig. 1(a), the ULWC balls are filled an aluminum tube, and a pre-
stress is applied by the cap of the tube which causes compression in 
the granular lattice and tension in the tube in Fig. 1(b). One can tailor 
the thermoelastic constants and buckling resistance of the bar for the 
ultra-lightweight structural member and fabricate the foldable frame of 
the 50 kW PV array. Fig. 1(c) and (d) show the overview of the innova-
tive technology of foldable structure and the entire system, respectively. 
This paper will show the mechanism of how to achieve zero thermal ex-
pansion coefficient and zero temperature derivative of stiffness of the 
composites.

The force transfer in the structure of a lattice material is through 
the bonds between the nodes of the network. At the macroscale, the 
lattice can be treated as a homogeneous material with a certain effective 
stiffness, which should be correlated with the forces and displacements 
of the bonds given the characteristics of the lattice structure.

A lattice-based material contains one-dimensional (1D) bonds con-
nected into a 2D or 3D solid at the macroscale, and the stress transfer 
through the lattice is different from the continuum solids [17] that is 
typically modelled by the classical micromechanical models based on 
the stress homogenization of reinforcements in a continuous matrix 
[18–20]. For example, micromechanics-based models [21,22] treated 
the 1D components such as fibers as dispersed slender ellipsoids inter-
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Fig. 1. Design of a lattice material based solar array structure for the Artemis Project: (a) The ULWC balls filled in a metal tube; (b) Prestress induced by the screw 
cap of the tube; (c) The ULWC filled tube used for a foldable frame, and; (d) The entire photovoltaic system.

acting with the matrix directly; while the lattice-based materials exhibit 
a continuous network of bonds for the force transfer, and no matrix 
phase is required. Although many papers in the literature addressed 
specific lattices with numerical simulations of the large truss frame-
works [23–26], the models highly depended on the material design and 
computational resources.

Analytically modeling granular lattices dates back to the middle of 
the last century when Duffy and Mindlin studied the stress-strain re-
lation for identical spheres packed in the face-centered cubic array 
[27], in which the contact force and displacements of a cubic unit 
cell are correlated through equilibrium and compatibility relations. 
This work was generalized to other regular packing patterns, such as 
simple cubic, tetrahedral, etc. [28–30]. With the use of the energy con-
servation approach, the secant stiffness tensor has been obtained for 
all regular packing patterns [31] as well. However, granular and cel-
lular lattices have often been studied separately due to the different 
force-displacement relationships, for example, by finite element method 
(FEM) [25] and discrete element method (DEM) [32,33], respectively.

Considering the periodic structure of lattice-based materials, if the 
force-displacement relationship is well defined, the effective stiffness 
shall be unique and an exact solution may exist and be generic to differ-
ent lattice-based materials. Actually, the lattice element method (LEM) 
[34] has been proposed to simulate a continuum solid by a connected 
truss frame of lattice elements, which can be considered as a DEM ap-
proach [35] to simplification of the mechanical behavior of solids. On 
the contrary, as lattice-based materials already have information avail-
able about the lattice structure and bond, the effective elasticity can 
surely be simulated by LEM, FEM, or DEM, among others [25,32,36], 
which often require an array of many unit cells and render numerical 
results with a certain accuracy. Using the unit cell of actual lattice, LEM 
can derive the effective elasticity based on the strain energy equiva-
lency, but it limits to the linear elasticity [37] and the effect of prestress 
is not considered. An explicit, exact solution of the effective elasticity 
is still of significant interest in the material design and analysis of such 
lattice-based materials.

The singum model [38] uses the Wigner Seitz (WS) cell of the cubic 
structure as a continuum particle to represent the material and applies 
the potential-based bond forces for the lattice structure. Although the 
lattice-based solids can be evaluated by stress and strain at the over-
all material level, the force is essentially transferred through the bonds 
between the nodes. The singum model correlates singular forces in the 
discrete structure with the stress over the continuous volume. There-
fore, the cubic structure with singular bond forces can be simulated 
by the fully contacted continuum particle system with stresses, and 
the singum model does provide the exact solution for the lattices with 
potential-based bond forces. For an example of metamaterials made of 
a physical truss system [39], the bonds are represented by springs with 
a harmonic potential. The singum model indeed provided an analytical 

form of elasticity for the metamaterials and predicted the effect of the 
prestress on the elasticity [39]. The forces between the nodes of the cu-
bic structure depend on the material types. Hertz’s potential [40] and 
harmonic potential [39] have been demonstrated for 2D cellular and 
granular materials.

This paper generalizes the singum model to FCC, BCC, and SC lat-
tices, and derives the effective stiffness based on the potential of the 
bonds. Cellular and granular materials are demonstrated with the lin-
ear elastic and Hertz’s contact bonds, respectively. The effective elastic 
properties are verified with the numerical simulation. Using the spring 
length changing with pressure and temperature, we can predict the 
elasticity changing with pressure and temperature given the thermal 
expansion coefficient of the bond materials. The singum model can cor-
relate the potential with the elastic moduli in a very straightforward 
fashion. When the lattice orientation randomly changes due to defects, 
by taking the orientational average, isotropic elastic constants can be 
obtained.

Particularly, a singum-based invention for material design [8] is 
introduced to package a lattice material with a boundary layer that 
provides a prestress to the lattice during the fabrication. Interestingly, 
the effective stiffness can be tailored by the prestress. When the temper-
ature changes, the thermal expansion of the bond material will change 
the bond length as well as the confining stress in the boundary layer, 
which provides a novel design approach to zero thermal expansion and 
positive temperature derivative of elasticity of materials.

In the remainder of the paper, Section 2 introduces the construction 
of a singum particle using an FCC lattice as an example, and derives the 
elastic constants in terms of the derivatives of bond potential functions, 
which are generalized to BCC and SC as well. Section 3 demonstrates the 
model through a lattice material with linear spring bonds and granular 
material with Hertz’s contact bonds. The explicit form of the effective 
elasticity of the lattices is provided. The effect of the configurational 
stress caused by the prestressing is discussed. Section 4 conducts a nu-
merical simulation of the cubic lattices and verifies the exactness of the 
singum model. Section 5 demonstrates the applications of the singum 
model to lattice-based material design considering the effect of thermal 
expansion of materials with prestress. Some interesting results for the 
lattice-based material design for zero thermal expansion coefficient and 
positive temperature derivative of elasticity are demonstrated. A novel 
ultra-lightweight material with tailorable thermoelasticity is invented 
through a hierarchical lattice-based manufacturing process using cellu-
lar balls for a granular lattice.

2. Construction of the singum model for cubic lattices

2.1. The singum model for FCC cubic structure

Following the recent paper [41], we consider an FCC lattice in 
Fig. 2(a). Depending on the lattice material types, the bonds between 
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Fig. 2. The singum model of a face-centered cubic lattice: (a) the unit cell for 
the singum construction at the front central node with four more members not 
shown and; (b) the FCC singum of the WS Cell of the 0𝑡ℎ member in the initial 
configuration X (black lines) and the deformed configuration x (gray lines) [41].

the nodes can be Hertz’s contacts, linear springs, or interatomic bonds. 
In the undeformed configuration, the unit cell of an FCC lattice exhibits 
the cubic edge length 𝑎0, so that the bond length between two neighbor 
nodes is 2𝑙0

𝑝
= 𝑎0√

2
when the bond force is zero. We set up the Carte-

sian coordinate system with the origin at the 0𝑡ℎ node, and 12 closest 
neighbor nodes are located at (± 𝑎0

2 , ±
𝑎0

2 , 0), (±
𝑎0

2 , 0, ±
𝑎0

2 ), (0, ±
𝑎0

2 , ±
𝑎0

2 ), 
which are corresponding to the directional vectors n𝐼 (𝐼 = 1, 2, ..., 12) 
= (± 1√

2
, ± 1√

2
, 0), (± 1√

2
, 0, ± 1√

2
), or (0, ± 1√

2
, ± 1√

2
). The singum particle 

is constructed by the Wigner Seitz (WS) cell [42] of the 0𝑡ℎ node in 
Fig. 2(b) as a rhombic dodecahedron, in which each bond between the 
0𝑡ℎ node at the center and the 12 closest neighbor nodes is cut at the 
midpoint by a perpendicular plane. As shown in Fig. 2(b), a Cartesian 
coordinate X is set up at the initial condition, i.e. the Lagrangian coor-
dinates. After a homogeneous deformation of the lattice, the material 
points in X are referred to x at the deformed state, or the Eulerian coor-
dinates, in which the lattice still keeps periodic, so that the whole space 
is still be filled with the deformed singums. Here because the outer sur-
faces of the singum particle are defined by the vertical planes of each 
bond, the singum particle maintains a polyhedral shape. Due to the cen-
tral symmetry of the lattice, the nodes always keep in equilibrium under 
a uniform deformation. Without any loss of generality, the origins of x
and X are both selected at the center of Node 0.

The above construction of the singum particle is simple and straight-
forward. The same procedure can be applied to all internal nodes of the 
lattice. However, the surface nodes cannot form singums because no 
bond exists beyond the surface. Instead, a boundary layer will be physi-
cally bonded to the surface nodes, which will be discussed in Section 5. 
Therefore, the singum particles are only constructed inside the material 
surface layer.

To formulate the singum model, we provide the following assump-
tions:

1. The interaction between nodes is governed by the bond potential 
𝑉 (𝜆) where 𝜆 is the stretch ratio of the bond referred to as the 
undeformed bond length. At the zero-force bond length, 𝜆 = 1; the 
hydrostatic deformation can be described by the bond length 𝜆 =
𝑙𝑝∕𝑙0𝑝 .

2. The interaction between two neighboring singums is through the 
surface stress vector along their interface edge, whose resultant 
force is equivalent to their bond force, i.e. 𝐹𝑗 =

𝑉,𝜆

2𝑙0𝑝
𝑛𝑗 . Here 𝐅 and 

𝐧 denote the bond force and directional norm vector, respectively, 
along the same direction.

3. The bonds form between the closest nodes only so that each node in 
FCC, BCC, and SC connects by 12, 8, and 6 bonds with the closest 
nodes accordingly. Therefore, each bond exhibits the same bond 
length.

Note that the resultant force on a singum from all neighboring 
singums is always zero due to the central symmetry of the bond forces 
so that the singum can maintain equilibrium automatically.

Consider Node 0 in the current lattice structure is in equilibrium. 
It is replaced by a singum particle in Fig. 2(b). Notice that although 
nodes 1–12 are located outside the singum, they are necessary parts to 
define the singum located at node 0, which are called “members” of the 
singum.

Consider the solid is made of the singums periodically and seam-
lessly filled in the space. The equilibrium equation in the absence of the 
body force or inertia force is written as:

𝜎𝑖𝑗,𝑖 = 0 (1)

where 𝜎𝑖𝑗 is the stress tensor in a solid, which is applicable to the singum 
particle. The stress integral of the singum can be written as [19]

𝑆𝑖𝑗 = ∫
𝑣𝑠

𝜎𝑖𝑗 (x)𝑑x = Σ12
𝐼=1𝑥

𝐼
𝑖
𝐹 𝐼
𝑗

(2)

where 𝑥𝐼
𝑖
indicates the coordinate of the cutting point of the bond, and 

𝑛𝐼
𝑖
= 𝑥𝐼

𝑖||𝐱𝐈|| is the normalized direction vector component corresponding to 
𝐱𝐈. The distance between two neighboring nodes is defined as 𝑟 = 2𝑙𝑝 =
2|𝐱𝐈|. The bond force can be written in terms of the derivative of the 
potential energy V as follows:

𝐹𝐼
𝑖
= 𝜕𝑉 𝐼

𝜕𝑟
𝑛𝐼
𝑖
= 𝜕𝑉 𝐼

𝜕𝜆

𝜕𝜆

𝜕𝑟
𝑛𝐼
𝑖
=
𝑉 𝐼
,𝜆
𝑛𝐼
𝑖

2𝑙0
𝑝

(3)

The displacement distribution can be described by the displacement 
gradient (DG) tensor, namely 𝑑𝑖𝑗 = 𝑢𝑗,𝑖. Similarly, the integral of DG 
over the singum can be written as:

𝐸𝑖𝑗 = ∫
𝑣𝑠

𝑑𝑖𝑗𝑑x= ∫
𝑣𝑠

𝑢𝑗,𝑖𝑑x = ∫
𝜕𝑣𝑠

𝑛𝑖𝑢𝑗𝑑x = Σ12
𝐼=1𝑎

𝐼
𝑠
𝑛𝐼
𝑖
𝑢𝐼
𝑗

(4)

where 𝑎𝐼
𝑠
is the plane surface area of the singum associated with the 

𝐼𝑡ℎ bond, so ∑𝐼=1 12𝑎𝐼𝑠 = 𝜕𝑣𝑠. Here because all points on the same plane 
surface share the same n𝐼 and the displacement in a flat plane is linear, 
the displacement integral can be represented by the central point.

Therefore, the singum of Node 0 is constructed with the stress and 
DG integrals defined by the force and displacement of the cutting points 
on the singum surface. Note that the volume integrals of stress and DG 
in a continuum domain are transferred to its boundary [19]. Due to the 
flat plane of singum surface planes and Dirac Delta function as the point 
forces at the cutting points, the stress and DG are exactly obtained for 
the lattices with hinge connections, which creates a way to derive the 
stiffness of the lattices exactly.

To find the stiffness tensor 𝐶𝑖𝑗𝑘𝑙 , which correlates the stress and 
strain tensors, a DG variation, namely 𝛿𝑑𝑖𝑗 , is applied to the singum, 
which produces the displacement variation on the singum through the 
Cauchy-Born rule [43] as

𝛿𝑢𝑗 (x) = 𝛿𝑑𝑘𝑗𝑥𝑘 = 𝛿𝑥𝑗 (5)

The Eulerian strain variation caused by 𝛿u can be written as [41]:

𝛿𝜀𝑖𝑗 =
𝛿𝑑𝑖𝑗 + 𝛿𝑑𝑗𝑖

2𝜆2
(6)

in which the higher order term of 𝛿d is disregarded because the paper 
aims to provide a simplified and analytical solution for the tangential 
stiffness. Compared to the above terms, the higher order term shall be 
disregarded as it is very small under small 𝛿u. Note that the assumption 
might not be suitable for relatively large strain conditions or nonlinear 
elastic analysis [44].

Note that the singum size of the cubic lattices changes with 𝜆 but 
maintains the same shape. However, the DG variation is an arbitrary 
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infinitesimal tensor to test the tangential elastic constants. The variation 
of volume can be described by DG variation as
𝛿𝑣𝑠

𝑣𝑠
= 𝛿𝑑𝑘𝑘 (7)

Given a variation of the cutting point 𝛿𝑥𝐼
𝑖
, the force variation on the 

bond can be written as 𝛿𝐹 𝐼
𝑖
= 𝐹𝐼

𝑖,𝑗
𝛿𝑥𝐼
𝑗
, where 𝐹𝐼

𝑖,𝑗
is the derivation of the 

force, from Eq. (3) as:

𝐹𝐼
𝑖,𝑗

=
𝑉 𝐼
,𝜆𝜆

𝜕|𝐱𝐈|
𝑙0𝑝𝜕𝑥𝑗

𝑛𝐼
𝑖
+ 𝑉 𝐼

,𝜆

𝜕𝑛𝐼
𝑖

𝜕𝑥𝑗

2𝑙0
𝑝

=
𝜆𝑉 𝐼

,𝜆𝜆
𝑛𝐼
𝑖
𝑛𝐼
𝑗
+ 𝑉 𝐼

,𝜆
(𝛿𝑖𝑗 − 𝑛𝐼𝑖 𝑛

𝐼
𝑗
)

2𝑙0
𝑝

2
𝜆

(8)

where the following equation is used

𝑛𝐼
𝑖,𝑗

=
𝜕
𝑥𝐼
𝑖

𝑙𝑝

𝜕𝑥𝐼
𝑗

=
𝛿𝑖𝑗 − 𝑛𝐼𝑖 𝑛

𝐼
𝑗

𝑙0
𝑝
𝜆

(9)

Note that the origin of the coordinates is taken at the singum node. 
Although the stress distribution cannot be well defined on the singum, 
it can be measured on the singum through the average of the above 
stress integral as:

𝜎𝑖𝑗 =
𝑆𝑖𝑗

𝑣𝑠
=

Σ12
𝐼=1𝑥

𝐼
𝑖
𝐹 𝐼
𝑗

𝑣𝑠
(10)

where 𝑣𝑠 = 𝜆3𝑣0𝑠 is the current volume of the singum. Because 𝑥𝐼𝑖 = 𝑙𝑝𝑛
𝐼
𝑖
, 

one can write

𝑥𝐼
𝑖
= 𝜆𝑙0

𝑝
𝑛𝐼
𝑖

(11)

The average stress can be obtained by taking the variation of 
Eq. (10) as

𝛿𝜎𝑖𝑗 =
1
𝑣𝑠

Σ12
𝐼=1

(
𝑥𝐼
𝑖
𝐹 𝐼
𝑗,𝑘
𝛿𝑥𝑘 + 𝐹𝐼𝑗 𝛿𝑥

𝐼
𝑖
− 𝑥𝐼

𝑖
𝐹 𝐼
𝑗

𝛿𝑣𝑠

𝑣𝑠

)
(12)

Note that the Cauchy stress variation includes three parts: the first part 
related to 𝐹𝐼

𝑗,𝑘
is caused by the force variation; whereas the second part 

𝛿𝑥𝐼
𝑖
and third part 𝛿𝑣𝑠

𝑣𝑠
related to 𝐹𝐼

𝑗
are the configurational stress caused 

by the existing force with the material configuration change. For the 
classic elasticity based on the infinitesimal deformation assumption, the 
effect of the configuration change on the material behavior has often 
been disregarded, but its effect is real and physical for lattice-based ma-
terials [40]. Substitution of Eqs. (3), (7), (8), and (11) into (12) yields:

𝛿𝜎𝑖𝑗 =
Σ12
𝐼=1

[
(𝜆2𝑉 𝐼

,𝜆𝜆
− 𝜆𝑉 𝐼

,𝜆
)𝑛𝐼
𝑖
𝑛𝐼
𝑗
𝑛𝐼
𝑘
𝑛𝐼
𝑙
+ 𝜆𝑉 𝐼

,𝜆
(𝛿𝑖𝑘𝑛𝐼𝑙 𝑛

𝐼
𝑗
+ 𝛿𝑗𝑘𝑛𝐼𝑙 𝑛

𝐼
𝑖
− 𝛿𝑘𝑙𝑛𝐼𝑖 𝑛

𝐼
𝑗
)
]
𝛿𝑑𝑘𝑙

2𝑣𝑠
(13)

Because each bond exhibits the same length, the summation in Eq. (13)
is reduced to the summation of 𝑛𝐼

𝑖
𝑛𝐼
𝑗
and 𝑛𝐼

𝑖
𝑛𝐼
𝑗
𝑛𝐼
𝑘
𝑛𝐼
𝑙
, which can be written 

in the following identities for the FCC in Fig. 2 [41],

Σ12
𝐼=1𝑛

𝐼
𝑖
𝑛𝐼
𝑗
= 4𝛿𝑖𝑗 ,Σ12

𝐼=1𝑛
𝐼
𝑖
𝑛𝐼
𝑗
𝑛𝐼
𝑘
𝑛𝐼
𝑙
= (1 − 𝛿𝐼𝐾 )𝛿𝑖𝑗𝛿𝑘𝑙 + 2𝐼𝑖𝑗𝑘𝑙 (14)

where 𝐼𝑖𝑗𝑘𝑙 =
1
2 (𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑗𝑘𝛿𝑖𝑙), and the terms with subscript indices in-

cluding both uppercase and lowercase letters follow Mura’s extended 
index notation as follows [18,20]:

1. Repeated lowercase indices are summed up as usual index notation;
2. Uppercase indices take on the same numbers as the corresponding 
lowercase ones but are not summed.

Therefore, with the aid of Eqs. (6) and (14), Eq. (13) can be rewritten 
as:

𝛿𝜎𝑖𝑗 =
𝜆2

[
(𝜆2𝑉,𝜆𝜆 − 5𝜆𝑉,𝜆)𝛿𝑖𝑗𝛿𝑘𝑙 − (𝜆2𝑉,𝜆𝜆 − 𝜆𝑉,𝜆)𝛿𝐼𝐾𝛿𝑖𝑗𝛿𝑘𝑙 + 2(𝜆2𝑉,𝜆𝜆 + 3𝜆𝑉,𝜆)𝐼𝑖𝑗𝑘𝑙

]
𝛿𝜀𝑘𝑙

2𝑣𝑠
(15)

Fig. 3. The unit cells for the singum model construction at Atom 0: a body-
centered cubic lattice with 8 members (a) and a simple cubic lattice with 6 
members (b).

Table 1

The singum variables for FCC, BCC & SC lattice with unit cell edge length 𝑎0 .
Entities FCC BCC SC

𝑁 (member #) 12 8 6

𝑙0
𝑝

√
2𝑎0
4

√
3𝑎0
4

𝑎0
2

𝛼𝑁

√
2𝑙0
𝑝

3

3
4
√
3𝑙0
𝑝

3

9
4𝑙0
𝑝

3

3

𝑣0
𝑠
=𝑁𝛼𝑁

𝑎30
4
or 4

√
2𝑙0
𝑝

3 𝑎30
2
or 32

√
3

9
𝑙0
𝑝

3
𝑎30 or 8𝑙

0
𝑝

3

Σ𝑁
𝐼=1𝑛

𝐼
𝑖
𝑛𝐼
𝑗

4𝛿𝑖𝑗
8
3
𝛿𝑖𝑗 2𝛿𝑖𝑗

Σ𝑁
𝐼=1𝑛

𝐼
𝑖
𝑛𝐼
𝑗
𝑛𝐼
𝑘
𝑛𝐼
𝑙

(1 − 𝛿𝐼𝐾 )𝛿𝑖𝑗 𝛿𝑘𝑙 + 2𝐼𝑖𝑗𝑘𝑙
8
9

[
(1 − 2𝛿𝐼𝐾 )𝛿𝑖𝑗 𝛿𝑘𝑙 + 2𝐼𝑖𝑗𝑘𝑙

]
2𝛿𝐼𝐾𝛿𝑖𝑗 𝛿𝑘𝑙

𝑐11
𝜆𝑉,𝜆𝜆+𝑉,𝜆
4
√
2𝑙0
𝑝

3

𝜆𝑉,𝜆𝜆+2𝑉,𝜆
8
√
3𝑙0
𝑝

3

𝜆𝑉,𝜆𝜆

8𝑙0
𝑝

3

𝑐12
𝜆𝑉,𝜆𝜆−5𝑉,𝜆
8
√
2𝑙0
𝑝

3

𝜆𝑉,𝜆𝜆−4𝑉,𝜆
8
√
3𝑙0
𝑝

3 − 𝑉,𝜆

8𝑙0
𝑝

3

𝑐44
𝜆𝑉,𝜆𝜆+3𝑉,𝜆
8
√
2𝑙0
𝑝

3

𝜆𝑉,𝜆𝜆+2𝑉,𝜆
8
√
3𝑙0
𝑝

3

𝑉,𝜆

8𝑙0
𝑝

3

𝐾 = 𝜆𝑉,𝜆𝜆−2𝑉,𝜆
18𝛼𝑁

𝜆𝑉,𝜆𝜆−2𝑉,𝜆
6
√
2𝑙0
𝑝

3

𝜆𝑉,𝜆𝜆−2𝑉,𝜆
8
√
3𝑙0
𝑝

3

𝜆𝑉,𝜆𝜆−2𝑉,𝜆
24𝑙0

𝑝

3

Identity 2𝑐11 = 𝑐12 + 3𝑐44 𝑐11 = 𝑐44 𝑐12 = −𝑐44

Considering the relationship between the variations of average stress 
and average strain in Eq. (15) use the volume of singum 𝑣𝑠 = 4

√
2(𝜆𝑙0

𝑝
)3, 

one can obtain the stiffness tensor of the singum as

𝐶𝑖𝑗𝑘𝑙 =
(𝜆𝑉,𝜆𝜆 − 5𝑉,𝜆)𝛿𝑖𝑗𝛿𝑘𝑙 − (𝜆𝑉,𝜆𝜆 − 𝑉,𝜆)𝛿𝐼𝐾𝛿𝑖𝑗𝛿𝑘𝑙 + 2(𝜆𝑉,𝜆𝜆 + 3𝑉,𝜆)𝐼𝑖𝑗𝑘𝑙

8
√
2(𝑙0

𝑝
)3

(16)

which exhibits a cubic symmetry depending on the interatomic po-
tential function and the geometry of the lattice or singum. The three 
independent elastic constants for the cubic symmetric lattice can be 
written as [41]:

𝑐11 =
𝜆𝑉,𝜆𝜆 + 𝑉,𝜆
4
√
2𝑙0
𝑝

3
, 𝑐12 =

𝜆𝑉,𝜆𝜆 − 5𝑉,𝜆
8
√
2𝑙0
𝑝

3
, 𝑐44 =

𝜆𝑉,𝜆𝜆 + 3𝑉,𝜆
8
√
2𝑙0
𝑝

3
(17)

where the Voigt notation is used as 𝑐11 = 𝐶1111, 𝑐12 = 𝐶1122, and 𝑐44 =
𝐶1212. The bulk modulus can be obtained as 𝐾 = (𝑐11 + 2𝑐12)∕3.

2.2. The singum model for general cubic lattices

The FCC singum model can be straightforwardly extended to other 
cubic lattices in the same fashion for BCC and SC lattices. In Fig. 3(a) 
of the BCC lattice, Node 0 has 8 closest neighbors. By cutting the bond 
length at its midpoint, a truncated octahedral singum can be obtained; 
whereas in Fig. 3(b) of the SC lattice, the singum shares the same shape 
and size as the cubic unit cell. Following the singum construction pro-
cedure in Eqs. (2)–(17), one can calculate the variables and list the in 
Table 1. Because the three lattices exhibit different packing efficiency, 
a new parameter of 𝛼𝑁 = 𝑣0

𝑠
∕𝑁 is introduced as a measurement of the 

packing efficiency.
Mathematically, three independent elastic constants of 𝑐11, 𝑐12 and 

𝑐44 exist for solids with the cubic symmetry. However, the prediction 
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of them in Table 1 depends on only two quantities of 𝑉,𝜆 and 𝑉,𝜆𝜆 for 
each type of cubic lattice. Therefore, the three elastic constants are not 
truly independent for the cubic lattices with short-range interactions, 
but satisfy the identities shown in the last line of Table 1 [39].

At 𝑙𝑝 = 𝑙0𝑝 or 𝜆 = 1, 𝑉,𝜆(𝜆) = 0. The SC lattice exhibits 𝑐𝑆𝐶12 = 𝑐𝑆𝐶44 = 0, 
which is physical because such a lattice structure is loose and cannot 
resist the shear load. When a prestress is considered with a boundary 
layer, it will generate a configurational stress [39,45] with the displace-
ment variation and then contribute to the stiffness. For example, one 
can conduct an imaginary experiment with an SC lattice packaged by a 
membrane of the boundary layer. When the membrane is in a natural 
state without tension at 𝑙𝑝 = 𝑙0𝑝 , the SC exhibits zero shear moduli; when 
the outside pressure is lower down, the membrane will expand like a 
balloon, and it will be able to resist a certain shear load; when the out-
side pressure increases, the lattice is compressed by the pressure and 
the SC is highly unstable, and a tiny shear strain may cause the collapse 
of the lattice unless opposite shear stress is applied for the equilibrium, 
which is corresponding to a negative shear modulus.

Given a lattice configuration and the corresponding bond potential, 
the singum model can predict the three elastic constants from Table 1. 
In the following, cellular materials with linear spring bonds and granu-
lar materials with Hertz’s contacts are demonstrated with bond poten-
tials that can be physically characterized.

3. Prediction of elasticity for cellular and granular lattices

The bond potential can be physically measured for cellular and gran-
ular lattices. Here we assume the bonds in the cellular lattices are 
connected by hinges so that the force will be along the bonds. Sim-
ilarly, the granular lattices are packed with smooth spheres of equal 
diameters, so that the force will be along the center-center line of any 
pairs of contacted balls. The springs or balls are linear elastic so that 
the bond potential can be explicitly provided by the elastic constants of 
the springs or balls in cubic lattices.

3.1. Elastic behavior of cellular lattices with cubic structure

For linear elastic fibers in a cubic lattice, the potential function can 
be written as [39]:

𝑉 (𝑟) = 𝑘

2
(𝑟− 2𝑙0

𝑝
)2 (18)

where 𝑘 can be the spring coefficient of the fiber bond with the original 
length at 2𝑙0

𝑝
. It can be rewritten in terms of the stretch ratio 𝜆 as:

𝑉 (𝜆) = 2𝑘(𝑙0
𝑝
)2(𝜆− 1)2 (19)

Given Young’s modulus 𝐸 and cross-sectional area 𝐴 at the stress-free 
state of the fibers, one can write

𝑘 = 𝐸𝐴

2𝑙0
𝑝

(20)

with 𝑙0
𝑝
≫

√
𝐴. The derivatives of 𝑉 (𝜆) can be written as

𝑉,𝜆(𝜆) = 4𝑘(𝑙0
𝑝
)2(𝜆− 1) and 𝑉,𝜆𝜆(𝜆) = 4𝑘(𝑙0

𝑝
)2 (21)

which provides the effective elastic constants for FCC, BCC and SC, re-
spectively, as follows:

𝑐11 = 𝑘
2𝜆− 1√

2𝑙0
𝑝

; 𝑘
3𝜆− 2
2
√
3𝑙0
𝑝

; 𝑘𝜆

2𝑙0
𝑝

𝑐12 = 𝑘
5 − 4𝜆
2
√
2𝑙0
𝑝

; 𝑘
4 − 3𝜆
2
√
3𝑙0
𝑝

; 𝑘(1 − 𝜆)
2𝑙0
𝑝

𝑐44 = 𝑘
4𝜆− 3
2
√
2𝑙0
𝑝

; 𝑘
3𝜆− 2
2
√
3𝑙0
𝑝

; 𝑘(𝜆− 1)
2𝑙0
𝑝

(22)

𝐾 = 𝑘2(2 − 𝜆)

3
√
2𝑙0
𝑝

; 𝑘
2 − 𝜆
2
√
3𝑙0
𝑝

; 𝑘(2 − 𝜆)
6𝑙0
𝑝

where, by using Eq. (20), the parameter 𝑘∕𝑙0
𝑝
can be written as

𝑘

𝑙0
𝑝

=
𝐸𝐴𝑙0

𝑝

2(𝑙0
𝑝
)3

= 𝐸𝑀

2𝜌(𝑙0
𝑝
)3

=
𝐸𝜌𝑣𝑠

2𝑁𝜌(𝑙0
𝑝
)3

=
𝐸𝛼𝑁

2𝜌(𝑙0
𝑝
)3
𝜌 (23)

in which 𝑀 and 𝜌 denote the mass and density of the fiber with the 
length 𝑙0

𝑝
; 𝜌 is the effective density of the cubic lattice; 𝛼𝑁 depends on 

the number of the closest neighbor nodes at 𝑁 = 12, 8 and 6 for FCC, 
BCC, and SC, respectively at

𝛼𝑁 =

√
2𝑙0
𝑝

3

3
;

4
√
3𝑙0
𝑝

3

9
;

4𝑙0
𝑝

3

3
(24)

which can be found in Table 1 as well. Given a fiber type for a certain 
cubic structure, 𝐸𝛼𝑁

2𝜌(𝑙0𝑝 )3
is a constant so that the stiffness is proportional 

to the effective density 𝜌 at a certain stretch ratio 𝜆.

3.2. Elastic behavior of granular materials with cubic structure

When many spherical elastic balls with the same diameter are 
packed in a cubic lattice, the force transfer through the contacts can 
be modeled with Hertz’s contact [46]. If the balls are not smooth, the 
frictional force between the balls may be induced along the contacting 
surface [47]. However, for simplicity, this paper assumes the balls are 
smooth, so only normal forces are induced at the contact. Similarly to 
the 2D problem [40], Hertz’s contact model provides the corresponding 
mutual approach of the two centers as [48]:

𝛿 = 2

[
9𝑃 2(1 − 𝜈2)2

16𝐸2𝑙0
𝑝

]1∕3

= 2(𝑙0
𝑝
− 𝑙𝑝) (25)

or

𝑃 = 4𝛾𝑙0
𝑝

2(1 − 𝜆)3∕2 with 𝛾 = 𝐸

3(1 − 𝜈2)
(26)

from which the potential function 𝑉 (𝜆) can be derived as

𝑉 = −
𝑟

∫
𝑟0

𝑃 (𝑟)𝑑𝑟 = −2𝑙0
𝑝

𝜆

∫
1

𝑃 (𝜆)𝑑𝜆 = 16
5
𝛾(𝑙0

𝑝
)3(1 − 𝜆)

5
2 (27)

in which 𝑟0 = 2𝑙0
𝑝
and 𝑟 = 2𝑙0

𝑝
𝜆 are used. The derivatives of 𝑉,𝜆(𝜆) and 

𝑉,𝜆𝜆(𝜆) are written as below:

𝑉,𝜆(𝜆) = −8𝛾(𝑙0
𝑝
)3(1 − 𝜆)

3
2 , 𝑉,𝜆𝜆(𝜆) = 12𝛾(𝑙0

𝑝
)3(1 − 𝜆)

1
2 (28)

which provides the effective elastic constants for FCC, BCC, and SC, 
respectively, as follows:

𝑐11 =
𝛾(1 − 𝜆)

1
2 (5𝜆− 2)√
2

; 𝛾(1 − 𝜆)
1
2 (7𝜆− 4)

2
√
3

; 3𝛾𝜆(1 − 𝜆)
1
2

2

𝑐12 =
𝛾(1 − 𝜆)

1
2 (10 − 7𝜆)

2
√
2

; 𝛾(1 − 𝜆)
1
2 (8 − 5𝜆)

2
√
3

; 𝛾(1 − 𝜆)
3
2

𝑐44 =
3𝛾(1 − 𝜆)

1
2 (3𝜆− 2)

2
√
2

; 𝛾(1 − 𝜆)
1
2 (7𝜆− 4)

2
√
3

; −𝛾(1 − 𝜆)
3
2

𝐾 =
√
2𝛾(1 − 𝜆)

1
2 (4 − 𝜆)

3
; 𝛾(1 − 𝜆)

1
2 (4 − 𝜆)

2
√
3

; 𝛾(1 − 𝜆)
1
2 (4 − 𝜆)
6

(29)

Note that given the material properties of the balls and the cubic lattice 
type of the granular lattice, because the size of the singum is defined by 
the radius of the balls as well, the effective density of the granular lat-
tice with identical balls is independent of the ball radius, but inversely 
proportional to the packing efficiency. Therefore, the effective elasticity 
of the granular lattices is independent of the ball size as well.
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Fig. 4. The cubic lattice with 5 × 5 × 5 unit cells for: (a) FCC lattice; (b) BCC lattice; (c) SC lattice.

3.3. Elastic behavior of randomly oriented cubic lattices

In engineering applications, some defects may easily distort the lat-
tice in such a fashion that although on the microscale the material still 
exhibits cubic symmetry, on the macroscale the orientation of the local 
cubes varies randomly, which leads to an isotropic symmetry with two 
independent elastic constants, such as Young’s modulus and Poisson’s 
ratio. Consider the randomness of the cube’s orientation, an orienta-
tional average [49,50] is applied to Eq. (14), the anisotropic terms will 
be averaged out, so that one can obtain isotropic elasticity.

Note that for a cubic symmetric elastic tensor with three indepen-
dent elastic constants of 𝑐11, 𝑐12 and 𝑐44, by applying the orientational 
average on the elastic tensor, one can also obtain the isotropic elastic 
tensor with two independent parameters [38]:

𝐾 =
𝑐11 + 2𝑐12

3
=
𝜆𝑉,𝜆𝜆 − 2𝑉,𝜆

18𝛼𝑁
,𝜇 =

𝑐11 − 𝑐12 + 3𝑐44
5

=
𝜆𝑉,𝜆𝜆 + 4𝑉,𝜆

30𝛼𝑁
(30)

For cellular and granular lattices, using Eqs. (21) and (28), one can 
rewrite them explicitly as:

𝐾𝑐𝑒𝑙𝑙 =
2𝑘(𝑙0

𝑝
)2(2 − 𝜆)
9𝛼𝑁

,𝜇𝑐𝑒𝑙𝑙 =
2𝑘(𝑙0

𝑝
)2(5𝜆− 4)
15𝛼𝑁

(31)

and

𝐾𝑔𝑟𝑎𝑛 =
2𝛾(𝑙0

𝑝
)3(1 − 𝜆)

1
2 (4 − 𝜆)

9𝛼𝑁
,𝜇𝑔𝑟𝑎𝑛 = 2

15
𝛾(𝑙0

𝑝
)3(1 − 𝜆)

1
2 (11𝜆− 8)

𝛼𝑁

(32)

Therefore, all isotropic elastic constants, such as Young’s modulus 
and Poisson’s ratio, can be calculated [20], respectively, as follows:

𝐸 = 9𝐾𝜇
3𝐾 + 𝜇

and 𝜈 = 3𝐾 − 2𝜇
2(3𝐾 + 𝜇)

(33)

Particularly, Poisson’s ratio for the cellular and granular lattices can be 
explicitly written as:

𝐸𝑐𝑒𝑙𝑙 =
𝑘(𝑙0

𝑝
)2(2 − 𝜆)(5𝜆− 4)

3𝛼𝑁
, 𝜈𝑐𝑒𝑙𝑙 = 6 − 5𝜆

4
(34)

and

𝐸𝑔𝑟𝑎𝑛 =
𝛾(𝑙0

𝑝
)3(1 − 𝜆)

1
2 (4 − 𝜆)(11𝜆− 8)

3(2 + 𝜆)𝛼𝑁
, 𝜈𝑔𝑟𝑎𝑛 = 3(4 − 3𝜆)

4(2 + 𝜆)
(35)

where the Poisson’s ratio is 0.25 at 𝜆 = 1 and decreases with 𝜆.

4. Verification of the singum model with the numerical 
simulation

The elastic constants can be verified with the structural analysis with 
lattices containing periodically distributed singums by applying a dis-
placement load on the boundary [40]. A MATLAB code is developed to 

verify the singum model prediction of elasticity compared to the nu-
merical simulation.

4.1. Numerical simulation algorithm and implementation

The algorithm is structured and implemented as follows:

1. Initialize the simulation box by periodically extending the singum 
along 𝑥1, 𝑥2, 𝑥3 direction with 𝑁1, 𝑁2, 𝑁3 replications. The surfaces 
of the box are made of loading boards as a boundary layer. The 
node on the boundary is connected to them. The initial bond length 
and force are at 𝑟 = 2𝑙0

𝑝
and F𝐼 = 0, respectively, so 𝜆 = 1.

2. Given a testing mode, such as tension or shearing, apply the cor-
responding uniform Displacement Gradient (DG) 𝛿𝑑𝑖𝑗 = 10−6 to the 
box according to the Cauchy-Born’s rule. The new positions of all 
nodes and cutting points are updated with Eq. (5).

3. Calculate the length change of each fiber and 𝜆, and use the poten-
tial function 𝑉 (𝜆) to calculate the bond force. For each loading 
board, collect all bond forces and calculate the effective stress 
vector on each board with the deformed surface area. Using the 
effective stress vector on the 6 surfaces, one can obtain the stress 
variation caused by 𝛿𝑑𝑖𝑗 = 10−6 at 𝜆 = 1, and thus calculate the elas-
tic tensor.

4. For any stretch ratio, namely 𝜆𝑖, the coordinate of each node and 
the force in each bond can be calculated with Eq. (3). Repeat Steps 
2 and 3 to calculate the elastic tensor at 𝜆𝑖. Therefore, the relation 
of elastic tensor and 𝜆 can be calculated.

The above numerical simulation can be used for any type of poten-
tial, including the harmonic or Hertz’s contact potential. In the follow-
ing, we use the cellular lattices to demonstrate the implementation of 
the numerical simulation.

A unit cell with a center node and its members is used to construct 
the lattice structure. For instance, a 5 × 5 × 5 FCC lattice contains 5 unit 
cells along 𝑥1, 𝑥2, 𝑥3 directions, will have 666 nodes. Fig. 4 shows the 
three types of lattice structures but the actual simulations use much 
more unit cells in each direction.

After applying a uniform DG, following the procedures we described 
above, and repeating them until each node reaches equilibrium, the 
whole system will have a converged result after every node is balanced. 
For the central symmetric lattice, the equilibrium is guaranteed in one 
step following the Cauchy-Born rule [43].

Once all internal nodes are in equilibrium, one can collect the ex-
ternal forces on each loading board. Comparing them with the initial 
forces on each loading board, one can obtain the stress variation caused 
by the DG variation, and thus obtain the elastic modulus at the cur-
rent configuration state and compare it with the predictions from the 
singum model.
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Fig. 5. The comparison between the singum model and numerical simulation 
with the varying number of the unit cells for the FCC lattice of the normalized 
elastic constants 𝑐′11 and 𝑐′44 at 𝜆 = 1.

In the following case study, we assume an FCC lattice with spring 
coefficient 𝑘 = 106 N/m and 𝜆 = 1. By applying a displacement gradient 
𝛿𝑑11 = 10−6, the stress variation 𝛿𝜎𝑖𝑗 can be obtained. Here we use an 
error threshold equal to 10−9 for the numerical simulations. From 𝛿𝜎𝑖𝑗 , 
the corresponding components of the stiffness tensor can be computed 
through 𝐶𝑖𝑗11 = 𝛿𝜎𝑖𝑗∕𝛿𝜀11 (𝛿𝜀11 = 𝜆−2𝛿𝑑11), and can be compared with 
the singum model’s predictions. Note that in the simulation box, several 
nodes are on the boundary of the planes, like on the edges, so a dis-
crepancy exists between the numerical results and the singum results. 
However, the difference reduces with the increase in the number of unit 
cells. Fig. 5 shows the numerical simulation results compared with the 
singum model results for different sizes from 5 × 5 × 5 to 60 × 60 × 60. 
Here the normalized stiffness tensor C by a factor of 𝑙0

𝑝
∕𝑘 is used as 

𝑐
′
11 = 𝑐11𝑙0𝑝∕𝑘, 𝑐

′
12 = 𝑐12𝑙0𝑝∕𝑘, 𝑐

′
44 = 𝑐44𝑙0𝑝∕𝑘, and 𝐾 ′ = 𝐾𝑙0

𝑝
∕𝑘. Therefore, 

one can eliminate the influence of 𝑘 and 𝑙0
𝑝
and obtain a dimensionless 

stiffness for the comparison between numerical simulation and singum 
model prediction.

The numerical results are getting closer to the singum model’s pre-
dictions when the size increases, which is because the singum model 
provides the exact solutions under small strain while the numerical re-
sults exhibit the boundary effect as we mentioned. When the FCC lattice 
increases its size from 5 ×5 ×5 to 60 ×60 ×60, the relative difference re-
duces from 5.6% to < 0.5% for 𝑐′11 and 𝑐

′
12 at the similar convergent rate 

although their values are fairly different as shown in Fig. 5.
The boundary effect has different influences for the three different 

types of lattice. To guarantee accurate results from the numerical simu-
lation, 30 ×30 ×30 or more unit cells are used to minimize the boundary 
effect, which exhibits an error less than 1% in Fig. 5.

4.2. Verification of elastic constants for cellular lattices

When a large number of unit cells are used, the effective stiffness 
calculated from the numerical simulation converges to the unique value 
for an infinite large lattice, which shows the exactness of the singum 
model at 𝜆 = 1 in Fig. 5. When the cubic lattices are under hydrostatic 
stress, 𝜆 changes with the stress states. The singum model predicts the 
tangential stiffness tensor, whose exactness can also be demonstrated as 
follows:

Fig. 6 demonstrates the comparisons between the singum prediction 
and numerical simulation for three cellular lattices, in which 30 ×30 ×30
unit cells are simulated for FCC and SC cellular lattices and 80 × 80 × 80
unit cells are used for BCC simulations. Excellent agreement between 

the numerical simulation and the singum formulation in Eq. (22), which 
shows that the singum model indeed provides the exact solution. Note 
that although we focus on tensile loading for cellular lattices physically, 
here a larger range of 𝜆 ∈ (0.6, 2) is illustrated including a compressive 
range. The following features are highlighted for the effective elasticity 
changing with 𝜆:

1. The normalized elastic moduli 𝑐′11 and 𝑐
′
44 increases with 𝜆; whereas 

𝑐′12 and 𝐾
′ decrease with 𝜆.

2. When an elastic constant is zero or negative, the solid generally be-
comes unstable and may collapse or break down. However, it is not 
caused by buckling or fracture of the bonds but by configurational 
stress, so that the negative elastic constant still exhibits a physical 
meaning. For example, when 𝜆 is small than 1, 𝑐′44 can reach nega-
tive first, at which a shear strain variation may produce a moment 
requiring an opposite shear stress to balance the lattice, which is 
obvious for SC lattices. When 𝜆 is large, an increase of the volu-
metric strain may cause the reduction of the stress by the increased 
surface area and thus leads to a negative bulk modulus.

3. The three lattices exhibit different patterns of the elastic constant 
variations with 𝜆: 𝑐′11 and 𝑐

′
44 are parallel to each other but over-

lapped for BCC.
4. Because 𝑐′11, 𝑐

′
12, and 𝐾

′ are not independent from each other, when 
𝑐′11 = 𝑐

′
12, 𝐾

′ shall be the same as them. Therefore, they share an 
intersection point for FCC, BCC, and SC lattices at (7∕8, 3

√
2∕8), 

(1, 
√
3∕6), and (0.5, 0.25) projected, respectively.

Although the spring coefficient is a constant, the effective stiffness of 
the lattice is not a constant anymore but linearly changes with 𝜆. When 
the bond potential is not harmonic for granular lattices, the effective 
stiffness can also be analytically predicted as follows.

4.3. Verification of elastic constants for granular lattices

Similarly, the granular lattices can be well simulated when applying 
the Hertz contact potential. The effective stiffness tensor can be normal-
ized by 𝛾 as: 𝑐 ′

11 = 𝑐11∕𝛾 , 𝑐
′
12 = 𝑐12∕𝛾 and 𝑐

′
44 = 𝑐44∕𝛾 . The bulk modulus 

𝐾 can be normalized as 𝐾 ′ =𝐾∕𝛾 as well. 30 ×30 ×30 simulation box is 
used for FCC granular lattice, and 80 ×80 ×80 simulation box is used for 
SC and BCC to achieve well-convergent results. Although Hertz’s con-
tact is typically applicable to the infinitesimal deformation, 𝜆 ∈ (0.8, 1)
is used to compute corresponding stiffness tensor values and bulk mod-
ulus.

The singum model shows high consistency predictions for granular 
lattices too. Its predictions excellently agree with the numerical sim-
ulation results, which show the exactness of the singum model. The 
following features can be observed in Fig. 7:

1. When 𝜆 = 1, all the elastic moduli become zero. The phenom-
ena can be understood physically: without any prestress applied 
to the granular structure, the contacts between each node are not 
established at all. All the granular units are just simply stacked to-
gether and there are no forces to hold them. If applied prestress to 
the granular structure, contacts can transform the forces into each 
other, and such interactions provide stiffness for the whole struc-
ture.

2. When 𝜆 < 1 but close to 1, except 𝑐′44 for the SC lattice, all other 
elastic moduli for the three cubic lattices nonlinearly increase from 
zero to positive values, which is different from the cellular lattices 
in Fig. 6. Here the four elastic moduli linearly change with 𝜆 as 
𝑐′11 and 𝑐

′
44 monotonically increase while 𝑐

′
12 and 𝐾

′ monotonically 
decrease.

3. Essentially, the elastic moduli are polynomial functions of 1 −𝜆; 𝑐′12
and 𝐾 ′ decreases with 𝜆 so they are positive under compression; 
and 𝑐′11 and 𝑐

′
44 shows strong nonlinear behavior with the maximum 

values can be found between 1 and 0.5 for 𝜆.
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Fig. 6. Comparison of normalized elastic constants between the singum model and numerical simulation for (a) FCC, (b) BCC, and (c) SC cellular lattices.

Fig. 7. Comparison of normalized elastic constants between the singum model and numerical simulation for (a) FCC, (b) BCC, and (c) SC granular lattices.

4. Similarly to the cellular lattices, 𝑐′11, 𝑐
′
12 and 𝐾

′ share the same in-
tersection at (0.824, 0.629) and (0.4, 0.465) for FCC and SC; whereas 
they do not have any intersection other than (0, 0) for BCC.

Note that Hertz’s contact area and the center-center distance change 
with the compression force nonlinearly, and the stress distribution is 
not uniform, which causes material yielding at a relatively small force. 
Moreover, multiple contact points on one ball may change the poten-
tial function as well. The present formulation based on Hertz’s contact 
model requires experimental validation and may only apply to a very 
small range of 𝜆.

5. Results and discussion

As verified by the numerical simulation, the singum model provides 
the exact prediction of elasticity for the cubic lattice materials with 
potential-based bonds. It can be applied in lattice material design and 
analysis. Without loss of any generality, aluminum fibers or balls are 
chosen for material design with the following material constants [41,
51] at the room temperature and atmospheric pressure:

Young’s modulus 𝐸 = 69 Gpa; Density 𝜌 = 2.710 × 103 Kg/m3; Bulk 
modulus 𝐾 = 76.3 GPa; Poisson’s ratio 𝜈 = 0.33; Thermal expansion co-
efficient 𝛼 = 23.4 × 10−6 ◦C−1.

The lattice materials are packaged by a boundary layer of different 
materials for different designs. Although aluminum typically yields at 
about 300 MPa, this paper will consider the linear elastic behavior only 
for simplicity, but the plastic deformation should be carefully addressed 

in the actual applications. The method or results can be generalized 
to other materials in the same way by replacing the above material 
constants. To study the effect of the prestress, the lattice is packaged by 
a boundary layer, which is similar to the loading board in the numerical 
simulation and can provide confining stress when a prestress is applied. 
The aluminum fiber diameter is 0.5 mm and the ball diameter is 10 mm, 
unless they are specifically changed for parametric studies.

5.1. Effects of singum size or effective density at 𝜆 = 1

Given the fiber diameter, the effective density of the cellular lattice 
changes with the singum size of 𝑙0

𝑝
and the lattice types. 𝑐11, 𝑐12, 𝑐44 and 

K for different cellular lattices are computed and compared in Fig. 8(a):

1. When 𝑙0
𝑝
decreases, stiffness tensor elements, and K value increase. 

It is because when 𝑙0
𝑝
decreases, the effective density increases ac-

cordingly. The similar phenomena can be seen in Fig. 9 for E, K, 
and 𝜇 as well.

2. When no prestress is applied, 𝜆 = 1 and 𝑉,𝜆 = 0, so 𝑐11, 𝑐12 and 𝑐44
only depend on 𝑉,𝜆𝜆, 𝑐12 and 𝑐44 share the same value for SC at 
zero, so they are not shown. The four curves for BCC overlap. The 
curves of 𝑐12 and 𝑐44 for FCC overlaps.

3. Given a value of 𝑙0
𝑝
, FCC exhibits the highest values of all four elas-

tic moduli among the three lattices, but 𝑐11 of SC is higher than 
that of BCC, whereas 𝐾 of BCC has a larger value than SC.
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Fig. 8. Elastic moduli 𝑐11 , 𝑐12, 𝑐44 and 𝐾 versus 𝑙0
𝑝
for cellular FCC, BCC, and SC lattices, 𝑐12(𝑆𝐶) and 𝑐44(𝑆𝐶) are not shown as both are constant as zero (a). Elastic 

moduli 𝐸, 𝐾 , and 𝜇 versus effective density for cellular FCC, BCC and SC lattices (b).

Fig. 9. Elastic moduli 𝑐11, 𝑐12, 𝑐44 and 𝐾 versus 𝜆 for cellular FCC, BCC, and SC lattices (a) and granular lattices (b).

Note that the densities of FCC, BCC, and SC are in a decreasing order 
at the same 𝑙0

𝑝
. Obviously, 𝑐11 changing with the three lattices does not 

follow the trend of density, particularly for BCC and SC with different 
cubic symmetry.

When the orientation of the lattices randomly changes, using the 
orientational average, one can obtain the elastic modulus of 𝐸, 𝐾 , and 
𝜇. Fig. 8(b) shows their variations with the density of the lattice with 
the following highlights:

1. When logarithmic relative density 𝑙𝑜𝑔10(𝜌) increases, 𝐸, 𝐾 and 𝜇
increase, as discussed for Fig. 8. Their variation is linear in the log 
scale, which is reasonable because the strain energy density will 
follow the density of the lattice as each bond is subjected to the 
same strain statistically with the orientational average.

2. 𝐸, 𝐾 , and 𝜇 only depend on the relative density, no matter which 
lattice structure is used. In other words, with the orientational aver-
age, the anisotropic nature is lost, so that FCC, BCC, and SC exhibit 
the same isotropic properties in terms of the lattice effective den-
sity as follows:

𝐾𝑐𝑒𝑙𝑙 = 𝐸(2 − 𝜆)
9𝜌

𝜌,𝜇𝑐𝑒𝑙𝑙 = 𝐸(5𝜆− 4)
15𝜌

𝜌 (36)

which is obtained by Eqs. (31) and (23). Then one can calculate 
Young’s modulus by Eq. (33) as

𝐸𝑐𝑒𝑙𝑙 = 𝐸(2 − 𝜆)(5𝜆− 4)
6𝜌

𝜌 (37)

3. The three elastic moduli exhibit 𝐸 > 𝐾 > 𝜇 as Eqs. (36) and (37)
show 𝜇 = 0.6𝐾 and 𝐸 = 1.5𝐾 , respectively, at 𝜆 = 1.

For granular lattice, when 𝜆 = 1, 𝑐11, 𝑐12 𝑐44 and E, K, 𝜇 equal to 
0, because contacts are not established as we mentioned in the last 
section, so the hertz potential and its derivatives are all equal to 0. For 
both cellular and granular lattices, when 𝜆 = 1, Poisson’s ratio 𝜈→ 0.25, 
which is irrelevant to the lattice types as shown in the next section.

5.2. Effects of the prestress or 𝜆 at a given singum size

Although the bond materials are linear elastic for either springs or 
balls, the effective stiffness of the lattices change with 𝜆 or prestress 
in the bonds significantly. Here we fix 𝑙0

𝑝
= 5 mm and show the elastic 

moduli changing with 𝜆 for both cellular and granular lattices. Fig. 9(a) 
shows 𝑐11, 𝑐12, 𝑐44 and 𝐾 for cellular lattices when 𝜆 changes from 1 to 
1.25. Applying the method, we could study the 𝜆 changes on a larger 
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Fig. 10. Elastic moduli K, E and 𝜇 versus 𝜆 for cellular FCC, BCC, and SC lattices (a) and granular lattices (b).

scale, but consider if the pre-stress exceeds the material elastic limit, 
plastic deformation might exist on the lattice. Especially, for cellular 
materials, if the aspect ratio indicates bars are slender, then under a 
certain compression load, the bars will lose their stability and the local 
buckling effect might be observed as well. [52] These effects were out of 
the scope of this manuscript and not evaluated in results, so we plotted 
the graphics under a relatively small range of 𝜆. For all three lattices, 
𝑐11 and 𝑐44 increases; while 𝑐12 and 𝐾 decreases with 𝜆. However, dif-
ferent lattices show different changing rate. For example, although 𝑐12
of FCC is higher than that of BCC at 𝜆 = 1, when 𝜆 = 1.15, FCC exhibits 
a lower 𝑐12.

Fig. 9(b) demonstrates the effective elastic moduli of granular lat-
tices when 𝜆 changes from 0.8 to 1. The linear variation of the effective 
elastic moduli with 𝜆 in Fig. 9(a) does not exist for granular lattice any-
more. All elastic moduli exhibit a value of zero at 𝜆 = 1. In general, FCC 
shows higher elastic moduli than BCC, and then SC. However, SC pro-
vides a high value of 𝑐11 and a negative value of 𝑐44 in comparison with 
those for BCC.

When an orientational average is used, one can also obtain the vari-
ations of 𝐸, 𝐾 and 𝜇 with 𝜆 for both cellular and granular lattices in 
Figs. 10(a) and 10(b) for cellular and granular lattices, respectively. In 
Fig. 10(a), although 𝐾 and 𝜇 linearly change with 𝜆, Young’s modulus 
exhibits nonlinear trends for the three types of the cubic lattice. Again, 
the isotropic elastic moduli follow the density of the lattices, so that the 
elastic moduli for FCC, BCC and SC exhibit a decreasing order as their 
density decrease.

Similarly, Poisson’s ratio can be determined as well when 𝜆 is given. 
Fig. 11 provides the results of Poisson’s ratio changing with: 𝜆 ∈ (0.8, 1)
for granular lattices and 𝜆 ∈ (1, 1.25) for cellular lattices, respectively. 
The three cubic lattices exhibit the same Poisson’s ratio changing with 
𝜆, but the cellular lattices and granular lattices do not share the same 
trend, although they both provide 𝜈 = 0.25 at 𝜆 = 1.

5.3. Effect of temperature on the thermoelasticity of packaged cubic lattices

As the singum model provides the exact solution of the effective stiff-
ness of cubic lattices in terms of prestress or 𝜆, it provides a powerful 
tool for material design with tailorable thermoelastic properties.

Similarly to our previous work for 2D granular lattices with a wrap-
ping layer [40], this subsection provides a simple demonstration with 
a lattice-based material packaged by a spherical boundary layer with 
a prestress. Under the unstressed state, the aluminum lattice material 
forms a spherical domain with radius 𝑅𝑙 , and is packaged by a boundary 
layer of a membrane with Young’s modulus 𝐸𝐵 , Poisson’s ratio 𝜈𝐵 , ther-

Fig. 11. Poisson’s ratio versus 𝜆 for cellular lattices and granular lattices.

mal expansion coefficient 𝛼𝐵 , thickness 𝑡, and inner radius 𝑅𝑖 (𝑡 ≪𝑅𝑖) 
at the room temperature. When 𝑅𝑖 ≠ 𝑅𝑙 , a prestress of 𝜎 = 𝜎𝑚𝛿𝑖𝑗 is re-
quired to make the lattice and boundary layer bounded to each other 
with a final radius 𝑅 ∈ (𝑅𝑖,𝑅𝑙). The membrane stress in the boundary 
layer can be calculated by the equilibrium of the semi-spherical sec-
tional area:

𝜎𝐵 = −𝜎
𝑚𝜋𝑅2

2𝜋𝑅𝑡
= −𝜎

𝑚𝑅

2𝑡
(38)

The bi-directional membrane stress is related to the membrane strain 
𝜀𝐵 as:

𝜀𝐵 = 𝑠𝜎𝐵 = − 𝑠𝜎
𝑚𝑅

2𝑡
= 𝑅−𝑅𝑖

𝑅
(39)

where 𝑠 = 1−𝜈𝐵
𝐸𝐵

and Eq. (38) is used.
The hydrostatic stress of the lattice is related to the stretch ratio 

change as

𝜎𝑚 =

𝑣𝑠

∫
𝑣0𝑠

𝐾(𝑣𝑠)
𝑣𝑠

𝑑𝑣𝑠 = 3
𝜆

∫
1

𝐾(𝜆)
𝜆

𝑑𝜆 (40)

where 𝐾(𝜆) is given in the singum model by 𝑉 (𝜆) in Eq. (30) with 𝜆 =
𝑅∕𝑅𝑙 . For cellular lattices, Eq. (40) can be rewritten as:

𝜎𝑚 =
2𝑘(𝑙0

𝑝
)2(2 ln𝜆− 𝜆+ 1)

3𝛼𝑁
(41)
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Fig. 12. FCC aluminum lattices packaged by a titanium boundary layer at 𝑡 = 0.1 and 0.5 mm for (a) Effective thermal expansion coefficients 𝛼𝑏𝑎𝑙𝑙 (b) Effective 
temperature derivatives of Young’s modulus (𝐸𝑏𝑎𝑙𝑙

,𝑇
).

Similarly, for granular lattices, one can obtain:

𝜎𝑚 =
2𝛾(𝑙0

𝑝
)3[8(1 − 𝜆)

1
2 − 4 ln 1+(1−𝜆)

1
2

1−(1−𝜆)
1
2
+ 2(1−𝜆)

3
2

3 ]

3𝛼𝑁

(42)

Substituting Eq. (41) or (42) into Eq. (39) yields 𝑅 as:

𝑅 = (4𝑡2 + 8𝑠𝑡𝑅𝑖𝜎𝑚)
1
2 − 2𝑡

2𝑠𝜎𝑚
(43)

Therefore, given 𝑅𝑙 , 𝑅𝑖, and 𝑡 as well as the material elastic constants 
at room temperature 𝑇0, one can solve 𝑅(𝑇0) and 𝜆(𝑇0) by the above 
equations. Note that Eq. (43) is an implicit equation as 𝜆 in 𝜎𝑚 depends 
on 𝑅 as well. An iteration method can be used to solve for 𝑅 as follows: 
First assume 𝑅 = (𝑅𝑙 + 𝑅𝑖)∕2 to calculate 𝜆 and 𝜎𝑚 and update 𝑅, and 
repeat the step until 𝑅 is convergent. The stiffness of the lattice can be 
obtained based on 𝜆(𝑇0), namely, C(𝑇0).

When this composite ball is subjected to a temperature change 𝛿𝑇 , 
𝑅𝑙 , 𝑅𝑖, and 𝑡 will be updated with the thermal expansion coefficient of 
the boundary layer and the lattice material at 𝑇1 = 𝑇0 + 𝛿𝑇 . The tem-
perature derivative of the stiffness for aluminum and boundary layer 
is typically negative, a measurement value of the temperature deriva-
tive of aluminum’s Young’s modulus under room temperature (20 ◦C to 
40 ◦C) is −0.1 GPa∕◦C [53], and for titanium, the temperature deriva-
tive of Young’s modulus under room temperature (20 ◦C to 205 ◦C) is 
−0.054 GPa∕◦C with Young’s modulus at room temperature at 110 GPa 
[54]. Here the Poisson’s ratio is assumed to be constant. Reusing the 
above equations, one can solve 𝑅(𝑇1) and 𝜆(𝑇1). The stiffness of the 
lattice can be updated with 𝜆(𝑇1) and new elasticity of the materials, 
namely, C(𝑇1).

Therefore, one can calculate the effective thermal expansion coeffi-
cient of the ball as

𝛼𝑏𝑎𝑙𝑙 =
𝑅(𝑇1) −𝑅(𝑇0)
𝑅(𝑇0)𝛿𝑇

(44)

and the thermal derivative of the elasticity can also be derived as

C𝑏𝑎𝑙𝑙
,𝑇

=
C(𝑇1) − C(𝑇0)

𝛿𝑇
(45)

Using a small temperature change, namely 𝛿𝑇 = 1∕◦C or smaller, one 
can calculate the above values with convergent results. Obviously, 𝛼𝑏𝑎𝑙𝑙
and C𝑏𝑎𝑙𝑙

,𝑇
depends on the design of 𝑅𝑙 , 𝑅𝑖, and 𝑡 once the lattice type 

and bond material is given. The above equations can be applicable to 
both the cubic and isotropic elasticity.

In the following, we demonstrate aluminum FCC cellular and gran-
ular lattices packaged by a titanium boundary layer with the following 
parameters: 𝑅𝑙 = 100 mm, 𝑡 = 0.1 or 0.5 mm, 𝑅𝑖 ∈ (99.5–100 mm) for 
cellular and granular lattices. Fig. 12(a) and (b) provide the results for 
cellular and granular lattices, respectively, at 𝑡 = 0.1 and 0.5 mm.

With the temperature increase, two mechanisms contribute to the 
effective thermoelastic behavior: First, because aluminum exhibits a 
larger negative temperature derivative of the Young’s modulus, as the 
lattice core becomes softer, the tensile stress in the titanium will de-
crease, which leads to the reduction of the dimension of the ball. On 
the other hand, the thermal expansions of both lattice and boundary 
layer lead to the increase of the ball size. Therefore, effective thermal 
expansion is the combination of the two effects. The following features 
can be observed:

1. Negative 𝛼𝑏𝑎𝑙𝑙 obtained for both cellular and granular materials, 
and when 𝑅𝑖 increases, 𝛼𝑏𝑎𝑙𝑙 increases as well.

2. When the thickness increases from 0.1 to 0.5 mm, 𝛼𝑏𝑎𝑙𝑙 for the 
granular core nearly overlaps with each other as the stiffness of the 
core is dominant; whereas for the cellular core, the small thickness 
yields a higher variation of 𝛼𝑏𝑎𝑙𝑙 .

3. For the thermal derivative of Young’s modulus, granular lattices ex-
hibit positive values at a smaller 𝑅𝑖 and non-linearly change with 
𝑅𝑖; whereas cellular lattices show small changes with negative val-
ues.

4. When the thickness increases from 0.1 to 0.5 mm, the temperature 
derivative of Young’s modulus for the cellular core overlaps with 
each other; whereas the granular core produces a large difference.

The singum model provides a powerful tool to understand cellular 
and granular lattice, and their thermoelastic performances can be well 
predicted and tailored by the prestress. Although the concept of pre-
stress has been commonly used in steel-reinforced concrete to shift the 
compressive and tensile stresses and thus increase the overall material 
strength, it has never been used to change the material’s stiffness or 
thermoelasticity yet. The above study shows that the elastic and ther-
moelastic performance of the lattice-based materials can be altered by 
adjusting their prestress or 𝜆, which creates a new way to fabricate 
ultra-lightweight smart materials and structures with pre-stressed lat-
tice materials [8]. Particularly, in space applications, lightweight but 
stiff materials are needed to save propulsion energy in transportation, 
and stability under different temperature ranges is crucial to keep the 
integrity and shape of the materials and structures. The design of a 
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hierarchical lattice material with cellular balls for granular lattices 
can achieve nearly zero thermal expansion coefficient and temperature 
derivative of Young’s modulus [9].

6. Conclusions

The singum model has been extended to 3 types of cubic lattices, 
namely FCC, BCC, and SC, for both cellular and granular materials with 
the harmonic potential and Hertz’s contact potential for the bonds, re-
spectively. A numerical method is developed to verify the singum model 
for all cases, which show that the singum model provides exact solu-
tions for cubic lattice-based materials. Using the boundary layer, one 
can change the prestress in the bonds to tailor the effective elasticity, 
thermal expansion coefficient, and temperature derivative of elasticity 
of the lattice-based materials. The following conclusions are highlighted 
from the analysis:

1. The cubic symmetric elasticity for FCC, BCC, and SC is formulated 
explicitly in terms of the potential of the bond and the lattice char-
acteristics. The 3 cubic elastic constants are not fully independent 
but satisfy one identity for each type of cubic symmetry.

2. The elastic moduli change with the prestress or stretch ratio 𝜆 of 
the bonds due to the configurational stress: for the cellular lattices, 
𝑐11 and 𝑐44 increase while 𝑐12 and 𝐾 decrease with 𝜆 linearly; while 
for granular lattices, the elasticity shows strong nonlinearity with 
zero elasticity at 𝜆 = 1.

3. When the lattice orientation randomly changes, the cubic lattice 
may exhibit isotropic elasticity, which is predicted by the orienta-
tional average of the cubic elasticity. The Poisson’s ratio is 0.25 at 
𝜆 = 1 for all cases. Under compression, it is higher than 0.25, while 
under tension it is lower than 0.25.

4. For cellular lattices, given the cross-sectional area of the bond ma-
terial, the effective elasticity is proportional to the effective density 
of the lattices under the undeformed configuration.

5. Given the configuration of the lattice packaged by a boundary 
layer, the effective thermal expansion and temperature derivative 
of elasticity can be calculated, and are tailorable by the prestress 
that depends on the thickness of the boundary layer and initial mis-
match between the lattice core and boundary layer.

Overall, the singum model interprets the fundamental mechanics and 
physics of cubic lattice-based materials and can be extended to other 
types of lattices. It provides a powerful tool for material design and 
analysis and creates a new way to fabricate ultra-lightweight smart 
materials and structures, which can achieve zero effective thermal ex-
pansion coefficient and temperature derivative of Young’s modulus.
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