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Abstract

Lattice materials formed by hinged springs or linear elastic bonds may exhibit diverse
anisotropy and asymmetry features of the overall elastic behavior depending on their unit
cell configuration. The recently developed singum model transfers the force-displacement
relationship of the springs in the lattice to the stress-strain relationship in the continuum
particle, and provides the analytical form of tangential elasticity. When a pre-stress exists in
the lattice, the stiffness tensor significantly changes due to the effect of the configurational
stress; existing methods like the lattice spring method, relying on a scalar energy equiva-
lence, are insufficient in such situations. Instead, a tensorial homogenization method with
the new definition of singum stress and strain, should be preferred. Different lattice struc-
tures lead to different symmetries of the stiffness tensors, which are demonstrated by five
lattices. When all bonds exhibit the same length, regular hexagonal, honeycomb, and aux-
etic lattices demonstrate that the stiffness changes from an isotropic to anisotropic, from
symmetric to asymmetric tensor. When the central symmetry of the unit cell is not satisfied,
the primitive cell will contain more than one singums and the Cauchy–Born rule fails by
the loss of equilibrium of the single singum. A secondary stress is induced to balance the
singums. Displacement gradient dij = uj,i is proposed to replace strain in the constitutive
law for the general case because d12 and d21 can produce different stress states. Although
the hexagonal and honeycomb lattices may exhibit isotropic behavior, for general auxetic
lattices, an anisotropic and asymmetric elastic tensor is obtained with the loss of both minor
and major symmetry, which is also demonstrated in a square lattice with unbalanced central
symmetry and a chiral lattice. The modeling procedure and results can be generalized to
three dimensions and other lattices with the anisotropic and asymmetric stiffness.
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1 Introduction

Classical elasticity under the linear infinitesimal deformation considers that the stress and
strain are symmetric tensors with 3 or 6 independent components for 2D or 3D cases, re-
spectively, in which the stiffness tensor correlates the strain to stress with the major and
minor symmetries, i.e. Cijkl = Cklij = Cjikl = Cijlk , and exhibits up to 6 or 21 indepen-
dent elastic constants for 2D or 3D, respectively [20, 35]. The stress and strain fields shall
also satisfy the equilibrium, compatibility, and boundary conditions, which leads to various
classical boundary value problems (BVPs), general elastic solutions, and fundamental solu-
tions, depending on the symmetries of the elastic tensor [37]. For simplicity, the isotropic
elastic tensor based on two elastic constants becomes a very common assumption for elastic
problems.

The asymmetry of stress can be traced back to Cosserat theory with the concept of couple
stresses in 1909 [5] and revisited by Mindlin [21, 23], Eringen [11, 12], Nowacki [26], and
Lake [16] etc. However, the classical symmetric strain is used to describe the deformation
together with micro-rotation and curvature, which leads to a complex constitutive law of a
Cosserat continuum with 903 elastic constants in the most general cases and 18 indepen-
dent elastic constants for the isotropic case [22]. Although it can resolve some problems in
classical elasticity, it creates difficulties on material characterization and determination of
elastic constants.

With the emerging material process and characterization technologies, one can precisely
control the microstructure through 3D design and printing, and observe some delicate lat-
tice structures of natural materials. Various metamaterials and super lattices are observed
or designed with versatile functions and unique material properties [3, 14, 33, 46], which
classical elasticity cannot sufficiently explain [15, 24]. Because the force transfer through
the lattices is through the network of the 1D bonds in the 2D or 3D spaces, the conventional
micromechanics [25, 39] under the assumption of continuum cannot capture the discrete
microstructure. Practically modeling lattice materials with appropriate stress-strain relation-
ship is critical for the design and analysis of the relevant materials and structures.

The recently developed singum model [40, 41] uses the Wigner–Seitz (WS) cells of a
lattice to represent a continuum solid. The stress and strain are defined by the force and
displacement of the cutting points on the singum surfaces, so that the singular forces along
the bonds in the continuous space can be transformed into the contacting stress between the
continuum particles, namely singums, and the elastic tensor can be derived by applying a
displacement variation through the Cauchy–Born rule [34, 40], which applies well to the
central symmetry lattices. This paper derives the effective elasticity by a displacement con-
trolled load. The Cauchy–Born rule has been widely used to relate macroscopic deformation
of crystals to the changes in the lattice through an affine transformation [10] and will be used
to relate the displacement field with the strain or displacement gradient.

Although most lattices exhibit anisotropic elastic behavior, a two-dimensional (2D)
hexagonal lattice provides an isotropic elastic tensor in plane stress condition with a Pois-
son’s ratio ν = 1/3 and in plane strain condition with ν = 1/4 if no prestress exists. Other-
wise, the Poisson’s ratio reduces with the tensile prestress and increase with a compressive
prestress [45].

When a lattice is not central symmetric, such as a honeycomb lattice [40], a problem of
the loss of equilibrium of a singum was found in the recent work when the Cauchy–Born
rule is applied [34, 41]. Because a primitive unit cell, which contains more than one singum,
shall stay in equilibrium due to the periodicity, to correct the problem, a secondary force is
superposed to the singums in the primitive unit cell without generating an overall strain, so
that the equilibrium problem is corrected for the honeycomb lattice [41].
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When it is applied to auxetic metamaterials with a negative Poisson’s ratio for the overall
materials [17, 29], one can find that a shear in horizontal or vertical direction, say u1,2 or
u2,1 produces different stress states, which should always be the same for classical elasticity
due to the minor symmetry of the elastic tensor. This discrepancy motivates this paper to
systemically investigate the anisotropy and asymmetry of the elastic tensor of lattice materi-
als through the singum model as a follow-up to the previous work [41]. Similarly, as seen in
this paper, given one uniform displacement pattern by ui,j for a chiral lattice subsequently,
the stress induced can be asymmetric as well as σ12 �= σ21. Therefore, an asymmetric stress
and displacement gradient (DG) shall be used in the constitutive law, which are defined as
the singum stress and strain to replace the symmetric stress and strain in classical elasticity.
When a material satisfies central symmetry, such as square lattices and hexagonal lattices
[45], the new constitutive law recovers the classical elasticity tensor with both major and
minor symmetries. However, the most general case of the stiffness tensor between the asym-
metric stress and strain will include 16 or 81 elastic constants for 2D and 3D, respectively,
without the major and minor symmetry.

This paper first reviews the singum construction for a regular central symmetric hexago-
nal lattice containing elastic bonds [40, 45] and defines the singum stress and strain as the
average Cauchy stress and displacement gradient of a singum through the force and dis-
placement on its cutting points of the surface. By applying a displacement variation, the
variations of the stress and strain can be obtained, which recovers the isotropic constitutive
law for a regular hexagonal lattice with central symmetry.

When the lattice is not central symmetric, a honeycomb lattice is used to demonstrate the
effective stiffness. Because the primitive cell contains two singums, the superposition prin-
ciple is used to achieve the equilibrium of the singums given a displacement variation. The
stress-strain relationship is obtained and the instability of the stiffness tensor is demonstrated
[41].

When an auxetic lattice is used, the asymmetric stress is obtained for a displacement vari-
ation, which shows the necessity to replace the classical strain with DG in the constitutive
law. An anisotropic stiffness tensor correlates the stress to strain without the minor or major
symmetry. The similar phenomenon has also been observed in an unbalanced square lattice
with central symmetry and a chiral lattice. The application of DG to the rigid body rotation is
discussed for the application of the new constitutive relationship. The constitutive modeling
with the singum model can be straightforwardly extended to the general 3D lattices.

The anisotropic, asymmetric constitutive law discloses the mechanics and physics of the
effective material behavior of lattice-based solids in a clear way. Although most natural
materials exhibit the symmetry and classical elasticity tensor can describe the elastic be-
havior sufficiently, for some unique lattice materials, such as auxetic lattices [41], chiral
lattices [4, 33], and origami lattices [19], the anisotropy and asymmetry of the elastic tensor
dominate and the present representation of the constitutive law with the singum model will
be a useful tool. Its impacts to elastic boundary value problems are discussed and demon-
strated. Particularly, the main difference is that ui,j and uj,i with i �= j may produce different
stresses, while they commonly provide the same stress state in classical linear elasticity with
the minor symmetry.

The remainder of the paper demonstrates the singum model through five lattices, namely,
1) a regular hexagonal lattice with central symmetry [45], 2) a regular honeycomb lattice
[41], 3) an auxetic lattice [41], 4) an unbalanced square lattice with central symmetry, and
5) a chiral lattice, which show that the effective elastic tensor changes from isotropic to
anisotropic, from symmetric to asymmetric. Note that the first three cases have been inves-
tigated in the recent papers [41, 45]. However, the conventional stress and strain were used



H. Yin, C. Liu

Fig. 1 The singum construction of a regular hexagonal lattice: (a) the regular hexagonal lattice with a repre-
sentative node highlighted and (b) the singum particle of Node 0 as a primitive cell [44]

in the constitutive law, which exhibits a challenging problem for Case 3 that asymmetric
stresses σ12 �= σ21 is yielded. Therefore, this paper will use the displacement gradient (DG)
as the singum strain to replace the strain in the classical constitutive law. Although it pro-
duces the same stiffness tensor for the regular hexagonal lattice due to the central symmetry,
it will resolve the dilemma that the classical elasticity tensor cannot describe some special
lattices, such as the auxetic and chiral lattices, with the asymmetry of stress or strain, which
will be elaborated subsequently. For general asymmetric elastic lattices, some remarks are
provided, and future research following this work are briefly discussed.

2 SingumModel of a Regular Hexagonal Lattice with Central Symmetry

Following the previous papers [45], we first use a regular hexagonal lattice in a two-
dimensional (2D) space to demonstrate the singum construction.

2.1 Singum Construction

In Fig. 1(a), the lattice consists of the same bonds or springs with length 2l0
p and spring

coefficient k, which form regular triangles. Therefore, each node connects to 6 neighbors
forming a hexagon as the regular unit cell, which is highlighted by the red circle for Node
0. The singum of a node is constructed by cutting its neighboring bonds with the vertical
mid-planes in 3D or mid-lines in 2D. Figure 1(b) shows the singum particle of Node 0 in 2D

as a hexagon with the edge length of
2l0p√

3
, which is the Wigner–Seitz (WS) cell of the lattice

[38].
A Cartesian coordinate X is set up at the initial state as the material coordinate, in which

all bonds exhibit zero force and the total potential energy is zero. The spatial coordinate
x is set up at the deformed state. Without any loss of generality, the origins of x and X
are both selected at the center of Atom 0. The displacement field is written as u = x − X.
The deformation gradient tensor is defined as Fik = ∂xi

∂Xk
. The finite strain can be defined

either in the Lagrangian coordinates as Eij = 1
2 (FkiFkj − δij ) or in the Eulerian coordinates
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as εij = 1
2 (δij − F−1

ki F−1
kj ) [34, 42]. The stress and strain in this paper are measured in the

spatial coordinate. We define the displacement gradient (DG) tensor as

dij = ∂uj

∂xi

= δij − F−1
ij , (1)

which defines the spatial strain in the Eulerian coordinate as:

εij = 1

2
(dij + dji − dkidkj ). (2)

Note that dij is asymmetric; while εij is symmetric. The Cauchy stress σij can be used in
couple with them for the constitutive modeling. In classical linear elasticity, εij is used with
the symmetry, and the higher order term in Eq. (2) is negligible. However, this paper shows
dij provides a more straightforward way to connect with Cauchy stress σij , although it can
be subsequently correlated to εij by Eq. (2).

Here the indices of Cauchy stress tensor σij follow the convention of a cubic element
that the first index i indicates the surface and the second index j the direction of the stress
vector on the surface. Therefore, on any surface with a directional ni , the stress vector can be
written as tj = niσij . The constitutive relation between σij and dkl in the linear deformation
range is written as

σij = Cijkldkl, (3)

where the stiffness tensor shares the same expression as classical elasticity if dkl and dlk al-
ways induce the same stress, which makes the minor symmetry of Cijkl = Cjikl = Cijlk .
However, in general cases of lattice materials, when dkl and dlk induce different stress
states, the minor symmetry will be lost; the major symmetry of Cijkl = Cklij will also be
lost due to the lattice nature with the configurational stress, which will be discussed subse-
quently. Therefore, the stiffness tensor exhibits 81 independent constants as the maximum;
whereas classical elastic tensor with both major and minor symmetry exhibits 21 constants
instead.

When the lattice is subjected to a uniform external loading, it deforms uniformly as well
due to the periodic microstructure, which can be represented by the singum of Node 0 in
Fig. 1(b). During the deformation, the bond changes with the coordinates. For example, the
bond between Nodes 0 and 1 can be represented by a vector r = x1 − x0 with the length
r = |x1 − x0|. Here x0 represents the singum node and x1 represents another node bonded to
the singum. The singum model is built on the following assumptions [41]:

1. The interaction between nodes is governed by the bond’s potential function V (r).
2. The interaction between two neighboring singums is through the surface stress vector

along their interface edge, and is equivalent to the bond force between the two nodes.
3. All forces on the boundary or the center of WS cell of the lattice, which are seen on

the nodes and bond cutting points, will be conserved on the singum with a homogeneous
elastic tensor.

For simplicity, this paper assumes the regular hexagonal lattice keeps the same shape.
Otherwise, more general formulation for the hexagon with different lengths and angles shall
be applied. This simplification makes the lattice to be under the hydrostatic deformation
only to maintain the regular hexagonal shape. In addition, this paper assumes all bonds
share the same linear elastic coefficient, so that we can use a single potential function for
all bonds, although the model can be extended to different bonds that require the different
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potential functions accordingly and to the bonds with nonlinear force-displacement relation-
ship.

The force of a bond changing with its length r = 2lp can be written as

fi = dV

dr
ni = V,rni = 1

2l0
p

V,λni, (4)

where n = x−x0

|x−x0| , λ is the stretch ratio of the center-center distance, or bond length, λ =
r

2l0p
= lp

l0p
. For simplicity, x0 = 0 by setting the origin at the singum node. Here the tensile

force in the bond is taken as positive along n to be consistent with the sign convention of
stresses. The potential function can be written as

V (r) = k

2
(r − 2l0

p)2; V (λ) = 2k(l0
p)2(λ − 1)2, (5)

where k can be the spring coefficient if the bond is a spring. For an elastic bond with a
Young’s modulus E, initial length l0

p with zero force, and cross-sectional area A at the
stress-free state, we can write k = EA

2l0p
.

Therefore, the forces in a physical lattice is simplified into a force network along the
links or bonds. The effective stiffness can be characterized by the displacement variation
caused by a small external force on the boundary. Although the local stress in the physical
lattice cannot be evaluated, the effective elastic tensor can be evaluated by the average stress
and strain over the singum. Two Lemmas in the previous paper [41] are restated as follows
with minor revisions to define the average stress and strain over the singum, called singum
stress and singum strain:

Lemma 1 When a singum contains a node with a force bS(xS ) and N bond cutting points on
the boundary with bonding forces fI (xI ) (I = 1,2, . . . ,N ), which are in equilibrium with
bS

i + ∑N

I=1 f I
i = 0, the average Cauchy stress over the singum, called singum stress, can be

written as sij = xS
i
bS
j
+∑N

I=1 xI
i
f I
j

Vs
.

Proof Consider the equivalent continuum particle of the singum with the point forces on
the boundary and the central node. The boundary value problem can be set up with the
equilibrium equation as

σij,i + bS
j δ(x - xS) = 0, (6)

where δ(x) is a Dirac Delta function. The boundary condition is written as

σijni =
N∑

I=1

f I
j δ(x-xI ) for x ∈ ∂VS, (7)

where VS denotes the volume of the singum. The stress integral can be obtained by

Sij =
∫

VS

σij (x)dx =
∫

∂(VS)

nkσkj xidx −
∫

VS

σkj,kxidx = xS
i bS

j +
N∑

I=1

xI
i f I

j , (8)
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so that the singum stress is defined as the average Cauchy stress over the singum:

sij = Sij

Vs

= xS
i bS

j + ∑N

I=1 xI
i f I

j

Vs

. (9)
�

For central symmetric lattices under a static load, bS shall always be zero, so that the
singum stress in Fig. 1(b) is simplified into:

sij =
∑6

I=1 xI
i f I

j

Vs

, (10)

where VS = 2
√

3l2
p is the area for the hexagonal singum. Note that the index order i and j is

not sensitive when the stress is symmetric, which has not been differentiated in the previous
paper [40] yet. However, this paper normalizes the order for the asymmetry of stress in
general cases.

Lemma 2 When a 2D singum contains N bond cutting points on the center-point of each
side of the boundary with outward normal direction nI , length LI , and displacement uI in
corresponding to the I th cutting point, the average displacement gradient over the singum,

called singum strain, can be written as dij =
∑N

I=1 LI uI
i
nI
j

Vs
. Similarly, it can be generalized to

3D singums with boundary surfaces by replacing lengths with surface areas.

Proof The average of the DG integral over the singum, i.e. singum strain, can be written as

dij =
∫

VS
uj,idx

Vs

=
∫

∂VS
niujdx

Vs

=
∑N

I=1 LInI
i u

I
j

Vs

. (11)

Because all points on the same line or plane surface share the same nI and the displacement
in the straight line or flat plane is linear, the displacement integral can be represented by the
central point, we can use the displacement at the bond cutting point to derive the surface
integral. �

The average DG of the singum, called the singum strain, in Fig. 1(b) is written as follows:

dij = 2lp√
3Vs

6∑
I=1

nI
i u

I
j = 1

3lp

6∑
I=1

nI
i u

I
j , (12)

which is not symmetric as the conventional strain tensor.
Therefore, the singum of Node 0 is constructed with the singum stress and strain defined

by the force and displacement of the cutting points on the singum surface. Note that the
volume integrals of stress and strain in a continuum domain is transferred to its boundary
[39]. Due to the straight edge of singum particle and Dirac Delta function as the point forces
at the cutting points, the stress and strain are exactly obtained for the lattices with hinge
connections, which creates a way to derive the stiffness of the lattices exactly.
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2.2 The Stiffness of the Singum of a Hexagonal Lattice

The stiffness of the singum can be tested by applying an incremental DG variation δdij at
every point x. Following the Cauchy–Born rule [34], an affine transformation of the lattice
will be induced with the displacement variation as follows:

δuj = xiδdij , (13)

which will induce the bond length variation and volume variation, and thus the singum stress
variation from Eq. (10) as

δsij =
∑6

I=1

(
xI

i f I
j,lδxl + δxif

I
j − xI

i f I
j

δVs

Vs

)
Vs

, (14)

which includes three parts: the first contributed by the force variation, the second by the
cutting point variation, and the third by the volume change. The last two parts are related to
the configuration variation of the singum, and are called the configurational stress variation.

Considering δxk = δuk , δVs = δdiiVs , r = 2|xI | = 2lp , nI
i = xI

i / lp in the local spatial
coordinate with the origin at Node 0, and fj,l = 2V,rrnjnl + V,rnj,l along with Eqs. (4) and
(13), one can rewrite Eq. (14):

δsij = 1

Vs

6∑
I=1

[
xI

i xI
k δdkl

(
V,λλn

I
jn

I
l

2(l0
p)2

+ V,λn
I
j,l

2l0
p

)
+ xI

k δdki

V,λn
I
j

2l0
p

− xI
i

V,λn
I
j

2l0
p

δdkk

]
. (15)

Using xI
i = nI

i λl0
p and nj,l = δjl−nj nl

lp
, one can reorganize the above equation into

δsij = 1

2Vs

6∑
I=1

[
(λ2V,λλ − λV,λ)n

I
i n

I
jn

I
kn

I
l + λV,λ(δjln

I
i n

I
k + δiln

I
jn

I
k − δkln

I
i n

I
j )

]
, δdkl

(16)
which can be simplified as

δsij = Cijklδdkl, (17)

where Cijkl indicates the stiffness of singum related the variations of the singum stress and
strain as

Cijkl = 1

2Vs

6∑
I=1

(λ2V,λλ − λV,λ)n
I
i n

I
jn

I
kn

I
l + λV,λ(δjln

I
i n

I
k + δiln

I
jn

I
k − δkln

I
i n

I
j ) (18)

where the superscript I of V I can be disregarded because each pair of the bond share the
same center-center distance 2lp . The summation in Eq. (18) is reduced to the summation
of nI

i n
I
j and nI

i n
I
jn

I
kn

I
l , which can be written in the following identities for the hexagonal

lattice:

6∑
I=1

nI
i n

I
j = 3δij ;

6∑
I=1

nI
i n

I
jn

I
kn

I
l = 3

4
(δij δkl + δikδjl + δilδjk). (19)
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Substituting Eq. (19) into Eq. (18) with Vs = 2
√

3l2
p = 2

√
3λ2(l0

p)2, the relation between the
stiffness tensor C of hexagonal lattice and the potential can be written as

Cijkl =
√

3

16λ(l0
p)2

[
(λV,λλ − 5V,λ)δij δkl + (λV,λλ + 3V,λ)(δikδjl + δilδjk)

]
(20)

where the potential V (λ) is defined in Eq. (5). However, the above equation is applicable to
general potentials, such as interatomic potential for crystal lattices [9, 42] and Hertz’s con-
tact based potential for granular lattices [45]. For example, in our recent work for the packed
cylinder lattices [45], the formulation was developed with Hertz’s contact based potential
and verified by the numerical simulation of a large assembly of cylinders. The numerical
results rapidly converge to the singum model prediction, which confirms the exactness of
Eq. (20).

It is interesting that the hexagonal lattice exhibits an isotropic elastic tensor in the 2D
space, although it exhibits an angular shape of the unit cell or singum. Although DG is not
symmetric, the stress induced on the singum is always symmetric, and both d12 and d21 pro-
duce the same stress tensor. Therefore, the singum stress-strain relationship can recover the
classical stress-strain relationship [45]. When the lattice exhibits zero prestress, the Pois-
son’s ratio under a uniaxial loading in 2D is 1/3 [45].

Note that most other central symmetric lattices exhibit anisotropic elastic behavior with
a certain orientation stiffer than others [45]. Particularly, in 3D cases, no lattice is found
to provide an isotropic elasticity tensor yet unless an orientational average is applied for
polycrystal lattices [40, 43].

3 SingumModel of a Honeycomb Lattice Without Central Symmetry

Figure 2(a) shows a honeycomb lattice in which each node connects with 3 nodes forming
hexagons, and no central symmetry exists. A single singum particle cannot fill the space
seamlessly with the periodic translation of the singum. A primitive cell shall include two
singums. For example. the singums of nodes A and B in Fig. 2(b) can seamlessly fill the 2D
space without any rotation, and thus their combination can form primitive cell AB. Notice
the lattice with hinged joints in Fig. 2(a) is not statically determinate. However, given a
displacement controlled load with Eq. (13), the lattice still exhibits stiffness as long as the
DG is not overlapped with the free-rigid motion mode of the bonds. Particularly, when
prestress exists in the lattice, the stiffness changes significantly as well.

3.1 Singum Construction and Equilibrium

The similar procedure of the regular hexagonal lattices can be applied to the honeycomb
lattice as well, but the equilibrium of the singum will be questionable. Note that in the
earlier paper [40], the honeycomb lattice was mentioned as a hexagonal atomic lattice for
graphene. In this paper, because both lattices are mentioned, we use the term of “honeycomb
lattice” to differentiate it from a regular hexagonal lattice.

Using the Cauchy–Born rule, given a DG variation δdij , the displacement variation will
lead to a force variation of each bond, which leads to a resultant force on each singum. Here
the resultant force caused by the three bonds on singum B can be written as [41]:

δP B
i =

3∑
I=1

δf I
i with δf I

i = 1

2l0
p

[
(λV,λλ − V,λ)n

I
i n

I
kn

I
l + V,λn

I
kδil

]
δdkl . (21)
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Fig. 2 The singum modeling of a honeycomb lattice: (a) the overall honeycomb lattice with two nodes high-
lighted and (b) primitive cell AB containing the singum particles of Nodes A and B

Because the bonds in singum A are in mirror reflection of those in singum B, one can ob-
tain δP A

i = −δP B
i , which will distort the lattice within the primitive cell with more than one

singums. However the periodic boundary condition at the four cutting points on the primi-
tive cell AB shall still follow the displacement in Eq. (13), so that the given displacement
gradient can be achieved over the primitive cell.

These forces will cause the nodes A and B to move with central symmetry referring to
the mid-point of AB and the forces will be redistributed among the bonds for equilibrium.
Generalizing Lemma 2 to a primitive cell with two singums A and B, as long as the dis-
placement variations of the four bond-cutting points satisfy the periodic boundary condition
corresponding to a uniform strain δd, no matter how nodes A and B move inside the primi-
tive cell, the average strain variation on the primitive cell will remain the same as δd.

To calculate the effective stress over primitive cell AB, we cite two Lemmas [41] as
follows:

Lemma3 When a singum is in equilibrium under a set of forces on the node and bond cutting
points, the average stress of the singum is independent of the translation of the Cartesian
coordinate.

Therefore, the effective stress and DG of a singum in an equilibrium stress state are
independent of the selection of the coordinates, so that the local coordinate with the origin
on the node can be used for convenience of derivation.

Lemma 4 When two contacting singums with b1(X1) = −b2(X2) on their central nodes,
each of which is in equilibrium, merge into a large cell, the stress integral over the large cell
is equal to the sum of the stress integrals over the two singums and b1(X1 − X2).

When primitive cell AB is subjected to a displacement variation at the four cutting point
in accordance with δd by Eq. (13), the prestress and force variation on nodes A and B shall
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reach equilibrium. Following Eq. (14), the Cauchy stress variation from Eq. (10) is written
as

δsij =
∑4

I=1

(
xI

i δf I
j + xkδdkif

I
i − xI

i f I
j δdkk

)
2Vs

, (22)

where the last two parts of configurational stress are given by the displacement gradient
variation and pre-stress with fI given in Eq. (4), which satisfies the equilibrium condition
as the four cutting points exhibit two pairs of n in opposite directions and is independent of
the coordinate selection; and the first part will be different from the last section because the
Cauchy–Born rule leads to the loss of the equilibrium of nodes A and B. However, it can be
decomposed into two cases, both of which satisfy the equilibrium condition:

Case I: A uniform displacement field in the whole unit cell following the Cauchy–Born
rule [34], which will generate the force variations on each bond following Eq. (4).

In this case, the DG satisfies the displacement load, but the force cannot reach equilibrium
with resultant forces of (δPB and δPA) on the nodes B and A, respectively. To physically
achieve this deformation statically, inverse forces of (−δPB and −δPA) are required on A
and B, respectively.

Case II: The 4 bond cutting points of the unit cell are fixed, and the two forces (δPB and
δPA) are applied on B and A, respectively, which yields reactions on the four cutting points
and the force on AB.

This loading case will not generate any effective DG in the lattice because the four points
are fixed with zero displacement; whereas effective stresses are generated with the reactions
at the cutting points and the forces on nodes A and B. Note that the primitive cell AB satisfied
both central symmetry to the mid-point of AB and the mirror symmetry to the perpendicular
mid-line of AB. Due to the mirror symmetry and Eq. (21), δP A

i = −δP B
i ; due to the central

symmetry, the mid-point of AB will be fixed as well. Therefore, the deformed primitive cell
AB will also satisfy the central symmetry in Case II. Consequently, one can focus on one
singum with three cutting points fixed, which can represent the other through the central
symmetry.

Use singum B as an example. Given a force fi = 1 (i = 1,2) on note B with the coor-
dinate origin set up at B as well, it will be transferred to three cutting points as RI

ij , where
I = 1,2,3 represents the cutting points of the I th bar and j = 1,2 indicates the force com-
ponents in x1 and x2 caused by a unit force fi . Notice that due to the configuration changes,
the force variation in each bar will not be on the same orientation as the bar. A structural
analysis of this three-bond indeterminate structure with a three-hinge support will provide
RI

ij . For singum B, it is obtained as:

R1
ij =

(
− 2(λ−1)

3(2λ−1)
0

0 − 2λ
3(2λ−1)

)

)
;R2

ij =
(

− 4λ−1
6(2λ−1)

√
3

6(2λ−1)√
3

6(2λ−1)
− 4λ−3

6(2λ−1)

)
;

R3
ij =

(
− 4λ−1

6(2λ−1)
−

√
3

6(2λ−1)

−
√

3
6(2λ−1)

− 4λ−3
6(2λ−1)

)
.

(23)

The detail steps to derive the force transfer matrix R are elaborated in Appendix A. Given
the force variation δP B

i , the force variation on the three bonds are given as

δT I
j = δP B

m RI
mj . (24)

For different lattices without central symmetry, the force transfer matrix can be determined
in the same fashion.



H. Yin, C. Liu

3.2 The Stiffness of the Singum of a Honeycomb Lattice

The superposition of the two cases makes both the periodic boundary condition of the unit
cell and the equilibrium condition of the nodes satisfied, and thus forms the solution to the
original problem. Now both cases satisfy the equilibrium with forces on nodes A and B, and
thus Lemmas 3 and 4 can be applied, so that the local coordinate of each singum with three
bonds can be used to represent the overall primitive cell AB. The average stress in primitive
cell AB can be the mean value of the average stress of singum A and singum B.

The superposition of Case I and II for the singum B can be written as:

δsij =
3∑

I=1

[
xI

i (δf I
j + δT I

j )

Vs

+ xI
k δdkif

I
j

Vs

− xI
i f I

j δdkk

Vs

]
, (25)

where the forces on Node B in two cases are eliminated by each other, and the configuration
stress variation in Case II is zero due to the fixed cutting points. Substituting δfI and δTI in
Eqs. (21) and (24) into the above equation, similarly to Eq. (16), one can obtain:

δsB
ij = 1

2Vs

3∑
I=1

[
(λ2V,λλ − λV,λ)n

I
i n

I
jn

I
kn

I
l + λV,λ(δjln

I
i n

I
k + δiln

I
jn

I
k − δkln

I
i n

I
j )

]
δdkl

+ 1

2Vs

3∑
I=1

3∑
J=1

[
(λ2V,λλ − λV,λ)R

I
mjn

J
mnI

i n
J
k nJ

l + λV,λR
I
lj n

I
i n

J
k

]
δdkl . (26)

Similarly, one can obtain δsA
ij . Considering the mirror symmetry between singums A and

B of nI and RI , one can see that δsA
ij shares the same average stress, so that the effective

stiffness tensor can be obtained as:

Cijkl = 1

2Vs

[
λV,λE

1
ijkl + (λ2V,λλ − λV,λ)E

2
ijkl

]
. (27)

where the tensors E1 and E2 are written as

E1
ijkl =

3∑
I=1

(δjln
I
i n

I
k + δiln

I
jn

I
k − δkln

I
i n

I
j ) +

3∑
I=1

3∑
J=1

RI
ljn

I
i n

J
k ,

E2
ijkl =

3∑
I=1

nI
i n

I
jn

I
kn

I
l +

3∑
I=1

3∑
J=1

RI
mjn

J
mnI

i n
J
k nJ

l .

(28)

To demonstrate the general fourth-rank tensor E, we generalize the Voigt notation as 11 →
1, 22 → 2, 12 → 3, and 21 → 4, so that E is transformed into a 4×4 matrix of E as follows:

E =

⎛
⎜⎜⎝

E1111 E1122 E1112 E1121

E2211 E2222 E2212 E2221

E1211 E1222 E1212 E1221

E2111 E2122 E2112 E2121

⎞
⎟⎟⎠ . (29)

Similarly to Eq. (19), one can obtain

3∑
I=1

nI
i n

I
j = 3

2
δij ;

3∑
I=1

nI
i n

I
jn

I
kn

I
l = 3

8
(δij δkl + δikδjl + δilδjk), (30)
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which are independent from the coordinate, but can be easily checked by defining n1 =
(0,−1), n2 = (−

√
3

2 , 1
2 ), and n3 = (

√
3

2 , 1
2 ) in Fig. 2(b).

Using Eqs. (30) and (23) in Eq. (28) with the above definition of nI , one can obtain the
matrix form of E1 and E2 as:

E1 =

⎛
⎜⎜⎝

3
2 − 3

2 0 0
− 3

2
3
2 0 0

0 0 3
2

3
2

0 0 3
2

3
2

⎞
⎟⎟⎠ ; E2 =

⎛
⎜⎜⎜⎝

3(3λ−2)

4(2λ−1)
3λ

4(2λ−1)
0 0

3λ
4(2λ−1)

3(3λ−2)

4(2λ−1)
0 0

0 0 3(λ−1)

4(2λ−1)

3(λ−1)

4(2λ−1)

0 0 3(λ−1)

4(2λ−1)

3(λ−1)

4(2λ−1)

⎞
⎟⎟⎟⎠ . (31)

Actually, both E1 and E2 for a honeycomb lattice is isotropic, and can be written as

E1
ijkl = −3

2
δij δkl + 3

2
(δikδjl + δilδjk);

E2
ijkl = 3λ

4(2λ − 1)
δij δkl + 3(λ − 1)

4(2λ − 1)
(δikδjl + δilδjk).

(32)

which yields the effective stiffness tensor of a honeycomb lattice at λ = 1 as

Cijkl|λ=1 =
√

3

24(l0
p)2

V,λλδij δkl, (33)

where Vs = 3
√

3l2
p = 3

√
3λ2(l0

p)2 and V,λ = 0 are used. It is significantly different from
Eq. (20) because the equilibrium of the singum particle releases energy from the state with
the Cauchy–Born rule by the superposition of the second case. When the bonds are in the
unstressed state of λ = 1, the Poisson’s ratio ν = 1, the shear modulus μ = 0 and the lattice is
not stable. However, when it is prestressed, the shear modulus can be non-zero. The isotropic
elastic behavior and symmetry may be lost. Here the isotropic symmetry only exists for
an equilateral triangular singum with the singum node at the centroid. Otherwise, when∑3

J=1 nJ
l is not zero, the effective stiffness will not only become anisotropic, but also lose the

minor symmetry due to the last term E1 in Eq. (28), which will be demonstrated in the next
Section of auxetic lattices. The generalized Voigt notation in Eq. (29) can be applicable to
those cases. Note that the honeycomb lattice has been widely studied for graphene’s atomic
lattice structure as well with different types of interatomic potentials [18, 40]. Besides the
2D analysis, the out-of-plane deformation has been studied as well [7, 31].

To illustrate the calculation of the above formulation, a numerical case study is conducted
with a honeycomb truss system in Appendix B. Note that this paper address the lattice with
harmonic potential or spring bonds of neighboring nodes, which is different from the stanine
or graphene lattices with long-range atomic interactions in the literature [8, 32]. For instance,
in Fig. 2(b), node B only interacts with nodes 1, 2, and A through the spring bonds; whereas
in atomic lattices of graphene or stanine, node B also interacts with nodes 3, 4, and all others,
whose force intensity decays with the distance in the corresponding potential function. As
a result, the honeycomb truss system is structurally unstable without prestress, but exhibits
stiffness in a certain deformation mode, which the singum model can demonstrate very well.
When prestress exists, for example, in Appendix B, the stiffness tensor in the generalized
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Voigt notation is written as

C =
√

3K

6λ(2λ − 1)

⎛
⎜⎜⎝

λ(4λ − 3) −(4λ2 − 7λ + 2) 0 0
−(4λ2 − 7λ + 2) λ(4λ − 3) 0 0

0 0 4λ2 − 5λ + 1 4λ2 − 5λ + 1
0 0 4λ2 − 5λ + 1 4λ2 − 5λ + 1

⎞
⎟⎟⎠ .

(34)

If λ = 1.1, then the stiffness tensor becomes:

C =

⎛
⎜⎜⎝

0.3368k 0.1881k 0 0
0.1881k 0.3368k 0 0

0 0 0.0744k 0.0744k

0 0 0.0744k 0.0744k

⎞
⎟⎟⎠ , (35)

which shows that the shear modulus is indeed not zero anymore. If λ < 1, the lattice is not
stable at all, as the shear modulus exhibits a negative value.

4 SingumModel of an Auxetic Lattice

In the last two sections, the lattices may commonly be found in nature. When those lattices
are subjected to hydrostatic loading, the lattice deformation is isotropic with the same nI and
the effective stiffness can be predicted with λ changing. However, when the lattices are sub-
jected to an arbitrary load, the microstructure of the lattice may distort and become another
type of lattice, and the vectors nI may not satisfy the identities in Eqs. (19) and (30) and
the effective material will become anisotropic. In addition, one can also purposely fabricate
a lattice in Fig. 3(a), whose singum shape in Fig. 3 (b) becomes an isosceles trapezoid and
Node B is not at the centroid of singum B anymore. The lattice is an example of an auxetic
lattice which exhibits a negative Poisson’s ratio.

4.1 Singum Construction andModeling

Similarly to the honeycomb lattice, this auxetic is not stable and a single singum particle
cannot represent the lattice periodically. However, a primitive cell AB can represent it. As-
sume all links share the same length, the microstructure can be represented by α in Fig. 3(b).
Specifically, when α = 2π/3, the lattice recovers the honeycomb lattice, and the singum is
an equilateral triangle. When π/2 ≤ α < 2π/3, the singum at B becomes an upward isosce-
les trapezoid [41]. When π/3 ≤ α < π/2, the singum at B becomes a downward isosceles
trapezoid in Fig. 3(b). With the decrease of α from 2π/3 toward π/3, the bond length Ip

does not change, but the area changes with α as follows:

Vs = 4l2
p sin2 α tan

α

2
, (36)

where the height of the trapezoid 2lp(1 − cosα), the bottom edge length 2lp tan α
2 , and the

top edge length 2lp(1 + 2 cosα) tan α
2 are used. Therefore, the density increase three times

or the area decrease to one third from 3
√

3l2
p to

√
3l2

p for α = 2π/3 and π/3, respectively.
Using the geometry in Fig. 3(b) at α = π/3, one can obtain the directional norms of

singum B as n1 = (0,−1), n2 = (
√

3
2 ,− 1

2 ), and n3 = (−
√

3
2 ,− 1

2 ). The singum node (0,0) is
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Fig. 3 The singum modeling of an auxetic lattice: (a) the overall auxetic lattice with two nodes highlighted
and (b) primitive cell AB containing the singum particles of Nodes A and B

not at the centroid of the singum particle anymore but the midpoint of the top edge. When it
is stretched in the horizontal or vertical direction, the lattice is expanded in the perpendicular
direction as well, which makes an auxetic material with a negative Poisson’s ratio.

Following the same procedure as the last section, one can derive the stiffness. However,
because

∑3
J=1 nJ

2 = −2, the stiffness matrix will be much more complex. When a stretch
ratio λ �= 1 is applied to the lattice, to maintain the shape of the auxetic lattice, dipole forces
are required on each pair of singums in a primitive cell. Otherwise, the lattice cannot reach
the equilibrium state. Given an arbitrary λ for the lattice in Fig. 3, one can calculate the
required dipole forces on A and B. On B, the required force is

DB = −
3∑

I=1

1

2l0
p

V,λnI = 2kl0
p(λ − 1)

(
0
2

)
. (37)

Keeping the force constant, the lattice will exhibit a certain loading resistance shown by the
stiffness tensor as well.

Following Appendix A, one can introduce a DG variation, which leads to the change of
the microstructure. The redistribution matrix of RI

ij can be obtained by the static analysis
with a unit force on x1 or x2, respectively, which is written as

R1
ij =

(
− 2(λ−1)

3(2λ−1)
0

0 − 2λ
3(2λ−1)

)

)
;R2

ij =
(

− 4λ−1
6(2λ−1)

√
3

6(2λ−1)√
3

6(2λ−1)
− 4λ−3

6(2λ−1)

)
;

R3
ij =

(
− 4λ−1

6(2λ−1)
−

√
3

6(2λ−1)

−
√

3
6(2λ−1)

− 4λ−3
6(2λ−1)

)
.

(38)

The force transfer in the lattice is significantly different from the regular hexagonal lattice,
which causes anisotropic stiffness. As shown subsequently, u1,2 and u2,1 will produce dif-
ferent stress states, so the traditional Voigt notation will not be sufficient to describe the
constitutive law.
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Using the general asymmetric notation in Eq. (29), one can obtain:

E1
IJ =

⎛
⎜⎜⎜⎝

3
2 − 6λ−1

2(2λ−1)
0 0

− 3
2

2λ−3
6(2λ−1)

0 0
0 0 3

2
6λ−5

2(2λ−1)

0 0 3
2

2λ+1
6(2λ−1)

⎞
⎟⎟⎟⎠ (39)

and

E2
IJ =

⎛
⎜⎜⎜⎝

3(3λ−2)

4(2λ−1)
3λ−4

4(2λ−1)
0 0

− λ
4(2λ−1)

7λ−6
12(2λ−1)

0 0
0 0 3(λ−1)

4(2λ−1)

3(λ−1)

4(2λ−1)

0 0 − (λ−1)

4(2λ−1)
− (λ−1)

4(2λ−1)

⎞
⎟⎟⎟⎠ (40)

Equations (39) and (40) lose both major and minor symmetry when a prestress exists or
V,λ �= 0. However, when the bond is in the unstressed state of V,λ = 0, the stiffness is only
related to E2. The lattice exhibits zero stiffness in a certain deformation mode, which is
discussed below.

4.2 Negative Poisson’s Ratio and Asymmetry of Stiffness

Similarly to Eq. (33), the stiffness tensor of the above lattice can be written in the generalized
Voigt matrix form as:

C =
√

3K

6λ(2λ − 1)

⎛
⎜⎜⎝

λ(4λ − 3) − η

3 0 0
− η

3
λ(4λ−3)

9 0 0
0 0 β

γ

3
0 0 γ

3
β

9

⎞
⎟⎟⎠ , (41)

where η = 12λ2 − 17λ + 6, β = 4λ2 − 5λ + 1, and γ = 12λ2 − 19λ + 7.
Consider the unstressed state of the auxetic lattice at α = π/3 and λ = 1, only E2 con-

tributes to the overall stiffness in Eq. (27) and all terms related to V,λ in Eq. (41) are zero.
Note that the stiffness matrix in Eq. (41) exhibits a rank 1, so the lattice can deform with
the rigid motion of all bonds as long as 3d11 = d22. Therefore, it exhibits no rigidity to shear
and uniaxial loading with zero Young’s modulus and shear modulus, but the Poisson’s ra-
tio is negative at −3 and −1/3 for uniaxial loading in x1 and x2 directions, respectively
[41]. Given a displacement controlled test with 3d11 �= d22, the lattice will exhibit stiffness
through the constitutive law in Eq. (41).

Notice that the above formulation requires a pair of dipole forces in Eq. (37) in the
primitive cell when λ �= 1. Therefore, in nature without such a dipole force, an auxetic lattice
in Fig. 3 cannot maintain the shape with α = π/3 under a hydrostatic load, which is different
from the hexagonal and honeycomb lattices. The singum model can still numerically predict
the effective elasticity at any shape of the primitive cell. When a prestress is applied to
the auxetic lattice, the stiffness of the lattice will be significantly different. For example,
when the lattice is under a hydrostatic pressure in the 2D plane with dipole forces, the bond
length proportionally reduces so that α = π/3. Therefore, V,λ < 0. and E1 will contribute
to the effective stiffness of the lattice given an additional test load, which exhibits neither
minor nor major symmetry. Note that the equilibrium issue of the singum will be discussed
subsequently in Sect. 7.
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Fig. 4 The singum modeling of a square lattice with unbalanced central symmetry: (a) the overall square
lattice with a representative node highlighted and (b) the singum particle of Node 0 as a primitive cell

5 SingumModel of a Square Lattice with Unbalanced Central
Symmetry

In the last three cases, all bonds share the same length. This case extends to a square lattice
in Fig. 4(a), which can be considered as Fig. 1 undergoing a simple shear motion in x2

direction. Obviously, the bonds 0-2 and 0-5 exhibit a longer bond length and therefore a
different potential. They strengthen the lattice in the 45◦ direction, so the central symmetry
is not balanced. Assume all bonds are made of the same material for simplicity.

5.1 Singum Construction andModeling

Following the same fashion, the singum of Node 0 is constructed in Fig. 4 (b), which is still
a square. There are two types of bonds. Assume the unstressed bond lengths are 2l0

p and

2
√

2l0
p respectively. The longer bonds exhibit a lower spring coefficient of k/

√
2 with the

new potential as

V (r) = k

2
√

2
(r − 2

√
2l0

p)2;or V (λ) = 2
√

2k(l0
p)2(λ − 1)2 = √

2V (λ). (42)

The 6 directional norms are (±1,0), (0,±1), and ±(1/
√

2,1/
√

2), and Vs = 4l2
p . Be-

cause they are central symmetric, given a DG variation, following the Cauchy–Born rule,
the resultant force on the singum node is always zero, so no secondary force is needed to
keep it in equilibrium. Following the similar fashion in Sect. 2, one can obtain the stress
variation as follows:

δsij = 1

Vs

6∑
I=1

[
xI

i xI
k δdkl

(
V,λλn

I
jn

I
l

2(l0
p)2

+ V,λn
I
j,l

2l0
p

)
+ xI

k δdki

V,λn
I
j

2l0
p

− xI
i

V,λn
I
j

2l0
p

δdkk

]
. (43)
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Using xI
i = nI

i λl0
p and nj,l = δjl−nj nl

lp
, one can reorganize the above equation into

δsij = 1

2Vs

4∑
I=1

[
(λ2V,λλ − λV,λ)n

I
i n

I
jn

I
kn

I
l + λV,λ(δjln

I
i n

I
k + δiln

I
jn

I
k − δkln

I
i n

I
j )

]
δdkl

+ 1

2Vs

6∑
I=5

[
(λ2V ,λλ − λV ,λ)n

I
i n

I
jn

I
kn

I
l

+λV ,λ(δjln
I
i n

I
k + δiln

I
jn

I
k − δkln

I
i n

I
j )

]
δdkl,

(44)

where

4∑
I=1

nI
i n

I
j = 2δij ;

4∑
I=1

nI
i n

I
jn

I
kn

I
l = 2δIKδij δkl;

6∑
I=5

nI
i n

I
j = 1;

6∑
I=5

nI
i n

I
jn

I
kn

I
l = 0.5;

V ,λλ = √
2V,λλ; V ,λ = √

2V,λ

(45)

Therefore, one can obtain

Cijkl = 1

4λ(l0
p)2

[
(λV,λλ − V,λ)(δIKδij δkl + √

2/4)

+ V,λ[δik(δjl +
√

2/2) + δjk(δil +
√

2/2) − δkl(δij + √
2/2))

]
.

(46)

5.2 The Interpretation of theMatrix Form of the Stiffness

The stiffness tensor in Eq. (46) can be written in the generalized Voigt matrix form as:

C = 1

4λ(l0
p)2

×

⎛
⎜⎜⎜⎜⎝

(4+√
2)λV,λλ+√

2V,λ

4

√
2λV,λλ−(4+3

√
2)V,λ

4

√
2(λV,λλ+3V,λ)

4

√
2(λV,λλ−V,λ)

4√
2λV,λλ−(4+3

√
2)V,λ

4
(4+√

2)λV,λλ+√
2V,λ

4

√
2(λV,λλ−V,λ)

4

√
2(λV,λλ+3V,λ)

4√
2(λV,λλ−V,λ)

4

√
2(λV,λλ−V,λ)

4

√
2λV,λλ+(4+√

2)V,λ)

4

√
2λV,λλ+(4+√

2)V,λ)

4√
2(λV,λλ−V,λ)

4

√
2(λV,λλ−V,λ)

4

√
2λV,λλ+(4+√

2)V,λ)

4

√
2λV,λλ+(4+√

2)V,λ)

4

⎞
⎟⎟⎟⎟⎠

(47)

which becomes a full matrix without zero components. This is different from the stiffness
in the previous three lattices because the coordinates in the three cases are selected at the
symmetric orientation, but the square lattice is not. If the coordinates rotate 45◦ counter-
clockwise, the long bonds will be along the x1 direction, and the stiffness tensor can be
obtained by the same fashion as the above or tensor’s transformation. By updating the 6
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directional norms as (±1/
√

2;±1/
√

2) and (±1,0), one can write

4∑
I=1

nI
i n

I
j = 2δij ;

4∑
I=1

nI
i n

I
jn

I
kn

I
l = (1 − 2δIK)δij δkl + δikδjl + δilδjk;

6∑
I=5

nI
i n

I
j = 2δi1δj1;

6∑
I=5

nI
i n

I
jn

I
kn

I
l = 2δi1δj1δk1δl1.

(48)

Therefore, the stiffness tensor becomes

C ′
ijkl = 1

8λ(l0
p)2

[
(λV,λλ − V,λ)[(1 − 2δIK)δij δkl + δikδjl + δilδjk + 2

√
2δi1δj1δk1δl1]

+ V,λ[δik(2δjl + 2
√

2δj1δl1) + δjk(2δil + 2
√

2δi1δl1)

− δkl(2δij + 2
√

2δi1δj1)]
]

(49)

or in the generalized Voigt matrix form as

C′ = 1

8λ(l0
p)2

×
⎛
⎜⎝

(1 + 2
√

2)λV,λλ + V,λ λV,λλ − (2
√

2 + 3)V,λ 0 0
λV,λλ − 3V,λ λV,λλ + V,λ 0 0

0 0 λV,λλ + V,λ λV,λλ + (1 + 2
√

2)V,λ

0 0 λV,λλ + V,λ λV,λλ + (1 + 2
√

2)V,λ

⎞
⎟⎠ .

(50)

Here Cijkl = QimQjnQkpQlqC
′
mnpq , in which Q =

(
1/

√
2 −1/

√
2

1/
√

2 1/
√

2

)
.

Given a confined uniaxial displacement load along the short bond direction, one can see
both shear and normal stress will be generated from Eq. (47). However, if the confined
displacement load is along the long bond direction, Eq. (50) shows that only normal stress
will be generated. When no prestress exists or V,λ = 0, the stiffness along the long-bond
direction is much higher than the perpendicular direction.

6 SingumModel of a Chiral Lattice

The previous four types of lattices exhibit the connection between the nodes with the center-
to-center bonds. A chiral lattice in Fig. (5) features internal rotational units, in the form of
rigid rings connected by tangent bonds with hinge joints [33], The elastic tensor of the lattice
is contributed by the bonds but changes with the ratio of the ring radius R to the center-center
distance 2L.

6.1 Singum Construction andModeling

The singum of Node 0 is constructed in Fig. 5 (b), which is still a hexagon similar to
Fig. 1(b). Note that to keep the space continuous, the WS cell is based on the center-center
line instead of the bond, although the cutting point is the cross point. If the cutting line
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Fig. 5 The singum modeling of a chiral lattice: (a) the overall chiral lattice with a representative node high-
lighted and (b) the singum particle of Node 0 as a primitive cell

is perpendicular to the bond, a smaller hexagon is obtained as the dot line, which cannot
seamlessly fill the space anymore. The bond length 2l0

p = 2
√

L2 − R2. In the illustrated

case, L = 2R and l0
p = √

3R. Although the singum model is general, this paper uses the
configuration in Fig. 5 (b) as an example to demonstrate the results.

The Cauchy–Born rule cannot be directly applied due to two features: First, the rigid ring
cannot contribute to deformation and only the bond is elastic; secondly, the equilibrium of
the singum or the rotational unit 0 will be questionable due to the moment produced by the
bonds which do not pass the center point. However, the similar procedure to Sect. 3 can be
applied with two cases.

Case I: Fix the rotational unit 0, apply a DG variation δdij on the singum as a contin-
uum, and calculate the displacement variation and the force variation at each cutting point
through Eqs. (13) and (21), respectively, which leads to the resultant moment δM on the
rotational unit.

In this case, an external moment of −δM shall be applied to keep the equilibrium of
the rotational unit 0 and fix it. Note that the force equilibrium is satisfied as each bond has
another identical one in the opposite direction to balance the force, although they are not on
the same line, which produces the moment.

Case II: Fix the cutting points, apply a moment variation δM on the rotational unit, and
calculate the force on each bond.

Because each bond shares the same distance to the center, the force magnitude on the
bond will be δM

6R
.

The superposition of the two cases will meet the equilibrium and deformation require-
ment, and the resultant force variation at each cutting point will define the stress variation
through Eq. (14) and thus the stiffness of the singum.

The geometry information is provided in Table 1. Notice that directional vectors of n and
m are overlapped in the previous four lattices as all bonds pass the center of Node 0, so m
is simply represented by n. However, in the chiral lattice, m denotes the directional norm of
the cutting point referred to Node 0; whereas n represent the bond’s directional norm.
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Table 1 The geometric information for the singum of a chiral lattice (length normalized by R)

Items bond 0-1 bond 0-2 bond 0-3 bond 0-4 bond 0-5 bond 0-6

Joint Point pI (-0.866,0.5) (0,1) (0.866,0.5) (0.866,-0.5) (0,-1) (-0.866,-0.5)

Cutting point xI (0,2) (1.732,1) (1.732,-1) (0,-2) (-1.732,-1) (-1.732,1)

n = xI −pI

|xI −pI | (0.5,0.866) (1,0) (0.5,-0.866) (-0.5, -0.866) (−1,0) (-0.5, 0.866)

m = xI −0
|xI −0| (0,1) (0.866,0.5) (0.866,-0.5) (0,-1) (-0.866,-0.5) (-0.866,0.5)

Now consider Case I. The displacement at each cutting point caused by δdij is δuI
j =

xI
i δdij , and the force variation can be written as

δf I
i = 1

2l0
p

d(V,λn
I
i )

dxI
l

δxI
l = 1

2l0
p

[
(V,λλ/ l0

p − V,λ/ lp)nI
i n

I
l x

I
k + V,λ/ lpδilx

I
k

]
δdkl . (51)

Considering |xI − 0| = 2√
3
lp , one can rewrite the above equation as:

δf I
i = 1√

3l0
p

[
(V,λλλ − V,λ)n

I
i n

I
l m

I
k + V,λδilm

I
k

]
δdkl . (52)

The moment variation caused by the force variation of each bond is through the joint point
PI , where nI is perpendicular to PI . With the reference at Node 0, the moment variation is
written as

δMI = RnI
i δf

I
i = 1

3

[
(V,λλλ − V,λ)n

I
l m

I
k + V,λn

I
l m

I
k

]
δdkl = λV,λλ

3
nI

l m
I
kδdkl, (53)

where R = l0
p/

√
3 is used. Therefore, the total moment variation on the rotational unit is

δM =
6∑

I=1

δMI =
6∑

I=1

λV,λλ

3
nI

l m
I
kδdkl (54)

Now consider Case II. When the cutting points are fixed, applying δM on the rotational
unit, the force variation on each bond is equal along the bond direction as follows

δf I
i = − nI

i

6R

6∑
J=1

λV,λλ

3
nJ

l mJ
k δdkl = − nI

i

6
√

3l0
p

6∑
J=1

λV,λλn
J
l mJ

k δdkl . (55)

Therefore, the actual force variation on each bond is the superposition of the two cases
in Eqs. (52) and (55) and the stress variation can be written as

δsij = 1

Vs

6∑
I=1

[
xI

i δF I
j + xI

k δdkiF
I
j − xI

i F I
j δdkk

]

= 2

3Vs

6∑
I=1

[
(λ2V,λλ − λV,λ)m

I
i n

I
jn

I
l m

I
k + λV,λm

I
i m

I
kδjl

−1

6
mI

i n
I
j

6∑
J=1

λ2V,λλn
J
l mJ

k

]
δdkl

(56)
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+
√

3

3Vs

6∑
I=1

[
λV,λ(m

I
kn

I
j δil − mI

i n
I
j δkl)

]
δdkl,

where Vs = 2
√

3L2 = 8√
3
(l0

p)2. Therefore, the stiffness tensor can be written as

Cijkl = 2

3Vs

6∑
I=1

[
λ2V,λλ

(
mI

i n
I
jn

I
l m

I
k − 1

6
mI

i n
I
j

6∑
J=1

nJ
l mJ

k

)

+ λV,λ

(
mI

i m
I
kδjl +

√
3

2
(mI

kn
I
j δil − mI

i n
I
j δkl) − mI

i n
I
jn

I
l m

I
k

)]
.

(57)

6.2 The Interpretation of theMatrix Form of the Stiffness

The stiffness tensor in Eq. (57) can be written in the generalized Voigt matrix form as:

C = 1

4λ
√

3(l0
p)2

⎡
⎢⎣λV,λλ

⎛
⎜⎝

0.75 −0.75 0.00 0.00
−0.75 0.75 0.00 0.00
0.00 0.00 0.75 0.75
0.00 0.00 0.75 0.75

⎞
⎟⎠

+V,λ

⎛
⎜⎜⎝

1.1250 −2.6250 0.6495 0.6495
−2.6250 1.1250 −0.6495 −0.6495
0.6495 1.9486 1.8750 1.8750

−1.9486 −0.6495 1.8750 1.8750

⎞
⎟⎟⎠

⎤
⎥⎥⎦ . (58)

Consider the chiral lattice shown in Fig. 5 with R/L = 0.5. When it is unstressed at
V,λ = 0, the lattice is instable for the rigid motion as d11 = d22, which exhibits a negative
Poisson’s ratio of −1. Unlike the auxetic lattice in Fig. 3 with zero shear resistance, the
chiral lattice exhibits a high shear modulus.

When a prestress exists with V,λ �= 0, the stiffness of the lattice is full and highly
anisotropic without major symmetry. Given a uniaxial displacement controlled load d11,
the four stress components are different without minor symmetry either. Therefore, 16 in-
dependent elastic constants may be required to describe a general 2D lattice. Again, the
equilibrium of the prestress is an issue, which will be discussed subsequently in the next
section.

7 Remarks and Discussion

Five types of 2D lattices are demonstrated for singum modeling of the effective stiffness
with the analytical formulations. When the material exhibits a lattice microstructure at the
microscale and is used for structural applications, it can be treated as a homogeneous con-
tinuum. Considering the anisotropy and asymmetry of the stiffness tensor, the conventional
elastic theory needs to be extended to accommodate the new features of lattice materials,
which may not be found in nature but can be fabricated in the laboratory. The singum model
can capture the physics and mechanics of lattice materials in a rigorous way.
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7.1 The Balance of Mass, Momentum, and Strain Energy

As the singum construction is based on the WS cell of the lattice at the current configuration,
the mass of a singum will remain constant as ms due to the periodicity and the conversation
of overall mass. The effective density can be defined as

ρ = ms

Vs

(59)

and the mass variation of a singum caused by the DG variation δdij is always zero as

δms = δρVs + ρδVs = 0 or δρ = −ρδdii . (60)

The stress is defined through the equilibrium equation and stress boundary condition
of Eqs. (6 - 8). The resultant force and moment on each singum has been required to be
balanced, which is automatically satisfied for the lattice with central symmetry with the
Cauchy–Born rule. For the auxetic and chiral lattices, the Cauchy–Born rule leads to the
loss of the equilibrium in the resultant force and moment, respectively, and a secondary set
of forces were superposed to make the conservation of momentum. Therefore, in absence of
body force or distributed moment, the bond force variation on the lattice cutting points shall
satisfy the equilibrium equations for both linear and angular momentum

N∑
I=1

δfI = 0 and
N∑

I=1

xI × δfI = 0 (61)

and the stress variation on the continuum particle also shall satisfy

N∑
I=1

LI nI .δs = 0 and
N∑

I=1

LI xI × (nI .δs) = 0, (62)

where σ s is the average stress on the singum particle, so it is a constant tensor over the
singum, and LI is the edge length of singum corresponding to the I th cutting point. For
a closed polygon, the identity

∑N

I=1 LI nI = 0 and δσ s
ij = δσ s

ji can guarantee the above
equation. In other words, when the lattice material exhibits zero distributed moment, the
stress is symmetry for the equilibrium.

In addition, the equilibrium of the prestress is also an issue. For the central symmetric
lattices or the honeycomb lattice, a prestress corresponding to V,λ �= 0 under the Cauchy–
Born rule can always be self-balanced. However, a prestress corresponding to V,λ �= 0 for the
auxetic and chiral lattices may produce a resultant force and moment on the singum node,
respectively. If no effectively distributed body force or moment exists, such a prestress state
of V,λ �= 0 can be nonphysical due to the loss of equilibrium. Instead, the compatibility and
equilibrium condition can lead to different stretch ratios of λI for different bonds.

The elastic energy in the system due to the DG variation can be written in terms of the
force and displacement in the lattice and the strain energy in the continuum singum particle,
respectively, as

δWs =
N∑

I=1

f I
j δuI

j =
N∑

I=1

f I
j δdij x

I
i and δUs = sij δdijVs, (63)
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which are equivalent due to the definition of singum stress sij = ∑N

I=1 f I
j xI

i /Vs in Eq. (10).
Therefore, the elastic energy stored in the springs/bonds or lattice is the same as the strain
energy in the singum particles or effective solid. Because the potential energy of the bonds
is path-independent, the strain energy of the effective solid is also path-independent.

Overall, the mass, momentum, and elastic energy in the lattice are equivalent to those
in the singum particle. As the elastic system of a lattice with a well-defined structure shall
exhibit a specific, unique effective stiffness, the singum model provides the exact prediction,
which has been verified by the numerical simulation of large lattice structures with boundary
loading [45]. Note that when a lattice is instable in a certain deformation mode, it exhibits a
zero or negative elastic modulus in that deformation mode. The singum predicts it as well.

In the literature, the strain energy equivalence between the lattices and the continuum
has been used to homogenize the lattice and derive the effective elastic tensor [1, 27]. Based
on the energy equivalence of Eq. (63), the singum model shall provide the same results as
the strain energy equivalence when the prestress is not considered, because the effect of the
configurational stress disappears. The only difference is that the singum model is a vecto-
rial method instead of an energy method. Indeed, our recent paper showed the singum and
energy methods provide the same results for example of granular lattices with central sym-
metry at V,λ = 0 [45]. Here Ostoja-Starzewski also provided the same result in Eq. (2.23)
of [27] as Eq. (19) of this paper. When prestress exists, the strain energy variation will be
more complex and numerical methods can be used for energy method. However, they might
not provide the exact solution as the singum model does. As d12 and d21 produce different
stress states for some cases, but the strain energy has no way to differentiate d12 and d21 as
only their mean value is used as strain. That is the reason why Berinskii [1] used the average
of four terms to show the shear modulus. There is no way to use the classical strain energy
in terms of symmetric strain to discover this problem of asymmetry and solve it. However,
the vectorial method in the singum model directly works on the stress and DG with volume
average, so that it can illustrate and solve the problem. The singum model indeed provides a
simple, direct, and exact homogenization in Eqs. (8) and (11), which transfer the force and
displacement of the bonds to the singum stress and strain by the Gauss theorem. Given a
displacement variation, from the variations of the singum stress and strain, we can obtain
the effective stiffness analytically and exactly.

7.2 Remarks About Anisotropy and Asymmetry of the Effective Elasticity of Lattices

The five types of lattices represent different features of elastic behavior of the lattice materi-
als and may cover a large spectrum of lattice material behavior. Although the singum model
is general and can be applicable to many new types of lattices and 2D or 3D, the following
remarks are made from the five types of lattices, which can be expanded in future as well.

1. For the regular hexagonal lattice, it is isotropic and exhibits a Poisson’s ratio at ν = 1/3
in the unstressed state. Under the plane strain condition, ν = 1/4. Classical elasticity and
the Cauchy–Born rule can perfectly describe the problem.

2. For the regular hexagonal lattice, when a prestress exists, the compressive stress leads to
the increase of the Poisson’s ratio, and vice versa.

3. A honeycomb lattice is instable in the unstressed state with zero shear resistance and the
Cauchy–Born rule is not applicable. When a tensile hydrostatic prestress exists in the
bonds, it exhibits an isotropic elastic tensor. The Poisson’s ratio ν = 1 at the unstressed
state and reduces with the tensile prestress.

4. When a lattice is unstressed in each bond, the major symmetry is satisfied. However,
the prestress leads to configurational stresses, which changes the major symmetry and
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increases the anisotropy of the stiffness tensor for unbalanced lattices with the singum
node not at the center of the singum (Fig. 3) or the various bond lengths (Fig. 4).

5. The stiffness matrix obtained by the incremental DG shows the stability and rigid body
motion of the lattice by the sign of the elastic constants and linear dependency of the
stiffness matrix.

6. The auxetic lattice in Fig. 3 exhibits anisotropic elastic behavior and high negative Pois-
son’s ratio and the limit in classical elasticity is not applicable. Moreover, d12 and d21

yield different shear stresses. The symmetry strain tensor cannot catch this asymmetric
effect. Therefore, the singum strain dij is recommended to replace the classical strain
tensor for this material.

7. When the bonds pass the singum node in Figs. 1, 2, and 4, a symmetric stress tensor
is still sufficient to describe the constitutive relation. However, for an auxetic or chiral
lattice (Figs. 3 and 5), an asymmetric stress tensor is required to describe the constitutive
law.

8. For different lattices, different symmetry patterns exist. For the most general cases, 9
stress or DG components for 3D and 4 stress or DG components for 2D are required, so
81 and 16 elastic constants may exist for 3D or 2D lattices whose major symmetry is lost.

The singum model is not only applicable to the lattice material with linear elastic bonds,
it can be used in granular materials, crystal lattices, among other materials with periodic
microstructure and point-point interactions or potentials [41, 42, 45]. In classical elasticity,
the prestress or residual stress in the material and structures were often addressed by the
superposition. However, the singum model clearly shows its effects on the effective elastic
tensor as well, which leads to nonlinear elastic behavior. Particularly, in geothermal or in
outer space applications, the pressure may significantly change from the measurements in
the laboratory settings, the singum model will enable the accurate prediction of the nonlin-
ear, anisotropic and asymmetric elastic behavior.

7.3 Impacts to the Theory of Elasticity

In this paper, the 2D continuum is essentially formed by 1D bonds. Although the 1D bonds
are assumed to be linear elastic in this paper, the 2D continuum is nonlinear elastic instead,
due to the configurational stresses caused by the prestress on the area and shape variation
of the singum. Therefore, the constitutive law can be very different from the classical elas-
ticity for some special lattices. Because the tangential stiffness of a lattice can be explicitly
predicted based on the microstructure and stress state, the nonlinear elastic problems can be
solved by linearization of the stress-DG in an incremental way. For each step, the governing
equation can be written as:

Cijklul,ki(x) + bj (x) = 0, (64)

where bj is the body force and Cijkl shall be undated with the current stress state and lattice
configuration. Together with boundary conditions, a typical boundary value problem can be
set up with the partial differential equation. Note that the order of the dummy indices shall
be consistent when the symmetry does not exist; whereas classical elasticity is not sensitive
to the order of ij or kl. Note that because the 2D continuum is nonlinear elastic, the principle
of superposition in linear elasticity shall not be used. However, the energy conservation is
still applicable because the energy is stored in the potential of the bonds.

For special lattices without symmetry, because the symmetry condition does not exist,
the traditional compatibility of stress or strain tensors are not required anymore. However,
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for a solid without any distributed moment, the shear stress shall be symmetric under the
equilibrium condition, a new equilibrium condition shall be enforced as

Cijklul,k − Cjiklul,k = 0 (65)

in solving the boundary value problem. When a distributed moment is prescribed, the above
equation shall be revised accordingly to balance the distributed moment.

One misconception may exist for the stress by the rigid body motion. Consider the su-
perposition principle in classical elasticity, a rigid body motion can be achieved by the su-
perposition of ui,j and −uj,i in the infinitesimal deformation, which shall lead to a zero
stress state, i.e. Cijkl − Cijlk = 0. Considering the symmetry of stress or Cijkl = Cjikl , one
can obtain the minor symmetry. This is also the reason why the symmetric strain is used
in classical elasticity. However, in finite deformation, the superposition of ui,j and −uj,i

cannot achieve the rigid body motion. This requirement is not necessary. Indeed, a certain
shear DG of u1,2 of u2,1 requires different shear stresses in some lattices, Cijkl − Cijlk �= 0
discloses the mechanics of those lattices, but is not against the physics that a rigid body
motion exhibits the zero stress state.

Another misconception is that the lack of the major symmetry implies that the effective
continuum does not have a strain potential and therefore can produce energy when deformed
in closed loops in strain space [2]. This statement is correct to an infinitesimal strain cycle
with linear elasticity, in which the Betti reciprocity and the superposition principles can be
applied [2, 6]. However, for lattice-based materials, even though the linear elastic bonds
are assumed, the effective elastic behavior is nonlinear. The singum model provides the
exact prediction of the tangential elastic constants for the nonlinear elastic behavior, but the
elastic conservative nature is still followed with the bonds due to the energy equivalence in
Eq. (63) in spite of the loss of the major symmetry of the elastic tensor that is caused by
the configuration stress of the existing forces. Therefore, the loss of the major symmetry
does not mean the loss of the conservative nature of strain energy in the system for the finite
deformation with nonlinear elastic behavior of the lattice-based materials.

Interestingly, the recently proposed odd elasticity [30] also uses DG in the constitutive
modeling of the active, non-conservative solids, which exhibit the loss of major symmetry
of the stiffness as well. However, there exist the following 3 distinctions from this paper:

1. The bond in the odd elasticity is not based on the pair potential, which lead to the trans-
verse force that is perpendicular to the center-center line of the bond. The transverse
force outputs work, causes the non-conservation of energy in a closed strain loop and the
anti-symmetric part in the effective elastic tensor with Co

ijmn = −Co
mnij . However, this

paper uses the pair potential that only produces force along the bonds, so that the strain
energy is conservative and only depends on the starting and ending state. Note that the
conservative nature does not guarantee the major symmetry unless linear infinitesimal
strain is assumed.

2. The odd elasticity is still based on the linear superposition principle, in which the DG is
decomposed into four modes, and each mode includes the combination of two DG com-
ponents. For example, the rigid body motion is u1,2 −u2,1. However, this paper considers
the nonlinear elastic nature caused by dimension change from 1D linear elastic bonds to
the 2D solid, and a given force in the system will produce configurational stress in the
new stress state when another load is applied, so that the overall stress state cannot be
the linear addition of the two individual stress states. Moreover, the rigid body motion of
u1,2 − u2,1 is limited to the infinitesimal deformation, which incurs cautions for energy
harvesting applications of the odd elasticity.
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3. The odd elasticity adopts a coarse-graining network to calculate the effective elastic ten-
sor, which follows the standard procedure of simulating a ball-and-spring lattice to large-
scale deformations [30]. However, this paper derives the effective elastic tensor based
on the variational method of the stress and strain on the singum particle with an explicit
form, which was verified by the large-scale simulation as well [45] and is the exact solu-
tion for a lattice with short-range pair potential.

Overall, the loss of major symmetry is caused by two distinct reasons between the odd
elasticity and this paper: the non-conservative bonds for the odd elasticity versus the con-
figurational stress for the present singum model, respectively. However, the singum model
can also be extended to the non-conservative bonds by introducing the corresponding forces,
such as the friction between balls for a granular lattice [45], which will be reported in future
work.

7.4 Emerging Applications and FutureWork of the Present Method

The singum model is particularly straightforward to investigate the stress and force transfer
in the lattice-based structure and materials cross the length scale. Although the bonds are
assumed to follow the harmonic potential in this paper, which is realistic to cellular lattices
with linear elastic bonds, the present method can be extended to other lattice materials with
different potential functions. Crystal lattices exhibit high diversities in the lattice structures
[36] and atom dynamics with phase transitions under mechanical and temperature loading
[9, 13, 28], the symmetry of the lattices evolves with the deformation. The extension of
the singum model for elastic tensor of crystal lattices is underway [42]. The key difference
is that the atomic interactions depend on the relative locations with the long range effects,
while cellular lattices are formed by predefined bonds or links. Therefore, the singum may
annihilate and reform during the phase transition of crystal lattices.

This paper focuses on 2D lattices and their in-plane elastic behavior. It can be extended
to the out-of-plane elastic behavior for mono-layered crystal lattices [7, 31], in which the
thickness of the lattice layer can be a controversial issue [8]. The same procedure can be
applied to 3D lattices [42].

Given the stress at the macroscale, the singum model can predict the force in the bonds,
and vice versa. Therefore, we can predict the nonlinear elastic behavior of the lattice ma-
terials. The stability and strength of the bonds will lead to the buckling, fracture, collapse,
and damage of the material at the macroscale. Therefore, the present singum model and
constitutive law lay a solid foundation for the inelastic behavior of the lattices as well.

8 Conclusions

The singum model has been applied to lattice metamaterials for prediction of the effective
elasticity based on the stiffness of the lattice components with a linear elastic potential, in
which the load is transferred through the lattice network represented by unit cells. A singum
particle is introduced as the WS cell of the lattice to represent its behavior at the continuum
level. The average stress and displacement gradient (DG) on the singum are defined as the
singum stress and strain. The variational method is used to investigate the equilibrium of the
singum, evaluate its averaged stress variation caused by a displacement variation, and thus
derive the tangential stiffness analytically. Using the singum model in 5 lattices, one can
make the following conclusions:
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1. When central symmetry of the unit cell is satisfied, a single singum particle can repre-
sent the lattice and the Cauchy–Born rule provides the elastic tensor. Although most lattices
exhibit anisotropic elasticity, a two-dimensional (2D) hexagonal lattice provides an isotropic
elastic tensor in plane stress condition with a Poisson’s ratio ν = 1/3 and in plane strain
condition with ν = 1/4 if no prestress exists. Otherwise, the Poisson’s ratio reduces with the
tensile prestress and increases with a compressive prestress.

2. When the central symmetry of the unit cell is not satisfied, the primitive unit cell
will contain more than one singums and the Cauchy–Born rule leads to the loss of equi-
librium of the single singum. A secondary stress is induced to balance the singums. Due
to the prestress, configurational stresses are induced, which changes the stiffness signifi-
cantly.

3. For some special lattices with the bonds not passing singum’s center, the angle between
neighboring bonds not equal, due to the prestress, the same incremental d12 and d21 may
lead to different stress variations, which lead to the loss of minor symmetry of the stiffness.
Without the distributed moment, the stress shall be symmetric. Therefore, the loss of minor
symmetry also leads to the loss of major symmetry.

4. The lattice elastic behavior is highly nonlinear even though the bonds are linear elas-
tic. Given a stress state in a 2D lattice configuration, 4 stress and 4 strain components are
required in the incremental constitutive relation, in which the tangential stiffness requires 16
elastic constants when minor or major symmetry does not exist. However, the strain energy
is conservative following the potential of bonds.

Although only five 2D lattices are demonstrated, they cover some representative
anisotropic and asymmetric elastic behavior with 8 remarks provided. It is straightforward
to extend the model and related conclusions to 3D lattices.

Appendix A: Determination of the Force Transfer Matrix R

Consider a truss system of N bars, which connect to one singum node at one end with an-
other end fixed by hinges as the cutting point. All bars are assumed to exhibit the same
length and elastic constants for simplicity, and the number of the bars is large enough
to make the truss system stable or indeterminate. When all the cutting points are fixed,
given a force Pi on the singum node, the force transferred to the I th bar can be written
as

T I
j = PiR

I
ij , (66)

which is along the bar with the direction from the singum node to the cutting point nI . Here,
the conventional summation of double index notation is applied to the subscript with lower
case symbols only.

Consider the force in each bar is given at fI = V,λni

2l0p
. Without the loss of any generality,

set the origin 0 at the singum node and the cutting points are fixed at xI (I = 1,2, . . . ,N )
with lp = |xI | = λl0

p , so nI = xI / lp .
When all cutting points are fixed, a small variation of the singum node, dx, will change

the bond vectors into xI − dx, which leads to a length change

dlI = −nI
i dxi (67)
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and an orientational change

dnI
i = nI

i n
I
j − δij

λl0
p

dxj (68)

for the I th bonds. Note that dλI = dlI / l0
p .

The force variation for each bar can be obtained as

df I
i = V,λλn

I
i dλI + V,λdnI

i

2l0
p

=
[−V,λλn

I
i n

I
j

2l0
p

2 + V,λ(n
I
i n

I
j − δij )

2λl0
p

2

]
dxj , (69)

which includes two parts: the first is caused by the length change and the second orienta-
tional change. The resultant force variation on the singum is

dfi =
N∑

I=1

df I
i . (70)

Then the force transfer matrix RI
i can be determined by the classical displacement method

with the following procedure in 3D case, which can be reduced to 2D case straightfor-
wardly:

1. Given a unit displacement d1 = (1,0,0) on the singum node, the resultant force on the
singum is calculated by Eq. (70), which is a sum of N vectors in 3D, namely P1 =∑N

I=1 fI1.
2. Similarly, given a unit displacement d2 = (0,1,0) or d3 = (0,0,1) on the singum node,

the resultant force on the singum can also be calculated as P2 = ∑N

I=1 fI2 and P3 =∑N

I=1 fI3.
3. Given any displacement d = (a, b, c), the resultant force will be written as P = aP1 +

bP2 + cP3.
4. Solve aP1 +bP2 +cP3 = (−1,0,0) with three equations for a, b, c. Using dx = (a, b, c),

one can calculate force variation of each bar by Eq. (69), which defines RI
1j = df I

j .
5. Similarly, solve aP1 + bP2 + cP3 = (0,−1,0) or (0,0,−1) with three equations for

a, b, c. One can obtain RI
2j or RI

3j , respectively.

Therefore, RI
ij , which shows the force for member I due to a unit force in xi , can be ob-

tained.

Appendix B: A Case Study of a Honeycomb Lattice Truss System

To demonstrate the accuracy of the singum model, a case study is presented for a honey-
comb lattice with harmonic potential or linear spring bonds between neighboring nodes. A
MATLAB program is developed to simulate the elastic behavior of the lattice for verification
of the formulation in Sect. 3, which can be straightforwardly extended to other lattices. In
the program, an array of nodes are automatically generated based on the given lattice with
the number of unit cells in X and Y directions. The X − Y coordinate origin is set up on
the center of the lattice. When the lattice is undergone a deformation, the new coordinate
x − y shares the same origin but the coordinates of the nodes change. A list of neighbors
for each node is detected with the corresponding bonds and saved for the force computation



H. Yin, C. Liu

Fig. 6 The honeycomb lattice
truss system with boundary: (a)
at the mid-points of the bonds
and (b) at the nodes

step. The mid-point of each bond is also important as the potential cutting point of singum
surface.

Figure 6 schematically illustrates the honeycomb lattices. The boundary points can be se-
lected by two cases. Figure 6(a) uses the mid-points of the bonds for the boundary; whereas
Fig. 6(b) exhibits the boundary on the nodes. If the lattice approaches the infinite domain, the
boundary selection produces negligible effects to the effective mechanical behavior. How-
ever, when finite unit cells are used, they may produce big differences with different conver-
gence rates to the solution. Due to the periodicity of the singum, Fig. 6(a) provides a better
performance and will be used in the study. The algorithm is structured and implemented as
follows:

1. Initialize the simulation box by periodically extending the singum along x and y direc-
tion with Nx and Ny replications. The 4 sides of the box are made of loading bars as a
boundary layer. The node on the boundary is connected to the loading bars by hinges.
The initial bond length and force are at r = 2l0

p and FI = 0, respectively, so λ = 1.
2. Given a testing mode, such as tension or shearing, apply the corresponding uniform

singum strain variation δdij = 10−6 to the simulation box according to the Cauchy–Born
(CB) rule. The new positions of all mid-points are updated through an affine transforma-
tion with δdij .

3. Calculate the coordinate of each node from the mid-points by the equilibrium of the node.
The length change of each fiber and λ, and use the potential function V (λ) to calculate
the equilibrium bond forces. For each loading bar, collect all bond forces and calculate
the effective stress vector on each bar in the deformed configuration. Using the effective
stress vector on the 4 edges, one can obtain the stress variation caused by δdij = 10−6 at
λ = 1, and thus calculate the elastic tensor.

4. For any normalized fiber length or stretch ratio, namely λi , the coordinate of each node
and the force in each bond can be calculated with the harmonic potential V in Eq. (5).
Repeat Steps 2 and 3 to calculate the elastic tensor at λi . Therefore, the relation of elastic
tensor and λ can be calculated.

Although the above calculation can guarantee the equilibrium of the internal nodes im-
mediately with the periodic microstructure during the deformation, the result of the elastic
tensor is affected by the cut-off for the boundary length but will quickly converge with the
number of unit cell Nx and Ny .

On the contrary, if Fig. 6(b) is used directly to generate the new positions of nodes fol-
lowing the C-B rule, the equilibrium positions of the internal nodes will not be periodic
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Fig. 7 Numerical simulation results of elastic tensors changing with different simulation scales and different
boundary construction types(a) the comparison of the numerical simulation and the prediction of elastic
tensors with different λ (b)

anymore, and a very large lattice is required to reach the convergent solution, which is
demonstrated in Fig. 7(a).

As a numerical example, consider a lattice with k = 1000N/m, l0
p = 1mm, and λ = 1.

Equation (33) provides C1111 = C2211 = 288.6751N/m and C1212 = 0N/m respectively. 7(a)
shows the prediction of C1111 and C1122 changing with the increase of Nx or Ny (here we use
Nx = Ny ). Obviously, for type A lattice in Fig. 6(a), the simulation converges quickly with
a few nodes. For instance, with only 184 nodes in total, the simulation results gave C1111 =
288.6520N/m, compared to the prediction value from the singum model, the difference was
only about 0.008%. However, for type B lattice in Fig. 6(b), the simulation converges much
slower and requires more nodes to dilute the boundary effects as the displacement of nodes
on top or bottom boundary does not follow the periodic distribution.

Using the type A lattice, we change the stretch ratio λ between 1.0 to 1.2, and show the
comparison of the numerical simulation and the prediction of Eq. (33) in 7(b), which exhibit
excellent agreement. Indeed, the singum model provides the exact solution for the lattice
with the potential between short-range bonds.
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