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ABSTRACT

Despite the impressive performance of Large Language Models
(LLM) for various natural language processing tasks, little is known
about their comprehension of geographic data and related ability to
facilitate informed geospatial decision-making. This paper investi-
gates the extent of geospatial knowledge, awareness, and reasoning
abilities encoded within such pretrained LLMs. With a focus on au-
toregressive language models, we devise experimental approaches
related to (i) probing LLMs for geo-coordinates to assess geospatial
knowledge, (ii) using geospatial and non-geospatial prepositions to
gauge their geospatial awareness, and (iii) utilizing a multidimen-
sional scaling (MDS) experiment to assess the models’ geospatial
reasoning capabilities and to determine locations of cities based on
prompting. Our results confirm that it does not only take larger but
also more sophisticated LLMs to synthesize geospatial knowledge
from textual information. As such, this research contributes to un-
derstanding the potential and limitations of LLMs in dealing with
geospatial information.
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1 INTRODUCTION

The recent proliferation of pretrained large language models (LLMs)
like GPT-3 [2] and their impressive performance on several down-
stream tasks has led the natural language processing (NLP) commu-
nity to consider the implicit knowledge these models may contain
in their parameters. Authors have shown that LLMs can function, to
an extent, as knowledge bases [8], since they store various types of
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knowledge, such as common sense, relational, and linguistic aspects
in their parameters [3, 9]. This paper explores whether and to what
extent geospatial knowledge is encoded in LLMs and whether
such models have geospatial awareness. Finally, we examine the
models’ geospatial reasoning potential. Geospatial knowledge
includes the factual understanding of geographic data such as loca-
tion, distance, and area. Geospatial awareness is concerned with
the ability to perceive and comprehend geographical information.
Finally, geospatial reasoning is the use of geospatial knowledge and
awareness for informed decision making.

To evaluate LLMs with respect to their geospatial knowledge,
awareness, and reasoning capabilities, we conducted the following
experiments. First, we probe the LLMs for actual geo-coordinates
of cities. This should provide us with an idea about their concrete
geospatial knowledge. To assess their geospatial awareness, we
evaluate whether geospatial prepositions such as “near” translate
into smaller distances when used in sentences to generate nearby
cities as opposed to a control scenario which simply uses the con-
junction “and”. Last, to gauge the geospatial reasoning potential
of LLMs, we perform a multidimensional scaling(MDS) [1] experi-
ment, in which we compare the predicted layout of cities using real
distances to a distance measure derived from LLMs.

Our findings reveal that LLMs are becoming more adept at han-
dling and comprehending geospatial data, as evidenced by their
encoded geospatial knowledge and subsequent geospatial aware-
ness while generating texts. Our results also show the possibility
of using LLMs in geospatial reasoning tasks.

2 METHODOLOGY

Our methodology involves three different tasks to assess different
aspects of the geospatial capabilities of LLMs.

For the first task, evaluating the geospatial knowledge encoded
within LLMs, the objective is to correctly predict the locations and
coordinates of cities. The second task, assessing geospatial aware-
ness, analyzes the expressions generated by LLMs when leveraging
geospatial prepositions vs. generic expressions, e.g., “near vs. “and”
by comparing their resulting respective distances, i.e., are cities that
use “near” actually closer than when using “and”? Lastly, to assess
the LLMs’ usefulness for geospatial reasoning, we devise a problem
where the goal is to predict the locations of cities based on the
relative distances between cities. We generate two “constellations”,
one which uses the actual distances, compared to another one that
uses LLM-derived distances.

The LLMs that we use are OPT (6.7B and 13B), LLaMA model
(7B and 13B), and Alpaca model (instruction-tuned from 7B LLaMA
model) for your geospatial knowledge task. Based on the results
from this task we only use the 13B LLaMA for our other tasks.
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Table 1: Mean Error Distances (km) for Coordinate Prediction

Model Template Prompt Error (km) P-Rate (%)
Word2Vec - - 2612 -
BERT-L - - 3077 -
GPT-2 - - 4498 -
LLaMA (7B) 2 0-shot 521 10
LLaMA (7B) 2 3-shot 1469 99
LLaMA (13B) 1 0-shot 864 89
LLaMA (13B) 1 3-shot 1069 99
LLaMA (13B) 2 0-shot 386 31
LLaMA (13B) 2 3-shot 1634 99
Alpaca (7B) 1 - 1799 76
Alpaca (7B) 2 - 2158 99

For the geospatial awareness task, we employ tok-k sampling with
k = 100 and a temperature of 0.9, while using beam search with
five beams for other tasks.

3 MEASURING GEOSPATIAL KNOWLEDGE

This first experiment simply probes LLMs to determine the co-
ordinates (latitude and longitude) of cities. This task serves as an
indicator of the extent to which LLMs encode geospatial knowledge.

3.1 Experimental Setup

Prompting, introduced by Brown et al. [2], refers to appending
a few sample input-output along with a textual prompt to a pre-
trained LLM, which is then expected to provide a relevant com-
pletion of this input based on the sample inputs and outputs. This
approach is sometimes referred to as in-context learning. In our
experiments, we use prompts as : The geo-coordinates of Kathmandu
are ...

We use both 3-shot and zero-shot inference for the location pre-
diction of cities. The cities that we use as examples while prompting
are selected randomly from a list of 3,527 cities having a population
greater than 100k in MaxMind database'. We experiment with an
additional prompt template, where “geo-coordinates” in our prompt
isreplaced by “latitude and longitude". For the case of the instruction-
following Alpaca model, we provide instructions to provide the
geo-coordinates of cities with two templates similar to those above
using the instruction template format of the model.

3.2 Results and Discussion

The results of our coordinate prediction task in Table 1 consist of
the first three rows from the results reported in Liétard et al. [5]
and subsequent rows from our work. The “P-rate” column refers
to the prediction rate which indicates the LLM’s success rate in
correctly generating another city.

Previous results by Liétard et al. [5] imply limited encoded
geospatial knowledge in LLMs, with comparisons to Word2Vec [7]
favoring Word2Vec’s performance. Liétard et al. [5] also suggests

Thttps://www.kaggle.com/datasets/max-mind/world-cities-database
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that larger LLMs might perform better for tasks related to geo-
graphic information. This idea is well supported by our results,
with the caveat that not all LLMs perform equally well. Despite
having the same number of parameters, the OPT and LLaMA mod-
els produced vastly different results in this coordinate prediction
task. The LLaMA model was much better than OPT, that is why
we have not included it in Table 1. This demonstrates the effect
of the model architecture, design decisions, and the pre-training
dataset on the model’s performance. Particularly in the zero-shot
setting, the 13-billion variant of LLaMA showed a remarkable 85%
reduction in prediction error for coordinate prediction compared to the
best baseline(Word2Vec). Overall, larger variants of LLMs generally
do perform better. Our research also shows that different prompts
produce different outcomes. This leaves room for improvement by
employing continuous prompts [4, 6].

Finally, our results show that prompting can improve predic-
tion rate, approaching Alpaca model performance. However, their
performance is slightly lower than the zero-shot setting, which is
somewhat counterintuitive. This difference mat arise from LLMs
potentially lacking relevant geo-coordinate examples during pre-
training, leading to lower prediction rates in zero-shot scenarios, but
often yielding higher accuracy. In the 3-shot setting or instruction-
following setup, LLMs are compelled to provide predictions, some-
times inaccurately. This shows that we can extract the geospatial
knowledge encoded in LLMs more efficiently with proper prompt
engineering and exposure to diverse geospatial datasets during
LLM pre-training

In conclusion, our results show that LLMs are becoming more
adept at encoding geospatial knowledge. Furthermore, we see that
the zero-shot setting outperforms the few-shot setting in terms
of accuracy, partly because the few-shot setting leads to higher
prediction rates.

4 MEASURING GEOSPATIAL AWARENESS

Geospatial awareness refers to the perception of space and the use
of spatial information during everyday activities. This idea also
applies to generative language models, i.e., the degree to which
LLMs capture geospatial information and how this is evident when
generating text. To assess the geospatial awareness of LLMs, we
utilize geospatial prepositions, i.e., prepositions that describe spatial
relationships between objects or places in a geographical setting.

4.1 Experimental Setup

We want the LLM to generate sentences such as "<City-A> is
near <City-B>", where "<City-A> is near" is passed as context.
Assuming that the model has geospatial awareness, <City-B> should
be geographically close to <City-A>.

In our experiments, we contextualize the LLM input with a
geospatial preposition and evaluate the output the LLM generates
and prompt the model as: Albany is near ...

We analyze whether the generation of <City-B> given the con-
text of “<City A> is near” is affected by the presence of the preposi-
tion “near” or not. In addition to “near”, we also use the prepositional
phrases “close to” and “far from”. We contrast the results of the
above experiments with a control experiment where the geospatial
preposition is replaced with the conjunction “and”. We prompt the
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Figure 1: Predicted city distances with different prepositions.

(b) Albany is near ...

(a) Albany, New York is near ...

Figure 2: Heatmaps of the places generated with “near". State
information enhances city disambiguation.

model in both zero-shot and three-shot settings. Additionally, we
also append the state of the city in all our inputs.

We curate a list of 93 cities in the contiguous United States to
perform an in-depth analysis of the geospatial awareness of LLMs.
The list balances city size with coverage of most of the contiguous
states. We use ten different prompts per city, where each prompt is
created by randomly selecting a city and its closest city in our list.
We generate fifty samples for each prompt.

4.2 Results and Discussion

Figure 1 displays a box plot of the statistics of the actual distances
between the generated places and the original city in our experi-
ment. The visualization makes it evident that the use of geospatial
prepositions in the sentences has an impact on the generated cities.
The sentences contextualized with geospatial prepositions that indi-
cate close proximity, such as “near” and “close to", yielded cities that
are physically closer to the original city. Conversely, when the con-
text was “far”, a geospatial preposition indicating distant location,
the generated cities tended to be farther away from the original city.
For our control experiment (with the non-geospatial word “and”),
the observed differences in the distances of the predicted cities
provide compelling evidence of the geospatial awareness of LLMs.
The varying magnitude of differences in the distances of predicted
cities for the different geospatial prepositions further reinforces the
notion of geospatial awareness in LLMs.

Figure 2 provides a specific example showing that the inclusion
or exclusion of the state name in the city names influences the
generated cities. The generated cities are occasionally further away
from the source cities when state names are not included in the
prompt. We believe that this discrepancy is due to the limitation
of LLMs in resolving the exact location of a city when the state
information is missing: the lack of state information may lead LLMs
to confuse cities with the same name (disambiguation).
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In conclusion, our results provide compelling evidence that LLMs
are indeed geospatially aware.

5 LLMS AND GEOSPATIAL REASONING

Geospatial reasoning refers to understanding and analyzing geospa-
tial information to draw conclusions and make decisions. In order
to assess the usefulness of LLMs for this task, we devise an experi-
ment to predict the locations of cities using dissimilarity measures,
such as for example distances between the cities.

5.1 Experimental Setup

We use dissimilarity measures to establish a 2-dimensional geo-
metric representation of cities. We accomplish this through the
application of multi-dimensional scaling (MDS) [1]. Specifically, we
begin with a list of cities with known locations and with a test city
whose location and coordinates we want to predict. Knowing the
distance between all cities (including the test city), we then use a
least-squares estimation of transformation parameters between two
point patterns [10] to get the transformation matrix that maps the
2-dimensional geometric space coordinates generated by MDS to ac-
tual geo-coordinates using the cities for which the geo-coordinates
are known. Finally, we use this transformation matrix to determine
the geo-coordinates for the test city.

We use actual distances as a benchmark for dissimilarity mea-
sures and the co-occurrence counts between each city pair as our
baseline measure to establish a comparative reference point. For
any value that is a measure of similarity like Co-occurrence, we con-
sider its reciprocal value to convert it into a dissimilarity measure.
By utilizing a dissimilarity measure between cities to predict their
geo-location, our designed task illustrates a practical application of
geospatial reasoning. We extract diverse measures of dissimilarity
from the LLM and conduct a comparative analysis against our pre-
defined benchmark and baseline. The dissimilarity measures include
the following: (i) Predicted Distance: We predict the distances
between each city pair in a zero-shot setting from LLM , and (ii)
Generation Frequency: We count the generation frequency of
each city in relation to the remaining cities from our measuring
geospatial awareness task.

We use the same list of 93 cities in the contiguous United States
presented in Section 4. Each city in our dataset is considered a test
city for which we want to predict its coordinates and we use the
remaining cities to sample cities with known locations. Based on
the results of Sec:4, we include the state names in the prompts.

5.2 Results and Discussion

We present our location prediction task results in Table 2, including
two mean error distances. The first estimates geo-coordinates by
considering all other cities in contiguous US, while the second
considers cities within one of the nine different US Census Bureau-
designated divisions. To establish a benchmark, we calculate the
minimum attainable error using actual distances. We also employ a
“random” baseline, averaging errors from ten random predictions
for test city locations.

Our results indicate improved accuracy when focusing on smaller
geographical regions (using divisions) rather than considering the
entire contiguous US. This can be attributed to the inherent ease
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Table 2: Mean error distances for geo-coordinate predictions
of cities from dissimilarity measure using MDS

Mean error distance (km)

Measure Contiguous Divisions
Actual distance 190.41 56.78
Random distance 1440.01 483.15
i Co-occurrence count 1237.01 425.64
ii  “and" generations count 1359.51 453.73
iii “near" generations count 750.66 328.91
iv. “close to" generations count 782.22 324.06
v “far from" generations count 1383.23 455.76
vi Predicted distance 346.65 177.41
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(a) Albany, New York (b) Indianapolis, Indiana
Figure 3: Real and predicted locations: Green (Real), Blue (pre-
dicted from actual), Red (predicted from predicted).

in predicting closer cities. Further, the errors associated with co-
occurrence counts (row i) and “and” generation counts (row ii) are
similar to random distance, as they don’t reflect proximity-based
similarity. This trend is more prominent for the “far from” genera-
tion counts (row v). Conversely, “near” and “close to” counts (rows
iii and iv) exhibit much lower errors, supporting LLM’s geospatial
awareness and reasoning ability. However, due to generation count
sparsity, they don’t closely match predicted distances. Predicted
distances (row vi) yield results much closer to actual distances and
far better than random guesses.

It is important to note that our task’s goal was not to assess
LLMs’ geo-coordinate prediction accuracy but to evaluate their
geospatial reasoning capabilities, potentially useful for predicting
relative city orientation rather than exact locations. Figure 3 shows
the actual (Blue) and predicted locations using both actual distances
and predicted distances (Green and Red) for two cities. As shown
in the figure, predicted coordinates closely align with actual values
in some locations and exhibit slight deviations in others. These
disparities would only be marginally noticeable at city scales when
focusing on city orientation rather than its precise location. While
the predicted locations based on predicted distances differ from
actual-distance-based predictions, they remain reasonably close.

In conclusion, our results demonstrate the potential use of LLMs
for geospatial reasoning tasks. While it is important to note that
the values produced by LLMs may not precisely match the actual
values, they still show a remarkable level of similarity. Thus, LLMs
have great potential for supporting humans in geospatial reasoning
and analysis tasks with targeted fine-tuning tailored to a certain
use case.
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6 CONCLUSIONS AND FUTURE WORK

This work demonstrates notable improvements in LLMs’ ability
to handle geospatial data, due not only to the increasing size of
models, but also facilitated by novel techniques such as instruction
tuning. We show that LLMs encode geospatial knowledge, which
can be leveraged for tasks that are simple, such as obtaining coor-
dinates and locations for cities by probing those models, or more
complex, such as a quantitative understanding of spatial preposi-
tions. All this information can be extracted and utilized using the
proper “querying” techniques such as prompting. We demonstrate
that LLMs show potential for geospatial reasoning tasks, but fur-
ther enhancements are needed to meet the desired accuracy and
performance levels. Overall, LLMs have come a long way and now
exhibit geospatial awareness when generating text.

Future research will focus on examining the practical applica-
bility of LLMs in real-world applications involving geospatial data,
as well as utilizing even larger models, and doing so for languages
other than English.

Experiment Code: https://github.com/prabin525/spatial-llm.
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