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Abstract—Incremental graphs that change over time capture
the changing relationships of different entities. Given that many
real-world networks are extremely large, it is often necessary to
partition the network over many distributed systems and solve
a complex graph problem over the partitioned network. This
paper presents a distributed algorithm for identifying strongly
connected components (SCC) on incremental graphs. We propose
a two-phase asynchronous algorithm that involves storing the
intermediate results between each iteration of dynamic updates
in a novel meta-graph storage format for efficient recomputation
of the SCC for successive iterations. To the best of our knowledge,
this is the first attempt at identifying SCC for incremental graphs
across distributed compute nodes. Our experimental analysis
on real and synthesized graphs shows up to 2.8x performance
improvement over the state-of-the-art by reducing the overall
memory utilized and improving the communication bandwidth.

Index Terms—Dynamic graphs, Distributed systems, Strongly
connected components.

I. INTRODUCTION

Detecting Strongly Connected Components (SCCs) in a
large directed graph is a fundamental graph analytics problem.
An SCC is defined as a subset of vertices in a directed
graph with a path from any vertex to every other vertex in
that subset. A graph can have many SCCs, but vertices are
mutually exclusive to these SCCs. Detecting SCCs has many
applications, such as pattern matching [1], topological sort [2],
and graph analytics [3]. Although detecting SCCs by Depth
First Search (DFS) on a directed graph works well for a
sequential approach, performing a DFS can be expensive and
computationally challenging in a parallel architecture [4].

Incremental graphs are extended graph data structures that
undergo continuous updates, such as the addition of nodes and
edges, which present numerous additional challenges. One of
the foremost concerns is maintaining performance efficiency,
as updates to the graph can impact the functionality of graph-
based algorithms, potentially necessitating full recomputation.
Another challenge lies in ensuring data consistency post-
updates, as changes to a single node or edge could impact
the overall graph or its segments. Memory management also
poses a significant issue, particularly with large-scale graphs
that rapidly consume memory resources, requiring efficient
storage and retrieval methods such as graph partitioning or
compression. Traditional graph algorithms designed for static

graphs may not be practical for these dynamic, ever-evolving
structures, hence calling for the development of dynamic
algorithms. Query processing in such a fluid environment
becomes complex, as results must be recalculated after every
modification. If updates to the graph are performed by different
processes or threads concurrently, managing these simulta-
neous alterations to maintain data integrity and consistency
becomes a substantial challenge, often needing locking or
transaction management mechanisms. Lastly, like all data
types, incremental graphs have concerns regarding data privacy
and security. These issues become even more pressing in
distributed environments where it is imperative to ensure that
updates are authorized, and information remains uncompro-
mised. Overcoming these challenges necessitates a blend of
advanced algorithms, effective data management practices, and
adept software engineering techniques, as explained in [5].

To overcome the challenges of parallelizing DFS on static
networks, FW-BW (Forward-backward) approach was pro-
posed [6]. To further improve the performance, trim techniques
which fast reduce a large number of trivial SCCs (e.g., with
one or two vertices, called trim-1 and trim-2, respectively) are
introduced by [7]. Machine learning based optimizations have
also been proposed in [8] and [9] for shared memory systems.
To the best of our knowledge, there has only been one attempt
to detect SCC on distributed networks [10]. For the most part,
the state-of-the-art parallel approaches for detecting SCCs are
optimized for shared-memory systems.

Figure 1, shows an example workflow of computing SCC
for an incremental graph that changes over time. At each
timestep T", a new batch of edge insertions are applied over
the graph at time T™!. This type of edge addition is a very
common workflow in scientific simulations that periodically
keep updating the graph databases. Currently, the standard
approach to identify SCC in such a network is to recompute the
SCC over the entire network every timestep, which is a costly
operation. Although there have been attempts at an adaptive
approach for other algorithms such as minimum spanning
tree [11], single source shortest path [12], [13] and vertex
coloring [14], adaptive approaches for identifying SCCs are
limited in comparison. A recent approach for adaptive SCC
detection is proposed in [15], which provides the Las Vegas
algorithm for DAGs. However, they don’t make considerations
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Fig. 1: Example workflow for computing SCC on incremental graphs. At each timestep T, a new batch of updates is added

and SCC is recomputed.

for parallel or distributed scalability. Considering incremental
SCC detection is an unbounded problem, as explained in [16],
there isn’t a theoretical algorithm that solves it in polynomial
time when there are both vertex and edge updates. As a result,
we focus our work strictly on edge additions alone, keeping
the number of vertices constant.

Our key contributions are as follows:

e A novel meta-graph storage format for caching inter-
mediate SCC results after every new insertion batch.
This format gives us a reduced-size graph for computing
further SCCs after dynamic edge additions.

e DistSYNC, an asynchronous and distributed memory
algorithm for identifying new SCCs after dynamic edge
additions on the meta-graph format.

o A distributed memory implementation of DistSYNC us-
ing YGM [17], an asynchronous communication frame-
work on top of MPI.

To the best of our knowledge, we propose the first dis-
tributed algorithm for incremental SCC detection. We also
propose the first asynchronous incremental algorithm for SCC
detection. The central concept behind meta-graph storage is the
fact that we can treat identified components as meta-vertices
and traverse over them to find new components rather than
traversing every vertex in the graph. The rest of the paper is
organized into five sections. In section II, we introduce the
required background information and related works. Section
III dives into explaining the DistSYNC algorithm with the help
of examples. The implementation details and experimental
evaluations are covered in sections IV and V, respectively. The
final concludes the paper with directions for future works.

II. BACKGROUND AND RELATED WORK

Detecting SCCs in a network is a well-studied problem. This
section discusses related work on detecting SCCs in a large-
scale network. Our approach utilizes some of the concepts, so
this section also provides prerequisite background information.

A. Sequential SCC

Tarjan’s [18] implementation is the well-known sequential
algorithm for detecting SCC. It uses DFS (depth-first search),
and the complexity is O(V + E), where V is the number of
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vertices and E is the number of edges. There are many attempts
to parallelize Tarjan’s approach; however, all demonstrate poor
scalability.

The Forward-Backward (FW-BW) algorithm [6] uses a re-
cursive approach. The algorithm can be described as follows:
Let V be the set of the vertices in the graph G(V, E), O(V)
be the set of all outgoing edges in the graph, and I(V) set
of all incoming edges. Now for a given graph G(V, O(V)),
a random pivot vertex U is selected, and then a BEFS is
performed on G(V, O(V)) from a pivot vertex U to detect
vertices (Let the set of these vertices be D) that can be reached
from u. Next, another BFS is performed on G(V, I(V)) from
the pivot vertex U, and a backward search is done where
those vertices that can reach u are selected and inserted into
P. The intersection of D and P forms SCC, which has the
pivot element. Now from the original graph, the vertices
identified in SCC are removed, and the FW-BW approach is
recursively called on the remaining sets and the disjoint sets
obtained after removing the vertices part of SCC from D and
P. In the best-case scenario, it takes O(nlogn) to detect
SCC. This approach was further improvised using trimming,
which removes the vertices with zero in-degree and out-degree.
Trimming reduces the number of vertices in FW-BW sets and
speeds up the overall performance.

B. Shared Memory SCC

Ji et al. [10] proposed a novel synchronization paradigm,
called R-sync, to spanning tree-based detecting of SCC. This
approach provides many benefits, such as early termination for
conventional bottom-up traversal. The early termination allows
them to check only a few neighbors and reduces the traversal
compared to the conventional synchronization approach.

Hong et al. [7] identified the potential limitation of the FW-
BW-Trim approach on large real-world networks. They pro-
posed an extension of the FW-BW approach, which considers
the characteristics of the dataset instances, such as the small-
world property. Their implementation was the first attempt to
develop a parallel algorithm to detect SCC and outperform the
sequential Tarjan [18] implementation. Based on the small-
world property, they have identified that wiring a few edges
in the diameter of a real-world graph can shrink its size. Their
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Fig. 2: Example for Lemmas 1 and 2. Both the right-hand sides have the same structural properties as the left-hand sides.

main idea is to expand trimming operation and decomposing
after the initial SCC is found based on partitioning on weakly
connected components.

Slota et al. [19] proposed a shared memory multistep ap-
proach that uses a parallel BFS and graph coloring. They have
used variants of FW-BW and applied Orzan’s coloring method.
To minimize synchronization, they avoid using locks. Their
experiments on real-world graphs show better scalability on
low-diameter networks. The coloring approach is also similar
to FW-BW with some modifications. Instead of just using one
pivot, it uses multiple pivots. We use this approach to perform
multi-threaded SCC within distributed processes.

C. GPU Implementation

Li et al. [20] proposed a GPU implementation of detecting
SCC using the FB-BW-Trim algorithm. They present a hy-
brid method that allows the adoption of different parallelism
strategies for various graph properties. Barnet et al. were
the first to implement the FB-Trim algorithm using CUDA.
Stuhl [21] extended the work by introducing an extended
graph traversal implementation. Sthul ran experiments on the
synthetic network and demonstrated good performance on
synthetic networks and when running on real-world networks,
except for one. The reason for poor scalability was due to
the nature of the real-world graphs and skewed component
sizes. Li et al. [20] implement a hybrid method that detects
SCC in two phases. In the first phase, the algorithm is
only focused on detecting a single large SCC. In the second
phase, the remaining small-sized subgraphs are processed. It
is shown that identifying small-sized SCCs takes more time
than identifying a single large SCC.

D. Dynamic Graphs

Attempts at getting batched/snapshot-based frameworks for
graph algorithms are explored in [22] and [23]. STINGER [24]
is a shared memory solution that can ingest structural changes
at a rate of 10 million events per second with an updating
kernel peak rate of around 1 million events per second. A
Shared memory parallel algorithm for weakly connected com-
ponents on dynamic graphs is given in [25] while a distributed
implementation is given by [26]. There have been no parallel
implementations for strongly connected components on graphs
with edge insertions, let alone distributed algorithms.
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III. METHODOLOGY

Before discussing the details of the DistSYNC algorithm,
we must first explain the motivation behind this algorithm,
which stems from two lemmas on the structural property of
graphs and strongly connected components.

Lemma 1. Given two SCCs A and B, if there is a forward
edge between any vertex in SCC A to a vertex in SCC B, we
could say there is a forward path between all vertices in SCC
A to all vertices in SCC B.

Proof. 1f there exists a forward edge e(ak,bx) € E
such that SCC(ak) A and SCC(bg) B, then

Fwd
there exists a direct forward path Qg e, bk. Let,
SCC(A) = {ap,ai1,...,ak,...,q;} and, SCC(B) =

L. Fwd
{bo, b1, ..., bk, ..., bj}. By definition of SCC, ax UALER

ak and bk Fwd, by VX, y where x € [0, {] and y € [0, ]
Fwd

“

where — — " denotes the existence of forward path.
.. Fwd Fwd Fwd
By transitive property, dx — — Qx —— bx — — by. Thus,
Fwd

In Figure 2a, there are two SCCs with labels A and B. Each
SCC has three vertices, each labeled 1 through 6. There exists
a forward edge between vertices 1 and 2 in SCC A to vertices
4 and 5 in SCC B. Since there is a forward path between all
vertices within an SCC, we can say that vertex 1 in SCC A
is reachable from vertex 3. Similarly, there is a forward path
between vertex 4 and vertex 6. This added to the fact that
there is a forward path between vertex 1 and 4 means there is
a forward path between vertex 3 and vertex 6 through vertices
1 and 4 even though there is no direct edge between them.

Because of this structural property, maintaining any other
edge across two SCCs is redundant information when identi-
fying the components. As we can see on the RHS of Figure 2a,
all the inter-SCC connections are replaced with one forward
path between the two SCCs. By doing so, we can reduce
the number of inter-SCC edges while representing the same
structural information of the graph. This lemma could be
extrapolated to any SCCs that are bigger than the provided
example as long as there is one forward path that connects
both the SCCs acting as a one-way bridge between the SCCs.
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Fig. 3: Converting initial graph to meta-graph. The initial graph is shown in the leftmost part. They are then segregated into
different SCCs, which we refer to as meta-vertices. Only one representational edge that traverses two meta-vertices is converted
as a meta-edge while the rest is discarded. We finally get a meta-graph with three meta-vertices and three meta-edges

Lemma 2. Given two SCCs, A and B, if there is a forward
and backward path between them, then the vertices in both
the SCCs could be merged into a single component.

Proof. Let S1
SCC(A), S>
SCC(B):Va,beV.

Given ef(ar, bp) € E : af fwd, bp(direct forward path)

{ao,al,...af,...ab,...am} €
{bo,b1,...bf,...bp,...bn} €

B

also, ep(bf, ap) €E : ap Bwd bg(direct backward path)

Now, Vx € [0, m]

F

a 2% 510, SI by definition of SCC; S2
through €f and Lemma 1
S1 by definition of SCC; S2
through ep and Lemma 1

Bwd
Ay «—— S1US>

Similarly,Vy € [0, n]

Fwd « Fwd .
by (E _d) S1usS2 — — " denotes existence of
w

Bwd . .
path from both direction
Fwd
Therefore, Qx (E — by

Hence, we can merge A and B into single SCC C such that
C consists of all vertices in S1 US> O

On the LHS of Figure 2b, there are two SCCs with three
vertices, each labeled 1 through 6. We can see that there is
a forward path from vertex 1 to vertex 4 while there is a
backward path to vertex 3 from vertex 6. Once again, from
both the fact that there is a forward path between any two
vertices within the same SCC and there is a forward and
backward path between the two SCCs, we can say there is
a forward path between any two vertices from both the SCCs
and hence all the vertices belong to the same SCC. This is
represented on the right side of Figure 2b.

By applying Lemma 2, we can represent two SCCs residing
in different processes as a single component, thereby reducing
the unique components we need to represent the same struc-
tural information of the graph. Like Lemma 1, this can be
extrapolated to any number of SCCs of any size as long as a
forward and backward path exists among them.

A. Meta-graphs

We introduce the meta-graphs G’/ (MN, ME) as an abstrac-
tion on top of the existing graph where the vertices (referred
to as meta-nodes(MN) or meta-vertices), are the SCCs. The
edges of G”/, which are referred to as meta-edges(ME), are
the directed edges that connect two meta-vertices. They are
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created by first identifying the various SCCs in the original
graph. These SCCs act as the meta-vertex, with each meta-
vertex comprising all the vertices that belong to that SCC.
From lemma 1, we know that for computing SCC, when
multiple redundant edges traverse two different SCCs, then
they could be represented using a single edge while still
holding on to the same structural property. Thus a single
representational edge that traverses the two SCCs/meta-vertex
is chosen as the meta-edge while the rest is discarded.

We take into account the direction of the edge so that
only edges that traverse in the same direction are considered
redundant, and a representational edge is picked from them.
Meta-graphs are much smaller than the original graph because
all the vertices belonging to an SCC can be represented using
a single label (color). For instance, the original graph with 18
vertices and 23 edges in Figure 3 is converted to a meta-
graph with three meta-vertices and three meta-edges. It is
also to be noted that initially, a meta-graph is directed and
acyclic (DAG), as multiple SCCs that form a cycle cannot
exist without being absorbed into a single SCC. We will be
leveraging this fact to overlay dynamic edge additions on
top of this meta-graph to see if new cycles are formed to
identify updated SCC. Storing graphs in a meta-graph format
enables us to recompute the SCC on a reduced-size meta-graph
rather than the larger original graph. Also, a lot of real-world
graphs consist of many large SCCs, which in turn could be
represented using a single label. Hence, meta-graph abstraction
drastically reduces the size of these graphs. This is one of the
key factors for the improved performance of our algorithm.

B. Forward color propagation and backward confirmation
messages

Forward color propagation sends the color of a pivot meta-
vertex to its next neighbors, along with the accumulated size
of all the meta-vertices in that chain originating from the pivot.
These are implemented as functions that can be executed by
the neighbor vertex using a remote procedure call (RPC). The
neighbors recursively keep calling that function and pass it
further to their neighbors until the base condition is reached.
This is a mechanism we will use in DistSYNC to identify
whether a chain is a cycle. Likewise, backward confirmations
are recursive messages sent to the previous sender of a forward
color propagation message notifying the presence of a cycle
for that chain along with its total size. Meta-vertices asyn-
chronously fire these messages to destination meta-vertices
when they are asked to and go on to wait for further messages.
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C. DistSYNC

The critical steps in our distributed algorithm for SCC
are bookkeeping the forward and backward messages sent
from different pivots. Figure 4 explains the workflow of our
algorithm using a sample graph with four initial SCCs, denoted
by four colors, which we partitioned across two distributed
ranks. The four components are denoted using the starting
letters of their respective colors, namely, R, G, B, Y. It is
to be assumed that the vertices within the same color are
interconnected, but for convenience, we show only the edges
that go across different colors denoted by a single arrow.
Newly updated edges that arrive in the first time step are
denoted by dotted arrows. We can see that in the initial phase,
there are two existing edges, RG and GB, along with two
updated edges, BR and BY.

In phase one, we build a meta-graph with four meta-vertices
denoting the four colors and four meta-edges denoting the
new and existing edges between them. Then to trigger the
start of forward checks in phase two, all the meta-vertices
that are a source to a newly updated edge that traverses to
another meta-vertex are considered pivots. They then forward
propagate their colors and size to the respective destination
meta-vertex. In Fig 4, the solid yellow connectors denote the
forward propagation through BR and BY as they are newly
updated meta-edges. R, upon receiving a propagated message
from B, forwards that same color downstream to G along with
the combined size of both of them. This is shown in fig 4 with
a solid yellow connection RG. Throughout the forward chain,
everyone propagates the pivot color along with the updated
size in the chain. When B receives a forward message from
G with itself as the pivot, it recognizes that it is a cycle. When
a cycle is detected, it checks if its current size is less than the
size of the chain and triggers a backward confirmation to the
sender of that message. In this case, the size of the chain is
16, which is greater than that of B. So B updates its colors
and triggers a backward confirmation with the new size to
G, which in turn does the same to R. So R and G are now
essentially subsumed by B, with 16 being their new size.

A case where the own size of the meta-vertex is greater than
the size taken from the backward confirmation message could
only happen if that vertex has been updated to a new color
after it sent out the previous forward message. In that case,
it doesn’t propagate backward confirmation but instead asks
the successor who sent the backward confirmation to revert to
its previous state. By that point, it would already have sent
forward propagation messages with the new chain sizes and
pivot.

The algorithm terminates when there are no more forward,
backward, or revert messages to send through the entire
network, which would mean every meta-node is correctly
updated to reflect the new component it belongs to and the
new size. Individual forward, backward, and revert messages
with different pivots would flow back and forth through the
network until everyone hits a stable state and there are no
more new messages. Since this is completely asynchronous,

none of the meta-vertices wait in anticipation of a backward
confirmation after a forward check. The meta-vertices process
these messages as they are received and go back to listening
for further messages until the algorithm terminates.

In essence, DistSYNC is an extended version of cycle detec-
tion but over a meta-graph. Detecting cycles are expensive, but
we highlight two key advantages that ensure that DistSYNC
is efficient. Since it operates over a meta-graph, the number
of edges it traverses to detect a cycle is dramatically reduced.
Also, the number of pivot points that trigger forward checks is
limited to only the meta-nodes that have newly updated meta-
edges. This number is dependent on the size of the update
batch; a larger batch means more pivot points that slow down
the entire process, as we discuss in Section V, but we can
cleverly partition the update batch to maximize efficiency.
In the worst case, every meta-edge can be traversed to find
the cycle giving it an amortized time and communication
complexity of O(MV + ME). Due to the usage of distributed
hash tables from YGM, each process only stores the meta-
vertices that belong to it. Hence the space complexity is
O((V + E)/N) where N is the number of processes.

Algorithm 1 Forward and backward propagation

1: procedure CHECKFORWARD(piVvot, 5Z)
2 if self == pivot then

3: if sz > size then

4: size = sz

5 Forwardsender

— ConfirmBackward(pivot, s2)

6 end if

7: end if

8 if self = pivot then

9 5z= 5z + size
10: for Each forward neighbor y do
11: y —CheckForward(pivot, sz)
12: end for

13: end if

14: end procedure
15: procedure CONFIRMBACKWARD(piVOt, 5Z)
16: if sz > size then

17: color(self) = color(pivot)
18: Size = sz
19: Forwardsender
— ConfirmBackward(pivot, sz)
20: end if
21: if Sz < size then
22: confirmationsender —Revert(pivot)
23: end if

24: end procedure

25: procedure REVERT(pivot)

26: revert to the previous state

27: confirmationsender —Revert(pivot)
28: end procedure

Algorithm 1 explains the procedures required for forward
and backward propagation, respectively, while algorithm 2
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Fig. 4: Example workflow of DistSYNC. The initial meta-graph is shown in (a) with four different SCCs/meta-vertices split
across two ranks pl and p2. Blue forward propagates its color to yellow and red based on the updated edge in (b). In (c), red,
in turn, propagates blue forward to its neighbor green. Green changes its color to blue and confirms it backward to red in (d).
Red does the same and propagates it backward to blue. Now everyone in the cycle is blue.

puts everything together and explains the full DistSYNC
algorithm. An arrow denotes a remote-procedural call where
the sender asks the LHS of the arrow to execute the function
on the RHS with the given arguments. After constructing
the initial meta-graph, every process spawns a non-blocking
listener thread to receive forward and backward messages from
other processes. This is shown in lines 1-3 in algorithm 2.
Meanwhile, the application thread skips to line 4 and initiates a
forward check for all newly updated meta-edges. The forward
check is done in lines 1-14 of algorithm 1.

Algorithm 2 DistSYNC

Require: list of meta-edges ME and meta-nodes MN
1: for All meta-nodes € MN do

2 Listen to forward or backward message

3: end for

4: for each edge X, y € ME do

5

6

if Meta-edge X, y is new then
y —CheckForward(X, size)
execute CheckForward
end if
. end for
. Barrier()

> x asks y to

% A

When a destination meta-vertex receives a forward check
message, it propagates that color and updated size to all its
immediate neighboring meta-vertices. In lines 1 and 2 of
Algorithm 1, a meta-vertex checks if it is the received pivot
and if the size is bigger than itself, which determines that a
cycle is detected. If so, it triggers a backward confirmation in
line 5. If its size is greater than the received size, it means
that it has since been updated, so it doesn’t send a backward
confirmation. If the meta-vertex is not a pivot, it just routes
the forward message to its neighbors with the updated size
shown on line 11.

IV. IMPLEMENTATION

This section will go over the details of implementing
DistSYNC algorithm with the design choices and selection
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of data structures for the most efficient approach. The dis-
tributed algorithm was implemented in C++ using YGM, an
asynchronous communication framework with a built-in suite
of distributed data structures. YGM uses MVAPICH under the
hood for scaling the application across distributed processes.

A. Partitioning

This step may not be a part of the two phases of DistSYNC,
but it is essential that the graph is partitioned efficiently by
avoiding load imbalance and minimizing inter-process com-
munication. For partitioning the input graph, we use ParMetis
[27], a multi-way partitioning library. ParMetis internally uses
Kernighan-Lin algorithm [28] which allocates partitions to
vertices such that the number of inter-partition edges is mini-
mized, i.e., the inter-process communication load is reduced.

B. YGM

The presence of non-uniform communication patterns in
large-scale graph algorithms makes regular MPI an inefficient
framework for this algorithm. Also, the absence of distributed
data structures like hash maps and sets makes it hard to
code complicated distributed algorithms. For these reasons,
we chose to use YGM as our base framework. YGM uses
RPC-style fire-and-forget semantics for its communication
interface. Messages in YGM have three basic components:
a function to execute, arguments to pass to the function,
and an MPI rank at which to evaluate the function. The
procedures for forward and backward checks are encapsulated
into asynchronous messages and fired to a destination rank
that holds the receiving meta-vertex. The destination rank
receives that message and executes that procedure with its
arguments. In this particular case, the CheckForward() and
ConfirmBackward() procedures from algorithm 1 are sent as
asynchronous RPC messages.

The fact is that DistSYNC, like any graph algorithm,
generates large numbers of small messages. Hence, YGM
provides message buffering capabilities that bundle together
multiple small messages between a sender and receiver to
reduce the total number of remote MPI messages underneath
and thus improve bandwidth. Lastly, to communicate non-fixed
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width data structures, YGM serializes the structured messages
to variable length byte arrays. This gives us the flexibility of
communicating complicated structures without having to take
a performance penalty.

C. Initial SCC computation

Initially, each process needs to compute the local SCCs
of its allocated subgraphs. For computing the initial SCCs,
we use Multistep [19], a shared memory implementation that
uses a combination FW-BW-Trim and their novel BFS coloring
algorithm. It is implemented in C++ with OpenMP directives,
and we created a wrapper module to interface Multistep within
our framework. It takes in an edge list representation of
the allocated subgraph and produces a vector with indices
representing the vertex IDs and SCC IDs as values.

D. Data stuctures

To perform DistSYNC algorithm for dynamic graphs, we
need to accurately track forward and backward meta-edges
from every meta-vertex. But these vertices would reside across
different ranks, so traditional data structures would not be
sufficient. For this purpose, we make use of the suite of
distributed data structures provided by YGM. In specific, we
use distributed hash maps and hash sets. YGM internally stores
these tables across many ranks and provides constant time
lookup for every entry into the map. If a process tries to look
up a particular key that isn’t stored in that process, it queries
the other process that holds that key and returns its value. This
seamlessly happens underneath while the interface provides a
global view of that hash table and hence enables every process
to look up every key-value pair of the distributed map.

The color associated with each vertex is stored in a YGM
hash map accessible by every process. The list of neighbors
for every meta-vertex is also stored in YGM hash map. This
lets each process forward and backward propagate colors to its
neighbors by looking them up in constant time with at most
two hops. Lastly, every process builds a set of all forward
propagated colors it received. Hence, when it receives a
backward propagated color, it checks this set for an equivalent
match and updates its color if it finds one. This is a way of
checking forward and backward paths before updating colors.

V. EXPERIMENTAL EVALUATION

In this section, we will discuss the results from running
distributed experiments starting with the strong scaling results
in comparison with the iSpan [10] as the baseline. Then we
compare the speedups of DistSYNC with varying batch sizes
of dynamic updates. Then lastly, we discuss the performance
metrics of DistSYNC using YGM, including average memory
utilized and interprocess communication bandwidth.

A. Experimental setup

We ran the distributed experiments on Intel Xeon dual E5-
2690v4 processors with 28 cores per node. The timing for
these experiments is recorded after the creation of initial meta-
graphs to recompute the SCC for a dynamic batch of edge
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additions. For our benchmark datasets, we used four real-world
graphs; Flicker (F1), Facebook (Fb), Orkut (Or), and Roadnet-
USA (Rusa), along with two synthetic graphs; RMAT26
(R26) and RMAT27 (R27). The RMAT was generated with
the probabilities (a=0.45, b=0.15, ¢=0.15, d=0.25) and scale-
free degree distribution. Table I gives more details about the
datasets.

The baseline iSpan is not a dynamic model that can handle
batches of updates; hence, in the iSpan experiments, we
recompute the SCC over the entire graph, i.e., the initial graph
plus the update batch. This is currently the only available way
to compute distributed SCC on incremental graphs. The graph
properties give us an idea of how big the meta-graphs will
be. For example, larger SCCs would mean more vertices can
be grouped under a single meta-vertex and, in turn, reduce
the total number of meta-vertices. This reduction in the total
number of SCCs enables us to create a meta-graph that is
much smaller than the original graph and hence significantly
reduces the cost of recomputing SCC.

B. Performance

The first and primary metric for analyzing performance
is strong parallel scaling. Figure 5 shows the strong scaling
results of DistSYNC and iSpan for a single-threaded imple-
mentation of Tarjan’s algorithm. DistSYNC scales well, with
max speedups ranging from 8x to 28x for all graphs on up to
64 processes. In comparison, iSpan scales with max speedups
ranging from 6x to 9x. DistSYNC is also able to outperform
iSpan in all but one dataset, namely, Roadnet-USA(Rusa), with
its speedups flatlining at 8x. This is because the size of the
largest SCC is significantly smaller, and the number of SCCs
is large. This dataset essentially has a lot of small SCCs. This
means the meta-graph also has a lot of meta-vertices, thereby
reducing the impact of constructing a meta-graph.

DistSYNC performs at its worst when the original graph
consists of many small SCCs, but those types of graphs are
much rarer because of the small-world property of graphs, as
explained in [7], where vertices of real-world graphs usually
cluster together to form few large SCCs followed by several
medium to small SCCs.

Apart from the number of SCCs, the other factor influencing
the performance of DistSYNC is the size of the update batches.
Figure 6 shows us the speedups of DistSYNC and iSpan at 32
nodes when varying the size of the update batch. The X-axis
denotes the percentage of the initial batch size. For instance,
20% of the batch of edges are kept for updates while the
remaining 80% are added to the initial graph to keep the
overall size constant. We perform these experiments on 20,
40, 60, and 80% batch sizes.

We observe that DistSYNC is at its fastest for smaller
update batch sizes, and the speedup gradually decreases as we
increase the batch size. This is because at smaller batch sizes,
the number of new edges to be added is less, and hence fewer
forward and backward messages are triggered by each process.
We note that the overall size of both batches combined remains
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TABLE I: Details of benchmark datasets

Dataset Initial edges | # of edges in update | # of SCCs | Largest SCC size | Best iSpan time(MS) | Best DistSYNC time(MS)
Flicker(F1) 1,151,463 1,158,925 487,659 9,752 21.3 6.24
Facebook(Fb) 67,255,691 67,255,782 1,576,432 963,487 230.4 98.2
Orkut(Or) 122,346,784 | 122,346,157 2,975,565 1,865,468 349.11 146.52
Roadnet-USA(Rusa) | 93,568,872 93,568,112 3,501,682 | 443,923 248.6 279.4
RMAT26(R26) 67,108,864 67,107,927 1,136,282 1,082,223 215.6 75.4
RMAT27(R27) 734,217,728 | 734,279,598 9,987,245 92,742,613 2472.7 733.4
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Fig. 5: Speedups for DistSYNC(blue) and baseline iSpan(red) with respect to single-threaded Tarjan’s implementation.

constant. Only the allocation of edges between the initial batch
and the updated batch varies.

In contrast, the performance of iSpan remains fairly constant
across all batch sizes as the size of updates will not influence
it, considering it is not a truly dynamic model and recomputes
the SCC for the entire graph every time there is a new batch.
We perform this set of experiments to elucidate the benefits
of using a dynamic algorithm for graphs with incremental
updates. These benefits are amplified further when there is
more than one iteration of updates because, for every iteration,
only the new batch of meta-edges will be considered for pivots
while the previous iterations will be baked into the meta-graph.
This is unlike any of the currently available state-of-the-art
parallel SCC algorithms where the entire graph, along with
incoming updates, needs to be recomputed for every update.
C. Memory Utilization

Distributed implementations always have the added ad-
vantage over shared memory implementations of reducing
memory utilized per process to perform massive-scale com-
putations. In this section, we highlight memory utilization
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to demonstrate the benefits of using YGM as the distributed
substrate for DistSYNC. Figure 7 gives us the average memory
utilized per process as we increase the number of processes.
We can see that for all the datasets, the average memory
utilized decreases fairly consistently as we scale up. A signif-
icant contributor to this decrease is the use of distributed data
structures provided by YGM. Considering DistSYNC uses
hash tables to keep track of forward and backward connectivity
for each vertex while using hash sets to keep track of all
vertices in a meta-vertex, the number of hash entries can be
significant if we use a traditional hash table. The YGM hash
table stores only entries of vertices that belong to that process,
while looking up external entries by exchanging messages
between the processes. This is seamlessly handled under the
hood by YGM, while all the entries appear as one unified hash
table for the user. To the best of our knowledge, the state-of-
the-art iSpan replicates the entire graph on all the ranks, so
memory utilization doesn’t scale with increasing ranks.
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D. Message coalescing

YGM also enables us to coalesce multiple messages be-
tween two processes and send them as a single message.
These messages are stored in a fixed-size 512 Kb buffer in
each process. When the buffer is filled up or when it is
forced to flush, it is sent to the destination process, which
handles all the incoming messages. These messages are usually
forward or backward check messages that contain individual
lookups of vertices in hash tables. Since these are extremely
small messages, sending them individually in MPI would
significantly increase the total number of remote communi-
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cations and result in poor bandwidth utilization. The order
in which these messages are handled wouldn’t matter, as this
is a completely asynchronous algorithm. At worst, a process
would start checking the backward path while still waiting
for confirmations on forward paths from other processes, in
which case, it would simply have to trigger a new forward
check once it is updated.

Figure 8 shows the reduction in the number of MPI mes-
sages by coalescing small messages in YGM. In the Orkut
graph, the difference is amplified as it consists of a relatively
small number of densely packed meta-vertices that frequently
communicate with a small subset of processes. Coalescing
these messages ensures the buffers are filled before sending
it as an MPI message. Likewise, Roadnet-USA has the least
difference due to its relatively large number of meta-vertices
communicating with a larger subset of processes and hence
sending sparse buffers before filling them fully. As a result, the
total number of messages is increased. This is another reason
why DistSYNC is less performant for many small SCCs.

VI. CONCLUSION

This paper introduces DistSYNC, an asynchronous algo-
rithm leveraging distributed, multithreaded CPU parallelism
for identifying Strongly Connected Components(SCC) in in-
cremental networks with edge additions. We have also sup-
ported the algorithm with the implementation details of the
distributed framework. We show that our approach can offer
performance speedups of up to 30x over single-threaded
Tarjan’s implementation and up to 2.8x over the state-of-the-
art. In the future, we plan to extend DistSYNC with edge
deletions. We are also working on caching meta-graphs in
persistent memory like NVMe ssd. This would enable us to
read and write meta-graphs much more quickly in between
each timestep for efficient recomputation.
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