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Abstract—This paper introduces a novel physical enhanced
residual learning (PERL) framework for Connected
Autonomous Vehicles (CAVs) platoon, aimed at addressing the
challenges posed by the dynamic and unpredictable nature of
traffic environments. The proposed framework synergistically
combines a physical model, represented by Model Predictive
Control (MPC), with data-driven online Q-learning. The MPC
controller, enhanced for centralized CAV platoons, employs
vehicle velocity as a control input and focuses on multi-objective
cooperative optimization. The learning-based residual controller
enriches the MPC with prior knowledge and corrects residuals
caused by traffic disturbances. The PERL framework not only
retains the interpretability and transparency of physics-based
models but also significantly improves computational efficiency
and control accuracy in real-world scenarios. The experimental
results present that the online Q-learning PERL controller, in
comparison to the MPC controller and PERL controller with a
neural network, exhibits significantly reduced position and
velocity errors. Specifically, the PERL's cumulative absolute
position and velocity errors are, on average, 86.73% and 55.28%
lower than the MPC's, and 12.82% and 18.83% lower than the
neural network-based PERL's, in four tests with different
reference trajectories and errors. The results demonstrate our
advanced framework's superior accuracy and quick
convergence capabilities, proving its effectiveness in maintaining
platoon stability under diverse conditions.

1. INTRODUCTION

Connected autonomous vehicles (CAVs) platoon with
inter-vehicle communication permits vehicles to travel close
together, enhancing road capacity and traffic safety [1], [2].
The vehicle platoon system integrates a complex network of
interconnected agents, involving multiple vehicles. The
system is characterized by the non-linearity and coupling of
individual vehicle dynamics models, the interactions between
system agents, model uncertainties, and external disturbances,
all of which can pose significant challenges to the performance
of platoon control [3], [4], as illustrated in .
Considering real-world scenarios where vehicle platoons
interact with dynamic traffic under unpredictable conditions,
including extreme weather like rain or snow, maintaining
steady-state control is crucial for safe destination arrival.
Therefore, a safe and precise motion controller is essential for
achieving the stability of CAVs formation, enhancing
operability, and ensuring robustness against interferences.
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Existing methods for CAVs platoon control can be
categorized into two categories [5], [6]: model-based methods
(e.g. rule-driven, optimization methods), and learning-based
methods (e.g. multi-agent collaborative control based on
reinforcement learning and deep learning). Many platoon
control designs have focused on classic control approaches
based on physics models [7]. Leveraging a robust theoretical
foundation, these methods provide a solid understanding and
control of vehicle dynamics, offering universally applicable
modeling, control, and analytical solutions for autonomous
vehicle platoon control. Specifically, static linear controllers
represent one of the most thoroughly investigated methods [8],
[9]. They are convenient for application and facilitate the
establishment of closed-loop system models for theoretical
analysis of various system performances. However, this type
of controller struggles to support constrained optimization
frameworks with multiple explicit objectives and constraints.
Furthermore, methods like Sliding Mode Control (SMC) [10],
adaptive control, and Model Predictive Control (MPC) [11]
have also been developed. Particularly, MPC has garnered
attention due to its ability to explicitly handle safety
constraints, integrate optimization of collaborative control
objectives, and its clear potential for distributed application
and robustness [4], [12]. These traditional methods often
linearize complex systems to facilitate theoretical study, which
tends to overly simplify complex dynamics and overlook the
dynamic variability of platoon systems. This leads to model-
based networked autonomous vehicle control methods facing
challenges in effective application within real traffic.
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Recently, data-driven machine learning methods [13]-
[15]including Deep Learning (DL) and Reinforcement
Learning (RL), have emerged as formidable tools [16], [17].
DL-based or data-driven model-free control methods,
independent of dynamical models, can leverage driving
trajectory data to directly design control strategies for
networked autonomous vehicles. These methods are capable
of capturing complex nonlinear relationships within data,
enabling effective handling of various driving scenarios. RL is
a commonly used model-free control method in the control of
intelligent networked vehicles in mixed traffic. Various
training algorithms, such as Deep Q-Networks (DQN) [18],
[19] and Deep Deterministic Policy Gradients (DDPG) [20],
[21], have been widely applied. Sallab et al. [22] employed
deep reinforcement learning to implement lane-keeping
control in the open racing car simulator (TORCS), comparing
the discrete-space DQN method with the continuous action
space DDAC method, demonstrating the latter’s ability to
achieve excellent control effects and smooth trajectories. Shi
et al. [17] introduced a DRL-based cooperative CAV
longitudinal control strategy for mixed traffic settings,
segmenting the mixed platoon into multiple subsystems for
efficient centralized cooperative control. Furthermore, multi-
agent reinforcement learning, a concept explored by Busoniu
et al. [23], has been widely adopted in networked CAVs
platoon control [24], [25]. Compared to other machine
learning algorithms, the reinforcement Q-learning method in
cooperative control scenarios enables direct and simple output
of Q-values in the current state to choose the best action
sequence [26]. With sufficient samples or observational data,
Q-learning learns the optimal state-action pairs. In practice, it
has been proven to converge to the optimal state-action value
with a probability of one. The Q-network reinforcement
learning technique in [27] determines the optimal locations for
base stations to provide enhanced platoon features to CAVs.
Given the high dimensionality, continuous state and action
spaces, and non-linearity of networked autonomous vehicle
control problems, RL-based control strategies can learn
complex control models through continuous exploration of the
environment [27]. However, they often lack interpretability
and transparency, making understanding the control processes
and dynamic mechanisms of multi-vehicle autonomous
driving challenging. Additionally, the data collection process
for the required training data is inherently risky, with models
only being usable post-pretraining. To summarize, both
physical models and learning methods alone are inadequate for
the dynamic and complex platooning control problem.

To address this gap, this paper introduces an online
learning physical enhanced residual learning (PERL)
controller for centralized CAV platoons. This framework
integrates physical models with data-driven RL techniques.
The vehicle dynamics’ physical model, represented by MPC,
provides foundational knowledge and constraints, while Q-
learning, employed as an online residual learning method,
focuses on capturing additional errors, such as those stemming
from incorrect calibration of the physical model, thereby
refining the model's output. In this manner, the controller
bridges the gap between theoretical foundations and the
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dynamic, complex realities of autonomous driving scenarios.
Our contributions are as follows:

We develop a novel PERL framework for CAVs
platoon control, maintaining the inherent
interpretability and transparency of physics-based
models. This framework simplifies troubleshooting
and fine-tuning and theoretically demonstrates the
control accuracy and stability.

An enhanced MPC controller is formalized for
centralized AV platoons. The velocity is employed
as the control input for CAVs and considers multi-
objective cooperative optimization, improving
actual computational efficiency.

We integrate a physical model with a data-driven
online residual learning model. The physical MPC
imbues PERL with a priori knowledge and the Q-
learning composite residuals of the physical model.
Experimental results indicate its commendable
accuracy and rapid convergence.

The rest of this paper is organized as follows. Section 2
introduces our proposed PERL control method from the aspect
of the framework, physical MPC controller, and the residual
learning component Q-learning. In Section 3, we describe the
experiment condition setting and present quantitative
experiment results. Conclusions are given in Section 4.

II. MEeTHODOLOGY

A. Model Framework

The framework of the proposed PERL controller is
illustrated in Figure 2, consisting of two modules: 1)
Fundamental physical-based control. We employ the MPC-
based controller, which considers platoon constraints for
centralized control. 2) Learning-based residual control. A
residual feedback module is integrated into the traditional
physical model. A reinforcement learning method Q-learning
is utilized for online learning, fitting, and compensation of
system model errors and external disturbances. This allows for
appropriate driving speeds and real-time control output
adjustments, enabling vehicles to minimize deviation from the
target trajectory and maximize stability.

To help readers understand the relationship between these
two modules, we introduce the workflow of the platoon control
under the PERL controller before introducing the two
modules. Consider an environment with discrete time steps. As
illustrated in Figure 2, at the beginning of time step k, the
platoon detects the information of the current state X;. Then,
the physical model is applied to obtain the optimal desired
control input ui = fMPC(X,). After that, the residual learning
component runs with the inputs uz to obtain the desired
control input with residual uyp = f RL(ui) . Finally, the
controller applies uy, to the platoon. The state X, transfers to
the next stage X;,; based on the real action with the system
model errors and external disturbances uj. In the next two
sections, we will discuss the details of the physical MPC
controller and the online Q-learning method.
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STEP 2: Physical Model

STEP 3: Learning Model

Illustration of the integrated CAVs platoon control framework. The inputs to the controller are uncertain vehicle platoon states with multiple

disturbances. The output is the control action with residual compensation for all vehicles in the platoon.

.B. Centralized Vehicle Platoon Control with MPC

Centralized control necessitates that the central controller
solves for the optimal control of each vehicle at every timestep.
Addressing this type of centralized control presents challenges
because: (1) the state and control of all vehicles are intertwined
through the objective function and constraints; (2) a longer
planning horizon requires forecasting future traffic dynamics,
which can be impacted by the curse of dimensionality and
disturbances.
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Figure 3.  The centralized connected autonomous vehicles platoon.

The platoon as shown in Figure 3, comprises [ + 1
homogeneous vehicles, including a leading vehicle (the leader)
and [ following vehicles (the followers). Each vehicle in the
platoon is an integral part of the control system. Operating
under a predefined reference trajectory, the goal of the MPC
controller is not just to approximate the real trajectory to this
reference, but to do so with a level of precision that maximizes
overall system efficiency, which ensures the smooth and safe
operation of the entire platoon.
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According to the vehicle longitudinal dynamics, the linear
model for a single vehicle i € 7 = {1,2, ..., 1} at time step k €
Z with constant sampling interval At:

(i _ . i l i Ap2
I pk+1 = pk + vat + 2 akAt
vi,, = vl +aklAt (1)
l. At At
(k1 = 7t Ve T T

where p. denotes the position, v} denotes the speed, al
denotes the acceleration, u}, is the control input or desired
speed of vehicle i at time step k, and 7' is the inertial delay of
vehicle longitudinal dynamics.

Based on this, we can obtain the state space model for
vehicle i at time k:

(2)

where x} = [pk, vk, ak] is the state information for vehicle i,

X} 41 = Alxy + Blug,

At?
|1 At T 0
. . 0
Al=|0 1At At I,B’= At €)
lO __i 0 J Ti
T

We assume that all wvehicles in the platoon are
homogeneous (A' = A, B! = B,t! = 7). Then we define:

X = [pL, o, P VR, oV ARy e, ad]T 4)
Up = [uje, ., wil]” (5)
such that the platoon dynamics are:
Xiev1 = AiXi + B Uy (6)
where A, =AQ®E;,B, =BQ®E;,®Q is the Kronecker

operator, and E; is the I dimensional elementary matrix.
Define the change in control actions AU, from the
previous control action Uj_q:
AU, = Uy — Uy_q = [Au}, ..., Auk]T
where Aul, is the change in control action for vehicle i.
To predict the state value of the platoon for the next N
steps, we introduce the predicted state value of the platoon at

(7
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time k +n forn € N ={1,..., N} from the measured state
value at time k using the model denoted as X, k+nik> With the
prediction window defined as:

- - T
Xie = [Xisaior - Kiewne] ®
for the predicted value of the platoon controller as:
~ ~ ~ T
AUy = [ATge ) AU n-1ie] 9

where from the measurement at time k the predicted applied
control at time k + n is:

Uksnik = Ugsn-11k + BUksnik (10)

—~ ~ A T
AUk snie = [Aullc+n|k' "'vAu§c+n|k] (11)
The state prediction of the platoon X, can be written as a
linear combination of the current state X, the previously
applied control U,_, and the predicted change in control AT,:

Xy = @X,, + AU,_, + AU, (12)
where
4 ADB,
®=|: l,/l = : (13)
AY (AY 1+ -+ ADB
B, 0
r= : : (14)
(A" + -+ ADB; B,
Denote the reference state as pk , vk ,ak , and
Xk—[pk,. I T AR T2 T Al o (15)
[(XI:+1)T' ey (XI:+N)T] (16)

Consider for each vehicle i € 7, the absolute position,
velocity, and acceleration errors as the difference between the
current state and the reference state:

P = Pk — P

vl =vl — vl 17)
a, =al —al
For the entire platoon, these errors can be written as:
— 151 SI 1 =1 =1 ST
Xk _X,: - [pk,...,pk,vk,...,Uk,ak,...,ak] (18)

Then denote ﬁ,i+n|k, 13,i+n|k, dfﬁmk as the prediction error
where the subscript indicates the state prediction at time k + n
given the state at time k.

The formulation for the MPC controller with a finite
prediction horizon of N steps is:

J(k,N)
N-1 1
. i 2 i 2
= min Z [z ql(p;§+n|k) +q; (vllc+n|k)
n=0 Li=1

(19)
N 2 i 2
+ Q3(a;c+nlk) + Q4(Au;c+n|k) l
s.t.:
dmm = pl t— p < dmax: viel] (20)
Vpin < v' < Vmaxs Vie]J (21)
Amin < @' < Apax Vie] (22)

where q4, q5, q3, q4 are the penalty on absolute position error,
velocity error, acceleration error, and the control inputs,
respectively.  dmax Amins Cmaxs Tmins Vmaxr Vmin~ are  the
maximum and minimum values of the space, acceleration, and
velocity. Constraints (20) represent the safety and maximum
distance of the platoon. Constraints (21) represent the road
speed limit. Constraints (22) represent the acceleration limit
based on the engine and the braking systems of the vehicles.
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The problem can be written in the form of a quadratic
program:

J(Xi, AT,) = AUZ (¥ + TTQ AT, + 2(9X, +
AUy_y — X)TOQrAU,
S.t.

(23)

GraU, <—G(@X, +AUp_)—g (24)
where 2 = diag{Q, ..., Q, 0}, ¥ = diag{R,, ..., R4} are block
diagonal matrices,

q.E; 0 0
Q=] 0 @k 0 |.Ry = q4E; (25)
0 0 q3E,
G = diag[G,...,G],g" =197, ...g"], (26)
[ T 0 0 ] 1;_1dmin
_011 OE g |_111—1dmax|
. - -
G=1 9 E,I 097 | —{,;nizx | @7
0 0 -E Lapn |
lo o gl [ -1a. ]

¥, is a size (I —1) =1 Toeplitz matrix with —1 on the
diagonal and 1 on the first upper diagonal, and 1;,_, and 1; are
column vectors of ones of size (I — 1) and I, respectively.
State-of-the-art solvers can quickly solve this quadratic
optimization problem.
The optimal platoon control action is the change in control
that minimizes the constrained finite horizon cost function
AU} = argglkin J(Xi,, AT) (28)

where the first element AU, will be the output control u}, of
the physical model.

C. Online Resudial Learning

Residual learning aims to approximate the residual term or
"gap" between the predicted and actual system states and
adjust the control output obtained by the physical model.

In residual learning, the key aspect is to measure the
difference between the desired input speed set by the MPC and
the actual output speed of the vehicles. This difference guides
the adjustment of the vehicle's Direct Control Variable (DCV),
which varies with the experimental platform. It's important to
note that the input for the DCV changes based on the
experimental platform used, which means the output of
residual learning must be adapted to fit the actual platform. For
instance, in a full-sized AV, the DCV is throttle/brake,
whereas in a reduced-scale robot car, it is the motor's RPM.
Our residual learning is expected to capture the disturbance
caused by different DCVs.

This research utilizes Q-learning as the residual learning
method. In the design of Q-learning, defining states and
actions appropriately is crucial. Considering the structure of
the residual learning previously outlined. The state and the
action in the Q-learning are defined by the control output ui
obtained from the MPC and the changing rate n of the control
output. Since both the state and action in this scenario are
continuous variables, the resulting Q-table would be infinitely
large, making it impractical to train. To address this challenge,
the study employs two approaches for handling these
continuous variables.
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For actions, given that the vehicle acceleration is restricted
within a limited range [@min, Amax], the output DCV also has
a corresponding range. Therefore, the DCV can be discretized
directly. The discretization interval A is a pre-determined
parameter. Regarding states, the speed control error is
transformed within the range of [—o, +0] using a sigmoid
function. Then, fuzzy logic is applied to discretize the
continuous state space. This is achieved through the definition
of several state membership functions, which help to
categorize the continuous states into discrete groups.

In the training phase, the Q-learning agent chooses actions
based on predicted maximum rewards, defined by the
discrepancy between the vehicle's actual and input speeds;
smaller errors yield higher rewards. The Q-table is updated
continuously through exploration and interaction until
convergence, signifying minimal changes in the table values.

III. DATA EXPERIMENT AND RESULTS

In this section, the proposed PERL controller model's
performance is evaluated in a simulation environment through
a comparative analysis with two baseline models.

A. Experiment Condition Setting

In this simulation scenario, we set up a platoon consisting
of 5 vehicles (I = 4) over T = 15 seconds, with a time step of
At = 0.1 seconds. Two types of reference trajectories are
considered. The first scenario involves uniform motion, where
all vehicles maintain a constant speed of 15 m/s. The second
scenario involves variable speed, divided into four phases:
initially, vehicles proceed at a constant velocity of 15 m/s for
2 seconds, followed by a deceleration at -2 m/s*> for 5.5
seconds, then accelerate at 2 m/s? for 5.5 seconds, and finally
move at a constant velocity for the remaining 2 seconds. In
both scenarios, the initial space between the five vehicles is set
at 20 m. The input parameters are dp, = 15m,dp. =
25m, Aoy = 3m/s%, apin = —3m/s2, Vpax =20m/
S, Vmin = 10m/s. To simulate the error that happens during
the transfer of the RPM and the velocity, we consider two
types of error for the actual control output uy;. The first one is
an affine error uf = 1.1u; + 0.1 + x (m/s?),x~N(0,0.3),
where uy, is the control input. The second one is quadratic
error  uf = 0.01u? + u, + 0.1 + x (m/s?),x~N(0,0.3)
For the online learning procedure, the residual learning is
updated each 20 time steps (i.e., 2s) using the collected data
during the experiments.

B. Baseline Models

To make a comprehensive comparison with current
prediction models, we compare the performance of three
different methods tested: 1. using only MPC, 2. using neural
network for residual learning, and 3. using Q-learning for
residual learning. All three methods will be evaluated in the
two scenarios with two types of errors, i.e., in total four tests.
A Multi-Layer Perceptron model with ReLU as an activation
function is used as the neural network baseline model. The
input and output of the network are the same as described
above, i.e., the control output obtained from the MPC and the
adjusted control output for the vehicles. Before the online
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learning, the NN model will be initially trained to make the
input the same as the output.

C. Experiment Results

The time-space diagrams of the three methods in Scenario
2 are illustrated in Figure 4. The local magnification of the
trajectory reveals that under the MPC controller, there is a
considerable deviation between the actual trajectory and the
reference trajectory. In contrast, with the online PERL method,
the actual trajectory closely aligns with the reference trajectory,
demonstrating the control accuracy. To further compare the
performance of the three control methods, particularly to
distinguish between the use of Q-learning and a neural
network as the residual learning module in online PERL, we
conduct an additional comparative analysis in Table 1 and
Figure 5. Given that the primary control output is velocity, we
recorded both velocity and position errors to evaluate the
performance of these methods. Notice that all the units for
position are meters, and for velocity are meters per second.

MPC Controller Online PERL with neural network Online PERL with Q-learning

00

Position (M)
Pusili(m (m]
Position (M)

Time (n.cmldx

' i |

l‘/‘— —
—

P o

(1)
vehicle 4 (A)

Figure 4. The time-space diagram for the three methods in Scenario 2.

Table 1 details the cumulative and maximum absolute
velocity errors for the three methods across four tests. The
results indicate that both variations of the PERL method,
which utilize the Q-learning algorithm and a neural network,
outperform using the MPC alone in four tests. Specifically, the
average cumulative absolute velocity and position errors for
the MPC combined with Q-learning are 55.28% and 86.73%
smaller compared to using MPC alone, showing that the PERL
method performance is much better than the MPC controller.
When comparing the MPC combined with a neural network,
the MPC combined with Q-learning has lower cumulative
absolute velocity and position errors in all tests, averaging
12.82% and 18.83%, respectively. From the perspective of
maximum absolute error, both the error gaps for position and
velocity between the MPC combined with Q-learning and
using MPC alone are still large in scenario 2, which are 88.33%
and 71.24%, respectively. However, in scenario 1, the error
gap of all three methods is smaller than 5%. The similarity
arises from limited training data in early online learning stages,
where residual learning doesn't adjust control output. In the
complex environment of scenario 2, larger error gaps between
the other methods and the MPC-Q-learning combination
highlight the need for precise control in complex settings.

The variations of the velocity error for the whole
trajectories are illustrated in Figure 5, which explains the
results in Table 1. From Figure 5, it is evident that in the four
tests, all three methods initially exhibit similar trends of the
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velocity error, ranging between 0.2-0.3. As training progresses,
residual learning learns the error, reducing the velocity error
below zero, thereby compensating for the initial position error
caused by the positive velocity error at the beginning.
Moreover, Figure 5 also demonstrates that, in all four tests,
both PERL controllers eventually stabilize near zero,
confirming their robustness and effectiveness. During the
uniform motion in scenario 1, it is observed that the velocity
error convergence for the MPC combined with Q-learning is
noticeably smoother, achieving a minimum error of around 0.1,

whereas, for the MPC combined with a neural network, the
minimum error reaches approximately 0.2. Consequently, Q-
learning, as an online residual learning approach, demonstrates
a faster convergence rate, making it preferable for online
PERL methods.

However, the current simulations, using simplified control
environments and error forms, may not mirror real-world
conditions accurately, thus necessitating further real-world
testing to validate the PERL methods' performance.
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Figure 5. The comparison of experimental results for the three methods.
TABLE 1 Simulation results for the three control models in four tests.
Scenario 1 with Affine Scenario 1 with Quadratic Scenario 2 with Affine Scenario 2 with Quadratic
Test Error Error Error Error
results M M+N  M+Q M M+N M+Q M M+N  M+Q M M+N M+Q
CAE, 475.5 68.7 62.2 542.5 86.9 79.2 1388.2 199.9 161.0 1137.0 181.5 157.0
GapCAE, 86.92 9.44 0.00 85.40 8.88 0.00 88.41 19.46 0.00 86.19 13.51 0.00
CAE, 479 35.0 32.9 53.9 47.9 38.6 288.0 63.3 41.7 201.1 57.4 48.4
GapCAE, 31.32 6.02 0.00 28.33 19.38 0.00 85.53 34.19 0.00 75.94 15.71 0.00
MAE, 1.129 0.421 0.370 1.356 0.493 0.417 5.220 0.616 0.493 3.978 0.618 0.552
GapMAE, 68.83 11.92 0.00 69.26 15.44 0.00 90.55 19.96 0.00 86.11 10.63 0.00
MAE, 0.260 0.267 0.254 0.301 0.300 0.302 1.132 0.391 0.251 0.884 0.327 0.312
GapMAE, 2.32 4.88 0.00 -0.41 -0.58 0.00 77.80 35.73 0.00 64.68 4.68 0.00

Notations: CAE and MAE represent the cumulative absolute error and the maximum absolute error. Gap represents the error gap compared with the errors
obtained by MPC combined with Q-learning. M, M+N, and M+Q to represent using MPC alone, MPC combined with neural network, and MPC with Q-learning.
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IV. CONCLUSION

This paper proposes a novel online PERL controller that
incorporates the physical model and residual learning to
enhance centralized control of CAVs platoon. To mitigate the
disturbance caused during the transition of the control output,
the PERL controller applies Q-learning as a residual learning
module to adjust the control output of the physical model, i.e.,
the MPC controller. This integrated model exhibits high
precision in predicting control residuals and demonstrates
exceptional adaptability. In the MPC controller, the vehicle
dynamics’ physical model with the inertial delay is
incorporated. By setting velocity as the control output, multi-
objective optimization under multiple constraints is achieved.
For online residual learning, Q-learning is applied to learn the
disturbance caused by the complex environment and vehicles’
dynamics. The experiments demonstrate that the trajectories
by the online Q-learning PERL controller exhibit significantly
reduced errors, with cumulative absolute position and velocity
errors averaging 86.73% and 55.28% lower than those of the
MPC controller, and 12.82% and 18.83% lower compared to
the PERL controller utilizing a neural network. The variation
in velocity errors highlights the faster convergence speed of
the Q-learning in the online learning process.

In the future, we will further explore the suitable physical
control model and the residual learning method for the CAV
control. Besides, considering that the manual affine and
quadric errors cannot demonstrate real-world disturbance, we
plan to apply our PERL controller in the real vehicle platform
to evaluate the effectiveness and robustness of the controller.
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