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Strategic Quantization of a Noisy Source

Anju Anand and Emrah Akyol

Abstract— This paper is concerned with strategic quantiza-
tion of a noisy source where the encoder, which observes the
remote source through a noisy channel, and the decoder, with
distortions defined over the remote source, have misaligned
objectives. We show that as in the classical noisy source setting,
this indirect source coding problem can be transformed to
direct source coding with an equivalent distortion measure
defined as the conditional expectation of the original distortion
measure conditioned over the sensing channel output. On the
design side, we extend the gradient-descent based method
developed to solve the noiseless problem in recent work to
the associated noisy setting. Finally, we present the numerical
results that confirm the theoretical analysis in this paper. The
codes associated with our numerical results are available at:
https://tinyurl.com/allerton2023.

I. INTRODUCTION

In this paper, we study the quantizer design problem for
the setting where an encoder that observes the source through
a noisy channel, and a decoder with misaligned objectives
communicate over a noiseless channel. Our problem is
closely related to a class of problems in Economics known
as “information design,” or “Bayesian Persuasion,” where
agents with diverging objectives communicate.

This compression problem in its conventional setting of
identical objectives dates back to the seminal work of Do-
brushin and Tsybakov [1], and has been well studied in
the literature since, see e.g., [2]-[4]. The main result of
these prior works is that one can transform the problem
of indirect source coding to a direct source coding problem
with a modified distortion measure defined as the conditional
expectation of the original distortion function, conditioned
over the sensing channel output.

The problem setting has several applications in engineer-
ing as well as Economics. For an engineering application,
consider the Internet of Things, where agents with mis-
aligned objectives communicate over channels with delay
constraints. For a more concrete, real-life application, con-
sider two smart cars by competing manufacturers, e.g., Tesla
and Honda, where the Tesla (decoder) car asks for a piece
of specific information, such as traffic congestion, from the
Honda (encoder) to decide on changing its route or not.
Say Honda’s objective is to make Tesla take a specific
action, e.g., to change its route, while Tesla’s objective is to
estimate the congestion to make the right decision accurately.
Honda’s objective is obviously different from that of Tesla,
hence has no incentive to convey a truthful congestion
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estimate. However, Tesla is aware of Honda’s motives while
still would like to use Honda’s information (if possible).
With the realistic assumption that Honda would observe this
information through a noisy sensing channel (i.e., a sensor),
how would these cars communicate over a fixed-rate zero-
delay channel? Such problems can be handled using our
model. Note that here Honda has three different behavioral
choices: it can choose not to communicate (non-revealing
strategy), can communicate exactly what Tesla wants (fully-
revealing strategy), or it can craft a message that would make
Tesla change its route. Note that Tesla can choose not to use
Honda’s message if it is statistically too far from the truth.
Hence, crafting an optimal message for Honda that would
serve its own objective, knowing that Tesla’s objective differs
from it, is a formidable research challenge.

This paper is organized as follows: In Section II, we
present preliminaries where we review the prior work in
strategic quantization, including our results on the topic, and
the literature on the remote source coding problem, and we
formulate the problem. We analyze the problem and derive
similar results as in the indirect compression prior work in
Section III for the scalar and the quadratic Gaussian settings,
and we provide a gradient-descent based algorithm which is
an extension of our prior results for the noiseless problems.
We present numerical results in Section I'V. In Section V, we
conclude the paper by summarizing its contributions.

II. PRELIMINARIES
A. Notation

In this paper, R and Z™ represent the set of real numbers
and positive integers, respectively. The random variables,
their sample values, and their alphabets are denoted by
respective capital letters (U), lowercase letters (u), and cal-
ligraphic letters (/). This alphabet may be finite, countably
infinite, or a continuum like an interval [a, b] C R, where R is
the set of real numbers. The expectation operator is denoted
by E{-}. The scalar Gaussian with mean m, variance o2 is
denoted by N(m, o?). All logarithms are base 2.

B. Strategic Quantization Prior Work

The strategic quantization problem can be described as
follows: the encoder observes a signal X € X and sends a
message Z € Z to the decoder, upon receiving which the
decoder takes the action Y € ). The encoder designs the
quantizer decision levels () to minimize its objective Dpg,
while the decoder designs the quantizer representative levels
y to minimize its objective Dp. Note that the objectives of
the encoder and the decoder are misaligned (Dg # Dp).
The strategic quantizer is a mapping Q) : X — Z, with
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|Z] < M for a given quantization resolution M € Z*, and
given distortion measures Dg, Dp.

As mentioned earlier, our problem is a variation of
the Bayesian Persuasion (or information design) class of
problems where an encoder and decoder with misaligned
objectives communicate [5]. This class of problems has been
an active research area in Economics due to their modeling
abilities of real-life scenarios, see e.g., [6]-[9].

This problem was previously studied in Economics as well
as Computer Science. In [10], authors showed the existence
of optimal strategic quantizers in abstract spaces. Moreover,
the authors provide a low-complexity method to obtain the
optimal strategic quantizer. In [11], [12], authors characterize
sufficient conditions for the monotonicity of the optimal
strategic quantizer, and as a byproduct of their analysis,
characterize its behavior (non-revealing, fully revealing, or
partially revealing) for some special settings. In Computer
Science, in [13], this problem was studied from a com-
putational perspective and they report approximate results
on this problem, relating to another problem they solved
conclusively. One of their main results is that they showed
the algorithmic complexity of finding the optimum strategic
quantizer as NP-hard.

In [14], we showed that a strategic variation of the Lloyd-
Max algorithm does not converge to a locally optimal solu-
tion. As a remedy, we developed a gradient-descent based
solution for this problem. We also demonstrated that even
for well-behaving sources, such as scalar Uniform, there are
multiple local optima, depending on the distortion measures
chosen, in sharp contrast with the classical quantization
for which the local optima is unique for the case of log-
concave sources (which includes Uniform sources). We also
analyzed the behavior of the optimal strategic quantizer
for some typical settings. The behavior can be one of the
following three: i) Non-revealing: the encoder does not send
any information, i.e., Q(X) = constant. ii) Fully revealing:
the encoder effectively sends the information the decoder
asks, which simplifies the problem into classical quantizer
design with the decoder’s objective. iii) Partially revealing:
the encoder sends some information but not exactly what the
decoder wants.

In [15], [16], we carried out our analysis of strategic
quantization to the scenario where there is a noisy commu-
nication channel between the encoder and the decoder, using
random index mapping in conjunction with gradient descent
and dynamics programming-based solutions, respectively. In
[17], we derived the globally optimal strategic quantizer via
a dynamic programming-based solution to resolve the poor
local minima issues with gradient-descent based solutions.

In Appendix I, we prove the following result, which is an
extension of a result presented in [14], as well as in [11]:

Theorem 1. For ng(u,y) = (u+ o — By)? and np(u,y) =
(u — y)?, the optimal strategic quantizer Q is:

argmin E{(U — Q(X))2}, for0< B <2
arbitrary, Sor 8 € {0,2}
constant, otherwise

Qr) =

where U = E{U|X}. Note that the first case corresponds
to the fully-revealing behavior, while the second corresponds
to encoder distortion remaining constant for all quantizers,
and the third is non-revealing.

We refer to this theorem, later in the text, in order to
demonstrate the use of our main result in this paper.

C. Remote Source Coding Prior Work

As mentioned earlier, this problem is well-studied in the
classical, i.e., non-strategic, compression literature, under
different names such as remote source coding, indirect rate-
distortion, noisy quantization, etc.

The main result, by Dobrushin and Tsybakov [1], adopted
to the quantization setting as in [3] is presented as follows:

Theorem 2. Consider the remote source coding problem
where the source U is observed through a memoryless
channel P(X|U) by the encoder. The encoder quantizes the
channel output, X, to minimize a common distortion measure
E{d(U,Q(X))} subject to a rate constraint. Let Q1 be the
optimal quantizer, i.e.,

Q1= argénin E{d(U,Q(X))}.

Let Q2 be the optimal point-to-point quantizer for the
distortion metric dy(C,b) = E{d(A,b)|C} where Py x =
PA\C» i.e.,

Q2 = argénin E{d2 (X, Q(X)}

where ds is defined as above.

Then, Ql = QQ.

D. Problem Definition

Consider the following quantization problem: an encoder
observes a realization of a scalar source U € U over a
noisy observation channel with channel transition probability
P(X|U) as X € X. The joint probability distribution of the
source and its noisy version is given by uy, x. The encoder
maps X to a message Z € Z, where Z is a set of discrete
messages with a cardinality constraint | Z| < M using a non-
injective mapping, @ : X — Z. After receiving the message
Z, the decoder applies a mapping ¢ : Z — ), where |)| =
|Z|, on the message Z and takes an action Y = ¢(Z). The
encoder and decoder minimize their respective objectives
Dp = E{ng(U,Y)} and Dp = E{np(U,Y)}, which are
misaligned (ng # np). The encoder designs ) ex-ante, i.e.,
without the knowledge of the realization of X, using only
the objectives ng and np, and the statistics of the source
tu,x (+,-). The objectives (ng and np), the shared prior (w),
and the mapping (Q)) are common knowledge (known to the
encoder and the decoder). The problem is to design @) for
the equilibrium, i.e., the encoder minimizes its distortion if
used with a corresponding decoder that minimizes its own
distortion. This communication setting is given in Figure 1.
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Fig. 1: Communication diagram

ITI. MAIN RESULTS
A. Analysis
The objectives of the encoder and the decoder are given by
D, = E{n,(U,Q(X))},s € {E, D}. The set X is divided
into mutually exclusive and exhaustive sets Vq, Vo, ..., Vjy.
We make the following “monotonicity” assumption.

Assumption 3 (Convex code-cells). V; is convex for all i €
[1:M].

Under assumption 3, V; is an interval since X is scalar,
ie.,

Vi = [xi—1, ;).

All integrals are over V; unless specified otherwise. The
encoder chooses the quantizer () with boundary levels

[0, . ..,2ar]- The decoder determines a set of actions y =
[y1,-..,ynm] as the best response to ) to minimize its cost
Dp as

M
y; = argminy E{np(u,y(Q))|z € V;}.

yi€Y
After observing x, the encoder quantizes the source as
i = Q($)7

The decoder receives the message z; transmitted over a
noiseless channel and takes the action

yi = ¢(zi)-

The distortions to the encoder and the decoder and the
optimum decoder reconstruction for ¢ € [1 : M] are

D Z//nsuyidﬂUX7

- ueU

x €Y.

T
yey
ueU

The reconstruction levels y are found using KKT conditions,

0Dp 0
= np (u, yi)dpy, x .
0 i 0 i ’
Y ueU Y
For np(u,y) = (u — y)?, we have
oD
ay_D = _2/ /(U—yi)dMU,x,
' ueU
f f udpy, x
V= T day  BUIX Vi

ueU

B. Main Result

Theorem 4. The noisy strategic quantization problem de-
scribed above, with distortions ng(u,y) and np(u,y) is
equivalent to the noiseless strategic quantization problem
with a modified encoder distortion measure 15 (x,y)
E{ne(u,y)|X = z} for a given P(X|U) observation
channel.

Proof:
The encoder distortion D g can be written in terms of only
the noisy source realization available to the encoder as

Dp =E{ne(U,Q(X))} = E{E{ne(U, Q(X))|X}}
= E{np(X, Q(X))}

where 7% (X,Q(X)) = E{ne(U,Q(X
reconstruction

))| X} and decoder

yr = argmin]E{nD(U,yi)|$ S Vi}-
yi €Y

C. Quadratic Gaussian Setting

Let the encoder and decoder objectives be ng(u,d,y) =
(u+ 0 — y)? and np(u,0,y) = (u — y)? respectively.
The encoder observes 6 noiselessly, and U through a noisy
observation channel P(X|U) as X. The encoder quantizes
(X,0) and sends a message Z to the decoder, receiving
which the decoder takes an action Y. This communication
setting is given in Figure 2. We extend the previous quantizer
design to 2—dimensional quantization by designing a set of
quantizers, each corresponding to a realization of 6, Q =
{Qol0 € T}, where Qg is a quantizer with quantization
regions {Vy,,4 = 1,...,M}. Similar to the scalar setting,
we make a monotonicity assumption here as follows.

Assumption 5 (Convex code-cells). Vy ; is convex for all
€[l: M)

Under assumption 5, Vg ; is an interval since X is a scalar,
ie., Vo = [Ta,i—1,Tg,). All integrals in this subsection are
over Vg ;, unless specified otherwise. The encoder designs Q)
to minimize

DE—Z///ﬁEueyzdﬂUxe,

=lgeT” weu
where the optimal representative levels y;, are com-
puted by the decoder by minimizing its distortion

E{np(U,0,Q(X))},

_afgmln///nDueydMUxe
yeY

ueU
When 1p = (u —y)?,
M
B (6.0} = [ [ [ (w-wduxo.
=loeT © weu
y; = arg min / / /(u—y)zduU,X’g.
yeY
0eT ueU
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Parameter @

Problem 1. The source U € U is observed by the encoder over a noisy channel with channel transition probability P(X|U)
as X. The encoder communicates to the decoder over a noiseless channel with rate R. The objectives of the encoder and
the decoder are misaligned and are given by ng and np, respectively, with ng # np. Find the quantizer decision levels @),
and the set of actions 'y = [y1, - ..,Yn) as a function of the quantizer decision levels that satisfy:

M
q* = arg mlnz E{UE(U,Y)|$ € vz}a

4 i=1

where actions 'y are y: = argmin E{np(u,y)|z € V;} Vi € [1 : M], and the rate satisfies log M < R.

Yi €Y

]

|

Encoder

Noiseless
source U

Noisy

Observation
source X

Message Z=Q(X)
channel

Noiseless channel
Rate log M

Action Y
—

Source U Decoder

Pxjy

Fig. 2: Communication diagram: 2-dimensional source

KKT optimality conditions imply

f f f udpy, x,0

_0eT  wueld

VST T dpoex

0T uweld

= E{U|X € V.,;},

where V. ; = OUTV(M. We show in Figure 3a that the nature
€

of the quantizer may change with the value of 6. For the
two quantizers shown, we see that the rate is log 5 and log 3,
depending on the realization of #. In Figure 3b, we show an
example quantizer for 6 with |0] = 5.

6
A/ éuanmer!or%wen@ 51—+

m=5

40,

N
o Jd L 1 1 |

Source X -5 0
(a) M=5 level quantizer (b) Example quantizer

Fig. 3: Quantization of X parameterized by 6.

We re-write the objective function D in terms of distor-
tion due to the noisy source and distortion due to quantiza-
tion. The term Q(X) is written as ) for brevity. Note that
U-X-Q(X)-Y,and § — X — Q(X) forms a Markov
chain, with Y = E{U|Q}.

Dp =E{(U+6-Y)*}
=E{(U -E{U|X}+E{U|X}+6—-Y)?*}
=E{({U -E{U|X})* + (E{U|X} + 6 —Y)?
+2(U -E{UIX}HE{UIX}+0-Y)}
=E{(U - E{U|X})* + (BE{U|X} + 6 - Y)?
+2(U -E{U|X})6}.

The terms E{(U — E{U|X}E{U|X}} and E{(U —
E{U|X})Y} both vanish due to the orthogonality principle
in optimal estimation. The third term, E{(U — E{U|X})6}
evaluates to 0:

E{(U - E{U|X})0} = Eo{0E{U — E{U|X}|0}}
= Bo{0Ex {E{U — E{U|X}|X,0}}}.

Minimizing Dy = E{d,(U,6,Y)} is equivalent to mini-
mizing D% = E{d}(X,0,Y)}, where

since the other term E{(U — E{U|X})?} does not depend
on Y. The encoder minimizes its equivalent distortion

M
Dip =Y E{(B{U|X} +0 —y,)*Vi}

= i/[: / / /(E{U\X} +0 —yi)*duu,x 6,

=1
=1
weU 0T

where

f f f udpy, x,0
__ 0T ueu

PETTT T duoxs

0T ueU

=E{U|X € V.,}.

D. Algorithm

The problem setting requires the encoder to choose the
decision levels @ first, followed by the decoder’s choice of
reconstruction points as a function of @, y(Q). This allows
a gradient-descent based solution where the optimization
parameter is the encoder’s decision levels Q.

Starting with an arbitrary initialization of the quantizer
boundary levels Q = @, the reconstruction levels y(Q)
and the corresponding encoder distortion Dg are computed.
Then, the following steps are iterated until convergence:

1) Compute the gradients {2221,
2) Update the decision levels @ as ., Lr,—A
{z,,} adheres to quantizer constraints.

d9Dg

if

We present below the derivation of the gradients for an MSE
decoder with a quadratic encoder distortion ng = (u + 6 —
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y)?. The gradients of the encoder’s distortion with respect to
the decision levels are
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0Dg dpu,x.0
— g — )2 LAY sl
5379/’1- / (’LL+ yl) da:d9 (939 v )
uel
duy, x 0
_ 0 — )2 g
[ w0 i H .01
ueld
xo,i
dy;
—9 u+ 60— y)—2d
/ / / ( yZ)dJ?Q/’i KU, X0
u€U OET To,i—1
Tg,i+1
dyit1
-2 / / / (U+9—yi+1)d L dp x.0,
o’ i
ueEU 0T xg,4
where
d;l,nyﬁg(u,l’ /J-,O’) d,u,vayg(’u,,I /Y,i,t‘)')
d L v e P A
Yi  uel ueU
dflig/ - %0,i ’
! J ] ] dnuxe
0T x9,i—1 ueU
dMU’X’e(u,(E /Yi.ﬂ/) dquxﬁg(u,w /,“9/)
d Ju qndo -vi J qodo
Yit1 _ wel uweU
dagr ; - To,it+1
! I ) duoxe

0€T wo,i ucl

IV. NUMERICAL RESULTS

In this section, we present numerical results for two

settings:

1) Source U ~ N(0,1), ng(u,y) = (ud—y)?, np(u,y) =
(u—y)?

2) Quadratic-Gaussian setting with 2-dimensional source
(U, 6), with statistically independent components, U ~
N(0,1), 8 ~ N(0,1), np(u,0,y) (u+ 6 —
y)za nD(u’ 0, y) = (u - y)2

in Figures 4 and 5 respectively. The encoder observes U
through an independent additive noise, X = U+W, for W ~
N(0,0.01) and W ~ N(0, 0.5). We observe from Figures 4b
and 5b that the decoder distortion for a non-revealing M =1
quantizer (or if the decoder chooses not to accept encoder’s
message) is greater than when the decoder acts according to
the information from the encoder.

V. CONCLUSIONS

In this paper, we extended our gradient-descent based
strategic quantizer design approach to settings where the
source is observed via a noisy channel, for both scalar and
vector sources. As a byproduct of our analysis, we have
shown that the well-known results in indirect compression
carry out to strategic settings, mutatis mutandis.

Fig. 5: Source (U, 0) ~ N([g}, {(1) (1)]> with ng(u,d,y) =
(’LL +6— y)2777D(u7 gay) = (u - y)2

APPENDIX I
QUANTIZER BEHAVIOUR FOR
ne = (u+a—py)*np = (u—y)°

Consider a source U observed through a noisy chan-
nel with channel transition probability P(X|U) as X €
[ax,bx], with joint probability distribution (U, X) ~ uy x,
ne(uy) = (u+a— By)? np(uy) = (u—y)? for a
given o, € R quantized to M levels. In other words,
the decoder wants to reconstruct U as closely as possible,
while the encoder wants the decoder’s construction to be
as close as possible to %, both in the MSE sense. Can
the encoder “persuade” the decoder by carefully designing
quantizer intervals V};,?

The objective function is

J_/mi_l

Tm
(u +a— 5ym)2dﬂU,X7
Tm—1
where y,,, is given by

T

J ) wdpux

U Tm-—1

Ym =

Tm

5T duox

U xm—1

The derivative of the objective function with respect to
quantizer decision level x,,,

oJ QdNU,X (Uaxm)
g = [ a = gy P

u
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dpy,x (u, Tm)

_ _ 2 3
/(U+OZ BYm+1) Az
u

,diym/ / (u+a = Byp)duu,x

dx,,
U tm—1

Tm41

A
~25 e [ [ (et a s By )dins
Lo
u

Tm

dym dym,+1
dzm ? dzm,

dym dMU,X(U,CEm)/ /
dzm (/u dx o, x
u

U tm—1

where

are

Tm

_/dMU,Xd(;AJm)/ / udeX)

u U Tm-1

J(f [ )

U Tm—1
fudp,u x (u,xm)
_u

dpu, x (u,Tm)
—Ym f da
u

Tom

f f dpy,x

U Tm—1

Tm41

(fitss [ 7
u

Tm

dym+1 o
dz,,

Tm41

d U, Ty
MUX //UdMUX>

fI?m+1 9
duy, X)

dHU X Uy Ton)

/

1 f duUX U, Ty, )

P
(//
o

Tm+1

|/ dpux
U Tm

Enforcing the KKT conditions of optimality,

oJ

% =0, (D

we obtain after some straightforward algebra, that the so-
lution that satisfies 1 are 8 = 0,2, or E{U|X = z,,,} =
(Ym + Yma1)/2 (the other condition Y41 = ¥y, is not
possible since the actions are considered unique - if not,
the corresponding regions could be combined). This implies
that the quantizer is the same as the non-strategic quantizer
if B ¢ {0,2}, if the the encoder decides to send something.
The encoder’s distortion,

M Fm
J:/Z (
U 'rrL:1:E77171

U+ a— Bym)QdMU,X

bX bX
://uzduux+a2+2a(1—ﬁ)//uduU7X

U ax U ax
486 -2 um [ [ udirex
m=1 U Tm—1

The distortion for a non-informative quantizer D,,:

Dy, = /7(“ +a — By)*dpy x

Z/lax

// 2dMUx+Oz +2a(1-p //uduUX
U ax

8052 [ / udpy x.

U ax

The encoder distortion, written in terms of D,,, is

J =Dy +5(8 - 2<Zym//UdMUX

U Tym—1
bx
—y//uduu,x>

U ax
=D, + B(B—2)¢
2 2
Tm M Tm,
M <f S ud#U.,X) ( X_:lf J Ud#U,x)
where ¢ = 5 ~Ximot - :
m=1 Lf{ S dpux > [ [ dpux
Tm—1 m=1U ., 1

The first term is the distortion for a non-informative quantizer
(M = 1). In order for the quantizer to be informative, the
second term has to be negative, which happens in three cases:

1) B<0and ¢ <0,

2) 0<pB<2and & >0,

3) f>2and £ <O0.
From Cauchy-Shwarz inequality | < u,v > | < |Jul|||v]],
substituting u; = u;//v; and v; = ,/v;), we have that
for real numbers wq,us,...,u, and positive real numbers

V1,V2y...,Un:
n
Er e
= ,
Tt D
Z’Ui i=1
i=1
Tm Tm
In our case, u; = [ [ wdpy,x,vi=[ [ dpyx with

U xm—1 U xm—1

real u; and positive real v;.

Applying this result to our problem, we obtain £ < 0
which implies that the only possible case is case 2 with
0 < 8 < 2. For g € {0,2}, the quantizer is arbitrary
since encoder distortion is always D,,, and the encoder is
a non-strategic quantizer for 8 € (0,2), and non-revealing

for 8 ¢ [0,2].
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