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Abstract—This paper is concerned with the strategic quantiza-
tion setting where the encoder and the decoder have misaligned
objectives and communicate over a noisy channel, extending the
work on classical channel-optimized quantization. This problem
without the quantization constraint has been well-studied under
the theme of information design problems in Economics. It
is more appealing and relevant to engineering applications
with a constraint on the cardinality of the message space. We
consider a scalar source X and develop a gradient-descent based
solution in conjunction with random index assignment, which
has been used in prior literature on classical channel-optimized
quantizaton. In our prior work, we used dynamic programming
for this problem. Here, we employ gradient descent to reduce the
complexity of the algorithm. We finally present numerical results
obtained via the proposed algorithm that suggest its validity and
demonstrate the strategic quantization features that differentiate
it from its classical counterpart. The codes are available at:
https://tinyurl.com/asilomar2023.

Index Terms—Quantization, joint source-channel coding, game
theory, gradient descent

I. INTRODUCTION

Consider the communication between two smart cars from
competing manufacturers, such as Tesla and Honda. The Tesla
car (decoder) solicits specific information from the Honda car
(encoder) to determine whether to alter its route in response
to traffic congestion. While Tesla aims to estimate the traffic
congestion accurately, Honda’s objective is to make Tesla take
a specific action, such as changing its route. Honda car has
no incentive to convey a truthful congestion estimate since
its objective is different from that of Tesla. To incentivize
Tesla to utilize Honda’s information though Tesla is aware
of Honda’s motives, Honda has to ensure that Tesla gains
in acting according to its information, that is, the distortion
in using Honda’s input is lower than that in ignoring it.
Realistically, assuming a fixed-rate noisy channel, how would
these cars communicate? Our analysis in [1] enables us to
quantitatively study such problems. Honda has three different
behavioural choices: it can choose not to communicate (non-
revealing strategy), can communicate exactly what the Tesla
wants (fully-revealing strategy), or it can craft a message
that would make Tesla change its route (partially revealing
strategy). Tesla can choose to not use Honda’s message, if
it is statistically too far from the truth. Hence, crafting an
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optimal message for Honda that would serve its own objective,
knowing that Tesla’s objective differs from it, is a significant
research challenge.

This problem without any constraints on the cardinality of
the message space has been studied extensively in Economics
literature as information design or Bayesian persuasion [2],
[3]. Broadly, these areas of research investigate how a com-
munication system designer (sender) leverages information to
impact the actions of the receiver [4], [5]. A related but dis-
tinctly different variation of signaling games, called cheap talk,
where the encoder chooses the mapping from the source X to
message Z after observing it, ex-post, showed that quantizers
can arise as equilibrium strategies endogenously, without an
external constraint [6], [7]. Since the encoder chooses the
mapping only after observing the source realization, both
agents form a strategy that is the best response to each other,
resulting in a Nash equilibrium.

The classical (non-strategic) counterpart of communication
over a fixed-rate noisy channel, i.e., channel-optimized quan-
tization, has been investigated thoroughly in the literature,
see e.g., [8]-[15]. We here carry out the analysis to strategic
communication cases, see e.g., [3], [16], [17] where the
encoder and the decoder have different objectives, as opposed
to the classical communication paradigm where the encoder
and the decoder form a team with identical objectives.

We studied strategic quantizer design over a perfect (noise-
less) communication channel in [1], [17], and analyzed strate-
gic quantization of a noisy source in [18] and obtained results
similar to [19]. We presented a dynamic-programming based
algorithm in conjunction with random index mapping opti-
mization method for channel-optimized strategic quantization
in [20] (similar methods have been presented for classical
quantization over a noisy channel by [14], [15]).

Compared to our recent related work on channel-optimized
strategic quantization [20], the contribution of this paper is that
we employ a gradient-descent based optimization as opposed
to dynamic programming, enabling a lower-complexity design
at the cost of possibly moving from global to local optimality.

II. PROBLEM FORMULATION

Consider the following scalar quantization problem: an
encoder observes a realization of the source X € X € [a, D]
with a probability distribution f, and maps X to a message
Z € Z, where Z is a set of discrete messages with a
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Fig. 1: Communication diagram

levels that satisfy:

a m=1

YmEY

Problem. Using a noisy channel with rate R and probability transition matrix p(j|i), with a scalar source X € X with
a probability distribution f(x), and an index mapping = : {1,...,. M} — {1,..., M} chosen uniformly at random,
find the quantizer decision levels q, and actions y(q) = [y1, .- -

M
q" = argmin Z EAE{ne(X,y*)|m z € Vin}},

where actions y(q) are v, (q) = argmin B {E{np(x,y)|7, Z = 2, } }¥Ym € [1 : M), and the rate satisfies log M < R.

,yMm| as a function of the set of quantizer decision

cardinality constraint |Z| < M using a non-injective mapping,
q: X — Z. An index mapping 7 : [1 : M] — [1 : M] is
chosen uniformly at random and is applied to the message
Z. The message m(Z) is transmitted over a noisy channel
with transition probability matrix p(zj|z;) = p(jl|i). After
receiving the message Z’, the decoder applies a mapping
¢ : Z — Y, where |Y| = |Z]|, on the message Z’ (which
includes the inverse mapping 7 1(Z’) first) and takes an
action Y = ¢(Z’). The encoder and decoder minimize their
respective objectives Dg = E {E{ng(X,Y)|r}} and Dp =
E {E{np(X,Y)|r}}, which are misaligned (ng # np). The
encoder designs q ex-ante, i.e., without the knowledge of
the realization of X, using only the objectives ng and 7p,
and the statistics of the source f(-). The objectives (ng and
1p), the shared prior (f), the channel parameters (transition
probability matrix p(j|i)), the index assignment (7), and the
mapping (q) are known to the encoder and the decoder. The
problem is to design q for the equilibrium, i.e., the encoder
minimizes its distortion if used with a corresponding decoder
that minimizes its own distortion. This communication setting
is given in Figure 1. The quantizer q divides the set X" into
mutually exclusive and exhaustive sets as Vi, Vs, ..., Vi,
a(x) = zm, T € V.

In our recent paper [20], we use dynamic programming
solution concept along with random index assignment for this
problem (quantizing a scalar source X for a rate-constrained
noisy channel with misaligned objectives for encoder and
decoder). Here, we use gradient descent to find the quantizer
Since we use gradient descent instead of dynamic program-
ming, approximation of a continuous source by discretization
is not required here. However, there is an issue of local
optima which we address by using multiple initializations. The
constraint on the average symbol error probability 0 < perr <
(M —1)/M in [20] is not enforced here, since unlike dynamic
programming, gradient descent does not involve optimization
of sub-problems.
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IIT. MAIN RESULTS

In this section, we present our results on the derivation
of the distortions for communication over a noisy channel
using random index mapping, and a gradient-descent based
algorithm to compute the strategic quantizer.

A. Analysis

We make the following “monotonicity” assumption.

Assumption 1 (Convex code-cells). V,, is convex for all m €
[1: M].

Remark 1. Assumption 1 is the first of the two regularity
conditions commonly employed in the classical quantization
literature, cf. [13]. Note that the second regularity condition,
Ym € Vi, s not included in Assumption 1.

Under assumption 1, V,, is an interval since X is a scalar,
Vm = [‘rmflvxm)'

The encoder chooses a non-injective mapping, Q : X — Z
which is the quantizer q with boundary levels [zq, z1, . . ., /]
to minimize its cost Dg
M
Dp =Y EAB{np(z,y"()|r,z € Vu}},
m=1

where the decoder determines a set of actions, y*(q)

[y1,-..,yn] as the best response to g to minimize its cost
Dp for m € [1: M] as follows
M
yr, = argminZEﬂ{E{nD(x,y(q))\m Z = zm}}
YmEY m=1

The encoder designs a quantizer q using only the objectives
(ns,s € {E,D}), the statistics of the source (f(-)), the
channel transition probability matrix (p(j|¢)), and the index
assigment () without the knowledge of the realization of X.
After observing z, the encoder quantizes the source as

Zm = Q(x)a

T €V,
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and uses an index mapping chosen uniformly at random,
zi = 7(2m),

where 7w : {1,...,M} — {1,...,M}. The message z; is
transmitted over a noisy channel and received as z; with the
channel transition probability p(j|7). The decoder receives z;
and takes the action

y = o(z).
The average symbol error probability of the channel is
M M
DPerr = MZZP .7|
1=175=1
e

Let ¢ = perr/(M — 1),ca = 1 — Mcy. The end-to-end
distortion given an index assignment 7 is

E{ns|r} = ZZ /ns (z,y;)p(jli) f (z)dz.

=1 j= 11,l1

The average distortion over all possible index assignments is

Zq

M M

D.=Y % [l BalplGl @i

=1 j= 1$,1

= ILjzi + Ij=,
where I;4; and I;—; are defined as follows:

M M *i

Lisi=Y Y /ns 2,9, Ex{p(j|)} f (z)dz

=1 j=1
7751

M M

—ZZ/naxyg

i=1j=1/
i ©

M T

3 / a2, 9o B {p(ili)} ()

=1,

x;
peT?"
-1

f(z)dz,

Ij:i

i—1

- Z / .T yl 1 _perr)f(l’)dl'.

I;4; can be further simplified as follows:

e EJE;/ (jﬁins(x, y;) — ns(z, yD) f(x)dx

Tz

Zq

f (B an@) = [ neta) i),

XTj—1

[

In the above equation, (a) is obtained via adding and subtract-
M x;

ing > [ ns(z,yi(q))f(z)dz, (b) follows from exchanging
1=1lx;_1

the summations over ¢ and 7, using

T4

M

E{ns (2, y5(@)} = > /

=1
Ti—1

ns(, y;(a)) f(z)dz,
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and changing the summation index of the first term to ¢. The
average distortions and the optimum decoder reconstruction

Dy =c ZE{ns(x,yi(q))} +cD,, i€ (l:M],

T4

Y = argrijlinclE{nD(x,y)} +co / np(z,y) f(z)dz, (2)
ye

Ti—1

(D

where Dy is the distortion in the noiseless setting

M T

=y [

(z,y:) f(x)dz.

The actions y are found using the first-order KKT optimality
condition 0D p/dy; = 0. If the decoder distortion is mean
squared error, i.e., np(x,y) = (z — y)?, then

aE{X}+ e :T af(x)dz

Tj—1

c1+ co 9} f(z)dz

Ti—1
B. Gradient descent algorithm

We first note a significant research challenge associated with
the design problem. The classical vector quantization design
relies on the Lloyd-Max optimization, where the encoder
and the decoder optimize their mappings iteratively. These
iterations converge to a locally optimal solution because the
distortion, identical for the decoder and the encoder (team
problem), is nonincreasing with each iteration. However, here
we consider a game problem (as opposed to a team problem)
where the objectives are different. A strategic variation of these
algorithms would enforce optimality with respect to a different
distortion measure at each iteration, and hence do not converge
as illustrated in detail in [1]. A natural optimization approach
would be taking the functional gradient i.e., perturbing the
quantizer mapping via an admissible perturbation function.
However, the set of admissible functions have to be carefully
chosen to satisfy the quantizer’s properties (such as rate and
convex codecell requirements) which hinders the tractability
of this more general functional optimization approach. We
note that the encoder’s distortion is a function of the quantizer
decision levels (q) and quantizer representative levels which
are a function of q, y(q). This permits a gradient-descent
based optimization as a function of g with encoder distortion
as the objective.

Remark 2. The method proposed inherits the convergence
guarantees of gradient-descent based algorithms, thus ensur-
ing local optimality. However, the resulting quantizer may not
necessarily be globally optimal.

The local optima issue can be resolved by techniques
explored in literature [12], [21]-[23]. Here, we implement
a simple remedy where we perform gradient descent with
multiple initializations and choose the best local optimum
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Fig. 2: Encoder distortion for a Gaussian source X ~ N(0, 1) with np(z,y) = (z — y)? and for two different ng(x,y).

amongst them. The MATLAB codes are provided at https:
/Itinyurl.com/asilomar2023 for research purposes. A sketch of
the proposed method is given in Algorithm 1 below.

ALGORITHM 1
Proposed strategic quantizer design algorithm

1: Input: f()a X, M, 77E('7 ')a 77D('7 ')apb
Output: q*,y*, Dg, Dp
Initialization: assign a monotone q randomly, compute
associated encoder distortion D (0), iteration index i = 1
4: Parameters: €, A\, N
Compute symbol error probability pe.. + 1 — (1 —
pb)lOQQJ\/I
6: while AD > ecori< N do
Compute the gradients, {0Dg /0%, }4
Compute the updated quantizer q;4; by gradient
descent with the above gradients, q;i1 q;
A{aD E / 8xm}i
Compute actions y(q;+1) with (2)
Compute encoder distortion Dg(i + 1) associated with
quantizer q; 1 and actions y(q;+1) via (1), (2)
Compute AD = Dg(i) — Dg(i + 1)
end while
: return Quantizer q* = q;41, actions y(q*), encoder and
decoder distortions D and Dp computed for the optimal
quantizer and decoder actions q*,y(q*) via 1.

IV. NUMERICAL RESULTS

We present results for two settings, both with decoder distor-
tion np(x,y) = (x — y)?, for a Gaussian source X ~ N(0, 1)
with encoder distortions (i) ng(x,y) = (2 — y)?, and (ii)
ne(z,y) = (x — y3)%. We take the support of X as [—5, 5]
for computational ease.

In Figures 2a,b, we plot the encoder distortion asso-
ciated with the above settings for bit error rates py
[0,0.05,0.07,0.2,0.4], respectively. The encoder distortions
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increase with the bit error rate, as expected. The encoder
distortions are smaller than the non-revealing encoder distor-
tion, i.e., the encoder prefers to send a message for these
parameters. However, we observe that as the bit error rate
increases, the encoder distortion approaches non-revealing
encoder distortion, which implies that ability of the encoder to
utilize its informational advantage to “persuade” the decoder
decreases with the bit error rate.

We observe in Fig. 2b for a given bit error rate p;, beyond
some rate, say Ry, increasing the rate does not decrease the
encoder distortion. We refer to the threshold rate, Ry as the
cutoff rate, defined as the smallest Ry for which R > Ry
implies that Dg(py, R) > Dg(py, Ro), where Dg(py, R)
is the encoder distortion at rate R with bit error rate py.
Depending on how the encoder distortion aligns with decoder
distortion, the cutoff rate may increase (more aligned) or
decrease (less aligned) with the bit error rate [20]. In Fig.
2b, we observe that the cutoff rate Ry increases with the bit
error rate.

In Figures 3a,b, we plot quantizers for strategic (ng(z,y) =
(2% = )% np(w,y) = (z—y)?) and non-strategic (ng (x, y) =
np(x,y) = (r — y)?) cases for various bit error rate values.
We observe that the quantization intervals are finer around the
mean for the non-strategic setting. This is in contrast with the
strategic case where we observe that the encoder prefers not
to disclose much information, i.e., the quantization intervals
are relatively sparse around the mean (where most of the
probability measure is contained).

We note that our analysis is not limited to the specific
distortion measures that we use to illustrate the numerical
results. We take the decoder’s distortion measure as the
conventionally used MSE metric, np(z,y) = (v — y)?2, for
numerical results. The choice of distortion measure for the
encoder (ng) is arbitrary, (ng # 7p) due to the problem
formulation. However, certain choices of distortion measures
can lead to less interesting solutions, such as non-revealing
(where the encoder does not transmit any information) or
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fully-revealing (where the problem simplifies to non-strategic
quantization with the decoder distortion measure).

V. CONCLUSION

In this paper, we analyzed the problem of strategic quan-
tization over a noisy channel. For our design method, we
implemented a gradient-descent based algorithm based on our
prior work for the noiseless setting [1]. The obtained numerical
results confirm our theoretical analysis.

Gradient-descent based algorithms converge to a local op-
timum, which may not be the globally optimal solution. As
a simple remedy, we used multiple initializations and chose
the best solution among them. Global optimality can be
achieved by dynamic-programming based algorithms, as done
in our prior work [17], [20], however at the cost of increased
complexity.
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