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Ordered, collective motions commonly arise spontaneously in systems of many interacting, active units,

ranging from cellular tissues and bacterial colonies to self-propelled colloids and animal flocks. Active phases

are especially rich when the active units are sufficiently anisotropic to produce liquid crystalline order and thus

active nematic phenomena, with important biophysical examples provided by cytoskeletal filaments including

microtubules and actin. Gliding assay experiments have provided a test bed to study the collective motions

of these cytoskeletal filaments and unlocked diverse collective active phases, including states with long-range

orientational order. However, it is not well understood how such long-range order emerges from the interplay of

passive and active aligning mechanisms. We use Brownian dynamics simulations to study the collective motions

of semiflexible filaments that self-propel in quasi-two-dimensions, in order to gain insights into the aligning

mechanisms at work in these gliding assay systems. We find that, without aligning torques in the microscopic

model, long-range orientational order can only be achieved when the filaments are able to overlap. The symmetry

(nematic or polar) of the long-range order that first emerges is shown to depend on the energy cost of filament

overlap and on filament flexibility. However, our model also predicts that a long-range-ordered active nematic

state is merely transient, whereas long-range polar order is the only active dynamical steady state in systems

with finite filament rigidity.

DOI: 10.1103/PhysRevResearch.6.023319

I. INTRODUCTION

Active matter systems are composed of a large number

of interacting agents that individually convert internal energy

into motion. Flocks of birds, herds of animals, and growing

or swarming bacterial colonies are some examples of active

matter across various length scales [1–4]. The formation of

spontaneously ordered collective motion is a common phe-

nomenon exhibited by active systems. Clustering and flocking

ordered states seen in many active systems can be modeled

using active Brownian particles, in cases where the active

agents are spherically symmetric [5–7]. But active matter also

comprises anisotropic systems with agents whose aspect ra-

tios differ strongly from unity, such as swimming rod-shaped

bacillus subtilis [8] or E. coli bacterial swarms [9,10], glioma

cells in brain tumors [11,12], and cytoskeletal filaments such

as actin and microtubules [13–15]. The anisotropy of these

individual active particles is responsible for the orientational

order and the distinct behaviors of active nematics [16,17].

Collective phases of anisotropic cytoskeletal biofilaments

have been experimentally observed in gliding assay systems,

which were originally used to study molecular motors such as
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kinesin, dynein, and myosin, which walk along cytoskeletal

filaments such as actin and microtubules [18–20]. In a con-

ventional in vitro gliding assay setup, molecular motors are

uniformly dispersed on a glass slide where they are held fixed

with their tail end, which attaches to molecular cargo in vivo,

here attached to the surface of the glass slide. Cytoskeletal

filaments glide on these motors, which push the filaments

forward in a defined direction, making the system microscop-

ically polar. When the densities of motors and filaments are

sufficiently high in a gliding assay, diverse active collective

phases spontaneously emerge, including polar flocks, nematic

and polar lanes, asters, and spools of filaments [21–24]. One

such active state observed is the active nematic state with

long-range orientational order. Understanding how this long-

range-ordered (LRO) nematic state emerges and evolves from

microscopically polar, flexible constituents is the main subject

of this paper.

The effects of shape on interacting colloidal particles were

first studied in thermal systems of passive, hard, rodlike col-

loidal particle systems to reveal that higher aspect ratio and

higher packing fraction favor long-range nematic order [25].

These trends hold also in active systems of self-propelled

hard rods; additionally, increasing the self-propulsion strength

favors nematic alignment [26–29].

In gliding assays, however, the hard-rod approximation

becomes unsuitable due to large deformations of the active fil-

aments. The effects of polymer flexibility on nematic ordering

are notable already in passive, lyotropic liquid crystals, where

lower rigidity disfavors order and increases the isotropic-

nematic phase transition concentration, compared to hard-rod
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colloids [30]. Rigidity is likewise an important parameter in

determining the active phases of self-propelled, semiflexible

filaments [24,31–35].

Past simulation studies of active semiflexible filaments

that have reported LRO states [24,31,34] employed an attrac-

tive or aligning interaction between nearby active filaments

in their microscopic model. These assumptions were jus-

tified by the use of depletants, which cause filaments to

bundle in parallel or antiparallel orientations, in conven-

tional gliding assay experiments where LRO states have been

observed [21,22,24,34]. However, recent experiments with

microtubules on lipid substrates have reported LRO states

without the need for depletants [36]. This experimental evi-

dence motivates us to study how LRO active nematic states

emerge and evolve without imposed aligning or attractive

interactions in the microscopic model.

Another important feature of experimental gliding assays

is that filaments frequently cross over one another, with

one filament partially and temporarily delaminating from

the substrate [21,24,34–36]. These crossovers are forbidden

by models that assume strictly two-dimensional motion of

impenetrable filaments. As we show in this work, filament

crossovers are essential to LRO states in the absence of align-

ing or attractive interactions at the filament-pair level.

In this paper, we conduct a detailed study of the active

phase behaviors of self-propelled, semiflexible filaments with-

out imposed attractive or aligning interactions between the

active agents. We determine the conditions under which these

filaments develop collective motions with long-range orienta-

tional order, by varying parameters including the filaments’

flexibility and area fraction.

We find that a long-range orientationally ordered phase

does not arise when the filaments are strictly constrained to

two dimensions through volume exclusion. Instead, we ob-

serve LRO states only in quasi-two-dimensional systems, in

which we replace the volume-excluding steric repulsion with

a finite energy cost for filament overlap [33,37], in order to

account for crossovers.

In our simulations, the symmetry of the long-range orienta-

tional order that first emerges may be polar or nematic (apolar)

depending on the flexibility of the filaments. Surprisingly, we

find the LRO active nematic state to be merely transient, with

all LRO systems eventually becoming polar. Our model pre-

dicts that the time taken by the system to reach the LRO active

polar steady state monotonically increases with filament stiff-

ness. These findings suggest that experimental observations of

LRO active nematic states in microtubule gliding assays may

be better interpreted as transient behavior, observable due to

the finite lifetime of experiments and relatively high rigidity

of the filaments.

II. MODEL

We use Brownian dynamics to simulate active (self-

propelled), semiflexible filaments in two dimensions. Each

filament is modeled as a bead-spring chain with a Hookean

restoring force between adjacent beads and a bending stiffness

κ̃ . Each bead self-propels with a constant active force in the

chain’s local tangent direction, resulting in an active speed v0

in the absence of other forces. The local tangent direction is

calculated at each time step from bead positions and does not

have its own relaxation time in this model.

Steric repulsion between beads of different chains is mod-

eled using a modified Weeks-Chandler-Andersen potential

[32,38]:

UWCA(ri j )

=

{

4ε
[(

σ
ri j+rshift

)12 −
(

σ
ri j+rshift

)6] + ε, ri j � 21/6σ

0, ri j > 21/6σ
. (1)

Here, ri j is the distance between the centers of two beads

i and j, and rshift is a parameter introduced to make the

UWCA potential finite when ri j = 0; this ensures that chains

can interpenetrate. The overlap of chains in our explicitly

two-dimensional model mimics the crossover events of a

quasi-two-dimensional microtubule gliding assay experimen-

tal system. In addition to acting between beads of different

chains, UWCA also acts between bead pairs on the same chain

separated by more than three bead positions, penalizing self-

intersections of the semiflexible chains.

We scale simulation lengths in units of x̃ = 21/6σ , the

range of the WCA repulsive potential. In these units, the

bead diameter is r0 = 0.5x̃. The chain length � = 31r0 is the

same for all chains and is kept fixed across all simulation

results presented here; polydispersity will be investigated in

future work. Time t is scaled with respect to x̃/v0, although

in our plots we present time t̃ in units of �/v0. The Brownian

(overdamped) dynamics updates bead positions through

x(t + dt ) = x(t ) + vdt +
√

2Ddtξ(t ), (2)

v = Ftotal/γ . (3)

The third term on the right-hand side of Eq. (2) is the

stochastic noise term representing random fluctuations in

bead positions, with each vector component drawn from

a zero-mean Gaussian white noise distribution. We use a

second-order stochastic Runge-Kutta (SRK-2) method [39] to

update the bead positions, with an adaptive time step. All sim-

ulations are conducted in a square box of side length Lx with

periodic boundary conditions in both the x and y directions.

Full details of the bead-spring-chain model can be found in

Appendix A.

III. RESULTS

A. Dependence of active state on chain penetrability

We begin by examining the strictly two-dimensional sce-

nario in which crossovers are prohibited, with rshift = 0. This

choice makes the repulsion potential UWCA(ri j ) diverge when

two chains overlap (ri j = 0), thus forbidding chains to in-

terpenetrate when they collide. We vary bending rigidity κ̃ ,

which in passive systems would favor nematic order as it is

increased [30]. However, in this active system, we find by

varying κ̃ across three orders of magnitude that the system

does not exhibit long-range order. Instead, polar flocks are

seen for all values of κ̃ , as shown in Fig. 1(a) and in Sup-

plemental Video 1 [40].

These results indicate that long-range orientational order

for mutually impenetrable active semiflexible chains cannot
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FIG. 1. (a) Polar flocks observed when rshift = 0 and ε = 1 in UWCA. The simulation box size Lx = 250, area fraction φ = 0.5, and number

of chains N = 2016. The color wheel legend, here and in subsequent figures, indicates the orientation of each filament, averaged over the

tangents at each bead. (b) Plot of the WCA potential for bead interactions in the cases of steric repulsion (blue) and penetrable filaments

(orange).

be achieved without an imposed alignment or attractive po-

tential. Active polar flocks similar to those observed here

have been reported in various microtubule and actin fila-

ment gliding assays both in experiments using depletants and

in simulations where the filaments were strongly confined

to two dimensions [14,29,33,34,41,42]. Similar polar flocks

have also been reported in experiments on rod-shaped E. coli

bacterial colonies when they were strongly confined to two

dimensions [37].

We now introduce chain penetrability by modifying the

ri j dependence of the UWCA interaction potential as shown in

Fig. 1(b), with rshift fixed at 0.1, so that the potential is finite

at ri j = 0. We vary ε to change the potential barrier for chain

interpenetration, which affects the frequency of crossovers

(Supplemental Video 2 [40]).

At the lowest ε values tested, such as ε = 10−12 as shown

in Fig. 2(a), we obtain an isotropic state, as chains simply

cross over each other essentially unimpeded. When ε = 10−10

we observe polar density waves [Fig. 2(b)] traveling parallel

to the chain self-propulsion direction, as previously seen in

simulations and experiments involving actin filaments [24]

(where the term polar clusters is applied to this state). A

state with no positional order but long-range orientational

order [Fig. 2(c)], our main interest in this work, is obtained

when ε = 10−8. We therefore maintain UWCA parameters of

ε = 10−8, rshift = 0.1 in the following sections of this paper.

At even higher values of ε, we obtain density inhomo-

geneities in the form of flocks. When ε = 10−6, a jammed

flocking state appears [Fig. 2(d)], with characteristics dis-

tinct from the polar flocks seen in Fig. 1(a). The jammed

flocks seen here are formed by countermoving chains that

are dynamically arrested relative to the center of mass of

the flock, which then moves as a whole. (In contrast, all the

chains in a particular polar flock seen in Fig. 1(a) are oriented

nearly in the forward direction.) The jammed flocking state

of [Fig. 2(d)] can be interpreted as a form of motility-induced

phase separation [6], with countermoving filaments impeding

each others’ motions as they overlap.

The density inhomogeneities seen in Figs. 2(e) and 2(f) are

dynamic and they reconfigure into different lanes and flocks

multiple times in the course of the simulation. While the polar

lane in Fig. 2(f) spans the system, we observe upon increasing

the system size a state like the finite flock of Fig. 2(e). We

therefore interpret the system-spanning lane of Fig. 2(f) as a

finite-size effect.

B. Long-range-ordered states

With ε fixed at 10−8 henceforth, we now investigate active

states with long-range orientational order (LRO) in greater

detail. First, we study the effect of changing bending rigid-

ity κ̃ on the form of the orientational order. In Fig. 3, we

FIG. 2. Changing the energy cost ε for chains to interpenetrate we obtain the following states: (a) Isotropic state with no positional or

orientational order. (b) Polar wave state where chains move in the same direction as the wave. (c) Long-range orientational ordered state.

The orange line in Fig. 1(b) corresponds to the potential used here. (d) Jammed flock state. (e)–(f) Dynamic polar flocks and lanes. All the

simulations have box size Lx = 100, φ = 0.5, � = 15.5, κ̃ = 30, and rshift = 0.1. The color wheel legend indicates the orientation of each

filament, averaged over the tangents at each bead.
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FIG. 3. States with long-range orientational order obtained for different bending rigidities κ̃ . All simulations have Lx = 100, φ = 0.3,

� = 15.5, ε = 10−8, and rshift = 0.1. S(t∗) and P(t∗) are the nematic and polar order parameters, respectively, of the simulation runs pictured

here, at time t∗ roughly corresponding to the saturation time for nematic order.

see snapshots of the initially formed long-range orientational

order (time t∗ = 200.58[�/v0]) for a range of κ̃ values. To

quantify the orientational order we compute two different or-

der parameters: nematic order S(t̃ ) = |〈exp(i2θ t̃
j )〉 j | and polar

order P(t̃ ) = |〈exp(iθ t̃
j )〉 j |, where θ is the average orientation

of all the beads in a chain with respect to the positive x axis,

and subscripts j indicate a system average over all chains. We

label a state as orientationally ordered when S(t̃ ) � 0.7. An

orientationally ordered state is labeled a LRO polar state if

P(t̃ ) � 0.7, and a LRO nematic state otherwise.

In Fig. 3, we see that more rigid chains (greater κ̃) form

a LRO nematic state (S(t∗) > 0.7 and P(t∗) < 0.7) whereas

more flexible chains achieve a LRO polar state (P(t∗) > 0.7).

The same trend is revealed when nematic and polar order pa-

rameters, averaged over 20-run ensembles, are plotted against

κ̃ [Fig. 4(a)]: whereas 〈S(t∗)〉 increases modestly with in-

creasing κ̃ , 〈P(t∗)〉 decreases dramatically. Biopolymers such

as microtubules have a higher bending rigidity (persistence

length ≈ 1 mm) compared to actin filaments (persistence

length ≈ 10–20 µm) [43]. While LRO polar states have not

been observed in experiment, our results are consistent with

the known tendency of actin gliding assays to exhibit short-

range polar order whereas nematic order (short or long range)

is more common in microtubules [14,21,24,34,36,41].

The modest increase in nematic order with increasing

rigidity can be attributed to the fact that more rigid chains

have greater restoring forces against bending deformations,

and are therefore less likely to be significantly deflected from

their direction of motion due to collisions or random fluc-

tuations. Box plots in Figs. 4(b) and 4(c) show the median

and spread of nematic and polar order parameter values at

time t∗, when all the simulations have reached long-range

orientational order. It is interesting to note that, at larger κ̃

values that gave apparently nematic states, the polar order

parameter values [Fig. 4(c)] are significantly above zero and

widely spread. This indicates that LRO nematic order coexists

with LRO polar order, and raises the question of whether

the LRO nematic state is, in fact, the dynamical steady

state.

C. Nature of the active steady state

In order to determine whether LRO nematic order with

weak LRO polar order is a dynamically stable active state, we

now examine the evolution of orientationally ordered systems

over times much longer than t∗. Examining the time evolution

represented by the snapshots in Fig. 5(a) and Supplemental

Video 3 [40], we can see that the LRO active nematic state

FIG. 4. (a) Mean nematic order parameter and polar order parameter plotted against bending rigidity at time t∗ when all the simulations

have reached long-range orientational order. (b) and (c) Median and the spread of the nematic (b) and polar (c) order values in 20-run ensembles

at time t∗.
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FIG. 5. (a) Snapshots of the time evolution of a system with κ̃ = 30 and φ = 0.3. At long times the order is polar, not nematic. (b) Polar

(cyan) and nematic (gray) order parameters for an ensemble of simulations (n = 20) with κ̃ = 70. Magenta and blue curves represent the

ensemble-mean polar and nematic order parameters, respectively, at each time. All systems reach long-range orientational order around the

same time t∗, marked by the black dashed line.

discussed in the previous section is merely transient, and the

system reaches an active global polar steady state at longer

times. To quantify this evolution of orientational order, we plot

in Fig. 5(b) the polar and nematic order parameters against

time for each simulation in a 20-run ensemble, with bending

rigidity κ̃ = 70. The black dashed line indicates the time t∗
when all the simulations have achieved long-range nematic

orientational order. However, the nematic (apolar) state is

transient, as indicated by P(t̃ ) rising to saturation near 1 at

much later times. The active steady state is therefore a LRO

active polar state. At intermediate times after t∗, the polar

order appears to plateau for a significant time interval, though

the plateau value of P(t̃ ) exhibits wide variation between

simulation runs.

To understand the effect of changing bending rigidity

on the steady-state long-range order, we plot in Fig. 6 the

ensemble-averaged nematic [Fig. 6(a)] and polar [Fig. 6(b),

6(c)] order parameters against time for multiple values of

κ̃ . From Fig. 6(a) we see that nematic order saturates at

around the same time t∗ for all κ̃ values. Figure 6(b) shows

that, while polar order eventually saturates for all κ̃ values,

the time of saturation depends strongly on κ̃ . Systems with

larger κ̃ tend to take much longer times to reach their LRO

active polar steady state. To examine the κ̃ dependence of

the P(t̃ ) saturation time, we plot in Fig. 6(c) the same data

as in Fig. 6(b) but with a linear scale on the time axis. Fit-

ting a saturating exponential function f (t̃ ) = r − ae−t̃/τ to the

ensemble-averaged polar order parameter yields typical time

FIG. 6. Ensemble-averaged (n = 20) nematic order parameter and polar order parameter (area fraction φ = 0.3). Error bars (appearing

as widths of curves at larger time values) indicate the standard error of the mean. (a) Global nematic order parameter S(t̃ ) saturates at

approximately the same time t∗ for all κ̃ , values indicating long-range orientational order. (b) Global polar order parameter P(t̃ ) saturates

over time for all κ̃ , but at later times for larger κ̃ . (c) A saturating exponential function f (t̃ ) = r − ae−t̃/τ (dashed curves) is fit to the

ensemble-averaged P(t̃ ) data (solid curves). Insets show fit parameters r (top) and τ (bottom) increasing with increasing κ̃ .
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scales τ for saturation of polar order at P(t̃ ) → r. As shown in

the inset to Fig. 6(c), we find that τ monotonically increases

with increasing κ̃ , quantifying the slower polar ordering ex-

hibited by more rigid filaments. The saturation value r varies

between simulation runs, and its ensemble average increases

slightly with increasing κ̃ , indicating better polar ordering in

more rigid filaments.

We next investigate the effect of changing the area fraction

φ of filaments on the LRO state (Appendix B, Figs. 8–

10). We see that the lowest area fraction tested (φ = 0.1)

takes the longest to reach the long-range orientational order

[Fig. 9(a)]. When we simulate the systems for much longer

times compared to t∗, and fit the ensemble-averaged polar

order parameter to a saturating exponential as we did in

Fig. 6(c), we find that the time scale τ required to reach a LRO

polar steady state monotonically decreases with increasing

φ [Fig. 9(c)]. This effect can be attributed to an increase in

the rate of filament interactions for higher φ values, giving

the system more opportunities for reorientation and hence

reaching the steady state sooner.

The wide range of plateau P values observed at the time

t∗ of nematic ordering poses a challenge for isolating the

effect of φ on the time scale for polar ordering. To control for

different histories of partial polar ordering, we conducted a

set of simulations in which the filaments are initialized in one

of two opposing directions, so that the initial global nematic

order is perfect, S0 = 1, and the initial global polar order P0 is

precisely specified (Fig. 10). A polar order saturation time TPc

was defined as TPc
= t̃Pc

+ τPc
, where Pc is a chosen threshold

P value, t̃Pc
is the time at which the increasing P(t̃ ) reaches

Pc, and τPc
is the time constant from an exponential fit to

P(t̃ ) for all later times. By calculating TPc
for an ensemble

of simulations over a range of P0 and φ values, we find that

systems with higher area fraction take less time to reach LRO

polar order for each P0 (Fig. 11). Furthermore, the exponential

saturation time constant τPc
is remarkably consistent across

a wide range of P0 values (excluding cases of P0 > Pc) at

each value of φ (Fig. 12). This latter result indicates that

the late-time polar ordering dynamics have no dependence on

the history of nematic ordering other than through a t̃-shift

that depends on the plateau value P(t̃∗). These findings are

consistent over a range of choices of cutoff value Pc for the

exponential fits.

Changing the system size Lx does not seem to have any

significant effect on the typical time scales needed to reach

long-range orientational order (t∗) or to reach the LRO active

polar steady state (τ ) (Appendix D, Fig. 14). The plateau

values of the polar order seen in Fig. 6(b) are also seen not

to depend significantly on φ and Lx. We additionally note that

incorporating anisotropic friction into the Brownian dynamics

model [33] does not qualitatively change our results, as seen

in Appendix C, Fig. 13.

IV. DISCUSSION AND CONCLUSIONS

In this study, our objective was to investigate ordered

states in the collective motions of self-propelled, semiflex-

ible filaments. With a microscopic model lacking attractive

or aligning mechanisms between filament pairs, we find that

crossovers are essential to the emergence of LRO states. In

contrast, strictly two-dimensional confinement permits only

locally ordered polar flocks [14,29,33,34,41,42]. This find-

ing is consistent with a recent experimental study of E. coli

bacterial colonies on a surface, which are seen to form LRO

nematic states when crossovers are allowed, and polar flocks

when crossovers are suppressed [37].

When we allow filaments to interpenetrate in order to

model crossovers, the symmetry of the LRO state that initially

forms is nematic for more rigid filaments and polar for more

flexible ones. However, we find that the LRO nematic state,

despite its experimental importance, is only a transient state

in our simulations. All LRO states eventually evolve into

LRO polar states, which we find to be the unique dynami-

cal steady state. The typical time required for emergence of

the polar steady state increases monotonically with filament

rigidity.

Our results suggest that experimental realizations of LRO

active nematic states in microtubule gliding assays are long-

lived transient states rather than dynamical steady states. Due

to factors such as ATP consumption, gliding assay experi-

ments necessarily have finite lifetimes. For relatively rigid fil-

aments such as microtubules, our model predicts that the time

scale τ for emergence of polar order (and thus, the persistence

of an apparently nematic state) may be much longer than the

time t̃ ∼t∗ at which nematic order emerges from an isotropic

initial condition. Comparing the typical length and active ve-

locities of microtubules in gliding assay experiments [36] to

our simulation, we estimate that microtubule bending rigidity

corresponds to κ̃ ≈ 250 (Appendix E), which is certainly in

the high-κ̃ regime according to our results.

Our results also suggest that in the limit of κ̃ → ∞ (active

rigid rods) the time scale for polar ordering may diverge,

making the active nematic state dynamically stable [26–29].

Long-lived, long-range nematic order in E. coli colonies might

be interpreted as an effectively stable state in a system of

effectively rigid rods [37].

It remains an open question how strongly our findings de-

pend on the use of periodic boundary conditions and reduced

system size compared to typical experiments. Surprisingly,

however, we find that changing the system size does not have

any significant effect on the typical time scale for emergence

of the polar steady state. This suggests that our simulations

may be capturing the true physics of the bulk system. We also

find that our choice of isotropic friction, at the level of indi-

vidual beads, is not important to our findings, as introducing

anisotropic friction does not qualitatively change our finding

that the LRO polar order is the steady state (Appendix C,

Fig. 13).

A number of interesting questions are raised by the

plateaus in polar order P(t̃ ) that characterize the transient

LRO nematic state in systems of more rigid filaments, be-

fore the late-time emergence of the LRO polar steady state

[Figs. 5(b) and 6(b)]. These plateaus are clear in P(t̃ ) plots

from individual simulation runs [Fig. 5(b)], even though the

ensemble-averaged 〈P(t̃ )〉 appears to be monotonically in-

creasing. We have confirmed that the P value of this plateau

has no significant dependence on the system size or on the area

fraction of filaments (Figs. 9, 14). The reason for this plateau

in the polar order parameter’s evolution, and the dependence

of the plateau value on κ̃ , remain open questions.
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The variability that we observe in plateau P values sug-

gests that transient states may have wide variability in their

orientational order, in an ensemble of active systems with

identical parameters. As nematic order S saturates at earlier

times, the polar order P that happens to develop simultane-

ously is apparently remembered over the long lifetime of the

transient LRO nematic state. Increasing the strength of noise

in the simulations may help to erase memory of the details of

the nematic ordering process and thus reduce differences in

order between transient states of different runs, resulting in a

narrower distribution of P values.

In this work, we have only focused on the long-range

orientationally ordered states with no density inhomogeneities

and established that the LRO nematic state is only a transient

state. But gliding assays also spontaneously form a variety

of ordered states with nonuniform densities [23,24,33,34,36].

Our results highlight the potential importance of long-lived

transients in active states generally, so it is of interest to

investigate whether distinct active behaviors may be found in

the time evolution of other, inhomogeneous active states.

A full understanding of LRO active states, including the

role of filament bending rigidity, requires detailed study of

binary collisions [24,34,36], which is the subject of ongoing

work. This understanding will complement our study in this

work of the effect of area fraction φ. We find that increasing

φ reduces the time required for emergence of the LRO polar

steady state. This effect can be attributed to an increase in

the rate of collisions with increasing φ, giving the system

more opportunities to reorient filaments. Other realistic com-

plications of interest, including polydispersity, chirality, and

growth, make the active states of self-propelled, semiflexible

filaments a subject of rich phenomenology even in the sim-

plest ordered phases.
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APPENDIX A: MODEL DETAILS

Each semiflexible filament is modeled as a bead-spring

chain composed of circular disks (beads) connected by

Hookean springs with spring stiffness k. If r = rr̂ is the sepa-

ration vector between the centers of any two connected beads

and r0 is the equilibrium spring distance, then the spring force

is given by:

Fstretch = −k(r − r0)r̂. (A1)

A discrete approximation to the bending energy for a semi-

flexible chain is 1
2
κ


i (�θi )
2

�s
where �θi = θi − θi−1 is the angle

change between points separated by a small distance �s along

the contour and κ = 1
2
lpkBT is the bending stiffness where lp

FIG. 7. Schematic illustration of forces in the active bead-spring

chain model. (Left) Illustration of active self-propulsion and WCA

repulsion between pairs of chains. (Right) A zoomed-in view of the

region enclosed by the dashed lines at left, to illustrate the stretching

and bending spring forces.

is the persistence length of the chain [44]. We incorporate this

bending energy as a potential acting between every set of three

consecutive beads (�s ≈ 2r0) that penalizes the bending of

the chain.

Ubend = 1
2
κ̃ (π − θ )2 (A2)

κ̃ = κ
�s

has the units of energy and will be referred to as the

bending stiffness hereafter and θ is the bond angle between

two adjacent linear springs (Fig. 7).

The total force excluding viscous drag is given by

Ftotal = Fstretch − ∇θUbend + Factive − ∇UWCA, (A3)

where UWCA is given by Eq. (1). The Brownian (overdamped)

dynamics [33] updates bead positions through

x(t + dt ) = x(t ) + vdt +
√

2Ddtξ(t ), (A4)

v = Ftotal/γ . (A5)

Here v is the velocity of the bead, γ is the drag coefficient,

and ξ(t ) is the stochastic noise term representing random fluc-

tuations in bead positions, drawn from a zero-mean Gaussian

white noise distribution.

APPENDIX B: EFFECT OF AREA FRACTION

We investigated the effect of changing the area fraction

of filaments on the LRO order. Figure 8 shows snapshots

of simulations with different area fractions after they have

reached orientational order. All the simulations shown here

have filaments with κ̃ = 10 and UWCA parameters ε = 10−8

and rshift = 0.1 [Fig. 2(c)]. From these snapshots, we see

that the symmetry of the LRO state reached for all the area

fractions is polar, which is consistent with the polar order seen

for κ̃ = 10 in Fig. 3 where φ = 0.3. So increasing the area

fraction to φ = 0.5 or φ = 0.7 does not change the type of

orientational order initially reached.
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FIG. 8. Changing area fraction φ of filaments. All the snapshots are taken at a time when the system has reached orientational order, which

is polar for all cases shown here. The filaments have κ̃ = 10 and the system size Lx = 250.

To understand the steady-state behavior of the system, we

examined the order of the system after a long time compared

to t∗. The global nematic order parameter in Fig. 9(a) re-

veals that all the simulations reach an orientational order but

the system with the lowest area fraction (φ = 0.1) takes the

longest time to reach the global orientational order. This is

presumably due to filament reorientation interactions being

less frequent in the lower-density system. The LRO polar state

is still the steady state of the system as seen from Fig. 9(b).

The system takes less time to get to the LRO polar state when

the area fraction is higher. Fitting a saturating exponential

function f (t̃ ) = r − ae−t̃/τ to the mean polar order param-

eter, we see that τ decreases with increasing area fraction

[Fig. 9(c), bottom inset] whereas saturation parameter r is

not seen to follow any trend with change in area fraction

[Fig. 9(c), top inset].

To better understand the dependence of saturation time

(from LRO nematic to LRO polar) on φ separately from its

dependence on the plateau value of P(t̃ ), we set up systems

with varying area fraction φ having all filaments oriented

initially along one of two opposing directions. These systems

have perfect initial nematic order S0 = 1 and controlled polar

order P0. Figure 10 shows the time evolution of nematic and

polar order in these systems for two example values of initial

polar order, P0 = 0.1 and P0 = 0.7. Unlike the ensemble-

averaged 〈P(t̃ )〉 examined in Fig. 6, P(t̃ ) data for individual

runs in these controlled simulations are not generally well

fit by a saturating exponential function over the entire sim-

ulation time, especially for low P0 values such as P0 = 0.1.

However, because the late-time behavior is well described by

a saturating exponential, we can still find a characteristic time

scale by defining the total time TPc
to saturation of polar order

as TPc
= t̃Pc

+ τPc
where t̃Pc

is the time taken by the rising

polar order P(t̃ ) of each simulation to reach a specific cutoff

value Pc. For time t̃ > t̃Pc
we fit P(t̃ ) to a saturating expo-

nential ( f (t̃ ) = r − ae−t̃/τP ) to obtain the time constant τPc
. In

Figs. 11(a), 11(b), and 11(c) the cutoff Pc = 0.5, Pc = 0.7, and

Pc = 0.9, respectively. Over a wide range of choices of cutoff

Pc, Fig. 11 shows that a higher area fraction leads to lower

saturation time for each initial polar order P0. Simulation runs

initialized with P0 > Pc are excluded from this analysis for

each choice of Pc.

Figures 12(a), 12(b), and 12(c) show the fit parameter 1/τPc

for various values of φ with cutoffs at Pc = 0.5, 0.7, and 0.9,

respectively. It can be seen that the system is memoryless in

that the saturation time τPc
is similar for all P0. For example,

FIG. 9. Dependence of orientational order time evolution upon area fraction φ. Orientational order parameters are averaged over 20-run

ensembles with κ̃ = 30 and with various φ values. (a) Nematic order time evolution. (b) Polar order time-evolution, with logarithmic scale on

the time axis. (c) Polar order time evolution (solid curves), with linear scale on the time axis. Dashed curves are fits of f (t̃ ) = r − ae−t̃/τ to the

data. Insets show that r does not depend significantly on φ (top inset), while τ decreases with increasing φ (bottom inset). Time t̃ is plotted in

units of �/v0.
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FIG. 10. Time evolution of a system of κ̃ = 30 filaments initialized with perfect nematic order and with specified values of initial polar

order P0, for different area fractions φ. (a) Nematic order time evolution for P0 = 0.1. Inset shows a snapshot of the initial condition with

filaments oriented either up (purple) or down (green) for an area fraction of φ = 0.3. (b) Polar order time evolution for P0 = 0.1. (c) Polar

order time evolution for P0 = 0.7. Insets show the nematic time evolution and a snapshot of an initial condition with (φ = 0.3). The ensemble

size is n = 10 for φ = 0.1, 0.3 and n = 3 for φ = 0.5, 0.7, for each value of P0.

FIG. 11. 1/TPc
where TPc

= t̃Pc
+ τPc

is the total saturation time for different area fraction φ. When P0 = Pc, TPc
= τPc

. (a) Pc = 0.5. (b) Pc =
0.7. (c) Pc = 0.9. For all the cutoff Pc values, it can be seen that a higher area fraction leads to lower saturation time for each initial polar order

P0. The ensemble size is n = 10 for φ = 0.1, 0.3 and n = 3 φ = 0.5, 0.7, for each value of P0.

FIG. 12. 1/τPc
, obtained from fitting a saturating exponential f (t̃ ) = r − ae−t̃/τP to P(t̃ ), is plotted for different initial polar order parameter

values P0, for varying area fractions φ. Fits are over the time intervals in which P(t̃ ) � Pc, with (a) Pc = 0.5, (b) Pc = 0.7, (c) Pc = 0.9.
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FIG. 13. Nematic and polar order parameters are plotted for an ensemble of simulations with κ̃ = 30, Lx = 100, φ = 0.3. (a) Isotropic

friction. (b) Anisotropic friction with an anisotropy γ⊥ = 2γ‖. Black dashed line represents time t∗ as described in the main text.

τ0.7 is very similar for P0 = 0.7 (fitting over the entire simula-

tion time range) as for P0 = 0.1 (in the time range after P(t̃ )

reaches 0.7).

APPENDIX C: ANISOTROPIC FRICTION

The model described previously assumes isotropic friction

on the beads. But as these beads form long filaments with a

high aspect ratio, we examine here whether our results are

significantly changed by friction anisotropy. For this purpose,

we replace Eq. (A5) with an anisotropic generalization for a

particular bead α,

v
α
i = Mα

i j · Fα
total,i, (C1)

where Mα
i j is the anisotropic mobility tensor of the αth bead

[33]:

Mα
i j =

1

γ‖
tα
i ⊗ tα

j +
1

γ⊥

(

δi j − tα
i ⊗ tα

j

)

. (C2)

Here, γ⊥ and γ‖ are the perpendicular and parallel drag coef-

ficients. The symbol ⊗ represents the outer product, and tα is

the tangent unit vector to bead α, found by

tα =
rα + rα+1

|rα + rα+1|
, (C3)

where rα is the separation vector between the centers of the

(α − 1)th and αth connected beads, and 1 < α < N if there

are N beads in a chain. For a bead that is located at the

ends, t1 = r2 and tN = rN . The diffusion coefficient is also

anisotropic and for a wormlike chain, it is given by Dα
i j =

kBT Mα
i j [33]. This can be used in Eq. (A4) to compute the

positions of beads at the next time step.

Using anisotropic friction of γ⊥ = 2γ‖ in a 20-run ensem-

ble of simulations with κ̃ = 30 (Fig. 13), we see no qualitative

difference compared to simulations with isotropic friction as

both Figs. 13(a) and 13(b) reach an LRO polar steady state

after being in a transient nematic state at intermediate times.

From 〈S(t̃ )〉 values of both the cases, we can see that the

case with isotropic friction reaches the LRO nematic state at

a slightly earlier time compared to the case with anisotropic

friction. However, the case with anisotropic friction is seen

to reach the LRO polar steady state sooner. We also find that

anisotropic friction reduces differences in polar order between

transient states of different runs during intermediate times,

resulting in a narrower distribution of P values. There is also a

slight increase in 〈P(t̃ )〉 at these intermediate times compared

to an ensemble with isotropic friction.

APPENDIX D: EFFECT OF SIMULATION BOX SIZE

We examine the effect of changing the simulation box

size Lx on the LRO states of the system. We fix κ̃ = 30

throughout this ensemble of 20 runs for four different Lx

values. From Fig. 14(a), we see that the initial LRO state is

reached at roughly the same time for all system sizes, though

there is a trend of larger systems taking slightly more time

to reach the LRO state. From Fig. 14(b) we can see that the

time to reach the LRO polar steady state does not depend

significantly on the system size. Interestingly, we can also

see that the plateau value of the polar order in Fig. 14(b)

does not show any monotonic trend with increasing system

size.

APPENDIX E: COMPARISON OF SIMULATION UNITS

TO EXPERIMENTS

We provide here a comparison of our simulation units to

microtubule (MT) gliding assay experiments on lipid mem-

branes where a depletion agent was not needed to facilitate

microtubule bundling [36]. If we equate our simulation fil-

ament length � = 15.5x̃ to the average length of MTs in

experiments ≈10 µm [36], we can obtain an estimate of how

the simulation length unit x̃ corresponds to the experimen-

tal length units: x̃ ≈ 0.64 µm. Similarly, the time scaling is

set by comparing the active speed of the filaments in our

simulation (v0 = x̃/t̃ = 1) and the MT velocity in the ex-

periments ≈0.5 µm/s. This implies t̃ ≈ 1.28s. To obtain an

estimate of mass scaling, we look to the overdamped Brown-

ian dynamics equation (A5): [γ ] = m̃/t̃ . To estimate the drag

coefficient in experiments, we can use the Einstein relation,

023319-10



SYMMETRY AND STABILITY OF ORIENTATIONALLY … PHYSICAL REVIEW RESEARCH 6, 023319 (2024)

FIG. 14. Nematic (left) and polar (right) order parameters are plotted for a 20-run ensemble with κ̃ = 30, φ = 0.3, and four simulation

box sizes Lx .

D = kBT/γ where D is the diffusion constant. From Ref. [36],

D ≈ 0.1 µm2/s for microtubules in the gliding assay experi-

ment and kBT = 4.1 × 10−21 J. This gives an estimate of γ =
4.1 × 10−8 kg/s and the mass scaling in our simulations is

then m̃ = 5.2 × 10−8 kg. Thus the simulation units of energy

correspond to:

ε̃ =
m̃x̃2

t̃2
≈ 1.3 × 10−20 J. (E1)

For the bending stiffness κ̃ , we obtain a relation to the stiff-

ness of MTs in experiments using the persistence length

lp ≈ 10−3 m of MTs. Since bending energy in our model acts

between every set of three consecutive beads, we have �s =

2r0x̃ (refer to the model details in Appendix A). Bending

stiffness κ̃ is related to energy units ε̃ by:

κ̃ =
lpkBT

2�sε̃
≈ 2.46 × 102 J. (E2)

Thus the bending stiffness of taxol-stabilized MTs in the

gliding assay experiment on a lipid membrane in Ref. [36]

roughly corresponds to a value of κ̃ ≈ 250 in our simulations.

Another common method of stabilizing microtubules is by

using guanosine-5′ [(α, β)-methyleno] triphosphate sodium

salt (GMPCPP), and this is known to increase the rigidity

of microtubules compared to taxol [45]. The corresponding

rigidity in our simulations is therefore κ̃ > 250, and our re-

sults for the high-rigidity regime are expected to apply for

both MT stabilization methods.
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