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Abstract— In this paper, we present a novel opinion dynamics

model in vector spaces. We define individuals and information

sources, where individuals’ opinions evolve over time and are

represented by vectors. The information sources are charac-

terized by constant opinion vectors, while confirmation bias is

explicitly incorporated into the model to account for individu-

als’ selective information acquisition from information sources

that align with their existing opinions. Drawing inspiration

from the Friedkin-Johnsen model, this mechanism combines

an individual’s innate opinion, the opinions of their social

network neighbors, and the influence of information sources.

The social network operates on trust and remains static, while

the information sources introduce dynamics through weighted

norms based on the distance between an individual’s and

the information source’s opinion vector. We characterize the

convergence conditions for the proposed dynamics and present

approximation and exact computation methods for steady-

state values under both affine and non-linear state-dependent

confirmation bias weight functions.

I. INTRODUCTION

Empirical studies in social sciences indicate that indi-
viduals form opinions on different issues correlatedly, i.e.,
the opinion components evolve as a vector, see e.g. , [1].
In recent years, there has been a significant interest in
expanding the scalar models to multidimensional settings
in order to reflect the complexities of opinion evolution
in real-world circumstances where individuals frequently
have several interconnected opinions on various topics [2]–
[7]. Individuals are represented as vectors of opinions in
the multidimensional model, with each vector dimension
corresponding to a specific issue. Extending scalar mod-
els to multidimensional settings requires developing new
mathematical tools to describe the dynamics of opinion
formation. One of the critical challenges is how to account
for the interdependence between different issues and how
individuals update their opinions on one issue based on their
opinions on other issues. Another challenge is incorporating
the effect of confirmation bias, where individuals tend to
seek out and favor information sources that confirm their
existing beliefs into the model. In [8], the authors proposed
scalar evolution dynamics based on the well-known Friedkin-
Johnsen model in [9], which explicitly considers the afore-
mentioned confirmation bias.

In this paper, we extend the opinion evolution model in
[8] which explicitly considers confirmation bias, to vector
spaces. Beyond a simple concatenation of independent scalar
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dynamics, this nontrivial extension enables modeling the
interactions between opinion components.

The structure of this paper is as follows. Section 2 intro-
duces the notation and outlines the model for cyber-social
networks. In Section 3, we delve into the analysis of con-
vergence dynamics and the estimation and exact computation
of the unique equilibrium point. Finally, Section 4 concludes
the paper, summarizing key findings.

II. NOTATION AND NETWORK MODEL

A. Notation
In this paper, we utilize the following notation:

R
n The set of n-dimensional real vectors;

R
+ The set of non-negative real numbers;

R
m⇥n The set of m⇥ n-dimensional real matrices

I
n The set of n-dimensional vector with all components

within [0, 1] interval
I
m⇥n The set of m⇥ n-dimensional matrices with all

components within [0, 1] interval
N(N0) Set of positive integers(including zero)
> Matrix transposition
x  y Element-wise inequality between vectors x and y
A  B Element-wise inequality between matrices A and B
diag{x} Diagonal matrix with appropriate dimensions whose

diagonal elements are given elements of vector x
sign(·) Sign function
I Identity matrix
0 Zero matrix
1n n-dimensional vector of all ones
0n n-dimensional vector of all zeros
|·| Absolute value of a real number, element-wise absolute

value of a vector or mtrix, and the cardinality of a set
x(r) The r-th component of vector x
A(r, a) Component in r-th row and a-th column of matrix A
x[t] The time dependence of vector x in a discrete domain,

where t is the time parameter

Scalars are represented using lowercase letters, vectors are de-
noted by bold lowercase letters, and matrices are indicated by
capital letters. In the rest of this section, we provide definitions
that are extensively utilized throughout this paper.

Definition 1 (l1-norm and l1-distance). For x 2 R
n, the l1-norm

is defined as:

||x|| =
nX

r=1

|x(r)|.

The l1-distance between two vectors x and y both in R
n is defined

as:
d(x, y) = kx� yk.

Definition 2 (Induced l1-norm). For a square matrix A 2 R
n⇥n,

the induced l1-norm is defined as:

||A|| = {sup ||Ax||
||x|| : x 2 R

n,x 6= 0n} = max
a

nX

r=1

|A(r, a)|.
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Definition 3 (Weighted l1-norm and distance). Weighted l1-norm
of vectors x 2 R

n is defined as:

||x||c =
nX

r=1

c(r)|x(r)|.

Weighted l1-distance between vectors x and y is defined as:

dc(x, y) = kx� ykc.

Definition 4 (stochastic and sub-stochastic matrix). A matrix A 2
I
n⇥m is row-stochastic if:

mX

a=1

A(r, a) = 1 8r 2 {1, 2, . . . , n},

and sub-row-stochastic if:
mX

a=1

A(r, a)  1 8r 2 {1, 2, . . . , n}.

Similarly A 2 I
n⇥m is called column-stochastic if:
nX

r=1

A(r, a) = 1 8a 2 {1, 2, . . . ,m},

and sub-column-stochastic if:
nX

r=1

A(r, a)  1 8a 2 {1, 2, . . . ,m}.

If a matrix is both row-stochastic and column-stochastic, we refer
to it as a row-column-stochastic matrix. This sentence applies to
sub-stochastic matrices as well.

B. Social Network Model
We investigate a network consisting of two layers: Social layer

and information layer. In the social layer, there are n 2 N

individuals, each denoted as vi. Every individual holds an expressed
opinion vector xi[t] 2 I

q at time t, along with an innate opinion
vector si 2 I

q regarding q 2 N interconnected issues. In the
information layer, there are m 2 N0 distinct information sources,
denoted as uk. Each of these sources has an associated information
vector yk 2 I

q , all addressing the same q topics.
The interactions among individuals are modeled through a di-

rected graph G = (V,E), where V = {v1, . . . , vn} signifies
the individual vertices, and E ✓ V ⇥ V denotes the set of
edges representing influence relationships. Self-loops are permitted,
meaning that for certain vi 2 V, (vi, vi) 2 E. The transmission
of information from sources to individuals is represented by a
bipartite directed graph H = (V[U,B), where U = {u1, . . . , um}
corresponds to the vertices representing information sources, and
B ✓ V⇥ U denotes the edge set. Consequently, each individual is
associated with a set of neighboring individuals Ni ✓ V and a set
of neighboring information sources Qi ✓ U.

Note: The vector xi[t] represents the state at time t and is
inherently time-dependent. However, for the sake of simplicity, in
certain instances within this paper, we omit the explicit use of the
time argument t.

We consider the following model which is adopted from [8]:

xi[t+ 1] = (I �Ai)si +Ai(I � ⇤i)
X

j2Ni

Wi,jxj [t]

+Ai⇤i

X

k2Qi

Vi,k(xi)�i,k (1)

where
1) We define �i,k as follows:

�i,k = yk � si

2) Let ↵i 2 I
q be a vector containing parameters representing

the social influence of individual vi. We define the matrix
Ai 2 I

q⇥q as follows:

Ai = diag{↵i}

3) Consider �i 2 I
q as a vector containing parameters that

represent the information influence of individual vi. We
define the matrix ⇤i 2 I

q⇥q as follows:

⇤i = diag{�i}

4) Wi,j 2 R
+q⇥q represents the weighted influence matrix

of individual vj on individual vi.We emphasize that Wi,j

remains constant over time, and Wi,i represents the intercon-
nection between different components of the opinion vector
xi[t].

5) We introduce �i,k(·) : Iq ! I
q , which is defined as follows:

�i,k(xi) , Ci,k|xi � yk| (2)

The weight matrix Ci,k 2 I
q⇥q is a constant, stochastic

matrix. Where i refers to individual vi and k refers to
information source uk.

6) Define the function vri,k(·) : Iq ! R
+ as:

vri,k(xi) = gri,k(�i,k(r)(xi)),

where gri,k(·) : I ! R
+ is a decreasing function. This

function vri,k(xi) quantifies the confirmation bias of the r-
th component of the opinion vector of individual vi towards
information from source uk.

7) Vi,k(xi) 2 R
+q⇥q is the weighted influence matrix of

information source uk on individual vi, which is defined as
follows:

Vi,k(xi) , bi,kdiag
n⇥

v1i,k(xi),· · · , vqi,k(xi)
⇤>o

(3)

where bi,k = 1 if information source uk 2 Qi, and bi,k = 0
otherwise.

Remark 1. The definition of Ci,k in (2) indicates that the confir-
mation bias within the r-th component of the opinion vector xi of
individual vi is computed by averaging the components of |xi�yk|,
thereby representing a weighted distance as follows:

�i,k(xi)(r) = dCi,k(r,:)(xi, yk)

where Ci,k(r, :) denotes the r-th row of Ci,k.

Remark 2. ⇤i and Ai are specific characteristics of individual
vi, independent of their connection to information sources. The
connection of an individual vi to an information source uk is
specified by bi,k.

We represent the social dynamic given by (1) in concatenated form
as follows:

x[t+ 1] = (I �A)s+A((I � ⇤)Wx[t] + ⇤V (x)�), (4)

where we define the following variables:

x ,
h
x>
1 ,x

>
2 , . . . ,x

>
n

i>
2 I

nq, (5)

s ,
h
s>1 , s

>
2 , . . . , s

>
n

i>
2 I

nq, (6)

�i ,
h
y>
1 � s>i , . . . ,y

>
m � s>i

i>
2 I

mq, (7)

� ,
h
�>
1 , . . . , �

>
n

i>
2 I

nmq, (8)

A , diag{A1, . . . , An} 2 I
nq⇥nq, (9)

⇤ , diag{⇤1, . . . ,⇤n} 2 I
nq⇥nq, (10)
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W ,

2

664

W1,1 . . . W1,n

W2,1 . . . W2,n

...
...

...
Wn,1 . . . Wn,n

3

775 2 I
nq⇥nq, (11)

Vi(xi),[Vi,1(xi), . . . Vi,m(xi)] 2 I
q⇥mq, (12)

V (x), diag{V1(x1), . . . , Vn(xn)} 2 I
nq⇥nmq. (13)

Assumption 1 (upper and lower acceptance parameter). We in-
troduce the upper-acceptance vector �i 2 I

q and the lower-
acceptance vector �

i
2 I

q . The bound for vri,k(xi) is expressed
as follows:

(1�↵i(r))�i
(r) < vri,k(xi) < (1�↵i(r))�i(r)

Assumption 2. Matrix (I � ⇤)W is a stochastic matrix.

Assumption 3. Matrix A(⇤V (x) + I) is row-sub-stochastic ma-
trix for any x 2 I

nq .

Assumption 4. For any x and z 2 I
q weight function vri,k(·)

satisfies
|vri,k(x)� vri,k(z)|  µi,k(r)||x� z||

for 8i 2 V, 8k 2 U, 8r  q and some constant µi,k 2 R
+q .

Assumption 5. The following condition holds:

max
j2V

max
a2Q

(
X

i2V

X

r2Q
↵i(r)(1� �i(r))Wi,j(r, a)

)
+

max
i2V

8
<

:
X

k2Qi

qX

r=1

↵i(r)�i(r)µi,k(r)|�i,k(r)|

9
=

; < 1.

Remark 3. Using �i,k = yk � si, we rewrite equation (1) as
follows:

xi[t+ 1] = (I �Ai �Ai⇤i

X

k2Qi

Vi,k(xi))si

+Ai(I � ⇤i)
X

j2Ni

Wi,jxj [t] +Ai⇤i

X

k2Qi

Vi,k(xi)yk. (14)

As evident in equation (14), given that the matrices Vi,k(xi)
are diagonal, an increase in the value of vri,k(xi) for the r-th
component of the opinion vector xi(r) implies a decrease in the
influence of si(r) on the dynamics. Accordingly, Assumption 1
employs the concepts of upper-acceptance and lower-acceptance
vectors to establish a boundary for vri,k(xi).

Remark 4. As evident from Assumption 1, if ↵i(r) = 1, then
vri,k(xi) = 0. This implies that if Individual vi does not consider
its innate opinion, the information sources do not have an effect on
its expressed opinion. Therefore, in this paper, when ↵i(r) = 1,
we consider �i(r) = 0.

Remark 5. Due to the fact that xi, si, and yk are in I
q , (1) and

(4) represent averaging equations to ensure that xi[t+ 1] remains
in I

q . This is guaranteed by Assumption 2 and 3.

Remark 6. The Lipschitz condition, as expressed in Assumption
4, establishes that the value of vri,k(xi) is amenable to control
through a linear weight function. Consequently, certain nonlinear
weight functions governed by Assumption 4 can be approximated
as linear weight functions. As seen in works such as [10], [11],
in control theory, Assumption 4 is a common technical requirement
used for the stabilization of nonlinear systems.

In the following example, we illustrate the significance of
multidimensional modeling, where a multidimensional modeling

approach yields significantly divergent outcomes compared to one-
dimensional modeling.

Fig. 1: A network with two individuals (v1 and v1) and one
information source u1. The equilibrium point of the system
is obtained under two conditions: firstly, with two separate 1-
D models for each issue. second: with one two-dimensional
model. This setup allows us to analyze the dynamics of
the system and observe how the equilibrium point shifts in
response to different modeling approaches.

Example 1. In this example, a network structure with two indi-
viduals v1 and v2, and an information source u1, is employed.
The opinion vector consists of two components, where the first
component is called Issue 1, and the second component corresponds
to Issue 2. The network structure is illustrated in Figure 1. We
assume the weight influence matrices Wi,j (i, j 2 {1, 2}) to be
diagonal as follows:

W1,1 = W1,2 = W2,1 = W2,2 =


2.5 0.0
0.0 2.5

�
.

The diagonal weight matrices Wi,j (i, j 2 {1, 2}) mean that when
they discuss Issue 1 with each other, their beliefs about Issue 2
have no impact on Issue 1, and vice versa. This property also
holds for the self-loops W1,1 and W2,2, which indicates that within
themselves, v1 and v2 do not have interconnections for Issue 1 and
Issue 2.

Social and information influence matrices are given by:

A1 = A2 = ⇤1 = ⇤2 = diag{0.8, 0.8},

A relatively large value of the social and information influence pa-
rameters indicates that both individuals possess a strong inclination
toward the information source. Innate opinions of individuals and
opinions of information sources are given by:

s1 =


0.0
0.0

�
, s2 =


0.0
0.5

�
, y1 =


1.0
1.0

�
.

Additionally, vri,1, i 2 {1, 2} and r 2 {1, 2} are defined as:

vri,1 = gri,1(�i,1(r)) = 0.3(1.0� �i,1(r)),

where �2,1(xi) is defined in (2). We use two different values for
Ci,k8i 2 {1, 2} and k = 1 in (2) . In the first and second scenarios,
Ci,k is represented as C1 and C2 respectively (8i 2 {1, 2} and k =
1), and is explained as follows:

C1 =


1.0 0.0
0.0 1.0

�
, C2 =


0.95 0.05
0.05 0.95

�
.
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These two matrices appear quite similar. If we regard C2 as the
actual system matrix and C1 as an approximated version of C2,
it might appear that the influences of non-diagonal factors have
been neglected, and the resultant matrix has been normalized. The
simulation results of the dynamics in the first and second scenarios
are depicted in Figure 2. In the following, we discuss how a small
change in Ci,k has resulted in such a substantial difference in the
outcomes.

The first scenario leads to two decoupled dynamical systems for
each issue. For Issue 1, the dynamics are as follows:

8
>>>>><

>>>>>:

x1(1)[t+ 1] = 0.2s1(1) + 0.4(x1(1)[t] + x2(1)[t])

+0.3(1� |x1(1)[t]� y1(1)|)�1,1(1)

x2(1)[t+ 1] = 0.2s2(1) + 0.4(x1(1)[t] + x2(1)[t])

+0.3(1� |x2(1)[t]� y2(1)|)�2,1(1)

Similarly, for Issue 2, the dynamics are as follows:
8
>>>>><

>>>>>:

x1(2)[t+ 1] = 0.2s1(2) + 0.4(x1(2)[t] + x2(2)[t])

+0.3(1� |x1(2)[t]� y1(2)|)�1,1(2)

x2(2)[t+ 1] = 0.2s2(2) + 0.4(x1(2)[t] + x2(2)[t])

+0.3(1� |x2(2)[t]� y2(2)|)�2,1(2)

In the first scenario, where the initial conditions for simulating
the dynamical systems are set to the innate opinions, s1 and s2,
two notable observations emerge. For Issue 1, due to disagreement
between individuals and the information source, the confirmation
bias terms v1i,1, i 2 {1, 2} become zero, and the difference
equations associated with Issue 1 remain zero. Conversely, Issue
2 displays distinct dynamics. Here, the confirmation bias term v12,1
is nonzero, prompting the individual to align with the information
source, driven by a significant information influence parameter. This
leads the belief of v2 to converge with the information source’s
viewpoint. Even though the initial confirmation bias v11,1 is zero at
the initial condition, the impact of v2 induces a gradual change in
v1’s belief. Given v1’s inclination toward the information source
due to a substantial information influence parameter, its belief
progressively converges with that of the information source. Figure
2 confirms the analyses.

In contrast to the first scenario, the second scenario can no
longer be modeled using separate sets of differential equations for
each issue. Here, a coupled dynamical system for the entire network
is derived as follows:

8
>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>:

x1(1)[t+ 1] = 0.2s1(1) + 0.4(x1(1)[t] + x2(1)[t])

+0.3(1� 0.95|x1(1)[t]� y1(1)|
�0.05|x1(2)[t]� y1(2)|)�1,1(1)

x1(2)[t+ 1] = 0.2s1(2) + 0.4(x1(2)[t] + x2(2)[t])

+0.3(1� 0.05|x1(1)[t]� y1(1)|
�0.95|x1(2)[t]� y1(2)|)�1,1(2)

x2(1)[t+ 1] = 0.2s2(1) + 0.4(x1(1)[t] + x2(1)[t])

+0.3(1� 0.95|x2(1)[t]� y1(1)|
�0.05|x2(2)[t]� y1(2)|)�2,1(1)

x2(2)[t+ 1] = 0.2s2(2) + 0.4(x1(2)[t] + x2(2)[t])

+0.3(1� 0.05|x2(1)[t]� y1(1)|
�0.95|x2(2)[t]� y1(2)|)�2,1(2)

The results depicted in Figure 2 demonstrate a very strong
alignment between the two scenarios in Issue 2; however, there
are stark differences in the outcomes for Issue 1. This suggests that

the nature of this dynamic is multi-dimensional, and two separate
one-dimensional approximations cannot capture all the network’s
characteristics.

0 100 200 300 400 450
0

0.5

1

x
1
(1)

Approximated Model
Actual Model

0 100 200 300 400 450
0

0.5

1

x
1
(2)

0 200 450
Time

0

0.5

1

x
2
(1)

0 200 450
Time

0

0.5

1

x
2
(2)

Fig. 2: The simulation results are generated based on two
distinct scenarios. In the first scenario, the system is modeled
using two separate one-dimensional models for each issue.
In the second scenario, the system is represented by a single
two-dimensional model. This setup lets us observe how Issue
1 varies in response to different modeling methodologies.

III. CONVERGENCE ANALYSIS

In this section, we analyze the convergence behavior and equilib-
rium points of (1) and (4). In the following theorem, whose proof
is presented in Appendix I, we establish the existence of a unique
equilibrium point.

Theorem 1. The dynamics described by (1) (and (4)) converge to
a unique equilibrium point xe that satisfy:

xe = (I �A)s+A(I � ⇤)Wxe +A⇤V (xe)�

regardless of the initial conditions.

In the following example, we observe how the model converges
to a unique equilibrium point regardless of the initial conditions.

Example 2. This example illustrates a network with three indi-
viduals, each expressing opinions on two interconnected issues.
The opinion of each individual is represented by a vector with two
components, the first corresponding to Issue 1 and the second to
Issue 2. The network structure is illustrated in Figure 3. The weight
influence matrices Wi,j (i, j 2 {1, 2, 3}) are defined as:

W1,1 =


0.6 0.2
0.2 0.6

�
, W1,2 =


0.2 0.1
0.1 0.2

�
,

W1,3 =


0.1 0.05
0.05 0.1

�
, W2,1 = W2,2 =


2.0 0.5
0.2 0.425

�
,

W2,3 = W3,1 = 0 W3,2 =


0.7 0.1
0.0 0.0

�
,

W3,3 =


0.55 0.0
0.625 0.625

�
.
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Social and information influence matrices are given by:

A1 = ⇤1 = ⇤3 = diag{0.2, 0.2},
A2 = ⇤2 = diag{0.8, 0.2}, A3 = diag{0.8, 0.8}.

Innate opinions of individuals and opinions of information
sources are given by:

s1 =


0.0
1.0

�
, s2 = s3 =


0.0
0.0

�
, y1 =


1.0
0.0

�
.

Additionally, vri,k(xi) are defined as:

vri,1 = 0; i 2 {1, 3} and r 2 {1, 2}
vr2,1 = gr2,1(�2,1(r)) = 0.5(1� �2,1(r)); r 2 {1, 2}.

Where �2,1(xi) is defined as:

�2,1(xi) =


0.8 0.2
0.2 0.8

�
|x2(1) � y1(1)|
|x2(2) � y1(2)|

�
.

The network parameters and matrices are defined in a manner
that complies with Theorem 1. Figure 4 depicts the evolution of
the opinions held by all individuals, starting from random initial
conditions, across 500 simulations. The simulations demonstrate
that the dynamics converge to a unique equilibrium point regardless
of the initial conditions.

Fig. 3: A social network with three individuals and one
information source.

IV. EQUILIBRIUM ANALYSIS

In this section, we address equilibrium point characteristics in
dynamical system (1). Initially, within the framework of Corollary
1 (whose proof is presented in Appendix II), we demonstrate the
existence of an equilibrium point in the general state described
by equation (1). However, its computation leads to an explosive
search in the space I

q . These problems are effectively addressed
using constrained optimization techniques. Subsequently, in Section
A, we demonstrate that by utilizing affine functions for vri,k(xi)s,
the equilibrium point can be determined through a search in a
finite space. In subsection B we show that under conditions where
the network structure is specified and vri,k(xi)s are bounded, the
equilibrium point of the dynamic system (5) is approximated, and
under conditions stated in Section C, the system admits a closed-
form solution.

Corollary 1. The network system (1) has a unique equilibrium
point that satisfies the nonlinear equation (15):
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Fig. 4: Evolution of opinion of individuals in the social
network, showing convergence to a single equilibrium point
over 500 simulations.

xe = (I �A(I � ⇤)W )�1((I �A)s+A⇤V (xe)�). (15)

Remark 7. Assumptions 2 and 5 imply that A(I � ⇤)W is a sub-
row-column-stochastic matrix.

Due to the dependence of V on xe, obtaining xe via (15)
frequently entails solving a constrained optimization problem.

A. Equilibrium in Presence of Affine Weight Functions
Our attention is directed towards affine weight functions repre-

sented as:

gri,k = !i(r)� �i(r)�i,k(xi)(r), (16)

where, !i 2 I
q and �i 2 I

q are non-negative vectors.

Remark 8. By making reference to Remark 2, we infer that 0 
gri,k. Additionally, from its definition which is utilized in the proof
of Theorem 1, we deduce that it is a decreasing function. Therefore,
inequalities 0  �i  !i and 0  Ci,k for all i, j 2 V and k 2 U

are satisfied.

Remark 9. In (16), the multiplication of �i(r) by �i,k(xi)(r)
introduces flexibility in the choice of �i(r). This flexibility is subject
to the condition that the inequalities in Remark 8 remain valid.
Consequently, it is reasonable to assume that Ci,k is a stochastic
matrix, without loss of generality.

If vri,k(xi) takes the form of affine functions as described in (16),
the dynamical system described in equation (4) is transformed into
the subsequent equation:

x[t+ 1] = Aas+ Va(x)y +Wa(x)x[t], (17)

Where Aa, Va(x) and Wa(x) defined in (37) to (39). The following
theorem states that computing equilibrium point xe in a known
network structure in conjunction with affine weight functions,
involves searching through a finite set. The proof is presented in
Appendix III.

Theorem 2. If vri,k(xi) takes form (16), Algorithm 1 converges to
the equilibrium point in a finite number of steps.
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Algorithm 1 Computation of Equilibrium Point
Input: The ordered set P encompasses all possible values
of ✓ik as defined in (35). For each ✓ik 2 P, there exist
corresponding values for M and M as given in (44) and
(50), respectively, initial index p = 1.
Output: Equilibrium point xe.

1: while p  kPk do

2: Compute: M , M from (44) and (50), and corre-
sponding values Wa and Va.

3: Compute: xe
new  (I �Wa)

�1(Aas+ Vay).
4: if bik sign(xi

e
new � yk) = ✓ik, for 8i 2 V, 8k 2 U

then

5: Output equilibrium point: xe  xe
new.

6: Break.
7: else

8: Update index: p p+ 1.

B. Equilibrium Point Approximation
According to Assumption 1, vri,k(xi) is bounded. In the subse-

quent theorem, we demonstrate that it is possible to determine a
bound for xe. The proof is presented in Appendix IV.

Theorem 3. Dynamics (4) converge to a unique equilibrium point
xe that satisfies inequality (18),

xe
L  xe  xe

U. (18)

where:

xe
L , max

�
Z
�
s+A⇤

�
�By � �SB1mq

��
,0nq

�
, (19)

xe
U , min

�
Z
�
s+A⇤

�
�By � �SB1mq

��
,1nq

�
, (20)

� , diag
⇢h

�>
1
, �>

2
, . . . , �>

n

i>�
2 R

nq⇥nq, (21)

� , diag
⇢h

�
>
1 , �

>
2 , . . . , �

>
n

i>�
2 R

nq⇥nq, (22)

Z , (I �A(I � ⇤)W )�1(I �A) 2 R
nq⇥nq, (23)

S , diag{s} 2 R
nq⇥nq. (24)

Example 3. In Example 2 if we replace v12,1 and v22,1 as follows:

v12,1 = 0.75ln(2� 0.7
��x1

2 � y1

��� 0.3
��x2

2 � y2

��)

v22,1 = 0.3(1� sin(0.3
��x1

2 � y1

��+ 0.7
��x2

2 � y2

��))

the upper bounds for v12,1 and v22,1 are straightforward to compute:

0  v12,1  (1�↵2(1))1.04,

0.052  v22,1  (1�↵2(2))0.33.

In Figure 5 we plot the equilibrium point, as well as its correspond-
ing lower and upper bounds computed using (18).

As depicted in Figure 5, minimal disparities are observed be-
tween the upper and lower bands at x1(1), x1(2), and x2(2).

Remark 10. If (18) is satisfied with equality for the (iq + r � q)-th
entry, i.e, xe

L(iq + r � q) = xe
U(iq + r � q), then the estimation of

r-th component of individual vi’s opinion at steady state is exact:

xe
i(r) = xe

L(iq + r � q) = xe
U(iq + r � q).
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Fig. 5: This plot shows the opinion values of three individuals
on two issues, along with upper and lower bounds, and an
equilibrium point. The x-axis is labeled with each issue of
each individual, while the y-axis represents the value of
opinion.

C. Close-form Solutions in Presence of Affine Weight Func-
tions

In the preceding subsection, we discussed that finding the equi-
librium point involves a finite search among the at most 3(nmq)2

possible cases. In the following corollary, we introduce a case in
which there is a close-form solution. The proof is presented in
Appendix V.

Corollary 2. Given that gri,k is affine as described in (16) for all
i 2 V, k 2 U and r  q, if the following condition is met for
a = iq + r � q :

y(a) > xe
U(a) or y(a) < xe

L(a) (25)

the equilibrium point of (1) has a closed-form solution that satisfies:

xe =(I �Wa)
�1(Aas+ Vay).

Example 4. In Example 2 we used v12,1 and v22,1 as follows:

v12,1 = 0.5� 0.5(0.8|x2(1)� y1(1)|
+0.2|x2(2)� y1(2)|),

v22,1 = 0.5� 0.5(0.2|x2(1)� y1(1)|
+0.8|x2(2)� y1(2)|),

where

!1 = �1 = [0.5, 0.5]>

The upper bounds for v12,1 and v22,1 are straightforward to derive:

0  v12,1  (1�↵2(1)), and 0  v22,1  (1�↵2(2))0.56.

The bounds of x2 calculated using (18), which gives:

0.04  x2(1)  0.5, and 0.03  x2(2)  0.042

Using (56), we determine that ✓ik(1) = �1 and ✓ik(2) = 1,
allowing us to simplify the system such that the cardinality of order
set P in Algorithm 1 reduces to 1. As a result, we analytically obtain
the equilibrium point using Theorem 2 as:

xe = [0.029, 0.953, 0.496, 0.041, 0.392, 0.320]>.
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V. CONCLUSION
In this paper, we presented a novel model of multidimensional

opinion dynamics in social networks, with a special emphasis
on confirmation bias. Along with model, we provided sufficient
conditions for convergence of dynamics to a unique equilibrium
point that is independent of initial conditions. We examined this
equilibrium point for both linear and nonlinear confirmation bias
functions: for nonlinear functions, we provided upper and lower
bounds and for linear functions, we presented exact computation
method of the aforementioned point, following the steps introduced
in [8] for scalar systems.

APPENDIX I
PROOF OF THEOREM 1

We reproduce the following well-known Banach fixed-point
theorem that we use in proving Theorem 1.

Theorem 4 (Banach Fixed-Point Theorem [12]). Let (X , d) be a
complete metric space, and let f : X ! X be a mapping. If there
exists a constant 0 < c < 1 such that for all x,y 2 X , we have

d(f(x), f(x0))  cd(x,y)

then f has a unique fixed point xe in X , i.e., there exists exactly
one point xe 2 X such that f(xe) = xe.

To prove Theorem 1, we consider the concatenated form (4) of
the dynamics (1). We define the function

f(x) , (I �A)s+A((I � ⇤)Wx+ ⇤V (x)�).

If f(x) satisfies Theorem 4 with l1-norm, then the dynamical system
defined by (4) has a unique equilibrium point. Thus, we relate norm
of difference between f(·) evaluated at x,x0 2 R

nd as follows:

||f
�
x0�� f(x)||  ||A(I � ⇤)W

�
x0 � x

�
||

+ ||A⇤
�
V
�
x0�� V (x)

�
�||. (26)

suppose kx0 � xk 6= 0q:

kA(I � ⇤)Wk
��x0 � x

��

={sup ||A(I � ⇤)Wy||
||y|| : y 2 R

q,y 6= 0q}
��x0 � x

��

� ||A(I � ⇤)W (x0 � x(t))||
kx0 � xk

��x0 � x
��

=
��A(I � ⇤)W

�
x0 � x

���

which indicates
��A(I � ⇤)W

�
x0 � x

���  kA(I � ⇤)Wk
��x0 � x

��. (27)

It is evident that when kx0 � xk = 0q the (27) still holds, which
implies that (27) holds for all values of kx0 � xk.

From (2) and recalling that 0  |�i,k(r)|  1, we conclude that:

||A⇤
�
V
�
x0�� V (x)

�
�||


nX

i=1

X

k2Qi

qX

r=1

↵i(r)�i(r)|vri,k(x0
i(r))� vri,k(xi(r))||�i,k(r)|.

(28)

By using Assumption 4 in right hand side of (28) we have:
nX

i=1

X

k2Qi

qX

r=1

↵i(r)�i(r)|vri,k(x0
i(r))� vri,k(xi(r))||�i,k(r)|


nX

i=1

X

k2Qi

qX

r=1

↵i(r)�i(r)µi,k(r)|x
0
i(r)� xi(r)||�i,k(r)|


��x0 � x

��max
i2V

8
<

:
X

k2Qi

qX

r=1

↵i(r)�i,k(r)µi,k(r)|�i,k(r)|

9
=

; (29)

and hence,

||A⇤
�
V
�
x0�� V (x)

�
�||


��x0 � x

��max
i2V

8
<

:
X

k2Qi

qX

r=1

↵i(r)�i(r)µi,k(r)|�i,k(r)|

9
=

; (30)

Combining (26) with (27) and (30), we conclude that if Assump-
tion 5 holds, f(x) satisfies Theorem 4. Hence, the (1) converges to
a unique equilibrium point for any initial opinion x(0) 2 I

q .

APPENDIX II
PROOF OF COROLLARY 1

According to Theorem 1 and Assumption 4, an equilibrium point
that satisfies Theorem 1 exists. We note that (15) can be derived di-
rectly from Theorem 1, provided that the matrix (I �A(I � ⇤)W )
is non-singular. Based on Remark 7, A(I � ⇤)W is sub-row-
stochastic, which implies that the spectral radius of this matrix,
denoted by ⇢(A(I � ⇤)W ), is smaller than or equal to 1 (i.e.,
⇢(A(I � ⇤)W )  1).

We also deduce from Assumption 5 that the norm of A(I�⇤)W ,
denoted by ||A(I�⇤)W ||, is less than 1. It is well-known that the
spectral radius of a matrix is always less than or equal to its norm,
i.e., ⇢(A(I � ⇤)W )  ||A(I � ⇤)W ||. By combining these two
inequalities, we obtain ⇢(A(I�⇤)W )  1 and ||A(I�⇤)W || < 1,
which in turn implies that ⇢(A(I � ⇤)W ) < 1.

This insight suggests that the matrix A(I � ⇤)W is stable. As
a result, the matrix (I �A(I � ⇤)W ) is non-singular.

APPENDIX III
PROOF OF THEOREM 2

By substituting the affine weight function (16) into Vi,k(xi)�i,k

in (1), we obtain:

Vi,k(xi)�i,k = (⌦i + �i�i,kCi,k⇥i,k)yk � ⌦isi

� �i�i,kCi,k⇥i,kxi, (31)

where

⌦i , diag{!i} 2 R
q⇥q, (32)

�i , diag{�i} 2 R
q⇥q, (33)

�i,k , diag{�i,k} 2 R
q⇥q, (34)

✓i,k , sign(xi � yk), (35)
⇥i,k , diag{✓i,k}, (36)

By substituting the (31) into (1), and expressing the obtained
equation in matrix form (17), we have

Aa , I �A
�
I + ⇤⌦B

�
, (37)

Va(x) , A⇤(⌦B +M(x)), (38)
Wa(x) , A(I � ⇤)W �A⇤�M(x), (39)

y ,
h
y>
1 ,y>

2 , . . . ,y>
m

i>
2 I

mq, (40)

⌦ , diag
⇢h

!1
>,!2

>, . . . ,!n
>
i>�

, (41)

� , diag
⇢h

�1
>,�2

>, . . . ,�n
>
i>�

, (42)

Mi,k , bi,k�i,kCi,k⇥i,k,

M ,

2

64
M1,1 . . . M1,m

...
...

...
Mn,1 . . . Mn,m

3

75, (44)

Bi,k , diag{bi,k1q} 2 R
q⇥q, (45)
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B ,

2

64
B1,1 . . . B1,m

...
...

...
Bn,1 . . . Bn,m

3

75, (46)

Bi ,
⇥
Bi,1 . . . Bi,m

⇤
, (47)

B , diag{B1, . . . , Bn}, (48)

Mi ,
X

k2U
Mi,k, (49)

M , diag{M1, . . . ,Mn}, (50)

Using convergence definition for (17), we obtain:

xe =(I �Wa(x))
�1(Aas+ Va(x)y). (51)

In the context of linear weight functions, (16) introduces a depen-
dence of ✓i,k on xe under steady-state conditions. Consequently,
both M and M become functions of xe. It is important to note
that ✓i,k(r) takes one of three values: 1, 0, or �1. This limitation
implies that the total number of potential choices for M and M at
steady state is bounded by 3(nmq)2 at most. We denote this set of all
possible choices as P. Considering the constraints imposed by (15),
only one of these choices satisfies the constraints and corresponds to
the equilibrium point. Therefore, the task of finding the equilibrium
point involves a finite search among the aforementioned set of at
most 3(nmq)2 possible cases. Algorithm 1 exploits this property to
obtain this equilibrium point using (51).

APPENDIX IV
PROOF OF THEOREM 3

Theorem 3 is established through the derivation of bounds for
g = V (xe)� in (15). Element of g corresponds to the r-th
component of the opinions of individual vi obtained according to

g(iq + r � q) =
X

k2U
vri,k(x

e
i)yk(r)�

X

k2U
vri,k(x

e
i)si(r) (52)

Using Assumption 1, we have:

g(iq + r � q)  (1�↵i(r)) 
�i(r)

X

k2U
bi,kyk(r)� si(r)�i

(r)
X

k2U
bi,k

!
(53)

The right side of (53) corresponds to the (iq + r � q)-th entry of
the matrix h derived from the expression:

h = (I �A)�By � (I �A)�SB1md

Thus, we obtain:

V (xe)�  (I �A)�By � (I �A)�SB1md (54)

Similarly, we derive:

V (xe)� � (I �A)�By � (I �A)�SB1md (55)

By employing (54) and (55) within (15) and considering that 0nd 
xe  1nd, we derive (19) and (20). The expressions for �, �, B,
and S are provided by (21)-(24) respectively.

APPENDIX V
PROOF OF COROLLARY 2

As proposed in the study by [8], it is possible to reduce the
number of available choices by incorporating Theorem 3 and (18)
into the following form:

✓i,k(r) =

8
>>><

>>>:

�1, xe
U(a) < y(a)

1, xe
L(a) > y(a)

�1, 0, xe
U(a) = y(a)

1, 0, xe
L(a) = y(a)

�1, 1, 0, otherwise

(56)

The conditions outlined in (25) align with the first and second
conditions presented in (56). Consequently, only one possible value
for ✓i,k(r) exists, implying that |P| = 1. This, in turn, signifies that
Algorithm 1 converges within a single step. As a result, (51) stands
as a close-form solution for (1).
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