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ABSTRACT The future of intelligent manufacturing machines involves autonomous selection of process
parameters to maximize productivity while maintaining quality within specified constraints. To effectively
optimize process parameters, these machines need to adapt to existing uncertainties in the physical system.
This paper proposes a novel framework and methodology for feedrate optimization that is based on a
physics-informed data-driven digital twin with quantified uncertainty. The servo dynamics are modeled
using a digital twin, which incorporates the known uncertainty in the physics-based models and predicts
the distribution of contour error using a data-driven model that learns the unknown uncertainty on-the-fly
by sensor measurements. Using the quantified uncertainty, the proposed feedrate optimization maximizes
productivity while maintaining quality under desired servo error constraints and stringency (i.e., the tolerance
for constraint violation under uncertainty) using a model predictive control framework. Experimental results
obtained using a 3-axis desktop CNC machine tool and a desktop 3D printer demonstrate significant cycle
time reductions of up to 38% and 17% respectively, while staying close to the error tolerances compared to
the existing methods.

INDEX TERMS Computer numerical control milling, digital twin, feedrate optimization, model predictive
control, smart manufacturing, three-dimensional printing.

I. INTRODUCTION
Quality and productivity are two important and frequently
competing factors in manufacturing. As a result, manufactur-
ers strive to maximize productivity while adhering to quality
constraints. In practice, achieving this goal has involved a
trial-and-error approach. However, there is a growing demand
for self-optimizing intelligent manufacturing machines that
have the capability to autonomously optimize their speed
while ensuring desired quality levels, eliminating the need for
extensive trial-and-error [2], [3], [15].

Motion-induced servo error, which is one of the major
sources of quality degradation in manufacturing machines,
can result from the limited bandwidth of feedback controllers,

The associate editor coordinating the review of this manuscript and

approving it for publication was M. Anwar Hossain .

flexible structures, nonlinear friction, and backlash. Another
source of servo error is process force, such as cutting force.
Given that motion- and process-force-induced servo errors
tend to increase with higher speeds, there is a keen interest
in maximizing the speed of motion while respecting the
tolerances on motion- and/or process-induced servo errors.

Extensive research has been conducted in the field of
feedrate optimization with the objective of maximizing the
feedrate while respecting servo error constraints. The major-
ity of feedrate optimization or feedrate scheduling techniques
primarily focus onmaximizing the feedrate while considering
kinematic limits such as speed, acceleration, and jerk [4], [5],
[6], [7], [16], [17], [21], [22], [23], [25]. However, the existing
studies in [5], [6], [7], [16], [17], [21], [22], [23], and [25]
do not incorporate dynamic constraints such as servo error
and cutting force, resulting in the need for a cautious selec-

VOLUME 12, 2024


 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

49947



H. Kim et al.: Intelligent Feedrate Optimization Using an Uncertainty-Aware Digital Twin

tion of kinematic limits to indirectly meet the requirements
on dynamic constraints. This indirect approach is neces-
sary due to the complex relationship between kinematics
and dynamic constraints, which often leads to sub-optimal
feedrates.

In order to directly enforce dynamic constraints, certain
feedrate optimization methods incorporate limits on the servo
error, in addition to kinematics, by using steady-state [26] or
static [27], [21] approximations of servo models associated
with motion velocity and acceleration. However, their limited
ability to directly incorporate dynamic aspects of servo error,
such as dynamic servo error pre-compensation, hinders their
accuracy and effectiveness in optimizing feedrate.

To directly incorporate dynamic components via physics-
based models, numerous feedrate scheduling methods for
CNC machines maximize feedrate in each NC block while
keeping cutting force under desired levels via mechanis-
tic force models [30], [31], [32], [33], [34], [35], [36],
[37]. Some feedrate scheduling techniquesmaximize feedrate
while regulating machining error due to tool deflection [38],
[39], [40], [41], [42], [43], [44] or force-induced servo
error [45], [46] under desired tolerance in CNC machine
tools. A few works in feedrate optimization [11], [29] con-
strain motion-induced error via linear physics-based models
of servo dynamics. However, the works in [11], [29], [30],
[31], [32], [33], [34], [35], [36], [37], [38], [39], [40], [41],
[42], [43], [44], [45], and [46] are unable to effectively con-
strain actual cutting force or servo error in situations where
uncertainties arise from nonlinear dynamics or disturbances
that are not incorporated in the physics-based models. As a
result, their capability to maximize feedrate while adhering
to dynamic constraints is severely restricted.

There is increasing interest in the utilization of dig-
ital twins in manufacturing. A digital twin is a virtual
representation, parallel to a physical system, built on a
bi-directional link between simulation and actual data col-
lection [2], [3], [15]. To effectively optimize feedrate with
existence of uncertainties, digital twins can be used to pro-
vide more-accurate predictions of process or servo dynamics
for feedrate optimization using data-driven models updated
via sensor measurements. Model predictive control (MPC)
is a framework often used for optimizing feedrate using
digital twins. In MPC [10], [24], predictions made using
physics-based and data acquired from sensors are used to
optimize an objective in a receding horizon fashion. In the
context of feedrate optimization, a linear hybrid model was
augmented with a periodic internal model in a MPC frame-
work [20] to effectively predict and constrain servo errors due
to motion and cutting forces. Luenberger state observers [28]
were used in feedrate optimization to correct the initial sys-
tem states of servo dynamic models in real-time for accurate
contour error constraint enforcement, where the objective
function was based on a tunable index of how far away an
unattainable target position is from the current position. Simi-
larly, a two-stageMPC approach was proposed in [14], where
the first stage performed feedrate optimization with contour

error constraints using a linear data-driven model, and the
second stage further pre-compensated the contour error using
artificial neural networks (ANNs). However, the data-driven
models in [14] were trained offline through numerous exper-
iments, which is time-consuming and may not be effective in
predicting contour error in the presence of in-situ uncertain-
ties that are not included in the training data. Moreover, the
two-stage optimizations in [14] and the mixed objective func-
tions used to balance quality and productivity in [14] and [28]
require trial-and-error to tune the objective function weights
to determine an acceptable quality level. Therefore, it is better
to enforce quality requirements as contour error constraints
that must be met, as is often the case in practice. Furthermore,
the existing MPC methods in [14], [20], and [28] do not
quantify or exploit the uncertainty of the prediction in their
feedrate optimization. Hence, theymay not effectively adhere
to constraints in the presence of high uncertainty due to a
lack of training data, system variability and sudden changes
in operating conditions.

To quantify uncertainties and impose robustness, studies
exist on maximizing feedrate while regulating spindle power,
where the spindle power is modeled using Gaussian pro-
cess regression (GPR) [48]. The spindle power constraint is
derived from a stochastic constraint with a fixed confidence
level to safely optimize feedrate in uncertain environments.
However, GPR in [48] is updated cycle-by-cycle, where the
first cycle is initialized with a conservative feedrate profile
followed by numerous sequential cycles for convergence.
This requires optimizing a highly non-linear GPR objec-
tive [12] to estimate hyperparameters, which renders the
process less adaptable to real-time control. Moreover, it does
not constrain the servo error nor account for the propagation
of model uncertainties to the servo error. This oversight is
critical in achieving desired part accuracy in feedrate opti-
mization, especially for toolpaths with high curvatures that
can create significant structural vibration.

To address the shortcomings of the existing works, this
paper proposes an intelligent feedrate optimization with con-
tour error constraints using an uncertainty-aware digital twin,
by making the following original contributions:

1) It uses a novel physics-informed data-driven digital
twin to predict the contour error and its uncertainty,
where the digital twin incorporates the known uncer-
tainty in the physics-based models and learns the
unknown uncertainty by correcting the data-driven
model on-the-fly using sensor feedback.

2) It formulates an intelligent feedrate optimization
framework capable of maximizing feedrate while
accurately constraining contour error under desired
tolerance and stringency, based on the uncertainty esti-
mation from the digital twin using a model predictive
control framework.

3) It demonstrates the effectiveness of the proposed
method by validating its performance in simulations
and experiments using a desktop CNC machine tool
and 3D printer.
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The outline of the paper is as follows: Section II introduces
our framework for intelligent feedrate optimization using
an uncertainty-aware digital twin. Section III describes the
methodology of the proposed digital twin for predicting the
contour error distribution. Section IV provides a formulation
of the feedrate optimization with contour error and stringency
constraints (i.e., the tolerance for constraint violation under
uncertainty). Section V-A numerically validates the proposed
method via a desktop CNC machine tool. Section V-B exper-
imentally validates the proposed method via a desktop CNC
machine tool and 3D printer. Finally, section VI concludes
the paper and discusses future work.

II. FRAMEWORK FOR FEEDRATE OPTIMIZATION WITH
UNCERTAINTY-AWARE DIGITAL TWIN
The framework for the proposed intelligent feedrate opti-
mization with an uncertainty-aware digital twin is depicted
in Figure 1. First, a manufacturer submits a part together with
the desired dimensions and contour error tolerance to an intel-
ligent manufacturing machine. Then, the goal of the machine
is to autonomously produce the part as quickly as possible
while respecting the given error tolerance. The machine is
equipped with a digital twin that predicts the contour error,
which the machine can exploit for feedrate optimization with
contour error constraints. Hence, the proposed framework is
based on model predictive control.

However, several uncertainties exist in the physical sys-
tem. Some portions are known from available data or expert
knowledge, while others, such as nonlinear dynamics, may
be unknown. If not considered, the known and unknown
uncertainties cause a violation in the contour error tolerance,
hence the part quality, as illustrated in Figure 2(a).

However, given that uncertainty exists in enforcing tol-
erance constraints, manufacturers have different levels of
stringency in enforcing constraints. For example, a manu-
facturer may want at least 99% of the produced parts to
satisfy the constraints. Therefore, stringency reflects a man-
ufacturer’s tolerance for quality constraint violations under
uncertainty. In this paper, we propose that, instead of rely-
ing on trial-and-error, manufacturers can impose a desired
stringency η% on the given tolerance by incorporating the
uncertainty of the contour error prediction as shown in
Figure 2(b). Imposing the stringency represents constraining
the worst case out of η% of the entire variation of contour
error, so that η% of the manufactured parts adhere to the
imposed kinematic and tolerance constraints under the given
uncertainty.

To do so, the digital twin uses the known uncertainty
from the physics-based models and trains a data-driven
model using the machine’s sensor measurements to learn
the unknown uncertainty, and therefore is named as
uncertainty-aware digital twin. The digital twin then pre-
dicts and quantifies the uncertainty of the contour error,
which is used in feedrate optimization with desired toler-
ance and stringency on the contour error. Together with
the uncertainty-aware digital twin, the feedrate optimization

determines the fastest feedrate to run the machine while
respecting the limits for the contour errors (and the kinematic
limits of the machine) in a robust way. The measured sensor
output is compared with the predicted output and used to
adjust the digital twin and optimization algorithm in the next
iteration of feedrate optimization.

III. CONTOUR ERROR PREDICTION WITH A REAL-TIME
UNCERTAINTY-AWARE DIGITAL TWIN
This section first describes the methodology of the con-
tour error prediction using a deterministic digital twin in
Section III-A, and extends it to prediction of contour error
and its distribution using an uncertainty-aware digital twin in
Section III-B.

A. OVERVIEW OF CONTOUR ERROR PREDICTION USING A
DETERMINISTIC DIGITAL TWIN
A flowchart of the intelligent feedrate optimization using a
deterministic digital twin based on the previous work in [20]
is depicted in Figure 3. Note that the internal model in [20]
is removed. Also note that Figure 3, as well as the discus-
sions that follow in this section, focus on only the x-axis
for the sake of brevity. However, the exact same process
can be applied to the y-axis and other independent axes of a
Cartesian configured manufacturing machine. Small batches
(i.e., look-ahead windows) xjd of a desired position trajectory
xd are fed into an intelligent feedrate optimizer to produce
the optimized motion command, xjc, where the superscript
j ∈ {0, 1, 2, · · · } represents the batch index. Here, each
batch has a window length of nw and is defined on the time
domain t ∈ {0,Ts, 2Ts, 3Ts, · · · } which represents discrete
time at sampling interval Ts, as illustrated in Figure 4. The
optimized motion commands are sent to the servo system
Hx to produce the actual position xj. The servo system is
composed of a servo error pre-compensation Cx followed by
machine dynamics Gx , i.e., Hx = GxCx .

A key requirement for the intelligent feedrate optimization
is accurate prediction of the servo error, which is achieved
using linear regression built upon the hybrid model presented
in [1]. The hybrid model takes input xjc and predicts the actual
position x̂j using a stable, nominal (or representative) physics-
based model Ĥ∗x . The predictions x̂j do not capture the effects
of unmodeled dynamics and external disturbances. Therefore,
the prediction error of Ĥ∗x (delayed by one batch) is computed
as ej−1x = xj−1−x̂j−1 and combined with x̂j and x̂j−1 to be fed
into a data drivenmodel to generate an improved prediction x̃j

which is used for constraining contour errors in the feedrate
optimization.

Each element x̃(t) of x̃ is modeled as

x̃(t) = βTψ t (1)

where ψ t is the deterministic feature vector and β is the
weight vector that is learned using linear regression. Note that
the superscript j, i.e., batch index, has been removed from
x̃(t) in Eq. (1) to directly define x̃ in time domain. The sub
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FIGURE 1. Diagram of intelligent feedrate optimization using an uncertainty-aware digital twin. A manufacturer provides a part tolerance
and stringency (i.e., the tolerance for quality constraint violation under uncertainty). The intelligent machine leverages an
uncertainty-aware digital twin to optimize feedrate while satisfying the tolerance and stringency requirements.

FIGURE 2. (a) Need for a tolerance range due to violation of error
tolerance in the presence of uncertainties, (b) Proposed method of
feedrate optimization with desired tolerance stringency using quantified
uncertainty.

FIGURE 3. Flowchart of intelligent feedrate optimization using a
deterministic digital twin with physics-based and data-driven servo
models (y-axis omitted for simplicity).

FIGURE 4. Batches j-1 and j defined on a discrete-time domain.

elements of ψ t are given by

ψ t = [ 1︸︷︷︸
:=ψ t1

, x̂(t − n2Ts), · · · , x̂(t),︸ ︷︷ ︸
:=ψ t2

ex(t − n3Ts), · · · , ex(t − Ts)︸ ︷︷ ︸
:=ψ t3

]T (2)

The sub-elements ψ t1, ψ t2 and ψ t3 were contained in the
hybrid model of [1]. They respectively represent a bias term,
the past n2 and current time steps of x̂, and the past n3 time
steps of ex , where n2 and n3 are user defined.

The weight β is updated recursively in each timestep
within a given window, where the final weight is carried over
to the next window for prediction, i.e., x̃j is predicted based
on weight β from the previous batch j − 1. The algorithm
for learning β is described as follows. For t = 0, β and its
covariancematrixP are initialized using ridge regressionwith
a regularization factor λ as

β = (λI+ ψ tψ
T
t )
−1ψ t x(t)

P = (λI+ ψ tψ
T
t )
−1 (3)

For the rest of the timesteps t ∈ {Ts, 2Ts, . . .}, a recursive
least-squares is used to correct β and P using a forgetting
factor f0 as

β ← β + k(x(t)− βTψ t )

P← 1
f0
(P− kψT

t P)

where k = Pψ t (f0 + ψT
t Pψ t )

−1 (4)

Using the final weight in batch j − 1 to substitute for β,
x̃j can be predicted using the feature vector ψ t formulated by
Eq. (2). Since the past sensor data xj−1 is provided up to t =
(jnw − 1)Ts, for entries in batch j that have unavailable terms
in ψ t3, ex for all batches is approximated using the predicted
values of x̃, i.e.,

ex = x− x̂ ≈ x̃− x̂ (5)

The same procedure is applied to the y-axis to predict ỹ.
Lastly, the contour error ε̃ can be estimated from the predicted
axis tracking errors ε̃x = xd − x̃ and ε̃y = yd − ỹ, using a
linear approximation [47] as

ε̃ = − sin(θ )ε̃x + cos(θ)ε̃y (6)

where θ is inclination angle of the curve (xd , yd ).
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FIGURE 5. Flowchart of intelligent feedrate optimization using an uncertainty-aware digital twin (with physics-based and
data-driven servo models, y-axis omitted).

B. PREDICTION AND UNCERTAINTY QUANTIFICATION OF
CONTOUR ERROR USING UNCERTAINTY-AWARE DIGITAL
TWIN
The accuracy of the predictions of the physics-based and data-
driven servo models in Section III-A can be improved by
incorporating the known uncertainty from the physics-based
models. To do so, a digital twin that uses physics-informed
data-driven servo model is proposed, which is updated
on-the-fly via Bayesian approach that is capable of con-
sidering uncertainty in the feature vector ψ t . A flowchart
of the proposed intelligent feedrate optimization using the
uncertainty-aware digital twin is given in Figure 5. The key
difference between Figure 3 and Figure 5 is that known uncer-
tainty is included in Ĥx , and unknown uncertainty embedded
in xj is learned using the data-driven model and used to
predict x̂j with quantified uncertainty.
Each element x̃(t) of the digital twin’s prediction of the

output position x̃j is modeled as

x̃(t) = βTψ t + ε (7)

where ψ t ∼ N (μψt ,�ψt ) is the feature vector defined as
an uncorrelated Gaussian random variable with mean μψt
and variance �ψt derived from the uncertainty distribution
of ψ t previously defined in Eq. (2). β ∼ N (μβ,�β ) is the
weight vector defined as a correlated Gaussian random vari-
able learned via Bayesian linear regression, and ε ∼ N (0, σ 2

ε )
is the unobserved Gaussian noise. Unlike the determinis-
tic point-estimation of x̃j from Section III-A, a distribution
x̃j ∼ N (μx̃j ,�x̃j ) is estimated in this section based on the
uncertainties of the features and the weights.

This paper proposes that the known uncertainties of the
physics-based models are embedded into the feature vector
ψ t in Eq. (7) to enable efficient training of β. To do so,
a set of NH stable physics-based models {Ĥi

x}NHi=1 is obtained,
where each model Ĥi

x for i ∈ {1, 2, . . . ,NH } is identified in
the form of the complex-valued frequency response function
(FRF) of the physical system Hx at discrete frequencies ωk
via experiments as

Ĥi
x(ωk ) = ai(ωk )+ bi(ωk )j (8)

where ωk = k	ω, of which 	ω is the increment of fre-
quencies, k ∈ {1, 2, . . . , Nω2 − 1} where Nω is the number
of discrete negative and positive frequencies at which FRF is
identified, and j is the unit imaginary number (which should
not be confused with the batch index j used as a superscript
elsewhere).

Then, the uncertainty in Ĥx is propagated to the finite
impulse response ĥx as follows. The discrete sets {Ĥi

x(ωk )}NHi=1
for each k will introduce discrete sets of their real and imag-
inary coefficients, namely {ai(ωk )}NHi=1 and {bi(ωk )}NHi=1. For
computational efficiency, it is assumed that {ai(ωk )}NHi=1 and
{bi(ωk )}NHi=1 are sampled from Gaussian distributions of a(ωk )
and b(ωk ), of which 99.73%, i.e., the 3-sigma range, lie within
the minimum and maximum of the identified discrete sets.
Then, a(ωk ) ∼ N (μa(ωk ), σ

2
a(ωk )

) can be approximated as

μa(ωk ) =
max {a(ωk )} +min {a(ωk )}

2

σa(ωk ) =
max {a(ωk )} − μa(ωk )

3
(9)

and b(ωk ) ∼ N (μb(ωk ), σ
2
b(ωk )

) can be approximated using the
same procedure as Eq. (9).

Then, the impulse response ĥx (i.e., ĥx[n] for n ∈
{1, 2, . . . ,Nh}) of the physics-based model with sampling
time Ts can be formulated using discrete inverse Fourier
transform as

ĥ[n] = 1
Nω

Nω
2 −1∑

k=−Nω2
(a(ωk )+ b(ωk )j)e

2π j(n−1)(k−1)
Nω (10)

where Nh = 1
Ts	ω

is the maximum estimable length of the
impulse response. Then, due to the linearity of Eq. (10), ĥ[n]
follows a Gaussian distribution ĥ[n] ∼ N (μĥ[n], σ

2
ĥ[n]

) as

μĥ[n] =
1
Nω

Nω∑
k=1

(μa(ωk ) + μb(ωk )j)e
2π j(n−1)(k−1)

Nω

σ 2
ĥ[n]

= 1
Nω

Nω∑
k=1

(σ 2
a(ωk ) − σ 2

b(ωk ))e
2π j(n−1)(k−1)

Nω (11)
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Next, the uncertainty in ĥ[n] can be propagated to x̂(t) ∼
N (μx̂(t), σ 2

x̂(t)) as

μx̂(t) =
Nh∑
i=1

μĥ[i]xd (t − iTs)

σ 2
x̂(t) =

Nh∑
i=1

σ 2
ĥ[i]
xd (t − iTs)2 (12)

Finally, the feature vector follows an uncorrelated multi-
variate normal distribution ψ t ∼ N (μψt ,�ψt ), where

μψt = [ 1,︸︷︷︸
:=μψt1

μx̂(t−n2Ts), · · · , μx̂(t),︸ ︷︷ ︸
:=μψt2

x(t − n3Ts)− μx̂(t−n3Ts), · · · , x(t − Ts)− μx̂(t−Ts)︸ ︷︷ ︸
:=μψt3

]T

�ψt = diag
(

0,︸︷︷︸
:=�ψt1

σ 2
x̂(t−n2Ts), · · · , σ 2

x̂(t),︸ ︷︷ ︸
:=�ψt2

σ 2
x̂(t−n3Ts), · · · , σ 2

x̂(t−Ts)︸ ︷︷ ︸
:=�ψt3

)T (13)

The prior over β ∼ N (μβ , �β ) is initialized using the
nominal physics-basedmodelμĥx from Eq. (11), as described
in Appendix A. Now given β ∼ N (μβ,�β ) and the feature
uncertainty ψ t ∼ N (μψt ,�ψt ) from Eq. (13), we propose to
take a Bayesian route to obtain the posterior over β as more
data is collected in real time.

Mathematically, the posterior is given as:
p(β|x(t),μψt ,�ψt ) ∝ p(x(t)|β,μψt ,�ψt ) · p(β)

∝
∫
p(x(t),ψ t |β,μψt ,�ψt )dψ t · p(β)

∝
∫
p(x(t)|ψ t ,β)p(ψ t |μψt ,�ψt )dψ t

· p(β)
∝ p(x(t)|β) · p(β) (14)

where x(t) is the actual position on the x-axis at timestep t
defined in Section III-A. Here, p(x(t)|β) and p(β) are given
as as

p(x(t)|β) = exp
(
−1
2
(x(t)− βTμψt )

T(βT�ψtβ + σ 2
ε )
−1

(x(t)− βTμψt )
)

p(β) = exp
(
−1
2
(β − μβ )T�−1β (β − μβ )

)
(15)

As shown above, a central feature of our approach is that
it accounts for input uncertainty through ψ t ∼ N (μψt ,�ψt ).
Unfortunately, the price to pay is the lack of a closed form
solution due to the quadratic term in the variance. While
monte carlo (MC) sampling approach such as Markov chain
MC (i.e. MCMC) or HamiltonianMC can be used, our goal is
to obtain the posterior on the fly to enable real-time control.

To this end, we take a Gaussian Laplacian approxima-
tion [50] where we write log of p(x(t)|β) as a quadratic
function of β. This is shown below:
ln p(x(t)|β) ≈ ln p(x(t)|β)

∣∣∣
β=β̄︸ ︷︷ ︸

:=c0

+ d ln p(x(t)|β)
dβ

∣∣∣T
β=β̄︸ ︷︷ ︸

:=c1

(β − β̄)

+ 1
2
(β − β̄)T d2 ln p(x(t)|β)

dβ2

∣∣∣
β=β̄︸ ︷︷ ︸

:=C2

(β − β̄)

(16)

where the local point β̄ is μβ from the previous batch,
i.e., the prior mean. A detailed derivation of the coefficients
c0, c1 and C2 in Eq. (16) is provided in Appendix B. Given
that p(x(t)|β) ∼ N (μβ,�β ), now Eq. (14) can re-written in
a closed-form solution as

p(β|x(t),μψt ,�ψt ) = exp
(
βT(1

2
C2 − 1

2
�−1β

)
β

+ (
cT1 + μT

β�
−1
β

)
β + constant

)
(17)

Thus, the updated variance and mean of the Gaussian
posterior p(β|x(t),μψt ,�ψt ) are

�β ← Var[β|x(t),μψt ,�ψt ] = −
1
2

(1
2
C2 − 1

2
�−1β

)−1
μβ ← E[β|x(t),μψt ,�ψt ] =

(
cT1 + μT

β�
−1
β

)
�β (18)

where the posteriorsμβ and�β are used as priors for the next
batch.

Note that, if the feature ψ t is assumed to be deterministic
(i.e., zero feature uncertainty), no known uncertainties will
be included in the Bayesian regression, of which the case
will be compared with the proposed method using normally
distributedψ t in the following Section V. In the case of deter-
ministic ψ t , the posterior β ∼ N (μβ,�β ) can be estimated
as a closed-form solution using Bayes rule as

p(β|μβ,�β )

= exp
(
−1
2
βT(σ−2ε ψT

t ψ t +�−1β )β

+ (σ−2ε ψT
t x(t)+�−1β μβ )

Tβ

)
∴ �β ← (σ−2ε ψT

t ψ t +�−1β )−1

μβ ← �β (σ−2ε ψT
t x(t)+�−1β μβ ) (19)
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Lastly, using the trained weight distribution from Eq. (18),
the posterior predictive distribution x̃(t) ∼ N (μx̃(t), σ 2

x̃(t)) can
be written as

μx̃(t) = μT
βψ t

σ 2
x̃(t) = ψT

t �βψ t + σ 2
ε (20)

The same procedures are applied to learn βy ∼
N (μβy ,�βy ) and predict ỹ(t) ∼ N (μỹ(t), σ 2

ỹ(t)) based on
y-axis feature vector ψ ty and unobserved noise εy. Using
Eq. (6), the contour error distribution ε̃(t) ∼ N (με̃(t), σ 2

ε̃(t))
can be predicted as

με̃(t) = − sin(θ (t))(xd (t)− μT
βψ t )

+ cos(θ(t))(yd (t)− μT
βy
ψ ty)

σ 2
ε̃(t) = sin(θ (t))2(ψT

t �βψ t + σ 2
ε )

+ cos(θ(t))2(ψT
ty�βyψ ty + σ 2

εy
) (21)

IV. METHODOLOGY FOR INTELLIGENT FEEDRATE
OPTIMIZATION WITH CONTOUR ERROR CONSTRAINTS
The feedrate optimization with contour error constraints
using the quantified uncertainty from the digital twin is for-
mulated in accordancewith authors’ previouswork [29] using
a model predictive control framework. Taking the x-axis, for
example, a desired trajectory Xd = f (p) is parametrized
with respect to a normalized, monotonically increasing path
variable p, which is a vectorized form of p. Then, Xd (t) is
linearized as xd (t) with respect to p(t) using an estimated
linearization point p̄(t) as

xd (t) = − ∂f
∂p

∣∣∣∣
p=p̄(t)

· (p(t)− p̄(t))+ f (p̄(t)) (22)

The procedure for computing the optimal pj (correspond-
ing to the optimal feedrate) using the uncertainty-aware digi-
tal twin is as follows. The path variable pj is maximized under
monotonicity, maximum feedrate, and axis-acceleration con-
straints as

max1Tpj

s.t. p(t − 1) ≤ p(t) ≤ 1

D[pj] ≤ VmaxTs∣∣∣D2[xjd ]
∣∣∣ ≤ AmaxTs2 (23)

where 1 is a ones-vector,D is a difference operator, andVmax
and Amax are the vectorized representations of feedrate and
acceleration limits, respectively. In addition, kinematic and
dynamic continuity between adjacent windows is enforced.
The process described above for the x-axis can be applied to
the y-axis.
The feedrate optimization constrains the contour error

under a given tolerance and stringency, using the posterior
predictive distribution from Section III-B. To do so, we show
that με̃(t) and σε̃(t) are linear in terms of xjd , by showing that
the only alterable feature in ψ t , which is the last term in ψ t2
(i.e., x̂(t)), is linear in xjd .

Let �x ∈ R
nh×nh be the matrix (lifted domain) represen-

tation of μĥx truncated by length nh. The last nw rows in �x
can further be decomposed into two parts: its first nh − nw
columns �x,p and its last nw columns �x,c as

�x =
[

...
...

�x,p �x,c

]
(24)

If xc,p represents the last nh − nw elements of the xc at past
timesteps, x̂(t) can be re-written as

x̂j = �x,cx
j
d +�x,pxc,p

∴ x̂(t) =Mt�x,c︸ ︷︷ ︸
:=Tx

xjd +Mt�x,pxcp︸ ︷︷ ︸
:=T0x

(25)

where Mt is a selection matrix that picks the entry at
timestep t . Similarly, for y-axis, the alterable term in ψ ty can
be derived to be linear in terms of yjd , by using a similar
notation as Eq. (25), i.e., ŷ(t) = Tyy

j
d + T0y.

Then, the worst-case out of the η [%] variations of dis-
tribution of the contour error ε̃(t), where η is a user-defined
stringency, is bounded by the tolerance Emax as a stochastic
constraint by

p(ε̃(t) ≤ Emax) ≥ η (26)

For the sake of brevity, the negative stochastic contour error
constraint p(ε̃(t) ≥ −Emax) ≥ η is omitted. Then, inversion
the both sides of Eq. (26) becomes

με̃(t) ≤ Emax −�−1(η)σε̃(t) (27)

where� is the cumulative density function of the distribution
of ε̃(t), which is invertible because ε̃(t) follows a Gaussian
distribution as was shown in Eq. (21).

Eq. (27) can be rearranged as a linear constraint in terms
of xjd and yjd using Eq. (21), written as

Uxx
j
d + Uyy

j
d ≤ U0 (28)

where the derivation of coefficients Ux , Uy and U0 is
described in Appendix C. Finally, the contour error constraint
is also linear with respect to the decision variable pj using the
relationship in Eq. (22).
Themethodology of feedrate optimization described in this

section can be broadly considered as model predictive con-
trol [13], because it: (1) optimizes manipulatable inputs, e.g.,
desired trajectory, over a finite, receding horizon using (2)
predictions of the dynamical system’s behavior through a
model that is updated via feedback.

V. VALIDATION OF THE INTELLIGENT FEEDRATE
OPTIMIZATION USING UNCERTAINTY-AWARE DIGITAL
TWIN
This section validates the importance of the uncertainty
quantification of the proposed physics-informed data-driven
(PIDD) uncertainty-aware digital twin in feedrate opti-
mization, by comparing the method with the following
approaches:
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FIGURE 6. Experimental setup for Sections V-A and V-B2.

FIGURE 7. Frequency response functions of the Nomad 3’s x-axis
showing the known uncertainty obtained under different input
acceleration amplitudes.

1) Conservative method, which is defined as the bench-
mark generated using a trapezoidal acceleration pro-
file [19] with kinematic limits tuned by trial-and-error
to achieve the contour error tolerance with η% strin-
gency, by allowing up to (100 − η)% RMS violation
normalized by Emax defined in Section IV

2) Physics-based (PB) method, which predicts the out-
put position and its uncertainty using only the known
uncertainty obtained from the set of physics-based
models {Ĥi

x}NHi=1 and {Ĥi
y}NHi=1

3) Data-driven (DD) method, which predicts the output
position and its uncertainty by learning the unknown
uncertainty without incorporating any known uncer-
tainties, i.e., the prior μβ0 , �β0, μβy0 and �βy0 are
initialized as zero at the 0-th batch, and β and βy are
learned via Bayesian linear regression for deterministic
features in Eq. (19). Note that both the PB and DD
methods are subsets of the proposed uncertainty-aware
digital twin. However, we have separated them out to
highlight the effect of introducing uncertainty in both
the PB and the DD models through the PIDD method
used in the uncertainty aware digital twin

The proposed method will be validated via compara-
tive analysis in the following Sections V-A and V-B by
demonstrating cycle time reduction while achieving similar
tolerance violation level as the conservative method.

A. NUMERICAL VALIDATION
A Nomad 3 three-axis desktop CNC machine tool is chosen
as the simulated system, where its setup is shown in Figure 6.

FIGURE 8. Frequency response functions of the Nomad 3’s y-axis
showing the known uncertainty obtained under different input
acceleration amplitudes.

FIGURE 9. Desired toolpath.

To analyze its known uncertainties, the position commands
are generated and commanded by dSPACEDS1007 real-time
control board running at 500 Hz sampling rate, connected
to DRV8825 stepper motor drivers for the x-, y- and z-axes
stepper motors. ADXL335 accelerometers are attached on the
x- and y-axis gantries to measure the x and y-axes acceler-
ation. The known uncertainties are identified by measuring
FRFs, of which the input is a swept sine acceleration com-
mand to the stepper motors, and the output is the relative
acceleration between the x- and y-axis using the accelerom-
eters. The operating condition under which the FRFs are
measured is varied bymodifying the input acceleration ampli-
tude at discrete values: 2 m/s2, 3 m/s2 and 4 m/s2, and 3 FRFs
aremeasured per each acceleration amplitude to collect a total
of NH = 9 FRFs per axes.

The set of FRFs {Ĥi
x}9i=1 of the x- and y-axis of the printer

are shown in Figures 7 and 8, respectively. The uncertain-
ties in Ĥx are then propagated to ĥx ∼ N (μĥx ,�ĥx

) to
initialize μβ and �β and construct μψt and �ψt in the
physics-informed data-driven digital twin. To validate that
FRF coefficients of {Ĥx}9i=1 and {Ĥy}9i=1 belong to Gaus-
sian distributions, Lilliefors test is used and described in
Appendix D.

The output position x is simulated as the sum of
motion-induced position xm and force-induced position xf ,
as

x = xm + xf = ĥx ∗ xc + xf
where ĥx ∼ N (μĥx ,�ĥx

) is sampled at every t

and xf (t) = Af sinωf t (29)

where Af = 0.2 and ωf = 733 rad/s (7000 rpm) are chosen.
The butterfly trajectory [18] with its contour of the toolpath

on the x- and y-axis shown in Figure 9 is selected. For the
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DD and PIDD methods, nw = 10, n2 = 3, n3 = 10 and σε =
0.01 are selected. For the DD and PIDD methods, stringency
η = 95% is selected. Vmax = 30 mm/s, Amax = 5 m/s2, and
contour error limit of Emax = 0.4 mm are selected for the
feedrate optimization. The tolerance violation γ , which will
be analyzed for each method, is defined as

γ (t) =
{
|ε(t)| − Emax if|ε(t)| > Emax
0 otherwise

(30)

Figure 10 shows the optimized feedrate, acceleration, con-
tour error, tolerance violation and prediction error of all
methods. The cycle times and RMS of tolerance violation γ
are summarized in Table 1. The PBmethod is the worst in pre-
diction performance because it is not aware of the unknown
uncertainties caused by the force-induced servo error, and
hence results in the highest RMS tolerance violation. The
DD method improves adherence to the tolerance by learning
the unknown uncertainties over time. However, DD method
initially suffers from significant prediction error due to its
unawareness of known uncertainties. The proposed PIDD
method with η = 95% enables restriction of the contour
error under the desired stringency by incorporating known
uncertainties and learning unknown uncertainties the quick-
est, which enables it to conservatively stay below the error
limit most of the time. Overall, the PIDD method is able
to reduce cycle time by 19.3% compared to the conserva-
tive approach while maintaining a similar tolerance violation
level. To demonstrate the effect of the selection of stringency,
Figure 11 compares the commanded feedrate, acceleration,
contour error, tolerance violation and prediction error of the
PIDD methods using η = 95% and 98%. It is observed
that tuning η to a higher level has the effect of making the
optimized feedrate more conservative and reducing the error
violation.

Note that the proposed PIDD method is not perfect in
satisfying the contour error constraints. One reason is that
the prediction error is not perfectly zero, and the stringency
constraints can only ensure that the worst-case out of η% of
contour error distribution is within the tolerance. This issue
can be mitigated by increasing η, which will entail more
conservative feedrate. Another reason might be due to the
nonlinear effects neglected by linearization of the contour
error constraint in Eq. (33) and sub-optimal learning in β
introduced by Laplace’s approximation in Eq. (16). These
problems can be addressed by applying nonlinear optimiza-
tion and non-Gaussian Bayesian regression, at the price of
higher computational cost.

B. EXPERIMENTAL VALIDATION
For validation of the proposed approach, two experimental
setups are used. The first set of experiments, described in
Section V-B1, is carried out on an Ender 3 Pro desktop
3D printer, and the second set of experiments, described
in Section V-B2, is carried out on a Nomad 3 desktop
CNC machine tool used in Section V. Demonstration of the

FIGURE 10. Feedrate, acceleration, contour error, tolerance violation, and
prediction error using conservative (Cons.) physics-based (PB),
data-driven (DD) and proposed (PIDD) methods with η = 95% for
numerical validation.

FIGURE 11. Feedrate, acceleration, contour error, tolerance violation, and
prediction error using the proposed (PIDD) methods with η = 95% (from
Figure 10 and η = 98% for numerical validation.

proposed method on two experimental setups helps to show
its versatility.

1) DESKTOP 3D PRINTER
a: EXPERIMENTAL SETUP
The experimental setup using an Ender 3 Pro desktop 3D
printer is shown in Figure 12. The optimization algorithm
is implemented on dSPACE 1007 real-time control board
running at 500Hz sampling rate, connected to DRV8825
stepper motor drivers for x, y, z and e- axes stepper motors.
The measured x and y- axes accelerations from ADXL335
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TABLE 1. Cycle times and RMS of tolerance violation γ for conservative
(Cons.), physics-based (PB), data-driven (DD) and proposed (PIDD)
methods in Figures 10 and 11.

FIGURE 12. Experimental setup for Section V-B1.

FIGURE 13. Frequency response functions of the Ender 3 Pro’s x-axis
showing the known uncertainty obtained under different input
acceleration amplitudes.

accelerometers are fed back to dSPACE 1007. To deduce the
x and y axes displacement from acceleration measurements,
a Luenberger state observer [49] is used. The observer gains
are chosen such that the dynamics of the observer error
(i.e., discrepancy between estimated position using the nom-
inal physics-based model μĥx and observed position) obtains
global asymptotic convergence with an observer frequency
fo = 15 Hz.

b: EXPERIMENTAL RESULTS
This section validates the proposed approach experimentally
using the desktop 3D printer, by comparing its perfor-
mance with conservative, PB and DD methods. The butterfly
toolpath in Figure 9 is used to optimize the feedrate for air-
printing (i.e., no material extrusion) and actual printing of
the 3D printer. The known uncertainties of x- and y-axis
of the printer are incorporated from FRFs in Figures 13
and 14. The validation of the Gaussian assumption for a(ωk )
and b(ωk ) of the FRFs in the x- and y-axis is described in
Appendix D. For the DD and PIDD methods, nw = 30, n2 =
10, n3 = 30 and σε = 0.01 are used. For the PIDD method,
the desired stringency is selected as η = 95%. For feedrate
optimization, Vmax = 70 mm/s, Amax = 3 m/s2 and Emax =
0.1 mm are chosen.

FIGURE 14. Frequency response functions of the Ender 3 Pro’s y-axis
showing the known uncertainty obtained under different input
acceleration amplitudes.

FIGURE 15. Commanded feedrate, acceleration, contour error, tolerance
violation and prediction error using conservative (Cons.), physics-based,
data-driven and proposed approaches in air-printing.

TABLE 2. Comparison of RMS prediction errors, cycle times and RMS of
tolerance violation γ using conservative (Cons.), physics-based (Physics.),
data-driven (Data.) and proposed methods in air-printing.

Figure 15 shows the profiles of the optimized feedrate,
acceleration, contour error and prediction error of x- and
y-axis using the conservative, PB, DD and PIDD methods.
The RMS prediction errors, cycle times and RMS tolerance
violation of all methods are reported in Table 2. The PB
approach cannot predict the unknown uncertainties, and
hence shows the most significant violation in the contour
error. The DD method mitigates the violation by learning
the unknown uncertainties, and the PIDD method further
improves the accuracy by staying the closest to the tolerance
with the desired stringency. As a result, the PIDD method
completes the motion 17.8% faster than, while yielding sim-
ilar contour error tolerance satisfaction as the conservative
one.

To further validate our findings, a 3D-augmentation of the
trajectory in Figure 9 with z-height 8 mm is printed using
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FIGURE 16. Top and side views of 3D-printed butterfly models using
conservative, physics-based, data-driven and proposed approaches and
their print times.

FIGURE 17. Commanded feedrate, acceleration, contour error, tolerance
violation, and prediction error (with its zoomed-in images) of
conservative, physics-based (PB), data-driven (DD) and proposed (PIDD)
approaches in air-cutting.

the same printer. Conservative, PB, DD and PIDD methods
are applied at each layer of the print. Figure 16 shows the
top and side views of the printed butterflies using the four
methods, as well as their print times. The physics-based and
data-driven prints show vibration marks in the side view,
while the proposed and conservative prints are able to achieve
vibration-free surface quality. Overall, the proposed method
is able to achieve 15.51% print time reduction compared
to the conservative approach while achieving similar print
quality.

2) CNC MACHINE TOOL
a: EXPERIMENTAL SETUP
For experimental validation, the same experimental setup
with the machine tool in Figure 6 in used. The optimiza-
tion algorithm is implemented on dSPACE 1007 real-time
control board running at 500Hz sampling rate, connected

FIGURE 18. Commanded feedrate, acceleration, contour error, tolerance
violation, and prediction error (with its zoomed-in images) of
conservative, physics-based (PB), data-driven (DD) and proposed (PIDD)
approaches in actual cutting.

TABLE 3. Comparison of RMS prediction errors, cycle times and RMS of
tolerance violation γ using conservative (Cons.), physics-based (PB),
data-driven (DD) and proposed (PIDD) methods.

to DRV8825 stepper motor drivers for x, y, and z- axes
stepper motors. Renishaw RKLC20-S optical linear encoders
are attached to the x and y- axes gantries to measure x and
y-axes positions that are fed back to dSPACE 1007.

b: EXPERIMENTAL RESULTS
This section validates proposed feedrate optimization using
the same set of methods for command generation, which
are conservative, PB, DD and the proposed PIDD methods.
The same desired butterfly trajectory in Figure 9 is used
for air cutting and machining an aluminum workpiece with
a 3.175 mm diameter flat-end mill and spindle speed of
7000 rpm. Kinematic limits are set as Vmax = 20 mm/s
and Amax = 0.5 m/s2, and contour error bound is chosen as
Emax = 0.1 mm in the feedrate optimization; nw = 30, n2 = 2,
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FIGURE 19. Machined parts and the zoomed-in images of upper left wing
using conservative, physics-based (PB), data-driven (DD) and proposed
(PIDD) approaches.

n3 = 30 and σε = 0.01 are used in the DD and PIDDmethods.
The desired stringency is chosen as η = 95% in the DD and
PIDD method.

Figure 17 shows the profiles of optimized feedrate, accel-
eration, contour error, tolerance violation, and prediction
error of x- and y-axis in air-cutting using the conser-
vative, PB, DD and PIDD approaches. The PB method
frequently violates the tolerance due to unmodeled dynam-
ics, which is caused by the significant prediction error. The
DD method slightly improves prediction accuracy, which is
further improved in the PIDDmethod where the contour error
is able to be constrained close to the limit using the desired
stringency, similar to conservative approach. The proposed
PIDD approach completes the motion 38.06% faster than the
conservative method, while maintaining a similar level of
tolerance adherence. The RMS prediction errors in x- and
y-axis, cycle times and RMS tolerance violations of each
method are summarized in Table 2.

Figure 18 shows the profiles of optimized feedrate, acceler-
ation, contour error, tolerance violation, and prediction error
of x- and y-axis in actual cutting using the conservative,
PB, DD and PIDD approaches. Similar to air-cutting, the
PB method is worst in constraining the contour error due
to unmodeled dynamics and/or cutting force. The DD and
PIDD methods reduce the prediction error compared to the
PBmethod and are able to constrain the contour error close to
the limit using the desired stringency. However, occasionally,
PIDD shows worse performance than DD, which may be due
to the difference between measured FRFs when the machine
tool is not cutting (shown in Figures 7 and 8) and the FRFs
while it is cutting. Research has shown that there can be sig-
nificant differences between FRFs measured without cutting
and those measured while cutting [8]. A possible solution
solve this issue is to measure the FRFs and compute known
uncertainties during cutting using operational modal analysis,
which may be complicated because of FRF’s variability on
the operating condition of the cutting tool. Another solution is
to discard the known uncertainties when they are inaccurate,
i.e., use DD only when PIDD may have errors. Overall,
the proposed PIDD approach completes the motion 29.02%

faster than the conservative method while maintaining a sim-
ilar level of tolerance adherence. The RMS prediction errors
in x- and y-axis, cycle times and RMS tolerance violations of
each method are summarized in Table 2.

Figure 19 shows the machined surfaces and their
zoomed-in images of upper left wing using the trajectories
from Figure 18. The surface machined using PB method
shows vibration marks, while the DD and PIDD methods
mitigate the vibration and achieve similar quality to that of
conservative approach.

VI. CONCLUSION AND FUTURE WORK
This paper presents an MPC framework and method-
ology for the intelligent feedrate optimization using an
uncertainty-aware digital twin. Its key contributions are sum-
marized as follows.
• A novel uncertainty-aware digital twin that predicts
contour error is proposed. The digital twin is able
to incorporate known uncertainty from physics-based
models and learn unknown uncertainty using an online
data-driven model to predict contour error’s distribution.

• For the first time, a feedrate optimization with con-
straints on kinematics and contour error using quantified
uncertainty is introduced. The contour error’s uncer-
tainty using digital twin enables the manufacturer to
impose stringency constraints, which can replace trial-
and-error approach of tuning the tolerance used in
practice.

• Wehave demonstrated the effectiveness of the intelligent
feedrate optimization using uncertainty-aware digital
twin, to show up to 38% and 17% cycle time reduction
using a desktop CNC machine tool and a desktop 3D
printer, respectively, while achieving similar stringency
of tolerance to that of the a conservative trial-and-error
approach similar to those used in practice.

• The proposed intelligent feedrate optimization is
expected to bring impact in achieving desired quality
with higher productivity, using less trial-and-error. It is
applicable to any machines that use feed drives, such
as coordinate measurement machines (CMMs), and
precision machine tools.

As a limitation, the proposed method has made several
assumptions in the methodology to enable efficient compu-
tation, such as Gaussian distribution of frequency response
function for computing the known uncertainty and the lin-
earization of contour error constraints for solving the feedrate
optimization as a sequential linear programming problem.
The future work will explore more sophisticated (non-
Gaussian) uncertainty distributions and nonlinear contour
error constraints to improve the accuracy of the digital twin,
at the expense of higher computational cost and non-closed
form solutions. Furthermore, additional forms of learning to
the uncertainty-aware digital twin, such as part-to-part or
machine-to-machine learning, will be investigated to improve
prediction accuracy.
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APPENDIX A
INITIALIZATION OF μβ AND �β IN SECTION III-B
The distribution of the weight β can be initialized and
learned more accurately using the feature uncertainty from
Eq. (13), where the procedure is described as follows.
First, μβ and �β are initialized as the priors μβ0 and �β0
in the 0-th batch using the nominal physics-based model
μĥx

from Eq. (11). To estimate μβ0 and �β0, maximum
likelihood estimation (MLE) method is applied on a dataset
created offline using a trial desired trajectory xd,trial with
length Nx that traverses a pre-defined path with conservative
kinematics used in practice. The nominal physics-based
model μĥx is used to filter xd,trial and formulate x̂trial .
Then, Section III-A’s framework on deterministic feature
vector is borrowed to create multiple datasets consisting
of feature vectors and corresponding predictions, i.e.,
(ψ0, xtrial(0)), (ψTs , xtrial(Ts)), . . . , (ψNxTs , xtrial(NxTs)),
assuming ψ t is deterministic and ψ t3 = 0 for all t . Finally,
μβ0 and �β0 can be optimized using MLE as

μβ0,�β0

= argmin
μβ�β

Nx∑
i=0

(
−1
2
(xtrial(iTs)− μT

βψ iTs)
T

(ψT
iTs�βψTsi + σ 2

ε )
−1(xtrial(iTs)− μT

βψ iTs )
)

(31)

where xtrial(t) is approximated as x̂trial(t).

APPENDIX B
DERIVATION OF COEFFICIENTS c0, c1 AND C2 IN EQ. (16)
IN SECTION III-B
The coefficients c0, c1 and C2 in Eq. (16) can be derived
using 0-th, 1-st and 2-nd derivatives of vector-valued function
ln p(x(t)|β) in Eq. (15) with respect to β, respectively, as

c0 = −1
2
(x(t)− β̄T

μψt )
T(β̄

T
�ψt β̄ + σ 2

ε )
−1(x(t)− β̄T

μψt )

c1=−1
2

(
2�T

ψt
μψt x(t)β̄

T
β̄+(

2μψtμ
T
ψt
σ 2
ε −2�ψt x(t)

2)Tβ̄
− 2μψt x(t)σ

2
ε

)
· diag(β̄T

�T
ψt
β̄ + σ 2

ε )
−1

C2 = −1
2

(
−4�2

ψt
μψt x(t)β̄

T
β̄β̄

T + 6�2
ψt
x(t)2β̄β̄

T

+ 12�ψtμψt x(t)σ
2
ε β̄

T − 6�ψtμψtμ
T
ψt
σ 2
ε

)
· diag(β̄T

�T
ψt
β̄ + σ 2

ε )
−1 (32)

where the local point β̄ is taken as the prior μβ from the
previous window.

APPENDIX C
LINEARIZATION OF CONTOUR ERROR CONSTRAINT IN
EQ. (27) IN TERMS OF x̃ j

d AND ỹ j
d

The contour error constraint in Eq. (27) is linearized in terms
of x̂jd and ŷ

j
d by linearizing the standard deviation term σε̃(t) in

Eq. (21) with respect to ψ t and ψ ty using linearization points
ψ̄ t and ψ̄ ty as

σε̃(t) ≈ Sxψ t + Syψ ty + S00 + S01

where S00 = sin(θ(t))2(ψ̄
T
t �βψ̄ t + σ 2

ε )

+ cos(θ (t))2(ψ̄
T
ty�βyψ̄ ty + σ 2

εy
)

S01 = −2 sin(θ(t))2�βψ̄ t − 2 cos(θ(t))2�βψ̄ ty

Sx = 1√
S00

sin(θ (t))2�β

Sy = 1√
S00

cos(θ(t))2�βy (33)

where ψ̄ t is formulated via generating the terms
x̂(t − n2Ts) · · · x̂(t) in ψ̄ t2 by filtering the linearization
point f (p̄) with μĥx . Likewise, ψ̄ ty is formulated using μĥy .
Finally, let the alterable features in ψ t be ψ ta, and the

weights corresponding to the alterable feature inψ t , i.e., x̂(t),
be denoted asβa and that to the unalterable featuresψ tu asβu.
The same notations ψ tyu, βya and βyu will be held for y-axis.
Then, by substituting Eq. (21), (25) and (33) into Eq. (27), the
contour error constraint be re-written as

− sin(θ(t))(Mtx
j
d − μT

βu
ψ tu − μT

βa
(Txx

j
d + T0x))

+ cos(θ (t))(Mty
j
d − μT

βyu
ψ tyu − μT

βya
(Tyy

j
d + T0y))

≤ Emax −�−1(η)
(
Sxψ tu + Sx(Txx

j
d + T0x)

+ Syψ tyu + Sy(Tyy
j
d + T0y)+ S00 + S01

)
(34)

which can be rearranged as linear in terms of xjd and yjd as

Uxx
j
d + Uyy

j
d ≤ U0

where Ux = − sin(θ(t))(Mt − μT
βa
Tx)+�−1(η)SxTx

Uy = cos(θ (t))(Mt − μT
βya

Ty)−�−1(η)SyTy
U0 = sin(θ (t))(−μT

βu
ψ tu − μT

βa
T0x)

− cos(θ(t))(−μT
βyu
ψ tyu − μβyaTT0y)

+ Emax −�−1(η)(Sxψ tu + SxT0x

+ Syψ tyu + SyT0y + S00 + S01) (35)

Finally, the contour error constraint in Eq. (28) is also linear
with respect to the decision variable pj using the relationship
in Eq. (22).

APPENDIX D
LILLIEFORS TEST ON FRF COEFFICIENTS IN SECTIONS V-A
AND V-B1.b
To validate the hypothesis in Section V-A that the
CNC machine tool’s FRF coefficients of {Ĥx}9i=1 and
{Ĥy}9i=1 belong to Gaussian distributions, Lilliefors test [9] is
performed on every frequency ωk for k ∈ {1, 2, . . . ,NH } of
a(ωk ) and b(ωk ) in x- and y-axis to compute the test decisions
at the 5% significance level and p-values. Figures 20 and 21
show the FRF coefficients a(ωk ) and b(ωk ) for x- and y-axis,
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FIGURE 20. Upper plot: FRF coefficients a(ωk ) and b(ωk ) of Nomad 3
x-axis; lower plot: p-value and accept/reject results of Lilliefors test of
FRF coefficients.

FIGURE 21. Upper plot: FRF coefficients a(ωk ) and b(ωk ) of Nomad 3
y-axis; lower plot: p-value and accept/reject results of Lilliefors test of
FRF coefficients.

respectively, in the upper plots. The lower plots of Figures 20
and 21 show p-values and Lilliefors test results, where
0 and 1 represent acceptance and rejection of the hypothesis,
respectively. The figures imply that Gaussian hypothesis
for both a(ωk ) and b(ωk ) is accepted at 90% and 88% of
the frequencies for the x- and y-axis, respectively. One way
to improve the reliability of Lillifors test result is to gather
more data of FRFs. However, for the sake of simplicity and
computational efficiency, the Gaussian hypothesis will be
assumed valid for all frequencies in the paper.

In Section V-B1.b, similar to Section V-A, Lilliefors test
is performed on a(ωk ) and b(ωk ) of the FRFs in the x- and
y-axis of the 3D printer to validate the Gaussian assumption at
the 5% significance level and p-values, where the hypothesis
acceptance rates are computed as 92% and 91% out of all
frequencies for the x- and y-axis, respectively.
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