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Abstract—The structural flexibility of industrial robot arms
makes them vibrate when they are commanded to move at
fast operation speeds. Among the control strategies, feedfor-
ward control stands out as an interesting approach to suppress
vibration since it does not create stability issues and works
for repeating and non-repeating tasks. Currently, the state-of-
the-art feedforward controller dedicated to suppressing residual
vibration in robot arms is time-varying input shaping (TVIP).
However, TVIP falls short in trajectory tracking tasks since the
method adds delays in the commands creating errors in track-
ing and thereby contouring trajectories. Therefore, this paper
proposes the use of an alternate feedforward method, known
as the filtered B-splines (FBS) approach, to suppress vibration
in six DOF robots while maintaining tracking accuracy. Since
time-varying FBS (TVFBS) requires full frequency response
functions (FRFs), compared to only natural frequencies and
damping ratios for TVIP, we propose a framework for estimating
the FRFs of serial kinematic chain 6-degree-of-freedom robots.
Residual vibration reduction experiments and trajectory tracking
experiments, in which the dynamics of a URSe collaborative
robot change considerably, were carried out to validate the model
prediction framework. TVFBS reduced the end-effector vibration
by 87% while improving tracking performance in both the y
(22%) and z (29 %) directions. On the other hand, TVIP worsened
the tracking performance (—683.43% for the y and —662.37%
for the z direction) despite the excellent vibration reduction
(98%). Hence, TVFBS demonstrated significantly better tracking
performance than TVIP while retaining comparable vibration
reduction.

Index Terms—Industrial robots, System identification, Time-
varying dynamics, Configuration dependent dynamics, Vibration
suppression, Feedforward Control, Input shaping, Filtered B-
splines

I. INTRODUCTION

Six-degree-of-freedom (DOF) industrial robots are used in a
variety of trajectory tracking tasks like additive manufacturing,
spray and inkjet painting, and spot and arc welding. Robots
have several advantages when performing these tasks, includ-
ing the dexterity to follow complex 3D paths, repeatability
in their operation, and the ability to cover large workspaces.
However, these processes are typically very time-consuming
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because the robots are commanded to move at lower speeds
when compared to their full capability. A major reason to slow
down is the vibrations experienced at the end-effector due to
the structural flexibility in the kinematic chain of the robot [1].
Therefore, one can conclude that there is a trade-off between
speed and accuracy since vibration errors degrade the accuracy
of the tracking task. Eliminating vibration while increasing
speed on six DOF robots can be achieved by a number of
methods including feedback control, iterative learning control,
and feedforward control.

There are two common applications of feedback control in
six DOF robots, passivity-based control and feedback control
using an external sensor. Passivity-based control requires the
full analytical model of the robot, including motor dynamics,
flexible-joint dynamics, and link dynamics [2]. Such a model is
difficult to obtain for robot users since the robot manufacturers
do not share the dynamic parameters of their products or
install the necessary sensors to estimate them due to cost
constraints. The second method involves using an external
sensor to measure the state of the end-effector and applying
a control input to the joint actuators to correct tracking errors
[3]. This approach results in a system where the sensing
and actuation are non-collocated, which can result in stability
issues [4]. Additionally, delays from the measurement to the
control input may cause additional errors [3].

Iterative learning control (ILC) improves trajectory tracking
accuracy by learning the errors from previous executions (i.e.,
iterations) of a particular trajectory and correcting them in
future iterations [5]. As such, it is ideal for systems that
execute repetitive tasks, where an ILC model can be trained
once and used over again. However, a major limitation of
ILC is that the trained controller does not work well for non-
repetitive motions [5].

Feedforward control can be used to overcome the afore-
mentioned weaknesses of feedback control and ILC because
it allows robot users to measure the dynamics of the system as-
is, does not create stability issues, and works for repeating and
non-repeating trajectories [6]. Currently, the state-of-the-art
feedforward controller to suppress residual vibration in robot
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arms is time-varying input-shaping. In a recent paper, Newman
et al. [7] used data from a theoretical dynamic model of a
six DOF robot arm to train a neural network to estimate the
natural frequencies and damping ratios of the vibration modes
related to the first three joints. The predictions were used to
update input shaping producing up to 85% vibration reduction
in different poses during their tests. Similarly, Thomsen et
al. [8] described a procedure for identifying and mapping the
natural frequency and damping ratio of second-order models
related to the vibration modes generated by the major flexible
joints of a six DOF robot. Using the identified parameters, the
authors applied a time-varying input shaping achieving up to
90% vibration mitigation during point-to-point (PTP) moves.
Despite the success of both [7] and [8] in reducing vibration in
PTP motions, it is well-known that input shaping creates errors
in tracking and thereby contouring trajectories in systems with
linear stages [9]. This limitation is severe when the same
method is used in robots with serial kinematic structures
since the end-effector motion is generated by a combination
of multiple joint rotations. Hence, the current state-of-the-art
feedforward control method to suppress residual vibration in
robot arms falls short in trajectory tracking tasks.

This paper proposes the use of an alternate method, known
as the filtered B-splines (FBS) approach, to suppress vibra-
tion in six DOF robots while maintaining tracking accuracy.
FBS has been used to suppress vibration in other tracking
applications, including CNC machines [10] and 3D printers
[6] resulting in up to 2x increase in the end-effector trajectory
speed without sacrificing quality in additive manufacturing.
Similar to input shaping, the FBS approach is a model-based
feedforward control technique. However, while input shaping
requires determining the natural frequency and damping ratio
of the vibration modes (i.e., only the poles of a transfer
function) [8], FBS uses full frequency response functions
(FRFs) (i.e., both poles and zeros of a transfer function) [6],
which requires fitting more model parameters.

The time-varying (i.e., pose-dependent) nature of the robot’s
dynamics intensifies the challenge of obtaining FRFs since
the parameters of the poles and zeros must evolve with the
robot’s pose. Edoimioya et al. [11] proposed a physics model-
based framework capable of estimating the FRFs of a delta 3D
printer. The parallel kinematic chain of the delta robot allowed
the authors to approximate part of the dynamics of the system
as time-invariant, simplifying the model estimation. However,
this assumption does not hold for time-varying systems with
serial kinematic chains such as robot arms.

Therefore, this paper:

1) Proposes a framework for measuring and estimating the
full FRFs of serial kinematic chain robots for any pose
in the workspace using no external hardware to identify
the system dynamics, and

2) Demonstrates that the filtered B-splines approach can be
implemented in robot arms achieving comparable vibra-
tion suppression while significantly improving tracking
accuracy when compared to the state-of-the-art feedfor-
ward controller to reduce residual vibration, time-varying

input shaping.

II. SIMPLIFYING ASSUMPTIONS FOR ESTIMATING
ANALYTICAL FRFS

In this work, it is assumed that the mechanical flexibility of
the robot can be approximated as an equivalent torsional stiff-
ness at the joints, representing the link and gearbox flexibility.
Therefore, the control action of the proposed feedforward
controller will focus on three vibration modes: rotations about
the base, shoulder, and elbow joints.

There are three main reasons for selecting those vibration
modes. First, for most robotic applications, motions in the x,
v, and z directions have larger magnitude and speeds than
the pitch, yaw, and roll rotations. Therefore, it is reasonable
to assume that the vibration modes with respect to the base,
shoulder, and elbow joints will primarily be excited. Second,
due to the robot’s kinematics, small angular displacement on
the selected joints can significantly affect the end-effector
position. Third, the base, shoulder, and elbow joints experience
relatively higher inertia than the wrist joints. Therefore, their
corresponding modes will present lower natural frequencies.

The simplified model of the robot can be expressed by

Mg +Bq+Kq =Bq, +Kq, (1)

where M is the mass matrix, K is the stiffness matrix, B is the
damping matrix, q is the vector of the actual joint angle, and
qg is the motor angle. Note that the Corriolis and gravitational
terms are neglected in this simplified model. More information
about the robot model can be found in [7] and [12].
Fortunately, the vibration modes of the base, shoulder, and
elbow joints can be partially decoupled. The coupling between
the vibration modes occurs due to the presence of non-diagonal
terms in the inertia matrix while the stiffness, K, and damping
matrices, B, are diagonal [7]. Here, it is assumed that the
shoulder and elbow modes are coupled while the base mode
is decoupled because the non-diagonal terms in the first row
and column of the inertia matrix are negligible when compared
to the base moment of inertia. Based on these assumptions,
the above equation can be expressed in the Laplace domain as

~1
Q= (Ms*+Bs+K)  (Bs+K)Qq )
where
nmii 0 0
M= my  my | 3B = (b5 K= [kiss
0 m3 ms3

From Eq. 2, the system dynamics can be represented as
follows:

0i(s) Gy O 0 Qa1(s)
Ox(s) | =] 0 Gn Go Qur(s) 3)
03(s) 0 Gxn Gz Qu3(s)

Q Qq
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Using Eq. 3, it is possible to define the transfer function
representing the robot’s dynamics when the base (G1), shoul-
der (G»), or elbow (G3) joint is used to excite the system. The
transfer functions are presented below:

< ais+a
Gl:ﬂ: H=——— 4)
L{qn} a3s* +2a4s +as
f{qz} d1S3+d2S2—‘rd3S—‘rd4
G = m——— G +G = ~
2T Z{qa) 2R T sV dgs® +dqs? 1 dss +do
)
ZL{q3} 6153+62S2+C3s—|—C4
’ L{qas} . > css* 4 ces3 + 752 +cgs+ o

(6)

where a;, d;, and c¢; are the coefficients of the transfer func-
tions. The actual joint positions, q, should be measured by a
rotary encoder placed after the gearbox of the joint. However,
most robots do not have those sensors, therefore, q will be
estimated using the end-effector accelerometer readings. More
information about how to estimate the joint’s output using
accelerometer readings can be found in [8].

III. OVERVIEW OF CONTROL METHODS
A. Time-Varying Filtered B-splines Approach

9a min ||qd - 1\7p||2 u=Np Gi(2) q

FBS controller

FIGURE 1. Block diagram for tracking control using filtered
B-splines (FBS) approach.

Consider a stable linear time-varying discrete-time system,
Gi(z), representing an open-loop or close-loop plant with
a nonzero DC gain. As shown in Fig. 1, a feedforward
tracking controller, C, controls G;(z) aiming at generating a
control trajectory, u(k), resulting in an output trajectory, g(k),
sufficiently close to the desired, g4(k), after the input passes
through G;(z). Note that z is the forward shift operator and
0>k >E, k€ Z where E+ 1 is the number of discrete
points in the trajectory. In the full-preview filtered B-splines
approach [13], g; is assumed to be entirely known a priori
and u is expressed as

=

Nom (éO) Nl,m (éO) N m (‘SO)
NO,m(él) Nl,m (él) n.m (61)

u=

p

Nom(E2) Nim(E) - Nom(&r)

N

where N is the matrix of B-spline basis functions of degree
m, p is a vector of n+ 1 unknown coefficients (or control
points), j =0, 1,...,n, and & > [0, 1] is the spline parameter,

representing normalized time, which is discretized in Eq. 7
into £ + 1 uniformly spaced points, &, &, ..., &g. More
information about the basis functions can be found in [13].

Similarly to u, let vectors q; and q represent the £ + 1 dis-
crete points of g, and ¢, respectively. Based on the definition
of u in Eq.7, q can be described as

q=Gu=GNp=Np (8)

where N is the filtered B-splines matrix, acquired by passing
each column of N through the dynamic system G;(z), which
changes with the robot’s pose [11]. Therefore, each row of the
filtered B-spline matrix is a combination of the B-splines and
the impulse response of the current dynamics of the system
at step k, achieved by using the output side algorithm (OSA)
finite impulse response (FIR) filter [14]. Finally, the optimal
control points are given by the least-squares solution when the
two-norm of the tracking error is minimized [13]

- - ]
min ((4,~8p) " (as—Np)) = p= (N'N)
B. Time-Varying Input Shaping

Input shaping is a feedforward control method to suppress
residual vibration generated by the reference trajectory. The
method emanates from earlier work on Posicast (positively
forecasting) control [15], which involves breaking a step of
a certain magnitude into two smaller steps, one of which is
delayed in time. This way, the oscillations introduced by the
second impulse cancel out the response of the first one. This
paper used a robust version of input shaping known as Zero
Vibration and Dervative (ZVD) input shaping [7]. The ZVD
shaper can be expressed in the Laplace domain as

1+ 2K670.5Tds _|_K267Tds

Fzyp(s) = 172K 1 K2 (10)
—( (k)
2
K=eV0F, 1= 25 o= () /1-¢(k2 (D
d

where {(k) and ,(k) are the damping ratio and natural
frequency of the system at time step k, respectively. Therefore,
the Fzyp filter is updated every time step and OSA FIR numer-
ical convolution is used to filter the desired trajectory with the
time-varying ZVD shaper. More information concerning the
impact of OSA FIR numerical convolution in input shaping
can be found in [14].

IV. SYSTEM IDENTIFICATION
A. Experimental Setup

Experiments were performed using a URSe collaborative
robot. The robot was mounted on an inertial table Newport RS
1000 and Python scripts were written to command the robot
during the experiments using a 500 Hz sampling rate. A 5 kg
mass was attached to the end-effector for all experiments. The
experimental setup is shown in Fig.2.
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FIGURE 2. Experimental setup.

B. System Identification Experiment

The system identification experiment was performed to map
the pose-dependent dynamics of the robot. To determine the
robot’s pose, the position of the end-effector was described
using polar coordinates, as depicted in Fig. 3. Using polar
coordinates reduces the number of variables to map the
position of the end-effector across the workspace from x, y,
and z coordinates to radius R and angle V, since the robot is
symmetric with respect to the base joint axis [8].

z End-
Effector
’ (R' V' qO)
o 1
Universal S
frame R/ :
// |
/, !
1
4 YV 1
{ y
do AN :

X

FIGURE 3. Representation of the end-effector poison across
the workspace using polar coordinates.

The system identification Python script allowed the exper-
iment to be done autonomously for several poses. For each
pose, the robot’s structure was excited by sending a sine sweep
input to the base, shoulder, and elbow joints, respectively. The
sine sweep used a frequency range of 0.5 to 60 Hz with a
frequency step of 0.5 Hz and a maximum acceleration of 10
%1. Although other researchers have used a bang-cost-bang
input to experimentally determine the natural frequencies of
the robot [14], using a sine sweep produces considerably better
experimental FRFs.

The robot dynamics were identified throughout the entire
workspace, ranging R from 0.2 m to 0.65 m with a distance
step of 0.05 m and V from 0° to 90° with an angular step

of 5°. Therefore, a total of 190 (#poses) x 3 (#joints) = 570
experimental FRFs were collected and their model parameters
were extracted following the procedure described in Fig.4. As
a result, 20 nonlinear models were generated to estimate the
system dynamics in any region of the workspace.

From the identified models, the poles and zeros of all trans-
fer functions are extracted. By using the corresponding robot
pose, a nonlinear model can be established between the end-
effector position and all the transfer function parameters by
solving a nonlinear least squares problem via the Levenberg-
Marquardt algorithm [17]. As a result, each parameter of the
transfer functions will have a nonlinear model in which R and
V are the inputs of the model and @, or { are the outputs.
The system identification process is summarized in Fig. 4.

V. EXPERIMENTAL COMPARISON BETWEEN TVFBS AND
TVIP

Two experiments were performed to evaluate the perfor-
mance of time-varying FBS. The end-effector trajectories of
both experiments were generated using a trapezoidal velocity
profile considering 580 = and 9000 % as maximum velocity
and acceleration, respectively. The time-varying dynamics for
both experiments are shown in Table L.

TABLE I. Changes of the natural frequencies of the system
for the residual vibration reduction and trajectory tracking
experiment.

System 15" pole 24 pole
Dynamics (Hz) (Hz)
Gy 9—17 24 —31
G3 9—16 25—-30

A. Model Generation

Once the nonlinear models are determined from the system
identification experiment, it is possible to estimate the system
dynamics given g and the end-effector Cartesian trajectory by
calculating R and V. The model estimation framework used
in both performance evaluation experiments is summarized in
Fig. 5.

It was observed that only the parameters of the complex
conjugate poles and zeros demonstrate a strong correlation
with the robot’s pose which was expected since they represent
the mechanical resonance and anti-resonance of the system,
respectively. Therefore, the system dynamics can be approxi-
mated by

(s=21) (s=21)

2 Oms = G 7)

Gy,
Gy = (s—p1)(s—p;

G~ kG, — (12)

where k = m, z; and zj are the complex conjugate
zeros, and p; and p; are the complex conjugate poles, which
can be estimated using nonlinear models (Fig. 4).
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FIGURE 4. System Identification procedure to map the pose-dependent dynamics of the robot. The natural frequency and
damping ratio 3D maps and nonlinear models of one pole of G, are presented.
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FIGURE 5. Model estimation framework. « is the pitch angle,
B is the yaw angle, y is the row angle, (p;, p;) are complex
conjugate poles, (z;,z}) are the complete conjugate zeros, and
k is the correction of the DC gain.

B. Residual Vibration Experiment

In this experiment, the residual vibration performance of
time-varying FBS (TVFBS) and time-varying input-shaping
(TVIP) are compared. The robot is commanded to perform
a point-to-point motion in which the end-effector goes from
one extreme region of the workspace to another, changing the
system dynamics considerably as depicted in Table I and Fig.6.

To analyze the residual vibration, the end-effector accelera-
tion is measured after the end of the motion using the URS5e’s
built-in accelerometer, and the vibration reduction is presented
in both frequency and time domains. For the frequency domain
analysis, the vibration energy is analyzed [8].

The experimental results for the residual vibration reduction
experiment are presented in Figs. 7 and 8. The results indicate

[—] describes the changes of the one w, for the point-to-point
motion.

that TVIP presented a better vibration reduction (98.20%) than
TVFBS (87.55%). The percentages were calculated based on
the frequency domain analysis (Fig. 8).

Contrasting the TVFBS and TVIP, both controllers pre-
sented comparable performances although input shaping
showed superior vibration reduction, which was expected since
input shaping was developed to suppress residual vibration.
On the other hand, FBS was primarily developed to improve
the trajectory tracking performance of a system given its
dynamics. In other words, the vibration reduction produced
by FBS is an effect of the improvements made in trajectory
tracking.

Finally, it should be highlighted that both controllers pre-
sented considerable vibration reduction, indicating that the
framework for estimating the robot’s dynamics yields satis-
factory model prediction.
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C. Trajectory Tracking Experiment

In this experiment, the tracking performance of TVFBS and
TVIP are compared. The robot is commanded to perform a
gear shape motion in which the end-effector goes from one
extreme region of the workspace to another changing the
system dynamics considerably, as depicted in Table 1.

To analyze the improvements in tracking performance, the
root-mean-square (RMS) of the end-effector tracking error
was calculated with respect to the baseline. The end-effector
position was estimated using a Luenberger observer with a
bandwidth of 10 Hz, in which the low-frequency components
mostly rely on the estimated models while the high-frequency
components predominantly depend on the acceleration mea-
surements. It should be mentioned that the same observer was
used to calculate the end-effector position in all experiments,
meaning any bias/uncertainty related to the observer estimation
did not affect the comparison of the controllers’ performance.

The experimental results for the trajectory tracking experi-
ment are presented in Fig. 9. The results indicate that TVFBS
improves the end-effector tracking performance in both the y
(22.49%) and z (29.384%) directions. When both feedforward
controllers are compared, TVFBS presented considerably bet-
ter tracking performance than TVIP (—683.43% for the y and
—662.37% for the z direction), as depicted in Fig. 9(a) and

(b). This result was expected since the considerable vibration
reduction of input shaping comes with the trade-off of creating
delays in the commands, generating great contour errors at the
end-effector trajectory as shown in Fig. 10.

VI. CONCLUSIONS

This paper presents a framework for estimating the fre-
quency response function (FRFs) of robotic arms. Work from
[7] and [8] proposed model estimation frameworks that predict
the natural frequency and damping of the vibration modes
related to the first three or two joints of an industrial robot,
respectively. On the other hand, [11] presents a framework that
can estimate the full FRFs of parallel kinematic chain robots
but model assumptions made for parallel robots do not hold
for robotic arms. Therefore, this paper proposes a framework
that is able to estimate the full FRFs of serial kinematic ma-
nipulators accurately. The models generated enabled the use of
the feedforward tracking controller, the so-called time-varying
filtered B-splines (TVFBS) approach, in a six DOF industrial
robot. The method was validated based on an experimental
implementation in a URSe collaborative robot.

A residual vibration reduction experiment showed that
TVFBS and TVIP presented comparable performances al-
though input shaping demonstrated superior vibration reduc-
tion. Hence, one can conclude that a framework for estimating
the robot’s dynamics yields satisfactory model prediction. Ad-
ditionally, a trajectory-tracking experiment demonstrated that
TVFBS presented considerably better tracking performance
while maintaining comparable vibration reduction to TVIP.
This result demonstrates that TVFBS can provide superior
performance in tracking applications when compared to the
state-of-the-art feedforward controller to reduce vibration in
robot arms.

Future work that builds on this paper include the following:
1) proposing an intelligent way of reducing the number of
poses in the system identification experiment without com-
promising prediction quality; 2) implementing the real-time
version of FBS; and 3) proposing a general system identifica-
tion procedure to experimentally identify the vibration modes
of the end-effector regardless of the robot dynamics.
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