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Abstract—The structural flexibility of industrial robot arms
makes them vibrate when they are commanded to move at
fast operation speeds. Among the control strategies, feedfor-
ward control stands out as an interesting approach to suppress
vibration since it does not create stability issues and works
for repeating and non-repeating tasks. Currently, the state-of-
the-art feedforward controller dedicated to suppressing residual
vibration in robot arms is time-varying input shaping (TVIP).
However, TVIP falls short in trajectory tracking tasks since the
method adds delays in the commands creating errors in track-
ing and thereby contouring trajectories. Therefore, this paper
proposes the use of an alternate feedforward method, known
as the filtered B-splines (FBS) approach, to suppress vibration
in six DOF robots while maintaining tracking accuracy. Since
time-varying FBS (TVFBS) requires full frequency response
functions (FRFs), compared to only natural frequencies and
damping ratios for TVIP, we propose a framework for estimating
the FRFs of serial kinematic chain 6-degree-of-freedom robots.
Residual vibration reduction experiments and trajectory tracking
experiments, in which the dynamics of a UR5e collaborative
robot change considerably, were carried out to validate the model
prediction framework. TVFBS reduced the end-effector vibration
by 87% while improving tracking performance in both the y
(22%) and z (29%) directions. On the other hand, TVIP worsened
the tracking performance (−683.43% for the y and −662.37%
for the z direction) despite the excellent vibration reduction
(98%). Hence, TVFBS demonstrated significantly better tracking
performance than TVIP while retaining comparable vibration
reduction.

Index Terms—Industrial robots, System identification, Time-
varying dynamics, Configuration dependent dynamics, Vibration
suppression, Feedforward Control, Input shaping, Filtered B-
splines

I. INTRODUCTION

Six-degree-of-freedom (DOF) industrial robots are used in a

variety of trajectory tracking tasks like additive manufacturing,

spray and inkjet painting, and spot and arc welding. Robots

have several advantages when performing these tasks, includ-

ing the dexterity to follow complex 3D paths, repeatability

in their operation, and the ability to cover large workspaces.

However, these processes are typically very time-consuming

This work was supported by the U.S.National Science Foundation [grant
CMMI 2054715]

because the robots are commanded to move at lower speeds

when compared to their full capability. A major reason to slow

down is the vibrations experienced at the end-effector due to

the structural flexibility in the kinematic chain of the robot [1].

Therefore, one can conclude that there is a trade-off between

speed and accuracy since vibration errors degrade the accuracy

of the tracking task. Eliminating vibration while increasing

speed on six DOF robots can be achieved by a number of

methods including feedback control, iterative learning control,

and feedforward control.

There are two common applications of feedback control in

six DOF robots, passivity-based control and feedback control

using an external sensor. Passivity-based control requires the

full analytical model of the robot, including motor dynamics,

flexible-joint dynamics, and link dynamics [2]. Such a model is

difficult to obtain for robot users since the robot manufacturers

do not share the dynamic parameters of their products or

install the necessary sensors to estimate them due to cost

constraints. The second method involves using an external

sensor to measure the state of the end-effector and applying

a control input to the joint actuators to correct tracking errors

[3]. This approach results in a system where the sensing

and actuation are non-collocated, which can result in stability

issues [4]. Additionally, delays from the measurement to the

control input may cause additional errors [3].

Iterative learning control (ILC) improves trajectory tracking

accuracy by learning the errors from previous executions (i.e.,

iterations) of a particular trajectory and correcting them in

future iterations [5]. As such, it is ideal for systems that

execute repetitive tasks, where an ILC model can be trained

once and used over again. However, a major limitation of

ILC is that the trained controller does not work well for non-

repetitive motions [5].

Feedforward control can be used to overcome the afore-

mentioned weaknesses of feedback control and ILC because

it allows robot users to measure the dynamics of the system as-

is, does not create stability issues, and works for repeating and

non-repeating trajectories [6]. Currently, the state-of-the-art

feedforward controller to suppress residual vibration in robot
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arms is time-varying input-shaping. In a recent paper, Newman

et al. [7] used data from a theoretical dynamic model of a

six DOF robot arm to train a neural network to estimate the

natural frequencies and damping ratios of the vibration modes

related to the first three joints. The predictions were used to

update input shaping producing up to 85% vibration reduction

in different poses during their tests. Similarly, Thomsen et

al. [8] described a procedure for identifying and mapping the

natural frequency and damping ratio of second-order models

related to the vibration modes generated by the major flexible

joints of a six DOF robot. Using the identified parameters, the

authors applied a time-varying input shaping achieving up to

90% vibration mitigation during point-to-point (PTP) moves.

Despite the success of both [7] and [8] in reducing vibration in

PTP motions, it is well-known that input shaping creates errors

in tracking and thereby contouring trajectories in systems with

linear stages [9]. This limitation is severe when the same

method is used in robots with serial kinematic structures

since the end-effector motion is generated by a combination

of multiple joint rotations. Hence, the current state-of-the-art

feedforward control method to suppress residual vibration in

robot arms falls short in trajectory tracking tasks.
This paper proposes the use of an alternate method, known

as the filtered B-splines (FBS) approach, to suppress vibra-

tion in six DOF robots while maintaining tracking accuracy.

FBS has been used to suppress vibration in other tracking

applications, including CNC machines [10] and 3D printers

[6] resulting in up to 2x increase in the end-effector trajectory

speed without sacrificing quality in additive manufacturing.

Similar to input shaping, the FBS approach is a model-based

feedforward control technique. However, while input shaping

requires determining the natural frequency and damping ratio

of the vibration modes (i.e., only the poles of a transfer

function) [8], FBS uses full frequency response functions

(FRFs) (i.e., both poles and zeros of a transfer function) [6],

which requires fitting more model parameters.
The time-varying (i.e., pose-dependent) nature of the robot’s

dynamics intensifies the challenge of obtaining FRFs since

the parameters of the poles and zeros must evolve with the

robot’s pose. Edoimioya et al. [11] proposed a physics model-

based framework capable of estimating the FRFs of a delta 3D

printer. The parallel kinematic chain of the delta robot allowed

the authors to approximate part of the dynamics of the system

as time-invariant, simplifying the model estimation. However,

this assumption does not hold for time-varying systems with

serial kinematic chains such as robot arms.
Therefore, this paper:

1) Proposes a framework for measuring and estimating the

full FRFs of serial kinematic chain robots for any pose

in the workspace using no external hardware to identify

the system dynamics, and

2) Demonstrates that the filtered B-splines approach can be

implemented in robot arms achieving comparable vibra-

tion suppression while significantly improving tracking

accuracy when compared to the state-of-the-art feedfor-

ward controller to reduce residual vibration, time-varying

input shaping.

II. SIMPLIFYING ASSUMPTIONS FOR ESTIMATING

ANALYTICAL FRFS

In this work, it is assumed that the mechanical flexibility of

the robot can be approximated as an equivalent torsional stiff-

ness at the joints, representing the link and gearbox flexibility.

Therefore, the control action of the proposed feedforward

controller will focus on three vibration modes: rotations about

the base, shoulder, and elbow joints.

There are three main reasons for selecting those vibration

modes. First, for most robotic applications, motions in the x,

y, and z directions have larger magnitude and speeds than

the pitch, yaw, and roll rotations. Therefore, it is reasonable

to assume that the vibration modes with respect to the base,

shoulder, and elbow joints will primarily be excited. Second,

due to the robot’s kinematics, small angular displacement on

the selected joints can significantly affect the end-effector

position. Third, the base, shoulder, and elbow joints experience

relatively higher inertia than the wrist joints. Therefore, their

corresponding modes will present lower natural frequencies.

The simplified model of the robot can be expressed by

Mq̈+Bq̇+Kq = Bq̇d +Kqd (1)

where M is the mass matrix, K is the stiffness matrix, B is the

damping matrix, q is the vector of the actual joint angle, and

qd is the motor angle. Note that the Corriolis and gravitational

terms are neglected in this simplified model. More information

about the robot model can be found in [7] and [12].

Fortunately, the vibration modes of the base, shoulder, and

elbow joints can be partially decoupled. The coupling between

the vibration modes occurs due to the presence of non-diagonal

terms in the inertia matrix while the stiffness, K, and damping

matrices, B, are diagonal [7]. Here, it is assumed that the

shoulder and elbow modes are coupled while the base mode

is decoupled because the non-diagonal terms in the first row

and column of the inertia matrix are negligible when compared

to the base moment of inertia. Based on these assumptions,

the above equation can be expressed in the Laplace domain as

Q =
(
Ms2 +Bs+K

)−1
(Bs+K)Qd (2)

where

M =

⎡
⎣ m11 0 0

0 m22 m32

0 m32 m33

⎤
⎦ ;B = [bi]3x3 ;K = [ki]3x3

From Eq. 2, the system dynamics can be represented as

follows:

⎡
⎣ Q1(s)

Q2(s)
Q3(s)

⎤
⎦

︸ ︷︷ ︸
Q

=

⎡
⎣ G11 0 0

0 G22 G23

0 G32 G33

⎤
⎦
⎡
⎣ Qd1(s)

Qd2(s)
Qd3(s)

⎤
⎦

︸ ︷︷ ︸
Qd

(3)
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Using Eq. 3, it is possible to define the transfer function

representing the robot’s dynamics when the base (G1), shoul-

der (G2), or elbow (G3) joint is used to excite the system. The

transfer functions are presented below:

G1 =
L {q1}
L {qd1} = G11 =

a1s+a2

a3s2 +2a4s+a5
(4)

G2 =
L {q2}
L {qd2} = G22 +G32 =

d1s3 +d2s2 +d3s+d4

d5s4 +d6s3 +d7s2 +d8s+d9

(5)

G3 =
L {q3}
L {qd3} = G33 +G23 =

c1s3 + c2s2 + c3s+ c4

c5s4 + c6s3 + c7s2 + c8s+ c9

(6)

where ai, di, and ci are the coefficients of the transfer func-

tions. The actual joint positions, q, should be measured by a

rotary encoder placed after the gearbox of the joint. However,

most robots do not have those sensors, therefore, q will be

estimated using the end-effector accelerometer readings. More

information about how to estimate the joint’s output using

accelerometer readings can be found in [8].

III. OVERVIEW OF CONTROL METHODS

A. Time-Varying Filtered B-splines Approach

FIGURE 1. Block diagram for tracking control using filtered

B-splines (FBS) approach.

Consider a stable linear time-varying discrete-time system,

Gi(z), representing an open-loop or close-loop plant with

a nonzero DC gain. As shown in Fig. 1, a feedforward

tracking controller, C, controls Gi(z) aiming at generating a

control trajectory, u(k), resulting in an output trajectory, q(k),
sufficiently close to the desired, qd(k), after the input passes

through Gi(z). Note that z is the forward shift operator and

0 ≥ k ≥ E, k ∈ Z where E + 1 is the number of discrete

points in the trajectory. In the full-preview filtered B-splines

approach [13], qd is assumed to be entirely known a priori

and u is expressed as

u =

⎡
⎢⎢⎢⎣

N0,m (ξ0) N1,m (ξ0) · · · Nn,m (ξ0)
N0,m (ξ1) N1,m (ξ1) · · · Nn,m (ξ1)

...
...

. . .
...

N0,m (ξE) N1,m (ξE) · · · Nn,m (ξE)

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
N

p (7)

where N is the matrix of B-spline basis functions of degree

m, p is a vector of n+ 1 unknown coefficients (or control

points), j = 0, 1,. . . ,n, and ξ ≥ [0,1] is the spline parameter,

representing normalized time, which is discretized in Eq. 7

into E + 1 uniformly spaced points, ξ0, ξ1, . . . , ξE . More

information about the basis functions can be found in [13].

Similarly to u, let vectors qd and q represent the E +1 dis-

crete points of qd and q, respectively. Based on the definition

of u in Eq.7, q can be described as

q = Giu = GiNp = Ñp (8)

where Ñ is the filtered B-splines matrix, acquired by passing

each column of N through the dynamic system Gi(z), which

changes with the robot’s pose [11]. Therefore, each row of the

filtered B-spline matrix is a combination of the B-splines and

the impulse response of the current dynamics of the system

at step k, achieved by using the output side algorithm (OSA)

finite impulse response (FIR) filter [14]. Finally, the optimal

control points are given by the least-squares solution when the

two-norm of the tracking error is minimized [13]

min
p

((
qd − Ñp

)� (
qd − Ñp

))→ p =
(

Ñ�Ñ
)−1

ÑT qd (9)

B. Time-Varying Input Shaping

Input shaping is a feedforward control method to suppress

residual vibration generated by the reference trajectory. The

method emanates from earlier work on Posicast (positively

forecasting) control [15], which involves breaking a step of

a certain magnitude into two smaller steps, one of which is

delayed in time. This way, the oscillations introduced by the

second impulse cancel out the response of the first one. This

paper used a robust version of input shaping known as Zero

Vibration and Dervative (ZVD) input shaping [7]. The ZVD

shaper can be expressed in the Laplace domain as

FZV D(s) =
1+2Ke−0.5Tds +K2e−Tds

1+2K +K2
(10)

K = e
−ζ (k)π√
1−ζ (k)2 ; Td =

2π
ωd

; ωd = ωn(k)
√

1−ζ (k)2 (11)

where ζ (k) and ωn(k) are the damping ratio and natural

frequency of the system at time step k, respectively. Therefore,

the FZV D filter is updated every time step and OSA FIR numer-

ical convolution is used to filter the desired trajectory with the

time-varying ZVD shaper. More information concerning the

impact of OSA FIR numerical convolution in input shaping

can be found in [14].

IV. SYSTEM IDENTIFICATION

A. Experimental Setup

Experiments were performed using a UR5e collaborative

robot. The robot was mounted on an inertial table Newport RS
1000 and Python scripts were written to command the robot

during the experiments using a 500 Hz sampling rate. A 5 kg

mass was attached to the end-effector for all experiments. The

experimental setup is shown in Fig.2.
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FIGURE 2. Experimental setup.

B. System Identification Experiment

The system identification experiment was performed to map

the pose-dependent dynamics of the robot. To determine the

robot’s pose, the position of the end-effector was described

using polar coordinates, as depicted in Fig. 3. Using polar

coordinates reduces the number of variables to map the

position of the end-effector across the workspace from x, y,

and z coordinates to radius R and angle V , since the robot is

symmetric with respect to the base joint axis [8].

FIGURE 3. Representation of the end-effector poison across

the workspace using polar coordinates.

The system identification Python script allowed the exper-

iment to be done autonomously for several poses. For each

pose, the robot’s structure was excited by sending a sine sweep

input to the base, shoulder, and elbow joints, respectively. The

sine sweep used a frequency range of 0.5 to 60 Hz with a

frequency step of 0.5 Hz and a maximum acceleration of 10
rad
s2 . Although other researchers have used a bang-cost-bang

input to experimentally determine the natural frequencies of

the robot [14], using a sine sweep produces considerably better

experimental FRFs.

The robot dynamics were identified throughout the entire

workspace, ranging R from 0.2 m to 0.65 m with a distance

step of 0.05 m and V from 0◦ to 90◦ with an angular step

of 5◦. Therefore, a total of 190 (#poses) x 3 (#joints) = 570

experimental FRFs were collected and their model parameters

were extracted following the procedure described in Fig.4. As

a result, 20 nonlinear models were generated to estimate the

system dynamics in any region of the workspace.

From the identified models, the poles and zeros of all trans-

fer functions are extracted. By using the corresponding robot

pose, a nonlinear model can be established between the end-

effector position and all the transfer function parameters by

solving a nonlinear least squares problem via the Levenberg-

Marquardt algorithm [17]. As a result, each parameter of the

transfer functions will have a nonlinear model in which R and

V are the inputs of the model and ωn or ζ are the outputs.

The system identification process is summarized in Fig. 4.

V. EXPERIMENTAL COMPARISON BETWEEN TVFBS AND

TVIP

Two experiments were performed to evaluate the perfor-

mance of time-varying FBS. The end-effector trajectories of

both experiments were generated using a trapezoidal velocity

profile considering 580 mm
s and 9000 mm

s2 as maximum velocity

and acceleration, respectively. The time-varying dynamics for

both experiments are shown in Table I.

TABLE I. Changes of the natural frequencies of the system

for the residual vibration reduction and trajectory tracking

experiment.

System
Dynamics

1st pole
(Hz)

2nd pole
(Hz)

G2 9−17 24−31
G3 9−16 25−30

A. Model Generation

Once the nonlinear models are determined from the system

identification experiment, it is possible to estimate the system

dynamics given q0 and the end-effector Cartesian trajectory by

calculating R and V . The model estimation framework used

in both performance evaluation experiments is summarized in

Fig. 5.

It was observed that only the parameters of the complex

conjugate poles and zeros demonstrate a strong correlation

with the robot’s pose which was expected since they represent

the mechanical resonance and anti-resonance of the system,

respectively. Therefore, the system dynamics can be approxi-

mated by

Gi ≈ kGmi →
⎧⎨
⎩

Gm2
,Gm3

=
(s−z1)(s−z∗1)

(s−p1)(s−p∗1)(s−p2)(s−p∗2)
Gm1

= 1

(s−p1)(s−p∗1)

(12)

where k = 1
Gmi (0 Hz) , zi and z∗i are the complex conjugate

zeros, and pi and p∗i are the complex conjugate poles, which

can be estimated using nonlinear models (Fig. 4).
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FIGURE 4. System Identification procedure to map the pose-dependent dynamics of the robot. The natural frequency and

damping ratio 3D maps and nonlinear models of one pole of G2 are presented.

FIGURE 5. Model estimation framework. α is the pitch angle,

β is the yaw angle, γ is the row angle, (pi, p∗i ) are complex

conjugate poles, (zi,z∗i ) are the complete conjugate zeros, and

k is the correction of the DC gain.

B. Residual Vibration Experiment

In this experiment, the residual vibration performance of

time-varying FBS (TVFBS) and time-varying input-shaping

(TVIP) are compared. The robot is commanded to perform

a point-to-point motion in which the end-effector goes from

one extreme region of the workspace to another, changing the

system dynamics considerably as depicted in Table I and Fig.6.

To analyze the residual vibration, the end-effector accelera-

tion is measured after the end of the motion using the UR5e’s

built-in accelerometer, and the vibration reduction is presented

in both frequency and time domains. For the frequency domain

analysis, the vibration energy is analyzed [8].

The experimental results for the residual vibration reduction

experiment are presented in Figs. 7 and 8. The results indicate

FIGURE 6. 3D map of the one natural frequency of G3. Line

[—] describes the changes of the one ωn for the point-to-point

motion.

that TVIP presented a better vibration reduction (98.20%) than

TVFBS (87.55%). The percentages were calculated based on

the frequency domain analysis (Fig. 8).

Contrasting the TVFBS and TVIP, both controllers pre-

sented comparable performances although input shaping

showed superior vibration reduction, which was expected since

input shaping was developed to suppress residual vibration.

On the other hand, FBS was primarily developed to improve

the trajectory tracking performance of a system given its

dynamics. In other words, the vibration reduction produced

by FBS is an effect of the improvements made in trajectory

tracking.

Finally, it should be highlighted that both controllers pre-

sented considerable vibration reduction, indicating that the

framework for estimating the robot’s dynamics yields satis-

factory model prediction.
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FIGURE 7. Acceleration norm of the accelerometer readings

showing the residual vibration in the time domain. TVFBS

[ ]; TVIP [ ]; Baseline [ ]

FIGURE 8. Frequency domain analysis of the residual vibra-

tion. TVFBS [ ]; TVIP [ ]; Baseline [ ]

C. Trajectory Tracking Experiment

In this experiment, the tracking performance of TVFBS and

TVIP are compared. The robot is commanded to perform a

gear shape motion in which the end-effector goes from one

extreme region of the workspace to another changing the

system dynamics considerably, as depicted in Table I.

To analyze the improvements in tracking performance, the

root-mean-square (RMS) of the end-effector tracking error

was calculated with respect to the baseline. The end-effector

position was estimated using a Luenberger observer with a

bandwidth of 10 Hz, in which the low-frequency components

mostly rely on the estimated models while the high-frequency

components predominantly depend on the acceleration mea-

surements. It should be mentioned that the same observer was

used to calculate the end-effector position in all experiments,

meaning any bias/uncertainty related to the observer estimation

did not affect the comparison of the controllers’ performance.

The experimental results for the trajectory tracking experi-

ment are presented in Fig. 9. The results indicate that TVFBS

improves the end-effector tracking performance in both the y
(22.49%) and z (29.384%) directions. When both feedforward

controllers are compared, TVFBS presented considerably bet-

ter tracking performance than TVIP (−683.43% for the y and

−662.37% for the z direction), as depicted in Fig. 9(a) and

(b). This result was expected since the considerable vibration

reduction of input shaping comes with the trade-off of creating

delays in the commands, generating great contour errors at the

end-effector trajectory as shown in Fig. 10.

VI. CONCLUSIONS

This paper presents a framework for estimating the fre-

quency response function (FRFs) of robotic arms. Work from

[7] and [8] proposed model estimation frameworks that predict

the natural frequency and damping of the vibration modes

related to the first three or two joints of an industrial robot,

respectively. On the other hand, [11] presents a framework that

can estimate the full FRFs of parallel kinematic chain robots

but model assumptions made for parallel robots do not hold

for robotic arms. Therefore, this paper proposes a framework

that is able to estimate the full FRFs of serial kinematic ma-

nipulators accurately. The models generated enabled the use of

the feedforward tracking controller, the so-called time-varying

filtered B-splines (TVFBS) approach, in a six DOF industrial

robot. The method was validated based on an experimental

implementation in a UR5e collaborative robot.

A residual vibration reduction experiment showed that

TVFBS and TVIP presented comparable performances al-

though input shaping demonstrated superior vibration reduc-

tion. Hence, one can conclude that a framework for estimating

the robot’s dynamics yields satisfactory model prediction. Ad-

ditionally, a trajectory-tracking experiment demonstrated that

TVFBS presented considerably better tracking performance

while maintaining comparable vibration reduction to TVIP.

This result demonstrates that TVFBS can provide superior

performance in tracking applications when compared to the

state-of-the-art feedforward controller to reduce vibration in

robot arms.

Future work that builds on this paper include the following:

1) proposing an intelligent way of reducing the number of

poses in the system identification experiment without com-

promising prediction quality; 2) implementing the real-time

version of FBS; and 3) proposing a general system identifica-

tion procedure to experimentally identify the vibration modes

of the end-effector regardless of the robot dynamics.
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