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Abstract
We consider a loosely coupled, non-iterative Robin-Robin coupling method proposed
and analyzed in Burman et al. (J. Numer. Math. 31(1):59–77, 2023) for a parabolic-
parabolic interface problem and prove estimates for the discrete time derivatives of
the scalar field in different norms. When the interface is flat and perpendicular to two
of the edges of the domain we prove error estimates in the H2-norm. Such estimates
are key ingredients to analyze a defect correction method for the parabolic-parabolic
interface problem. Numerical results are shown to support our findings.

Keywords Parabolic-parabolic interface problem · Loosely coupled scheme ·
Robin conditions · Stability estimates
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1 Introduction

Time splitting methods are popular for fluid-structure interaction (FSI) problems (see,
e.g., [2, 4, 8–10, 17, 18, 25, 26, 29, 31])). One of the first stable splitting methods
was proposed by Burman and Fernández [17]. Later the same authors [18] devel-
oped a related method which was coined the genuine Robin-Robin splitting method.
Both these methods however suffered from a coupling between the space and time
discretization parameters that reduced the accuracy. This constraint was lifted by elim-
inating the mesh dependence of the Robin parameter in [16]. The resulting method
has been analyzed in [11, 13, 16]. A very similar method was developed and ana-
lyzed by Bukač and Seboldt [30]. In [13] it was proved for the FSI problems that the
method converges as O(

√
�t) where �t is the time step. Numerical evidence sug-

gested that those estimates were not sharp, and nearly first-order accuracy was proved
(mod possibly a logarithmic factor) in [11] for the analogue method applied to the
parabolic-parabolic and hyperbolic-parabolic problems. The analysis was extended to
the FSI problem in [14, 23]. For parabolic-parabolic couplings, there is a rich liter-
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ature on splitting schemes motivated by models of ocean-atmosphere interaction. In
these models, friction forces on the interface render the physical coupling dissipative
through a Robin-type coupling condition, as discussed in [27]. This aspect has been
successfully exploited in the design of splitting methods [20–22, 28, 32–35]. In our
case, the coupling conditions consist of continuity of both the primal variables and
the fluxes across the interface. This coupling is conservative, and hence the approach
suggested in the above references fails. Instead, the splitting method uses a Robin
condition for the computational coupling, which turns out to lead to an uncondition-
ally stable algorithm. An approach for conservative fluid-fluid coupling problems was
proposed in [24], using Nitsche or Robin type couplings similar to those introduced in
[18]. In a domain decomposition framework, a splitting method based on subcycling,
i.e., iterative solution, was proposed and analyzed in [5, 6]. In a similar spirit, but
focusing on a multi-timestep approach, a Robin-Robin coupling for time-dependent
advection–diffusion was introduced in [19], with numerical investigation of the sta-
bility.

It is well known that discrete time differences for time steppingmethods (e.g., back-
ward Euler method) superconverge. In particular, when the backward Euler method
is applied to a parabolic problem, the first-time difference of the errors converge with
order O((�t)2). In this paper, we prove similar results for the splitting method [11]
applied to an interface problem. In particular, we will prove second-order conver-
gence for the scalar fields living on the two sub-domains in the L2-norm. Moreover, in
special configurations (i.e., the interface is horizontal and perpendicular to two sides
of the domain), we will be able to prove second-order convergence in the H2-norm.
Numerically, the H2 second-order convergence rates seem to hold on more general
configurations. This appears to be the first work where error estimates in stronger
norms for splitting methods applied to interface problems have been considered.

Error estimates of derivatives of the solution are, of course, of interest in their
own right in many applications. However, our main motivation for this work is the
application of these estimates in the analysis of a prediction-correction method [12]
that we are concurrently developing. The aim is to improve the first-order convergence
of [11] to second-order convergence in time through a defect-correction procedure [7].
The method in [12] uses a prediction step, which is exactly the splitting method we
analyze here. The second-order accuracy of the correction step depends on the second-
order accuracy of time differences of the prediction step, which is precisely the subject
of this paper.

Our overall goal is to propose and analyze a second-order loosely coupled scheme
for FSI problems. This paper represents the first step towards that goal. Based on
our past experiences (see [11, 13, 15]), the analysis of FSI is very similar to those
of hyperbolic-parabolic and parabolic-parabolic interface problems. Therefore, we
begin by considering the simplest problem, namely, the parabolic-parabolic interface
problem, to ensure that the proofs are more transparent while maintain some of the
difficulties of FSI. In this paper, all the estimates, including the H2 estimate, are cru-
cial components in analyzing a second-order convergent correction method, which is
included in [12]. We believe it is beneficial to fully understand the parabolic-parabolic
interface problem first before progressing to the more complex hyperbolic-parabolic
interface problem and FSI problems. Note that while the problem we are considering
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can be formulated using a unified approach with discontinuous coefficients, our focus
is on developing a loosely coupled scheme, as we mentioned, which is why we prefer
the partitioned setting.

As for a single parabolic problem, the idea to prove higher convergence for time
differences is to use that the time differences satisfy a similar discrete equation with
new right-hand sides that have time differences themselves. Then, one uses the error
analysis for the original method to proceed. In our case, we will use the analysis
provided in [11] to do this. The main difference here is that we consider a problem
with Neumann boundary conditions on two of the sides of a square instead of pure
Dirichlet boundary conditions, which were considered in [11]. This, in fact, simplifies
the analysis slightly, and additionally, one can remove the logarithmic factor that
appears in [11]. It should be mentioned that we only consider the time discrete case.
The fully discrete case is more involved.

The rest of the paper is organized as follows. In Section 2, we introduce a parabolic-
parabolic interface problem and the corresponding Robin-Robin coupling method. In
Section 3, we present stability results for a Robin-Robin method. Section 4 is devoted
to the error estimates. Finally, we provide some numerical results in Section 5 and end
with some concluding remarks in Section 6.

2 The parabolic-parabolic interface problem and Robin-Robin
couplingmethod

Let � = (0, 1)2 and suppose that � = � f ∪ �s ∪ �. The interface � is assumed
to be a line segment that intersects � on the two side edges; see Fig. 1. We let �Ne

denote the two side edges of � and we let �D be the bottom and top edges of �. We
let �i

Ne = �Ne ∩ ∂�i for i = s, f .

Fig. 1 The domains � f and �s with interface � and Neumann boundaries
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2.1 The parabolic-parabolic problem

We consider the interface problem

∂tu − ν f �u =0, in[0, T ] × � f ,

u(0, x) =u0(x), in � f , (2.1a)

u =0, on [0, T ] × �
f
D,

∂nu =0, on [0, T ] × �
f
Ne,

∂tw − νs�w =0, in [0, T ] × �s,

w(0, x) =w0(x), in �s, (2.1b)

w =0, on [0, T ] × �s
D,

∂nw =0, on [0, T ] × �s
Ne,

w − u =0, on [0, T ] × �, (2.1c)

νs∇w · ns + ν f ∇u · n f =0, on [0, T ] × �, (2.1d)

where n f and ns are the outward facing normal vectors for � f and �s , respectively.
We assume that the initial data is smooth and that u and w are smooth on � f and �s ,
respectively.

2.2 Variational form

Let (·, ·)i be the L2-inner product on�i for i = f , s.Moreover, let
〈·, ·〉 be the L2-inner

product on �. Let N > 0 be an integer, and define �t := T
N , and let un := u(tn, ·),

where tn := n�t for n ∈ {0, 1, 2, . . . , N }. We consider the spaces

V f :={v ∈ H1(� f ) : v = 0 on �
f
D}, (2.2a)

Vs :={v ∈ H1(�s) : v = 0 on �s
D}, (2.2b)

Vg :=L2(�). (2.2c)

By setting ln+1 := ν f ∂n f u
n+1 and assuming that ln+1 ∈ L2(�) for all n, the solu-

tion to (2.1) also satisfies the following variational formulation, for n = 0, . . . , N −1:

(∂twn+1, z)s + νs(∇wn+1,∇z)s + 〈
ln+1, z

〉 =0, z ∈ Vs, (2.3a)

(∂tun+1, v) f + ν f (∇un+1,∇v) f − 〈
ln+1, v

〉 =0, v ∈ V f , (2.3b)
〈
wn+1 − un+1, μ

〉 =0, μ ∈ Vg. (2.3c)
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2.3 Robin-Robin coupling: time discrete method

We define the discrete time derivatives:

∂�tv
n+1 = vn+1 − vn

�t
,

and

∂2�tv
n+1 = vn+1 − 2vn + vn−1

(�t)2
.

The Robin-Robin method solves sequentially:

∂�tw
n+1 − νs�wn+1 =0, in �s, (2.4a)

wn+1 =0, on �s
D, (2.4b)

∂nw
n+1 =0, on �s

Ne, (2.4c)

αwn+1 + νs∂nsw
n+1 =αun − ν f ∂n f u

n on �. (2.4d)

∂�t u
n+1 − ν f �un+1 =0, in � f , (2.5a)

un+1 =0, on �
f
D, (2.5b)

∂nu
n+1 =0, on �

f
Ne, (2.5c)

αun+1 + ν f ∂n f u
n+1 =αwn+1 + ν f ∂n f u

n on �. (2.5d)

We let λn+1 = ν f ∂n f u
n+1. Then, the time semi-discrete solution solves the fol-

lowing: Find wn+1 ∈ Vs , un+1 ∈ V f , and λn+1 ∈ Vg such that, for n ≥ 0,

(∂�tw
n+1, z)s + νs(∇wn+1,∇z)s + α

〈
wn+1 − un, z

〉 + 〈
λn, z

〉 =0, z ∈ Vs,
(2.6a)

(∂�t u
n+1, v) f + ν f (∇un+1,∇v) f − 〈

λn+1, v
〉 =0, v ∈ V f ,

(2.6b)
〈
α(un+1 − wn+1) + (λn+1 − λn), μ

〉 =0, μ ∈ Vg,
(2.6c)

with u0 = u0(x) and w0 = w0(x).
One can rewrite (2.6c) as

α(un+1 − wn+1) = λn − λn+1, on �. (2.7)
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3 Stability result

In this section we will prove stability results for the Robin-Robin method with a more
general right-hand side: Find wn+1 ∈ Vs , un+1 ∈ V f , such that, for n ≥ 0,

∂�tw
n+1 − νs�wn+1 =bn+1

1 , in �s, (3.1a)

wn+1 =0, on �s
D, (3.1b)

∂nw
n+1 =0, on �s

Ne, (3.1c)

αwn+1 + νs∂nsw
n+1 =αun − ν f ∂n f u

n + εn+1
1 on �. (3.1d)

∂�t u
n+1 − ν f �un+1 =bn+1

2 , in � f , (3.2a)

un+1 =0, on �
f
D, (3.2b)

∂nu
n+1 =0, on �

f
Ne, (3.2c)

αun+1 + ν f ∂n f u
n+1 =αwn+1 + ν f ∂n f u

n + εn+1
2 on �, (3.2d)

with
u0 = w0 = b0i = ε0i = 0 i = 1, 2, (3.3)

where bn+1
1 , bn+1

2 , εn+1
1 and εn+1

2 are general right-hand side terms that are sufficiently
smooth in space and time. We assumed zero initial conditions for simplicity and this
will be enough for the error analysis below. When analyzing the error of the Robin-
Robin method the terms {bni }, {εni } will be the residual terms.

Remark 3.1 (Regularity) We assume that un+1 ∈ H2(� f ) and wn+1 ∈ H2(�s) for
the remainder of this paper. The primary reason we assume this H2 regularity and
subsequently prove an H2 estimate in Corollary 3.11 is that, in the analysis of the
correction methods, we apply the trace inequality to the Lagrange multiplier on the
interface �. Then the H2 regularity assumption is useful in analyzing the resulting
quantities. It would be interesting to remove this assumption, but we currently do not
have the means to do so.

Remark 3.2 (Notations) For any negative superscripts, we set the values of the terms
on the right-hand side to be zero, i.e.,

u j = w j = b j
i = ε

j
i = 0 j < 0, i = 1, 2. (3.4)
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We let λn+1 = ν f ∂n f u
n+1 and we see that the above solution satisfies, for n ≥ 0,

(∂�tw
n+1, z)s + νs(∇wn+1, ∇z)s + α

〈
wn+1 − un, z

〉 + 〈
λn, z

〉 =L1(z), z ∈ Vs ,
(3.5a)

(∂�t u
n+1, v) f + ν f (∇un+1, ∇v) f − 〈

λn+1, v
〉 =L2(v), v ∈ V f ,

(3.5b)
〈
α(un+1 − wn+1) + (λn+1 − λn), μ

〉 =L3(μ), μ ∈ Vg,
(3.5c)

where

L1(z) :=(bn+1
1 , z)s + 〈

εn+1
1 , z

〉
,

L2(v) :=(bn+1
2 , v) f ,

L3(μ) :=〈
εn+1
2 , μ

〉
.

For convenience we rewrite (3.5c) as:

α(un+1 − wn+1) = λn − λn+1 + εn+1
2 , on �. (3.6)

We will need to define the following quantities for the stability estimates.

Zn+1(ψ, φ, θ) :=1

2
‖φn+1‖2L2(� f )

+ 1

2
‖ψn+1‖2L2(�s )

+ �tα

2
‖φn+1‖2L2(�)

+ �t

2α
‖θn+1‖2L2(�)

,

Sn+1(ψ, φ, θ) :=�t(ν f ‖∇φn+1‖2L2(� f )
+ νs‖∇ψn+1‖2L2(�s )

) + 1

2
(‖ψn+1 − ψn‖2L2(�s )

+ ‖φn+1 − φn‖2L2(� f )
)

+ α�t

2
‖φn+1 − φn + 1

α
(θn+1 − θn)‖2L2(�)

.

We first state a preliminary result.

Lemma 3.3 Let w, u solve (3.1) and (3.2) then the following identity holds.

Zn+1(w, u, λ) + Sn+1(w, u, λ) = Zn(w, u, λ) + �t Fn+1(w, u) + �t

α

〈
εn+1
2 , λn+1〉,

(3.7)
where

Fn+1(w, u) := (bn+1
1 , wn+1)s + (bn+1

2 , un+1) f + 〈
εn+1
1 + εn+1

2 , wn+1〉

+〈
un+1 − un, εn+1

2

〉
.
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Proof To begin, we set z = �t wn+1 in (3.5a) and v = �t un+1 in (3.5b) to get

1

2
‖wn+1‖2L2(�s )

+ 1

2
‖un+1‖2L2(� f )

+ 1

2
‖wn+1 − wn‖2L2(�s )

+ 1

2
‖un+1 − un‖2L2(� f )

+ νs�t‖∇wn+1‖2L2(�s )
+ ν f �t‖∇un+1‖2L2(� f )

= 1

2
‖wn‖2L2(�s)

+ 1

2
‖un‖2L2(� f )

+ �tJn+1, (3.8)

where

Jn+1 := −α
〈
wn+1 − un, wn+1〉 − 〈

λn, wn+1〉

+〈
λn+1, un+1〉 + L1(w

n+1) + L2(u
n+1). (3.9)

Manipulating the first three terms in (3.9) and using (3.6), we obtain

− α
〈
wn+1 − un, wn+1〉 − 〈

λn, wn+1〉 + 〈
λn+1, un+1〉

= J
n+1 + 1

α

〈
εn+1
2 , λn+1〉 + 〈

εn+1
2 , wn+1〉

− 〈
un − un+1, εn+1

2

〉
, (3.10)

with

J
n+1 := α

〈
un − un+1, un+1〉 + 1

α

〈
λn − λn+1, λn+1〉 − 〈

un − un+1, λn − λn+1〉.

One can easily show that

J
n+1 =α

2
(‖un‖2L2(�)

− ‖un+1‖2L2(�)
) + 1

2α
(‖λn‖2L2(�)

− ‖λn+1‖2L2(�)
)

− α

2
‖(un − un+1) + 1

α
(λn − λn+1)‖2L2(�)

.

By combining this identity with (3.9) and (3.10), we arrive at

Jn+1 =α

2
(‖un‖2L2(�)

− ‖un+1‖2L2(�)
) + 1

2α
(‖λn‖2L2(�)

− ‖λn+1‖2L2(�)
)

− α

2
‖(un − un+1) + 1

α
(λn − λn+1)‖2L2(�)

+ L1(w
n+1) + L2(u

n+1) + 1

α

〈
εn+1
2 , λn+1〉 + 〈

εn+1
2 , wn+1〉

+ 〈
εn+1
2 , un+1 − un

〉
.

If we plug in these results to (3.8) we arrive at the identity.

	

We can now state an identity for the last term in (3.7).
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Lemma 3.4 Let w, u solve (3.1) and (3.2) and assuming that εn+1
2 ∈ V f then the

following identity holds

�t

α

N−1∑

n=0

〈
εn+1
2 , λn+1〉 = − �t

α

N−1∑

n=1

(un , ∂�t ε
n+1
2 ) f + �t

α

N−1∑

n=0

(
ν f (∇un+1,∇εn+1

2 ) f − (bn+1
2 , εn+1

2 ) f

)

+ 1

α
(uN , εN2 ) f .

Proof We first take v = �tεn+1
2 in (3.5b) to obtain

�t
〈
εn+1
2 , λn+1〉 = (un+1 − un , εn+1

2 ) f + �tν f (∇un+1, ∇εn+1
2 ) f − �t(bn+1

2 , εn+1
2 ) f .

If we take the sum over n = 0, . . . , N − 1 and use summation by parts, we get

�t
N−1∑

n=0

〈
εn+1
2 , λn+1〉 = − �t

N−1∑

n=1

(un , ∂�t ε
n+1
2 ) f + �t

N−1∑

n=0

(
ν f (∇un+1, ∇εn+1

2 ) f − (bn+1
2 , εn+1

2 ) f

)

+ (uN , εN2 ) f − (u0, ε12).

We conclude the proof by using (3.3).

	

To state the stability estimate we need the next definition.

�N (m1,m2, s1, s2) :=�t
N−1∑

n=0

[
1

νs
‖mn+1

1 ‖2L2(�s )
+

(
1

ν f
+ 1

α

)
‖mn+1

2 ‖2L2(� f )

]

+ �t
N−1∑

n=0

( 1

ν f α2 ‖∂�t s
n+1
2 ‖2L2(� f )

+ ν f

α2 ‖∇sn+1
2 ‖2L2(� f )

+ 1

α
‖sn+1

2 ‖2L2(� f )

)

+ �t
N−1∑

n=0

( 1

νs
‖sn+1

1 + sn+1
2 ‖2L2(�)

+ 1

ν f
‖sn+1

2 ‖2L2(�)

)
+ 1

α2 ‖sN2 ‖2L2(� f )
.

Theorem 3.5 Let w, u solve (3.1) and (3.2) and assuming that εn+1
2 ∈ V f then the

following estimate holds

Z N (w, u, λ) +
N−1∑

n=0

Sn+1(w, u, λ) ≤ C�N (b1, b2, ε1, ε2).
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Proof Using Lemma 3.3 and taking the sum we get

ZN (w, u, λ) +
N−1∑

n=0

Sn+1(w, u, λ) = Z0(w, u, λ) + �t
N−1∑

n=0

Fn+1(w, u)

+ �t

α

N−1∑

n=0

〈
εn+1
2 , λn+1〉.

Using the Poincaré and trace inequalities, we easily obtain the following bound

�t
N−1∑

n=0

Fn+1(w, u) ≤1

8

N−1∑

n=0

Sn+1(w, u, λ) + C�t
N−1∑

n=0

(
1

νs
‖bn+1

1 ‖2L2(�s )

+ 1

ν f
‖bn+1

2 ‖2L2(� f )
)

+ C�t
N−1∑

n=0

( 1

νs
‖εn+1

1 + εn+1
2 ‖2L2(�)

+ 1

ν f
‖εn+1

2 ‖2L2(�)

)
.

Using Lemma 3.4 and the Poincaré inequality we have

�t

α

N−1∑

n=0

〈
εn+1
2 , λn+1〉 ≤1

4
‖uN‖2L2(� f )

+ 1

8

N−1∑

n=0

Sn+1(w, u, λ)

+ C�t
N−1∑

n=0

( 1

ν f α2 ‖∂�tε
n+1
2 ‖2L2(� f )

+ ν f

α2 ‖∇εn+1
2 ‖2L2(� f )

+ 1

α
‖εn+1

2 ‖2L2(� f )

)

+ C
�t

α

N−1∑

n=0

‖bn+1
2 ‖2L2(� f )

+ C
1

α2 ‖εN2 ‖2L2(� f )
.

It follows from (3.3) and the definition of Z0 that Z0(w, u, λ) = 0. We finish the
proof by combining the above estimates.

	

Due to Remark 3.2, the discrete time derivative of u and w solves (3.1) and (3.2)

with discrete time derivatives of the data as the right-hand sides, we immediately get
the following.

Corollary 3.6 Let w, u solve (3.1) and (3.2) and assuming that ∂�tε
n+1
2 ∈ V f then

Z N (∂�tw, ∂�t u, ∂�tλ) +
N−1∑

n=0

Sn+1(∂�tw, ∂�t u, ∂�tλ)

≤ C�N (∂�t b1, ∂�t b2, ∂�tε1, ∂�tε2).
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Similarly, the second-order discrete time derivative of u andw solves (3.1) and (3.2)
with the second-order discrete time derivatives of the data as the right-hand sides, we
also have the following.

Corollary 3.7 Let w, u solve (3.1) and (3.2) and assuming that ∂2�tε
n+1
2 ∈ V f then

Z N (∂2�tw, ∂2�t u, ∂2�tλ) +
N−1∑

n=0

Sn+1(∂2�tw, ∂2�t u, ∂2�tλ)

≤ C�N (∂2�t b1, ∂
2
�t b2, ∂

2
�tε1, ∂

2
�tε2).

Remark 3.8 We can also analyze the problem (3.1)-(3.2) but replacing the homo-
geneous Neumann boundary conditions with homogeneous Dirichlet boundary
conditions. In other words, the problem with pure Dirichlet boundary conditions that
is �i

D = ∂�i\� for i = s, f . In this case exactly the same estimates hold. Now
of course, we assume εn2 ∈ V f where V f has zero Dirichlet boundary conditions on

�
f
D = ∂� f \�.

3.1 H2 stability in a special case

In this section we prove H2 estimates for u in a special configuration. Again, we
assume that � = (0, 1)2, and now assume � is parallel to the x-axis (see Fig. 2). We
take advantage of the fact that the sides composing �Ne are perpendicular to the x-axis
and, moreover, we also notice that � is parallel to the x-axis.

Fig. 2 The domains � f and �s with horizontal interface �
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Then, in this particular case we have, for n ≥ 0,

∂�t∂xw
n+1 − νs�∂xw

n+1 =∂xb
n+1
1 , in�s, (3.11a)

∂xw
n+1 =0, on �s

D, (3.11b)

∂xw
n+1 =0, on �s

Ne, (3.11c)

α∂xw
n+1 + νs∂ns∂xw

n+1 =α∂xu
n − ν f ∂n f ∂xu

n + ∂xε
n+1
1 on �, (3.11d)

∂�t∂xu
n+1 − ν f �∂xu

n+1 =∂xb
n+1
2 , in � f , (3.12a)

∂xu
n+1 =0, on �

f
D, (3.12b)

∂xu
n+1 =0, on �

f
Ne,

(3.12c)

α∂xu
n+1 + ν f ∂n f ∂xu

n+1 =α∂xw
n+1 + ν f ∂n f ∂xu

n + ∂xε
n+1
2 on �, (3.12d)

with
∂xw

0 = ∂xu
0 = ∂xb

0
i = ∂xε

0
i = 0 i = 1, 2 (3.13)

according to (3.3).

Remark 3.9 The assumption that the interface is perpendicular to the sides and parallel
to the x-direction is crucial. First, notice that, in this case, the outer normal direction
n to two sides aligns with the x-direction, leading to ∂xw

n+1 = ∂nw
n+1 = 0 on �s

Ne

and ∂xun+1 = ∂nun+1 = 0 on �
f
Ne where we use (3.1c) and (3.2c). Secondly, given

(3.1d) and (3.2d), the conditions (3.11d) and (3.12d) are only valid in the case where
the interface is perpendicular to the sides. Unfortunately, we have not yet found
a general method to prove the H2 estimates for the non-horizontal case which has
proved to be quite challenging. However, we believe this technique could be useful
for the analysis of fluid-structure interaction (FSI) problems, given the similarity of
the coupling conditions.

We then get an immediate Corollary from Remark 3.8 and Theorem 3.5.

Corollary 3.10 Suppose that � is perpendicular to the two sides of �Ne as in Fig. 2.
Let w, u solve (3.1) and (3.2) and assuming that ∂xε

n
2 ∈ {v ∈ H1(� f ) : v =

0 on ∂� f \�} on �
f
Ne then the following estimate holds

Z N (∂xw, ∂xu, ∂xλ) +
N−1∑

n=0

Sn+1(∂xw, ∂xu, ∂xλ) ≤ C�N (∂xb1, ∂xb2, ∂xε1, ∂xε2).
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Corollary 3.11 Under the hypothesis of Corollaries 3.10 and 3.6 we have

�t
N−1∑

n=0

ν f ‖D2un+1‖2L2(� f )
≤C

(
�N (∂�t b1, ∂�t b2, ∂�tε1, ∂�tε2)

+ �N (∂xb1, ∂xb2, ∂xε1, ∂xε2)
)

+ C�t
N−1∑

n=0

ν f ‖bn+1
2 ‖2L2(� f )

.

Proof From Corollary 3.10 we get

�t
N−1∑

n=0

ν f ‖∇∂xu
n+1‖2L2(� f )

≤ C�N (∂xb1, ∂xb2, ∂xε1, ∂xε2).

Moreover, using (3.2a) and Corollary 3.6, we have

�t
N−1∑

n=0

ν f ‖�un+1‖2L2(� f )
=�t

N−1∑

n=0

ν f ‖∂�t u
n+1 − bn+1

2 ‖2L2(� f )

≤C�N (∂�t b1, ∂�t b2, ∂�tε1, ∂�tε2)

+ 2�t
N−1∑

n=0

ν f ‖bn+1
2 ‖2L2(� f )

.

Finally, using the following estimate,

�t
N−1∑

n=0

ν f ‖∂2y un+1‖2L2(� f )
≤ 2�t

N−1∑

n=0

ν f

(
‖∂2x un+1‖2L2(� f )

+ ‖�un+1‖2L2(� f )

)
,

and combining the above estimates we obtain the result. 	


4 Error estimates of the Robin-Robinmethod

In this section we apply the stability results of the previous sections to obtain error
estimates of the Robin-Robin splitting method (2.4)-(2.5) applied to (2.1). We use the
following notation for the errors :

Un := un − un, Wn := wn − wn, �n := ln − λn .

We use the convention u j = u j = u0 and w j = w j = w0 for j < 0.
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Then the error equations read, for n ≥ 0,

∂�tW
n+1 − νs�Wn+1 = − hn+1

1 , in �s, (4.1a)

Wn+1 =0, on �s
D, (4.1b)

∂nW
n+1 =0, on �s

Ne, (4.1c)

αWn+1 + νs∂ns W
n+1 =αUn − ν f ∂n f U

n + αgn+1
1 − gn+1

2 on �. (4.1d)

∂�tU
n+1 − ν f �Un+1 = − hn+1

2 , in � f , (4.2a)

Un+1 =0, on �
f
D, (4.2b)

∂nU
n+1 =0, on �

f
Ne, (4.2c)

αUn+1 + ν f ∂n f U
n+1 =αWn+1 + ν f ∂n f U

n + gn+1
2 on �. (4.2d)

where

hn+1
1 := ∂twn+1 − ∂�twn+1, gn+1

1 := un+1 − un,

hn+1
2 := ∂tun+1 − ∂�tun+1, gn+1

2 := ln+1 − ln .

The equations (4.1)-(4.2) are well-defined and we also have

W 0 = U 0 = h0i = g0i = 0, i = 1, 2, (4.3)

∂�tW
0 = ∂�tU

0 = ∂�t h
0
i = ∂�t g

0
i = 0, i = 1, 2, (4.4)

∂2�tW
0 = ∂2�tU

0 = ∂2�t h
0
i = ∂2�t g

0
i = 0, i = 1, 2. (4.5)

We then extend l to � f in a natural way. We let l̃ = φν f ∇u · n f where φ is a

function that is one on � and vanishes on �
f
D . Then, we define g̃

n+1
2 = l̃n+1 − l̃n . By

construction g̃n+1
2 ∈ V f and g̃n2 = gn2 on �. We immediately get the following result

if we apply Theorem 3.5 and Corollary 3.6.

Corollary 4.1 Let u,w solve (2.1) and w, u solve (2.4) and (2.5) then

Z N (W ,U ,�) +
N−1∑

n=0

Sn+1(W ,U ,�) ≤ C�N (h1, h2, αg1 − g2, g̃2), (4.6)

ZN (∂�tW , ∂�tU , ∂�t�) +
N−1∑

n=0
Sn+1(∂�tW , ∂�tU , ∂�t�)

≤ C�N (∂�t h1, ∂�t h2, α∂�t g1 − ∂�t g2, ∂�t g̃2), (4.7)
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and

ZN (∂2�tW , ∂2�tU , ∂2�t�) +
N−1∑

n=0
Sn+1(∂2�tW , ∂2�tU , ∂2�t�)

≤ C�N (∂2�t h1, ∂
2
�t h2, α∂2�t g1 − ∂2�t g2, ∂

2
�t g̃2). (4.8)

Then, it is quite straightforward to get a convergence rate by estimating the right-
hand sides. The proof of the following Corollary can be found in Appendix A.

Corollary 4.2 Let u,w solve (2.1) and w, u solve (2.4) and (2.5) then

Z N (W ,U ,�) +
N−1∑

n=0

Sn+1(W ,U ,�) ≤ C(�t)2Y, (4.9)

ZN (∂�tW , ∂�tU , ∂�t�) +
N−1∑

n=0

Sn+1(∂�tW , ∂�tU , ∂�t�) ≤ C(�t)2Y, (4.10)

and

ZN (∂2�tW , ∂2�tU , ∂2�t�) +
N−1∑

n=0

Sn+1(∂2�tW , ∂2�tU , ∂2�t�) ≤ C(�t)2Y, (4.11)

where Y is defined as

Y := 1

νs
‖∂2t w‖2L2(0,T ;L2(�s ))

+ (
1

ν f
+ 1

α
)‖∂2t u‖2L2(0,T ;L2(� f ))

+ (
ν f

α2 + ν2f

α
)‖∂tu‖2L2(0,T ;H1(� f ))

+ (ν f )
3

α2 ‖∂tu‖2L2(0,T ;H2(� f ))

+ α2

νs
‖∂tu‖2L2(0,T ;L2(�))

+ 1

ν f
‖∂t l‖2L2(0,T ;L2(�))

+ ν2f

α2 ‖∂tu‖2L∞(0,T ;H1(� f ))
,

(4.12)

Y is defined as

Y := 1

νs
‖∂3t w‖2L2(0,T ;L2(�s))

+ (
1

ν f
+ 1

α
)‖∂3t u‖2L2(0,T ;L2(� f ))

+ (
ν f

α2 + ν2f

α
)‖∂2t u‖2L2(0,T ;H1(� f ))

+ (ν f )
3

α2 ‖∂2t u‖2L2(0,T ;H2(� f ))

+ α2

νs
‖∂2t u‖2L2(0,T ;L2(�))

+ 1

ν f
‖∂2t l‖2L2(0,T ;L2(�))

+ ν2f

α2 ‖∂2t u‖2L∞(0,T ;H1(� f ))
,

(4.13)
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and Y is defined as

Y := 1

νs
‖∂4t w‖2L2(0,T ;L2(�s ))

+ (
1

ν f
+ 1

α
)‖∂4t u‖2L2(0,T ;L2(� f ))

+ (
ν f

α2 + ν2f

α
)‖∂3t u‖2L2(0,T ;H1(� f ))

+ (ν f )
3

α2 ‖∂3t u‖2L2(0,T ;H2(� f ))

+ α2

νs
‖∂3t u‖2L2(0,T ;L2(�))

+ 1

ν f
‖∂3t l‖2L2(0,T ;L2(�))

+ ν2f

α2 ‖∂3t u‖2L∞(0,T ;H1(� f ))
.

(4.14)

4.1 H2 error estimates in a special case

Here we assume that we have the configuration as in Fig. 1. Then, we see that ∂x g̃2
n+1

vanishes on �
f
Ne and �

f
D and hence belongs to V f . Hence, Corollary 3.11 gives the

following corollary.

Corollary 4.3 Suppose that � is perpendicular to the two sides of �Ne as in Fig. 2. Let
u,w solve (2.1) and w, u solve (2.4) and (2.5) then

�t
N−1∑

n=0

ν f ‖D2(Un+1)‖2L2(� f )
≤C�N (∂�t h1, ∂�t h2, ∂�t (αg1 − g2), ∂�t g̃2)

+ C�N (∂xh1, ∂xh2, ∂x (αg1 − g2), ∂�t∂x g̃2)

+ C�t
N−1∑

n=0

ν f ‖hn+1
2 ‖2L2(� f )

.

Since ∂�tU and ∂�tW satisfy the same equations as U ,W with time difference
right-hand sides, we have

Corollary 4.4 Suppose that � is perpendicular to the two sides of �Ne as in Fig. 2. Let
u,w solve (2.1) and w, u solve (2.4) and (2.5) , then

�t
N−1∑

n=0

ν f ‖D2(∂�tU
n+1)‖2

L2(� f )
≤ C �N (∂2�t h1, ∂

2
�t h2, ∂

2
�t (αg1 − g2), ∂

2
�t g̃2)

+ C�N (∂�t ∂x h1, ∂�t ∂x h2, ∂�t ∂x (αg1 − g2), ∂�t ∂x g̃2)

+ C�t
N−1∑

n=0

ν f ‖∂�t h
n+1
2 ‖2

L2(� f )
. (4.15)

Then, it is straight-forward to obtain the convergence rate by estimate the right-hand
sides. See Appendix B for a proof for the following Corollary.
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Corollary 4.5 Suppose that � is perpendicular to the two sides of �Ne as in Fig. 2. Let
u,w solve (2.1) and w, u solve (2.4) and (2.5) then

�t
N−1∑

n=0

ν f ‖D2(∂�tU
n+1)‖2L2(� f )

≤ C(�t)2(Y + Y + ν f ‖∂3t u‖2L2((0,T ),L2(� f ))
)

where Y is defined in Corollary 4.2 and Y is defined as,

Y := 1

νs
‖∂x∂3t w‖2L2(0,T ;L2(�s ))

+ (
1

ν f
+ 1

α
)‖∂x∂3t u‖2L2(0,T ;L2(� f ))

+ (
ν f

α2 + ν2f

α
)‖∂x∂2t u‖2L2(0,T ;H1(� f ))

+ (ν f )
3

α2 ‖∂x∂2t u‖2L2(0,T ;H2(� f ))

+ α2

νs
‖∂x∂2t u‖2L2(0,T ;L2(�))

+ 1

ν f
‖∂x∂2t l‖2L2(0,T ;L2(�))

+ ν2f

α2 ‖∂x∂2t u‖2L∞(0,T ;H1(� f ))
. (4.16)

5 Numerical experiments

In this sectionweprovide numerical experiments that agreewith our theoretical results.
We let

eu = ‖UN‖L2(� f )
, e1,u = ‖UN −UN−1‖L2(� f )

,

e2,u = ‖(UN −UN−1) − (UN−1 −UN−2)‖L2(� f )
,

eλ = ‖�N‖L2(�), e1,λ = ‖�N − �N−1‖L2(�)

e1,u,2 = ‖UN −UN−1‖H2(� f )
.

All numerical experiments are performed using FEniCS and multiphenics [1, 3].
Although we only analyze the semi-discrete method, here we present the results for
a fully discrete method where we use the piecewise linear finite element method
for the spatial discretization, except for the computation of e1,u,2, where we use the
piecewise quadratic finite element method because piecewise linear function does not
approximate a function well in H2-norm. In addition, we also present convergence
rates for the Lagrange multiplier.

Example 5.1 We consider the domain � = (0, 1)2, � f = (0, 1) × (0, 0.75) and
�s = (0, 1) × (0.75, 1). See Fig. 2 for an illustration. We take ν f = 1 = νs and take
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Table 1 Errors and convergence rates of UN for Example 5.1

�t eu Rates e1,u Rates e2,u Rates

(1/2)2 7.65e-02 − 7.73e-02 − 6.57e+01 −
(1/2)3 3.72e-02 1.04 5.87e-02 0.40 1.55e-01 8.73

(1/2)4 1.74e-02 1.10 1.47e-02 1.99 7.91e-03 4.29

(1/2)5 7.95e-03 1.13 3.58e-03 2.04 1.27e-03 2.64

(1/2)6 3.52e-03 1.17 8.41e-04 2.09 1.75e-04 2.85

(1/2)7 1.62e-03 1.12 1.96e-04 2.10 2.15e-05 3.03

(1/2)8 7.70e-04 1.07 4.69e-05 2.06 2.62e-06 3.04

(1/2)9 3.75e-04 1.04 1.14e-05 2.04 3.22e-07 3.02

the solution of (2.3) to be

w = u = e−2π2t cos(πx1) sin(πx2).

We take h = �t , T = 0.25 and α = 4 where h is the mesh size of the triangulation.
As we can see from Tables 1-2, the L2 error at the final step, eu is of order (�t)

whereas the difference of two consecutive errors, e1,u is of order (�t)2 and the second
difference, e2,u is of order (�t)3. The L2 error of the Lagrange multiplier at the final
time, eλ is of order�t and the difference e1,λ, is of order (�t)2. It is also clear that the
H2 error of the difference of UN , e1,u,2 is of order (�t)2 as we proved in Corollary
4.5.

Example 5.2 In this example, we test our algorithm for a non-horizontal interface
problem. We consider the domain � = (0, 1)2 and we let � be defined as the straight
line connecting (0, 0.25) and (1, 0.75). We then define �s as the region above � and
� f as the region below �. We take ν f = 1 = νs and take the solution of (2.3) to be

w = u = e−2π2t cos(πx1) sin(πx2).

Table 2 Error and convergence rates of �N for Example 5.1

�t eλ Rates e1,λ Rates e1,u,2 Rates

(1/2)2 2.55e-01 − 2.55e-01 − 1.33e+01 −
(1/2)3 9.73e-02 1.39 2.41e-01 0.08 1.11e+01 0.26

(1/2)4 3.06e-02 1.67 4.41e-02 2.45 2.61e-01 2.08

(1/2)5 1.62e-02 0.92 6.69e-03 2.72 5.76e-02 2.18

(1/2)6 9.20e-03 0.82 2.06e-03 1.70 1.40e-02 2.04

(1/2)7 4.55e-03 1.01 5.28e-04 1.97 3.32e-03 2.07

(1/2)8 2.23e-03 1.03 1.31e-04 2.01 8.03e-04 2.05

(1/2)9 1.10e-03 1.02 3.26e-05 2.01 1.97e-04 2.03
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Table 3 Errors and convergence rates of UN for Example 5.2

�t eu Rates e1,u Rates e2,u Rates

(1/2)2 8.05e-02 − 9.64e-02 − 4.87e+01 −
(1/2)3 5.10e-02 0.66 4.23e-02 1.19 1.36e-01 8.48

(1/2)4 2.46e-02 1.05 1.57e-02 1.43 4.94e-03 4.78

(1/2)5 9.20e-03 1.42 4.07e-03 1.95 1.47e-03 1.74

(1/2)6 3.52e-03 1.38 8.46e-04 2.27 1.82e-04 3.02

(1/2)7 1.52e-03 1.22 1.86e-04 2.18 2.11e-05 3.11

(1/2)8 7.00e-04 1.11 4.33e-05 2.10 2.49e-06 3.08

(1/2)9 3.36e-04 1.06 1.04e-05 2.06 3.02e-07 3.04

Other parameters are identical to those of Example 5.1.

We report the convergence results in Tables 3-4. We again observe expected con-
vergence rates for bothUN and�N . It indicates that our methods also work for a more
general interface problem.

6 Concluding remarks

We analyzed the Robin-Robin coupling methods [11] for parabolic-parabolic inter-
face problems and proved higher convergence rates in time for the first-order and
second-order discrete time derivatives. We also prove H2 estimates of the discrete
time derivatives in a special case. All the estimates in this work are key ingredients in
proving that a prediction correction method [12] produces a O((�t)2) convergence
rate.

Table 4 Error and convergence rates of �N for Example 5.2

�t eλ Rates e1,λ Rates e1,u,2 Rates

(1/2)2 8.51e-01 − 8.54e-01 − 2.04e+01 −
(1/2)3 5.01e-01 0.76 3.81e-01 1.16 9.67e-01 1.08

(1/2)4 1.94e-01 1.37 1.45e-01 1.39 3.66e-01 1.40

(1/2)5 5.34e-02 1.86 2.44e-02 2.58 9.08e-02 2.01

(1/2)6 1.84e-02 1.54 4.38e-03 2.48 1.86e-02 2.29

(1/2)7 7.49e-03 1.30 9.10e-04 2.27 4.04e-03 2.20

(1/2)8 3.39e-03 1.14 2.07e-04 2.13 9.31e-04 2.11

(1/2)9 1.61e-03 1.07 4.95e-05 2.07 2.23e-04 2.06
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7 Appendix A: Sketch of proof: Corollary 4.2

Proof of (4.9) in Corollary 4.2. To prove (4.9), it is suffice to bound the term
�N (h1, h2, αg1 − g2, g̃2). Note that since g

n+1
2 = g̃n+1

2 on �, we have

�N (h1, h2, αg1 − g2, g̃2) :=�t
N−1∑

n=0

(
1

νs
‖hn+1

1 ‖2L2(�s )
+ (

1

ν f
+ 1

α
)‖hn+1

2 ‖2L2(� f )
)

+ �t
N−1∑

n=0

( 1

ν f α2 ‖∂�t g̃
n+1
2 ‖2L2(� f )

+ ν f

α2 ‖∇ g̃n+1
2 ‖2L2(� f )

+ 1

α
‖g̃n+1

2 ‖2L2(� f )

)

+ �t
N−1∑

n=0

( 1

νs
‖αgn+1

1 ‖2L2(�)
+ 1

ν f
‖g̃n+1

2 ‖2L2(�)

)
+ 1

α2 ‖g̃N2 ‖2L2(� f )

= T1 + T2 + . . . + T8.

All the terms in�N (h1, h2, αg1 − g2, g̃2) can be easily estimated by (A.2b) except
the T3 and T4. For T3, it follows from (A.5) that,

�t
N−1∑

n=0

1

ν f α2 ‖∂�t g̃
n+1
2 ‖2L2(� f )

= (�t)3
N−1∑

n=0

1

ν f α2 ‖∂2�t l̃
n+1‖2L2(� f )

≤ C
(�t)2

ν f α2 ‖∂2t l̃‖2L2(0,T ;L2(� f ))

≤ C(�t)2
ν f

α2 ‖∂2t u‖2L2(0,T ;H1(� f ))
. (A.1)

The term T4 can be bounded as follows,

�t
ν f

α2

N−1∑

n=0

‖∇ g̃n+1
2 ‖2L2(� f )

≤ C�t
(ν f )

3

α2

N−1∑

n=0

(
‖∇(un+1 − un)‖2L2(� f )

+ ‖D2(un+1 − un)‖2L2(� f )

)
.

Here D2u denotes the Hessian of u. Using (A.2a) we get

�t
ν f

α2

N−1∑

n=0

‖∇ g̃n+1
2 ‖2L2(� f )

≤C(�t)2
(ν f )

3

α2 ‖∂tu‖2L2(0,T ;H2(� f ))
.

The estimates above imply (4.9). 	
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Before we prove the estimate (4.10), we need the following preliminary results. We

use the Bochner norms ‖v‖L2(a,b;X) =
( ∫ b

a ‖v(·, s)‖2Xds
)1/2

and ‖v‖L∞(a,b;X) =
ess supa≤s≤b‖v(·, s)‖X . For a Sobolev space X , it is well known that

‖vn+1 − vn‖2X ≤C�t
∫ tn+1

tn
‖∂tv(·, s)‖2Xds, (A.2a)

‖∂�tv
n+1 − ∂tv

n+1‖2X ≤C�t
∫ tn+1

tn
‖∂2t v(·, s)‖2Xds, (A.2b)

∫ b

a
‖v(·, s)‖2Xds ≤(b − a)‖v‖2L∞(a,b;X). (A.2c)

The following identities can easily be shown

∂2�tv
n = 1

(�t)2

∫ �t

−�t
(�t − |s|)∂2t v(·, tn + s)ds, (A.3)

and

∂2�tv
n − ∂2�tv

n−1

�t
= 1

(�t)3

∫ �t

−�t
(�t − |s|)(∂2t v(·, tn + s) − ∂2t v(·, tn−1 + s)

)
ds

= 1

(�t)3

∫ �t

−�t
(�t − |s|)

∫ tn+s

tn−1+s
∂3t v(·, r)drds. (A.4)

From these we can show that

‖∂2�tv
n‖2X ≤ C

�t

∫ tn+1

tn−1

‖∂2t v(·, s)‖2Xds, (A.5)

and

‖∂2�tv
n − ∂2�tv

n−1

�t
‖2X ≤ C

�t

∫ tn+1

tn−2

‖∂3t v(·, r)‖2Xdr . (A.6)

Proof of (4.10) in Corollary 4.2. It is similar to prove (4.10). Indeed, let us define,
for j = 1, 2

Gn+1
j = ∂�t g

n+1
j , G̃n+1

2 = ∂�t g̃
n+1
2 , Hn+1

j = ∂�t h
n+1
j .
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We then need to bound the term

�N (H1, H2, αG1 − G2, G̃2)

=�t
N−1∑

n=0

(
1

νs
‖Hn+1

1 ‖2L2(�s )
+ (

1

ν f
+ 1

α
)‖Hn+1

2 ‖2L2(� f )
)

+ �t
N−1∑

n=0

( 1

ν f α2 ‖∂�t G̃
n+1
2 ‖2L2(� f )

+ ν f

α2 ‖∇G̃n+1
2 ‖2L2(� f )

+ 1

α
‖G̃n+1

2 ‖2L2(� f )

)

+ �t
N−1∑

n=0

( 1

νs
‖αGn+1

1 ‖2L2(�)
+ 1

ν f
‖G̃n+1

2 ‖2L2(�)

)
+ 1

α2 ‖G̃N
2 ‖2L2(� f )

=R1 + R2 + . . . + R8.

For R1, it follows from the definitions of Hn+1
1 and hn+1

1 that,

‖Hn+1
1 ‖2L2(�s )

=
∫

�s

(
hn+1
1 − hn1

�t

)2

dx

=
∫

�s

(
∂twn+1 − ∂�twn+1 − ∂twn + ∂�twn

�t

)2

dx

=
∫

�s

(
∂�t (∂tw)n+1 − ∂2�tw

n
)2

dx

=
∫

�s

(
∂�t (∂tw)n+1 − ∂2t w

n + ∂2t w
n − ∂2�tw

n+1
)2

dx

≤ C
∫

�s

(
1

�t

∫ tn+1

tn
(∂2t w(tn) − ∂2t w(s))ds

)2

dx

+ C
∫

�s

(
1

(�t)2

∫ tn+1

tn−1

(
�t − |s − tn|

)(
∂2t w(s) − ∂2t w(tn)

)
ds

)2

dx

≤ C�t‖∂3t w‖2L2((tn−1,tn+1),L2(�s))
. (A.7)

Therefore, we obtain

�t
N−1∑

n=0

1

νs
‖Hn+1

1 ‖2L2(�s )
≤ C(�t)2

1

νs
‖∂3t w‖2L2((0,T ),L2(�s ))

(A.8)
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The estimate of R2 is similar to that of R1. The term R3 can be estimated as follow
by (A.6),

�t
N−1∑

n=0

1

ν f α2 ‖∂�t G̃
n+1
2 ‖2L2(� f )

= (�t)3
N−1∑

n=2

1

ν f α2 ‖∂2�t l̃
n − ∂2�t l̃

n−1

�t
‖2L2(� f )

≤ C
(�t)2

ν f α2 ‖∂3t l̃‖2L2(0,T ;L2(� f ))

≤ C(�t)2
ν f

α2 ‖∂3t u‖2L2(0,T ;H1(� f ))
. (A.9)

For R4, it follows from the definition of l̃ and the fact ‖∇φ‖L2(� f )
≤ C that,

‖∇G̃n+1
2 ‖2L2(� f )

=
∫

� f

(
∇ l̃n+1 − 2∇ l̃n + ∇ l̃n−1

�t

)2

dx

=
∫

� f

(
1

�t

∫ tn+1

tn−1

(
�t − |s − tn|

)
∂2t ∇ l̃(s)ds

)2

dx

≤ C
∫

� f

(∫ tn+1

tn−1

|∂2t ∇ l̃(s)|ds
)2

dx

≤ C�t
∫

� f

∫ tn+1

tn−1

(∂2t ∇ l̃(s))2ds dx

≤ Cν2f �t‖∂2t u‖2L2(tn−1,tn+1;H2(� f ))
, (A.10)

and hence,

�t
N−1∑

n=0

ν f

α2 ‖∇G̃n+1
2 ‖2L2(� f )

≤ C(�t)2
(ν3f )

α2 ‖∂2t u‖2L2(0,T ;H2(� f ))
. (A.11)

The remaining terms R5 to R8 can be estimated similarly, we give the estimate of
R6 here:

‖Gn+1
1 ‖2L2(�)

=
∫

�

(
gn+1
1 − gn1

�t

)2

dσ

=
∫

�

(
un+1 − 2un + un−1

�t

)2

dσ

=
∫

�

(
1

�t

∫ tn+1

tn−1

(
�t − |s − tn|

)
∂2t u(s)ds

)2

dσ

≤ C�t‖∂2t u‖2L2((tn−1,tn+1),L2(�))
, (A.12)
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and therefore, we obtain

�t
N−1∑

n=0

1

νs
‖αG1‖2L2(�)

≤ C
α2

νs
‖∂2t u‖2L2((0,T ),L2(�))

. (A.13)

We finish the proof by combining all the estimates above. 	

In order to prove (4.11), we define the following quantities for j = 1, 2,

Gn+1
j = ∂�tG

n+1
j , Hn+1

j = ∂�t H
n+1
j , G̃n+1

2 = ∂�t G̃
n+1
2 . (A.14)

Note that we also have the following

G̃n+1
2 = g̃n+1

2 − 2g̃n2 + g̃n−1
2

(�t)2
= l̃n+1 − 3l̃n + 3l̃n−1 − l̃n−2

(�t)2
. (A.15)

Denote

∂3�tv
n+1 = vn+1 − 3vn + 3vn−1 − vn−2

(�t)3
, (A.16)

thus we see that
G̃n+1
2 − G̃n

2

(�t)2
= ∂3�t l̃

n+1 − ∂3�t l̃
n

�t
. (A.17)

Moreover, we see that

∂3�tv
n − ∂3�tv

n−1

�t
= 1

(�t)4

( ∫ �t

−�t
(�t − |s|)(∂2t v(·, tn + s) − ∂2t v(·, tn−1 + s)

)
ds

−
∫ �t

−�t
(�t − |s|)(∂2t v(·, tn−1 + s) − ∂2t v(·, tn−2 + s)

)
ds

)

= 1

(�t)4

( ∫ �t

−�t
(�t − |s|)(∂2t v(·, tn + s) − 2∂2t v(·, tn−1 + s) + ∂2t v(·, tn−2 + s)

)
ds

)

= 1

(�t)4

∫ �t

−�t
(�t − |s|)

∫ tn+s

tn−2+s
(�t − |r − tn−1|)∂4t v(·, r)drds.

Therefore, we obtain the following estimate

‖∂3�tv
n − ∂3�tv

n−1

�t
‖2X ≤ C

�t

∫ tn+1

tn−3

‖∂4t v(·, r)‖2Xdr . (A.18)

Proof of (4.11) in Corollary 4.2. We now bound the term �N (∂2�t h1, ∂
2
�t h2, ∂

2
�t

(αg1 − g2), ∂2�t g̃2) which is �N (H1,H2, (αG1 − G2), G̃2) according to (A.14). The
techniques are similar to those mentioned above. We present the key estimates involv-
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ingH1 and G̃2 first. It follows from the definition of Hn+1
1 that,

‖Hn+1
1 ‖2L2(�s)

=
∫

�s

(
hn+1
1 − 2hn1 + hn−1

1
(�t)2

)2

dx

=
∫

�s

(
∂�t (∂tw)n+1 − ∂2�tw

n+1 − (∂�t (∂tw)n − ∂2�tw
n)

�t

)2

dx

=
∫

�s

(
∂2�t (∂tw)n+1 − ∂3�tw

n+1
)2

dx

=
∫

�s

(
∂2�t (∂tw)n+1 − ∂3t w

n + ∂3t w
n − ∂3�tw

n+1
)2

dx

≤ C
∫

�s

(
1

(�t)2

∫ tn+1

tn−1

(
�t − |s − tn |

)(
∂3t w(s) − ∂3t w(tn)

)
ds

)2

dx

+ C
∫

�s

(
1

(�t)3

∫ �t

−�t
(�t − |s|)

∫ tn+s

tn−1+s
∂3t w(tn) − ∂3t w(·, r)ds

)2

dx

≤ C�t‖∂4t w‖2L2((tn−2,tn+1),L2(�s ))
. (A.19)

We also have, according to the definition of l̃ and the fact ‖∇φ‖L2(� f )
≤ C that,

‖∇G̃n+1
2 ‖2

L2(� f )
=

∫

� f

⎛

⎝
∇ l̃n+1−2∇ l̃n+∇ l̃n−1

�t − ∇ l̃n−2∇ l̃n−1+∇ l̃n−2

�t
�t

⎞

⎠

2

dx

=
∫

� f

(
1

(�t)2

∫ �t

−�t
(�t − |s|)(∂2t ∇ l̃(·, tn + s) − ∂2t ∇ l̃(·, tn−1 + s)

)
ds

)2

dx

≤ C
∫

� f

(
1

�t

∫ �t

−�t
|
∫ tn+s

tn−1+s
∂3t ∇ l̃(·, r)dr |ds

)2

dx

≤ C�t
∫

� f

∫ tn+1

tn−2

(∂3t ∇ l̃(·, r))2 dr dx

≤ Cν2f �t‖∂3t u‖2
L2(tn−2,tn+1;H2(� f ))

. (A.20)

It follows from (A.18) that,

�t
N−1∑

n=0

1

ν f α2 ‖∂�t G̃2n+1‖2L2(� f )
= (�t)3

N−1∑

n=0

1

ν f α2 ‖∂3�t l̃
n − ∂3�t l̃

n−1

�t
‖2L2(� f )

≤ C
(�t)2

ν f α2 ‖∂4t l̃‖2L2(0,T ;L2(� f ))

≤ C(�t)2
ν f

α2 ‖∂4t u‖2L2(0,T ;H1(� f ))
. (A.21)
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Then we follow the same idea as before and obtain the following bound:

�N (H1,H2, (αG1 − G2), G̃2) ≤ C(�t)2Y, (A.22)

where Y is defined in (4.14). 	


8 Appendix B: Sketch of proof: Corollary 4.5

Proof According to Corollary 4.4, we need to bound the terms on the right-hand side
of the inequality (4.15). The first term in (4.15) is bounded in Corollary 4.2 while the
last term in (4.15) can be easily bounded similar to (A.7). At last, the analysis to bound
the term �N (∂�t∂xh1, ∂�t∂xh2, ∂�t∂x (αg1 − g2), ∂�t∂x g̃2) is almost identical to that
of the term�N (H1, H2, αG1−G2, G̃2) except the additional partial derivative which
does not affect the techniques. Therefore, we obtain the bound

�N (∂�t∂xh1, ∂�t∂xh2, ∂�t∂x (αg1 − g2), ∂�t∂x g̃2) ≤ C(�t)2Y, (B.1)

where Y is defined in (4.16). This finishes the proof.
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