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Abstract

We consider a loosely coupled, non-iterative Robin-Robin coupling method proposed
and analyzed in Burman et al. (J. Numer. Math. 31(1):59-77, 2023) for a parabolic-
parabolic interface problem and prove estimates for the discrete time derivatives of
the scalar field in different norms. When the interface is flat and perpendicular to two
of the edges of the domain we prove error estimates in the H>-norm. Such estimates
are key ingredients to analyze a defect correction method for the parabolic-parabolic
interface problem. Numerical results are shown to support our findings.

Keywords Parabolic-parabolic interface problem - Loosely coupled scheme -
Robin conditions - Stability estimates
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1 Introduction

Time splitting methods are popular for fluid-structure interaction (FSI) problems (see,
e.g., [2, 4, 8-10, 17, 18, 25, 26, 29, 31])). One of the first stable splitting methods
was proposed by Burman and Ferndndez [17]. Later the same authors [18] devel-
oped a related method which was coined the genuine Robin-Robin splitting method.
Both these methods however suffered from a coupling between the space and time
discretization parameters that reduced the accuracy. This constraint was lifted by elim-
inating the mesh dependence of the Robin parameter in [16]. The resulting method
has been analyzed in [11, 13, 16]. A very similar method was developed and ana-
lyzed by Bukac¢ and Seboldt [30]. In [13] it was proved for the FSI problems that the
method converges as O(+/At) where At is the time step. Numerical evidence sug-
gested that those estimates were not sharp, and nearly first-order accuracy was proved
(mod possibly a logarithmic factor) in [11] for the analogue method applied to the
parabolic-parabolic and hyperbolic-parabolic problems. The analysis was extended to
the FSI problem in [14, 23]. For parabolic-parabolic couplings, there is a rich liter-
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ature on splitting schemes motivated by models of ocean-atmosphere interaction. In
these models, friction forces on the interface render the physical coupling dissipative
through a Robin-type coupling condition, as discussed in [27]. This aspect has been
successfully exploited in the design of splitting methods [20-22, 28, 32-35]. In our
case, the coupling conditions consist of continuity of both the primal variables and
the fluxes across the interface. This coupling is conservative, and hence the approach
suggested in the above references fails. Instead, the splitting method uses a Robin
condition for the computational coupling, which turns out to lead to an uncondition-
ally stable algorithm. An approach for conservative fluid-fluid coupling problems was
proposed in [24], using Nitsche or Robin type couplings similar to those introduced in
[18]. In a domain decomposition framework, a splitting method based on subcycling,
i.e., iterative solution, was proposed and analyzed in [5, 6]. In a similar spirit, but
focusing on a multi-timestep approach, a Robin-Robin coupling for time-dependent
advection—diffusion was introduced in [19], with numerical investigation of the sta-
bility.

Itis well known that discrete time differences for time stepping methods (e.g., back-
ward Euler method) superconverge. In particular, when the backward Euler method
is applied to a parabolic problem, the first-time difference of the errors converge with
order O((A1)?). In this paper, we prove similar results for the splitting method [11]
applied to an interface problem. In particular, we will prove second-order conver-
gence for the scalar fields living on the two sub-domains in the L?-norm. Moreover, in
special configurations (i.e., the interface is horizontal and perpendicular to two sides
of the domain), we will be able to prove second-order convergence in the H>-norm.
Numerically, the H? second-order convergence rates seem to hold on more general
configurations. This appears to be the first work where error estimates in stronger
norms for splitting methods applied to interface problems have been considered.

Error estimates of derivatives of the solution are, of course, of interest in their
own right in many applications. However, our main motivation for this work is the
application of these estimates in the analysis of a prediction-correction method [12]
that we are concurrently developing. The aim is to improve the first-order convergence
of [11] to second-order convergence in time through a defect-correction procedure [7].
The method in [12] uses a prediction step, which is exactly the splitting method we
analyze here. The second-order accuracy of the correction step depends on the second-
order accuracy of time differences of the prediction step, which is precisely the subject
of this paper.

Our overall goal is to propose and analyze a second-order loosely coupled scheme
for FSI problems. This paper represents the first step towards that goal. Based on
our past experiences (see [11, 13, 15]), the analysis of FSI is very similar to those
of hyperbolic-parabolic and parabolic-parabolic interface problems. Therefore, we
begin by considering the simplest problem, namely, the parabolic-parabolic interface
problem, to ensure that the proofs are more transparent while maintain some of the
difficulties of FSL. In this paper, all the estimates, including the H? estimate, are cru-
cial components in analyzing a second-order convergent correction method, which is
included in [12]. We believe it is beneficial to fully understand the parabolic-parabolic
interface problem first before progressing to the more complex hyperbolic-parabolic
interface problem and FSI problems. Note that while the problem we are considering
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can be formulated using a unified approach with discontinuous coefficients, our focus
is on developing a loosely coupled scheme, as we mentioned, which is why we prefer
the partitioned setting.

As for a single parabolic problem, the idea to prove higher convergence for time
differences is to use that the time differences satisfy a similar discrete equation with
new right-hand sides that have time differences themselves. Then, one uses the error
analysis for the original method to proceed. In our case, we will use the analysis
provided in [11] to do this. The main difference here is that we consider a problem
with Neumann boundary conditions on two of the sides of a square instead of pure
Dirichlet boundary conditions, which were considered in [11]. This, in fact, simplifies
the analysis slightly, and additionally, one can remove the logarithmic factor that
appears in [11]. It should be mentioned that we only consider the time discrete case.
The fully discrete case is more involved.

The rest of the paper is organized as follows. In Section 2, we introduce a parabolic-
parabolic interface problem and the corresponding Robin-Robin coupling method. In
Section 3, we present stability results for a Robin-Robin method. Section 4 is devoted
to the error estimates. Finally, we provide some numerical results in Section 5 and end
with some concluding remarks in Section 6.

2 The parabolic-parabolic interface problem and Robin-Robin
coupling method

Let @ = (0, 1) and suppose that Q = QU Qg U X. The interface X is assumed
to be a line segment that intersects €2 on the two side edges; see Fig. 1. We let I'y,
denote the two side edges of €2 and we let I'p be the bottom and top edges of 2. We
let Ty, =y N3Q; fori =5, f.

I'h
Ne
Q. 9
I'Ne
e
Qy
e
Iy,

Fig.1 The domains Q2 s and €25 with interface ¥ and Neumann boundaries
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2.1 The parabolic-parabolic problem

We consider the interface problem

o;u—vrAu =0, in[0, T] x Qr,
u(0, x) =up(x), in Qy, (2.1a)
u =0, on[0, 7] x I'f,
dnu =0, on [0, T] x T},
W — vy Aw =0, in [0, T] x 24,
w(0, x) =wq(x), in Qj, (2.1b)
w =0, on [0, T] x T%,,
opw =0, on [0, TT x I'y,,
w — u =0, on[0,T] x X, (2.1¢)
vsVW - ng +v,Vu-ny =0, on[0,T] x X, (2.1d)

where n y and n; are the outward facing normal vectors for 2y and €2y, respectively.
We assume that the initial data is smooth and that u and w are smooth on Q2 and €,
respectively.

2.2 Variational form

Let (-, -); be the L?%-inner producton ; fori = f, s. Moreover, let (', ) be the L2-inner

product on ¥. Let N > 0 be an integer, and define Af := % and let u” := u(t,, -),
where t, := nAt forn € {0, 1,2, ..., N}. We consider the spaces

Vi={ve H'(Qs) :v=00onT}}, (2.22)

Vi i={ve H'(Q) : v=0o0nT})}, (2.2b)

Vg :=L*(%). (2.2¢)

By setting I"™! := v 9, u"*! and assuming that I"™! € L2(X) for all n, the solu-

tion to (2.1) also satisfies the following variational formulation, forn =0, ..., N —1:

@w"™, 25 + v (YW V) + (I 2) =0, zeV, (2.32)

@u" vy p v (VU Vo) — (1M 0) =0, veVy, (2.3b)

(W”Jrl — "t ) =0, 1€ V. (2.3¢)
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2.3 Robin-Robin coupling: time discrete method
We define the discrete time derivatives:

n+1 n
gt =~
At

and
vn—i—] 2+ vn—l

(Ar)?

2 n+l __
Ox, v =

The Robin-Robin method solves sequentially:

anw" T — vy AWt =0, in €, (2.42)
w1 =0, on T3, (2.4b)

dpw" T =0, on T3, (2.4¢)

aw" ! 4+ Vs O, wt =qu" — VO u" on X. (2.4d)
dacu™ — v AUt =0, in Q, (2.52)
Wt =0, onT7, (2.5b)

O+ =0, onTY,, (2.5¢)
a0, 1T =aw™ 0, 0" on X. (2.5d)

We let AT = e fu”‘H. Then, the time semi-discrete solution solves the fol-
lowing: Find w"*! € vy, u"t! € V¢, and At e V, such that, forn > 0,

@arw™ ™, 2y + v (V" Vo) + a(w" —u" )+ (M 2) =0, z eV,

(2.6a)

@act™™ 0) p v (VU Vo) = (A0 =0, ve vy,
(2.6b)

<a(un+1 _ wn+1) + (X’H_l _ )Ln)7 M) =0, we ng
(2.6¢)

with #® = up(x) and w° = wy(x).
One can rewrite (2.6¢) as

a@" —wthy =" L on m. .7
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3 Stability result

In this section we will prove stability results for the Robin-Robin method with a more
general right-hand side: Find w't e v, uttl e V¢, such that, forn > 0,

Inew" — v Aw T =pi T in Q;, (3.1a)
w1 =0, onT%,, (3.1b)
dpuw™ T =0, on T3, (3.1¢)
aw" ™ 4 138, W =au” — VO u” + s?“ onX. (3.1d)
dnu" = v Au Tt =pitt in Qy, (3.2a)
u"t =0, onT7, (3.2b)
A" =0, onTY,, (3.2¢)
au™ 4 Vfa,,fu”H =aqw" ! + VO u" + EEH_I on X, (3.2d)
with
wW=uw=p=e=0 i=12, (3.3)
where b'f'H, bg“, &l *land 85’“ are general right-hand side terms that are sufficiently

smooth in space and time. We assumed zero initial conditions for simplicity and this
will be enough for the error analysis below. When analyzing the error of the Robin-
Robin method the terms {b!'}, {¢'} will be the residual terms.

Remark 3.1 (Regularity) We assume that u"*! € H?(Qy) and w"*! € H?*(Q;) for
the remainder of this paper. The primary reason we assume this H? regularity and
subsequently prove an H? estimate in Corollary 3.11 is that, in the analysis of the
correction methods, we apply the trace inequality to the Lagrange multiplier on the
interface . Then the H? regularity assumption is useful in analyzing the resulting
quantities. It would be interesting to remove this assumption, but we currently do not
have the means to do so.

Remark 3.2 (Notations) For any negative superscripts, we set the values of the terms
on the right-hand side to be zero, i.e.,

wW=w =bl=¢/ =0 j<0,i=12. (3.4)
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We let At =y #0n fu”Jrl and we see that the above solution satisfies, for n > 0,

@aw" 25 + vs (V' Vo) + oz(w”Jrl —u",z)+ (M. 2) =L1(2), 7€V,
(3.52)
@pu T, v)r+ Vf(Vu"‘H, Vo) g — <)»"+1, v) =L (v), veVy,
(3.5b)
fe@ 1 — w4 @ A, u) =La),  pe Vg,
(3.5¢0)
where

Li(z) =0}, 2)5 + (6], 2),
Ly(v) =3 vy,
Ly(w) :=(e5™, ).

For convenience we rewrite (3.5¢) as:
a@" T —w" Tty = -ty 2t on 3. (3.6)

We will need to define the following quantities for the stability estimates.

1 1 Ata At
2 W, 0,0) =516 o,y + 310" gy + = 1" ey + 5, 16" 12,

1
S, 6,0) =M1V o) + IV Tag) + 5 W = 9" g,
n+l _ ng2

alAr n+l n 1 n+l ny 2

We first state a preliminary result.

Lemma 3.3 Let w, u solve (3.1) and (3.2) then the following identity holds.

At
Z" N w, u, 2) + S w, w, 1) = 20w, u, )+ AF T (w, u) + = (g5 T AT,
o

3.7
where

F”H(w, u) = (b’il+1, wn+l)s + (bg+1’ un+1)f + (E?Jrl + 8£l+1’ wn+l>

+<un+1 . un’ 83-&-1).
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Proof To begin, we set z = Ar w"*! in (3.5a) and v = Az u”! in (3.5b) to get

1 n+1 1 n+1,2 n+1 ny2 1 n+1 2
2 ” ||L2(Q ) + = ) ” ”LZ(Q/-) + EHw —w ”LZ(QS) + 5”“ - ”Lz(Qf)
s AV T ) v ALIVE T g
1
= S 1w IT2q,) + S 16" 12, + AL, (3.8)
where
Jn+l — _a(wn—i-l _ un’ wn+l> _ ()\'n’ wn+l>
+(kn+1,u"+1)+L1(w"+l) + LZ(M”+1). (39)
anipulating the first three terms 1n (3.9) and using (3.6), we obtain
Manipulating the first th in (3.9) and using (3.6) btai
_ Ol<wn+l —un wn+l> _ ()\‘n wn+1) + ()Ln—H un+l>
1
— Jn+l + E(SS—H’ )\n—&-l) + <S£H—l’ wn+l>
— (" — w5, (3.10)
with
JnJrl — Ot(btn _ un+] un+l> + l()\” _ )\n+l )\n+l> _ (un _ Mn+1 A — )\n+l).

o

One can easily show that

Jn-‘rl “ n+1 ||)Ll’l+1 2

1
(” nHLZ(Z) ||L2(E)) + a(”)‘nHiZ(E) - ”Lz(E))

- 5||(u" —u"h + a“" = X172 )
By combining this identity with (3.9) and (3.10), we arrive at

Jl’l-‘rl _

1
2 +1 2 +1)2
—E(Hunan(E) - ” " ”LZ(E)) + — 2 (“)"n ”LZ(Z) - ”)"n ”LZ(Z))

_g n __ n+l —an _ qan+1y2

1
+ Ll(wn-H) + L2(Mn+l) + ;<83+1’ kn+1)+(8;+1’ wn+1>
+< ;H—l’ un+1 _ u").

If we plug in these results to (3.8) we arrive at the identity.

We can now state an identity for the last term in (3.7).
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Lemma3.4 Let w, u solve (3.1) and (3.2) and assuming that 8”“

following identity holds

€ Vg then the

A V) A V! A V!
= Z%H’ An+1> =-= Z(“n’ 3A;8’2’“)f + = Z (v/_(vun-%—l’ Vs’z’“)f _ (b;‘“, £;+1)f)

n=0 n=1 n=0

1
+ - )y
Proof We first take v = Ate"‘“ in (3.5b) to obtain

At<8;+],kn+1) — (un+] _un n+1)f + Atvf(Vun-H v8ﬂ+1) Al‘(anr] n+l)f

If we take the sum overn = 0, ..., N — 1 and use summation by parts, we get
N-1 N-1 N-1

N A EE N SR N A VRS D (Tt AU VR CARNE A VY
n=0 n=1 n=0

+ @™ ey — w0 ed).
We conclude the proof by using (3.3).

To state the stability estimate we need the next definition.

1 1
EN(mi,ma, 51, 52) 1=At Z [ lmi 132 ) + (; + a) llm ! nmﬁ}

1 1
+ A Z( 085 g, + IV 2 ) + ns"+ 1220,
n=0

1 1 1
+1 +1 +1 N2
+A’Z(u A T asy) + 2515 B2

Theorem 3.5 Let w, u solve (3.1) and (3.2) and assuming that 8"+1

following estimate holds

€ Vy then the

N-1
ZN(w,u, 2+ Y S w, u, 1) < CEN (b1, b, €1, 2).
n=0
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Proof Using Lemma 3.3 and taking the sum we get

N-—1 N—1
ZV(w, u, 1) + Z S w, u, n) = Z%w, u, 1) + At Z F" w, u)
n=0 n=0
N-—1
At
+ = 8n+1’ )\nJrl )
EDMCRERY

Using the Poincaré and trace inequalities, we easily obtain the following bound

N-1 N-1

1
ALY P w ) < Z s (w, u, x)+cm2(—||b"“lle(Q)
n=0 Us
+1
+ _”bn ”Lz(Q_f))
+ CAt Z ( ||€n-"_l + SZ—H ”LZ(E) ||<'3‘n+l “LZ(Z))

Using Lemma 3.4 and the Poincaré inequality we have

At N—1

N—

1

n+l n+1 N n+1

o EO ,A —||u ||L2(Qf)+ E S (w, u, A)
n=|

+cm2( —lnes 1220, + SS1VEE g

n+1
_”8 ”LZ(Q/))

+1
+ C— Z 165 20, + c e 172,
n=0

It follows from (3.3) and the definition of Z° that Z%(w, u, ») = 0. We finish the
proof by combining the above estimates.

O

Due to Remark 3.2, the discrete time derivative of u and w solves (3.1) and (3.2)

with discrete time derivatives of the data as the right-hand sides, we immediately get
the following.

Corollary 3.6 Let w, u solve (3.1) and (3.2) and assuming that 8A,8£’+1 € Vy then

N—-1
ZN @arw, dar, Iah) + Y ST @arw, dasut, 0ar2)
n=0

< CEN(3arb1, darh2, dnre1, dnre2).
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Similarly, the second-order discrete time derivative of # and w solves (3.1) and (3.2)
with the second-order discrete time derivatives of the data as the right-hand sides, we

also have the following.

Corollary 3.7 Let w, u solve (3.1) and (3.2) and assuming that 9

N—-1
ZN (@3, w, 03,1, 03,0) + Y ST 0X,w, 03,1, 93,1)
n=0
< C8N(32,b1,03,b2, 03,61, 0,62).

€ Vy then

Remark 3.8 We can also analyze the problem (3.1)-(3.2) but replacing the homo-
geneous Neumann boundary conditions with homogeneous Dirichlet boundary
conditions. In other words, the problem with pure Dirichlet boundary conditions that
is I’iD = 0Q;\X for i = s, f. In this case exactly the same estimates hold. Now
of course, we assume 83 € V¢ where V; has zero Dirichlet boundary conditions on

I =0Q\X.

3.1 H? stability in a special case

In this section we prove H? estimates for u in a special configuration. Again, we
assume that = (0, 1)%, and now assume X is parallel to the x-axis (see Fig. 2). We
take advantage of the fact that the sides composing I' 5, are perpendicular to the x-axis
and, moreover, we also notice that ¥ is parallel to the x-axis.

s
Ne

I'p

Qs

rh

Fig.2 The domains Q2 s and €25 with horizontal interface

s
Ne

@ Springer



Numerical Algorithms

Then, in this particular case we have, for n > 0,

dnrdew" T — v Ad T =g, p inQ,,  (3.11a)
a,w" T =0, onT3, (3.11b)
dw" T =0, onT,, (3.11c)
ade w4 vy cw"™ =adu” — vpon, deu” + et on¥, (3.11d)
dnrdx" T — v AB " =9, b5, inQr, (3.12a)
3u" ! =0, on T/, (3.12b)

aut =0, on FIJ\C/e’
(3.12¢)

adou™ ™ +vpon 0" =ad w4 vy A + 05T onD, (3.12d)

with
dw® =8’ = 9,60 =8, =0 i=1,2 (3.13)

according to (3.3).

Remark 3.9 The assumption that the interface is perpendicular to the sides and parallel
to the x-direction is crucial. First, notice that, in this case, the outer normal direction
n to two sides aligns with the x-direction, leading to d,w"*! = 9,w"*! = 0on T},

and 9,u"t! = 9,u"t = 0 on F]{,e where we use (3.1c¢) and (3.2c). Secondly, given
(3.1d) and (3.2d), the conditions (3.11d) and (3.12d) are only valid in the case where
the interface is perpendicular to the sides. Unfortunately, we have not yet found
a general method to prove the H? estimates for the non-horizontal case which has
proved to be quite challenging. However, we believe this technique could be useful
for the analysis of fluid-structure interaction (FSI) problems, given the similarity of
the coupling conditions.

We then get an immediate Corollary from Remark 3.8 and Theorem 3.5.

Corollary 3.10 Suppose that ¥ is perpendicular to the two sides of T'ne as in Fig. 2.
Let w,u solve (3.1) and (3.2) and assuming that o ey € {v € Hl(Qf) v o=
0ondQ2p\Z} on F){,e then the following estimate holds

N-1

ZN @ew, deu, 92 + Y ST @yw, dgu, 0:2) < CEN (3,1, 0cba, 061, 0c62).
n=0
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Corollary 3.11 Under the hypothesis of Corollaries 3.10 and 3.6 we have

N—1
ALY D2 g ) <C(EY @aibi darba. darer, daie2)
n=0 !

+ BN @ubr, b2, .81, 0,02) )

N—-1
+1,2
+CALY vl g, )
n=0 ‘
Proof From Corollary 3.10 we get
N-1
At Y vpllVau M ga g ) < CEN (B:b1. dxba. drer, dxe2).
n=0

Moreover, using (3.2a) and Corollary 3.6, we have

N—1 N—1
n+1)2 _ n+l _ pn+1,2
ALY vpllAu" o =AY vplda T = b5 g
n=0 n=0
<CEY(@arb1, 3nb2, Bnre1, Inre2)
N—1
n+1,2
+2A1 Y vyrllbh 12,
n=0
Finally, using the following estimate,
N-1 N—1
2, n+12 (142,112 ntl2
ACY wplodu 2 g =280 Y v (1020 IR )+ 1A IR g ).
n=0 n=0
and combining the above estimates we obtain the result. O

4 Error estimates of the Robin-Robin method

In this section we apply the stability results of the previous sections to obtain error
estimates of the Robin-Robin splitting method (2.4)-(2.5) applied to (2.1). We use the
following notation for the errors :

U =u"—u", W':i=w'—w", A":=I"-\"
We use the convention u/ = u/ = ug and w/ = w/ = wy for j < 0.
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Then the error equations read, for n > 0,

I W — v AWt = it inQ, (4.1a)
wntl =0, onT3), (4.1b)
du W =0, onT3,, (4.1c)

awnt! 4 VO, Wit —qu" — Vi, U™ + O[g?'*‘l — gé"”'l on X. (4.1d)

U — v AU = — it inQy, (4.22)
Ut —o, onTS,  (42b)
U =0, onT{, (420
U™ vy, U™ =a W 40,8, U + g5t onx. (4.2d)
where
R = gw T — g, w T githi=umt —
hg+1 — atun—i-l _ aAtun—H, g3+1 — |n+1 — .

The equations (4.1)-(4.2) are well-defined and we also have

Wo=0=n?=¢g"=0,i=1,2, 4.3)
WO =000 = 0ph? = 8,80 =0, i = 1,2, (4.4)
W0 =03, U0 =0%3,h) =0%,¢" =0, i=1,2. (4.5)

We then extend | to Q¢ in a natural way. We let = ¢v rVu - ny where ¢ is a
function that is one on ¥ and vanishes on F{). Then, we define g;” =P+ T, By

construction gg“ € Vyand g5 = g5 on ¥. We immediately get the following result

if we apply Theorem 3.5 and Corollary 3.6.
Corollary 4.1 Let u, w solve (2.1) and w, u solve (2.4) and (2.5) then
N—-1

ZNW, U, N+ Y ST WU A) < CEV (hy o, agi — g2, 82), (46)
n=0

N—1
ZN @AW, 90U, 30 N) + Y. S"H(0a W, 9pU, 3 A)
n=0

< CEN(darhi, darha, adaig1 — 9ar82, In182), 4.7
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and

N-1
ZN @3, W, 03,U, 9%, M) + ZO S @3, W, 03,U, 9%, M)
n=l
< CEN(33,h1. 93,ha2. 3,81 — 03,82, 0%, 82)- 4.8)

Then, it is quite straightforward to get a convergence rate by estimating the right-
hand sides. The proof of the following Corollary can be found in Appendix A.

Corollary 4.2 Let u, w solve (2.1) and w, u solve (2.4) and (2.5) then

N—1
ZNW, U, A) + Z S"H W, U, A) < C(AD?Y, (4.9)
n=0

N—-1
ZN @ W, 080U, 06 A) + Y ST @a W, 00U, 0arA) < C(ADTY,  (4.10)
n=0

and

N-1
ZN (@3, W, 03, U, 03, A) + Y ST (@3, W. 03,U, 03,A) < C(AN*Y,  (4.11)
n=0

where Y is defined as

Y= iua}wn% 12 +<—+1)||83u||22 2
Vs L2(0,T;L2(R2)) vr @ L=(0,T;L=(2p))

vi o Vr 2 (v f)
+ (E + ?)”atu”LRO,T;H'(Qf)) + —— ”atu”LZ(o T: Hz(Qf))
2 2
* 2 ol 3
+ U_S”E)IUHLZ(O,T;LZ(E)) ” 1 ”LZ(O T: L2(2)) 2 ” l‘u”Loo(O T, Hl(Qf))’
(4.12)
Y is defined as
R 3 3012
y = ”8 W”LZ(O T; LZ(Q )) + (; + _)”az u||L2(0,T;L2(Qf))
f 2,112 (V/) 2112
+ (Ol_z + ;)”81 u||L2(0,T;Hl(§2f)) + — ”a ||L2(O,T;H2(Qf))
2 2
+ S 07ul? +— ||a Il + L 1107ul?
vy ! L2(0,T;L%(%)) L2O,T;L2(D) T o2 L>®(0,T; HY(Q))’
(4.13)
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and?)) is defined as

R 4 2 4. 12
@ — U_y”a[ W”L2(0,T;L2(QS)) + (; + a)”at u||L2(O,T;L2(Qf))
+ (L 4 Lyjadu)? + 2L (”f) 193u]2
o2 a 1 SWL20,7;HY (/) L2(0,T; H2(Q))
2 2
||a3u||
L®(0,T;H (24))"

(4.14)

3
+ _”a u||L2(0 T; Lz(E)) ”8 |||L2(0 T; LZ(Z))

4.1 H? error estimates in a special case

Here we assume that we have the configuration as in Fig. 1. Then, we see that 0, §2”+]
vanishes on F{,e and I’ £ and hence belongs to V. Hence, Corollary 3.11 gives the
following corollary.

Corollary 4.3 Suppose that X is perpendicular to the two sides of T N, as in Fig. 2. Let
u, w solve (2.1) and w, u solve (2.4) and (2.5) then

N—-1
At Y velDA U™ D2,y <CEN Barhi. dacha. dar(@gi — 82). dai)
n=0
+ CEN @yh1, xha, dx (gt — 82), Iardr&2)
N-1

+12
+CALY vyplhh 1720,
n=0

Since 9a;U and da; W satisfy the same equations as U, W with time difference
right-hand sides, we have

Corollary 4.4 Suppose that X is perpendicular to the two sides of Ty, as in Fig. 2. Let
u, w solve (2.1) and w, u solve (2.4) and (2.5) , then

N—-1
At Y vpID2 O U DI ) = € BY @R 03 2. 03, (g1 = 82), 03, 82)
n=0
+ CEY (0ardxh1. dardrha, Iardx (g1 — 82). Iardx§2)
N—-1

+ CAL Y vpllaahyt ||L2(Q ) (4.15)
n=0

Then, it is straight-forward to obtain the convergence rate by estimate the right-hand
sides. See Appendix B for a proof for the following Corollary.
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Corollary 4.5 Suppose that % is perpendicular to the two sides of Ty, as in Fig. 2. Let
u, w solve (2.1) and w, u solve (2.4) and (2.5) then

N—-1

ALY v ID*@aU" D2, < CAN D +Y +vrl187ul72 o 1) 1200, )
n=0

where %) is defined in Corollary 4.2 and Y is defined as,

1 3 2 1 3,112
Y := V_Sllaxat W“Lz(O,T;LZ(QX)) + (; + E)“axat u||L2(0,T;L2(Q_,»))

)3

212
——— 109 ul|
o2 N

2
vy 1)f 20012
+ (G T )10l + LEOTSHER )

(0,T;H ()
2
o 2,12 1 21112
+ V_s ||8x 8[ u||L2(0,T;L2():)) + ; ”ax az |”L2(0,T;L2(Z))
2

V
+ o] (4.16)

2
Ul 072112 )"

5 Numerical experiments

In this section we provide numerical experiments that agree with our theoretical results.
We let

ey = ||UN||L2(Q_/), eru=UY - UN_l”LZ(Q/-)v
eu=UN =" =@ = UMl 2,
—1
e, = 1AV 12m). ern = IIAY = ANl 25

N N-1
elu2=U" =U ||H2(§zf)‘

All numerical experiments are performed using FEniCS and multiphenics [1, 3].
Although we only analyze the semi-discrete method, here we present the results for
a fully discrete method where we use the piecewise linear finite element method
for the spatial discretization, except for the computation of e; , 2, where we use the
piecewise quadratic finite element method because piecewise linear function does not
approximate a function well in H2-norm. In addition, we also present convergence
rates for the Lagrange multiplier.

Example 5.1 We consider the domain = (0, 1)2, Qy = (0,1) x (0,0.75) and
Qs = (0, 1) x (0.75, 1). See Fig. 2 for an illustration. We take vy = 1 = vy and take
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Table 1 Errors and convergence rates of U N for Example 5.1

At ey Rates elu Rates e u Rates
1/2)% 7.65e-02 - 7.73e-02 - 6.57e+01 -
(1 /2)3 3.72e-02 1.04 5.87e-02 0.40 1.55e-01 8.73
(1 /2)4 1.74e-02 1.10 1.47e-02 1.99 7.91e-03 4.29
(1/2)5 7.95e-03 1.13 3.58e-03 2.04 1.27e-03 2.64
(1/2)6 3.52e-03 1.17 8.41e-04 2.09 1.75e-04 2.85
(1/2)7 1.62e-03 1.12 1.96e-04 2.10 2.15e-05 3.03
(1/2)8 7.70e-04 1.07 4.69¢e-05 2.06 2.62e-06 3.04
(1/2)9 3.75e-04 1.04 1.14e-05 2.04 3.22e-07 3.02
the solution of (2.3) to be
o2t .
W=u=e¢e cos(mrxy) sin(mwxy).

Wetake h = At, T = 0.25 and @ = 4 where £ is the mesh size of the triangulation.
As we can see from Tables 1-2, the L? error at the final step, e, is of order (Af)
whereas the difference of two consecutive errors, e, is of order (A1)? and the second
difference, e3 , is of order (A1)3. The L? error of the Lagrange multiplier at the final
time, e, is of order At and the difference e ,, is of order (A1)2. Tt is also clear that the
H? error of the difference of UV, e1,,,2 is of order (A1)? as we proved in Corollary

4.5.

Example 5.2 In this example, we test our algorithm for a non-horizontal interface
problem. We consider the domain 2 = (0, 1)? and we let ¥ be defined as the straight
line connecting (0, 0.25) and (1, 0.75). We then define €2; as the region above X and
Qr as the region below X. We take vy = 1 = v, and take the solution of (2.3) to be

Table 2 Error and convergence rates of AV for Example 5.1

W=UuU=¢e¢e

2 .
" cos(mrx1) sin(mwx2).

At ey Rates el Rates elu? Rates
(1/2)2 2.55e-01 - 2.55e-01 - 1.33e+01 -
1/2)3 9.73e-02 1.39 2.41e-01 0.08 1.11e+01 0.26
1/2)* 3.06e-02 1.67 4.41e-02 245 2.61e-01 2.08
1/2)y° 1.62e-02 0.92 6.69¢-03 2.72 5.76e-02 2.18
(1/2)° 9.20e-03 0.82 2.06e-03 1.70 1.40e-02 2.04
1727 4.55e-03 1.01 5.28e-04 1.97 3.32e-03 2.07
1/2)8 2.23e-03 1.03 1.31e-04 2.01 8.03e-04 2.05
1/2)° 1.10e-03 1.02 3.26e-05 2.01 1.97e-04 2.03
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Table 3 Errors and convergence rates of U N for Example 5.2

At ey Rates elu Rates e u Rates
1/2)% 8.05¢-02 - 9.64e-02 - 4.87e+01 -
1/2)3 5.10e-02 0.66 4.23e-02 1.19 1.36¢-01 8.48
1/2)% 2.46e-02 1.05 1.57e-02 1.43 4.94¢-03 478
1/2)° 9.20e-03 1.42 4.07e-03 1.95 1.47¢-03 1.74
1/2)° 3.52¢-03 1.38 8.46e-04 2.27 1.82e-04 3.02
a2’ 1.52¢-03 1.22 1.86e-04 2.18 2.11e-05 3.11
1/2)8 7.00e-04 111 4.33e-05 2.10 2.49¢-06 3.08
1/2)° 3.36e-04 1.06 1.04e-05 2.06 3.02¢-07 3.04

Other parameters are identical to those of Example 5.1.

We report the convergence results in Tables 3-4. We again observe expected con-
vergence rates for both U and A" . It indicates that our methods also work for a more
general interface problem.

6 Concluding remarks

We analyzed the Robin-Robin coupling methods [11] for parabolic-parabolic inter-
face problems and proved higher convergence rates in time for the first-order and
second-order discrete time derivatives. We also prove H? estimates of the discrete
time derivatives in a special case. All the estimates in this work are key ingredients in
proving that a prediction correction method [12] produces a O((A1)?) convergence
rate.

Table 4 Error and convergence rates of AN for Example 5.2

At e Rates el Rates elu2 Rates
(1/2)2 8.51e-01 — 8.54e-01 — 2.04e+01 —
(1/2)3 5.01e-01 0.76 3.81e-01 1.16 9.67e-01 1.08
(1/2)4 1.94e-01 1.37 1.45e-01 1.39 3.66e-01 1.40
(1 /2)5 5.34e-02 1.86 2.44e-02 2.58 9.08e-02 2.01
(1 /2)6 1.84e-02 1.54 4.38e-03 2.48 1.86e-02 2.29
(1 /2)7 7.49e-03 1.30 9.10e-04 2.27 4.04e-03 2.20
(1 /2)8 3.39e-03 1.14 2.07e-04 2.13 9.31e-04 2.11
(1 /2)9 1.61e-03 1.07 4.95e-05 2.07 2.23e-04 2.06
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7 Appendix A: Sketch of proof: Corollary 4.2

Proof of (4.9) in Corollary 4.2. To prove (4 9), it is suffice to bound the term

=N (hy, hy, ag) — g2, §2). Note that since gg"’ = g§+1 on X, we have

N—1
1
EN (A1, ho. agr — g2. 82) —AzZ( uh"*'uLz(mH + I g,
n=0
~n+1 ~n+1 ~n+1
+ArZ( 10085 20, + S IVE g, + || 1220,
1
n+1 sn+l oV 2
+At2(—nag 2z, + n 1)) + 5180 120q)

Vs
n=|

=T1+T+...+Tg.

All the terms in EV (hy, ha, g1 — &2, &2) can be easily estimated by (A.2b) except
the T3 and Ty. For T3, it follows from (A.5) that,

~n+1 +1,2
AtZ 2|| ad5 g, = (A1 Z 2||am|" 120,

n= 0
(At)
f 2 ”a I”L2(0 T; Lz(Qf))
scmrﬁ;||a,2u||iz(o,r;,,l(9,.)). (A1)
The term T4 can be bounded as follows,
3 N—
Z V&5 1320q,) < Z (VW =i,
20+l 2
+ D2 — u")an(Qf)).
Here D?u denotes the Hessian of u. Using (A.2a) we get
f ~n+1 2 (v f)
Z 1V85 172 q,, <C(AD @
The estimates above imply (4.9). O

@ Springer



Numerical Algorithms

Before we prove the estimate (4.10), we need the following preliminary results. We

1/2
b
use the Bochner norms [[v][z2(,5.x) = (fa ||v(~,s)||§(ds> and ||v|lz>@,p;x) =

ess sup, <;<p [lv (-, s) || x. For a Sobolev space X, it is well known that

Int1
W % <A / 10, )13,
1,

n

In+1
1 12 2 2
l9a™ — "2 <C Al f 1920, )| %ds,
n

b
f o ) %ds <(b = )|vl|7oo(qp:x)-

a
The following identities can easily be shown

92 V" ! /Al (At — |s)3>v(-, 1y + 5)d
= — —|s . s)ds,
A (A2 J_p, e

and

(A.2a)

(A.2b)

(A.2¢)

(A3)

82 vt — 32 vnfl 1 At
A T / (A7 = IsD(370Cs tn +5) = 90 ( tat +5))ds

At — At

1 At th+s 3
= —— (At — |s]) d;’v(-, r)drds.
(Ar)3 [At it

From these we can show that
2 _— C th+1 2 2
300 = [ 1o ) s,
At fat

and 5 5 .
95 V" — 9% Vv C [+
At At 2 3 2
=y == 10, v(-, r)|xdr.
At t Ji, s

(A4)

(A.5)

(A.6)

Proof of (4.10) in Corollary 4.2. 1t is similar to prove (4.10). Indeed, let us define,

forj=1,2

Gl}+l — amg"“, GZ-H — 8At§§+l, H]r_l+1 — aAth;g-H.

J
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We then need to bound the term

EN(Hy, Hy,aG1 — G2, Gy)
N—1

| E— Lot 2
=A1Y (— I, ||L2(Q)+< + IH i)
n=0
Rl vy 1
+1 ~n+1)2 ~n+12
+ At ( Vi 2”8Ath ”Lz(Qf) a_2||VGg ||L2(Qf)+a||Gg ||L2(Qf)>
n=0
N-—1 1
n+1 ~n+1 ~
+AzZ( leGi 2, 5 + ||G 2s)) + 5165 1200,
n=0

=R +Ry+ ...+ Rg.
For Ry, it follows from the definitions of HI”Jrl and h'l’+1 that,

(hn+l hn )
dx

W n+1 _ Aar Wn-H _ atw + aAzW 2
A dx

n+1,2 _
||H1 ”LZ(QS) -

5

s

ST g

N

2
(aA,(a,w)"+1 — agtw") dx

2
dar (W) — 92w + 92w — aitw"“) dx

e}

S

2

/ (1 /Z"H(azw(t) Pw(s))ds | d
a A_t . t n) — 0 ) S) X
2

1 Int1
+ C/Qx (W /tnl (A1 —|s — 1a]) (87w (s) — a}w(tn))ds> dx

IA
A

3 2
= CANO W21,y i) L2020 (A7)
Therefore, we obtain
1
Aty —IH Mg, < C<Ar>2 Wl 2@y (AD)
! ,
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The estimate of R is similar to that of R;. The term R3 can be estimated as follow
by (A.6),

. N I A e

n+ _ t

ArZ 2||aAtG2 17200, = (A1) Zz el N 1720,
o2

= f 2 ”a IHLZ(O T: L2(Qf))

< C(Ar)2 = 212Ul 7. 112 (A9)

For Ry, it follows from the definition of Tand the fact Vo2 N = C that,

~ ~ ~ 2
v M LA I
” ”LZ(Q ) Qf At X
1 In+1 ~ 2
:/ <_[ (At—|s—tn|)a,2V|(s)ds> dx
Q_f At th—1
41 P 2
< Cf (/ 0; VI(s)lds) dx
Ih—1

In+1 -
< cm/ / (82VI(s))? dsdx
Qf th—

2
S CUfAt”at u”Lz(ln_l,l,,+1;H2(Q/'))’ (AIO)
and hence,
N—1 ( 3)
+1 2
Ayt 2||VG" 172,y < COAD 107Ul 2200 1200 (A.11)
n=0

The remaining terms R5 to Rg can be estimated similarly, we give the estimate of
Rg here:

16} W, = |

At

1 In+1 2
—/ (At—|s—t,,|)afu(s)ds) do

2.2
107U L2y ) 2205 (A.12)
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and therefore, we obtain

! 2 o oo
Al nZ(:) Z”O‘G‘ W2y = Cv_s”at Ullz2(0,7). L2(:))- (A.13)

We finish the proof by combining all the estimates above. O
In order to prove (4.11), we define the following quantities for j = 1, 2,

g;l+1 — aAtG}}+], H}’l+] — a H”l+1 gn+1 th+] (A14)
Note that we also have the following

sl _ g;H _ 2g2 + g; 1 Tn—H _ 3 + =1 _ -2

= A.15
o (A1)? (A1)? A1
Denote " | 5
T =30 4 3T — "
o0 = Tk : (A.16)
thus we see that ' . s
Sn+ 5 +1
g g’21 _ aAtln B 8At " (A 17)
(AN At ’ '
Moreover, we see that
3 .n _ a3 n—1 A
% :(Alt)4 (/A’ (At = 1sD(920Cs by + ) — D20C, a1 +5))ds
—At

At
—/ (At — |5 (820 (. ty—t +8) — V(s a2 +s>)ds>
—At

_ 1
T (an?

At
(/ (At = |sD (70 (o by + 8) = 2070(, ty1 + ) + 97 0( a2 +s>)ds)
—At

1 At thts
=W/A (Ar — |s]) (At = |r = ty—1 )3} v (., r)drds.
—At

In—2t+s

Therefore, we obtain the following estimate

3 .n 3 n—1
0, V" — 03,

I A

) C In+1 4 5
Ix < A 10, v(-, r)xdr. (A.18)
h-3

Proof of (4.11) in Corollary 4.2. We now bound the term EN(ailhl, Bithz, Bit

(g1 — g2), 02 ;&2) which is N (H1, Ha, (@G1 — G2), G2) according to (A.14). The
techniques are similar to those mentioned above. We present the key estimates involv-
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ing H; and g~2 first. It follows from the definition of H'f + that,

+1 -1\ 2
2 _ W =2k +hy dx
1 L2(S) Q (At)2

2
/ (BA @w)tt — 53, "“—(aAt(atw)"—aitw")) i

At
2
:/ (@)™ =93 wH) dx

2
- / (03 @t — " + Fw" — o3, wH! ) dx

2
In
< C/QS ((Alz)Z/, - (A1 —|s — ta]) (37 W(s) — a?w(zn))ds> dx

n—1

1 At tht+s 3 3 2
Cf / (At —|s|) ;w(ty) — o, w(-,r)ds | dx
o, \ (A3 Joa s !

< CAr|dfwl2,

((tn=2tn+1), L2 ()" (A-19)

We also have, according to the definition of T and the fact Vo2 n= C that,

VT"+I72VT”+VT”_1 _ Vi"*ZVT”_LI»VT”_z 2
+1 At At
VG 2, /g At dx
f
2

1 /AI 2oz -
= — (At — |s)(0;7VIG, ty +5) — 07 VI, t,—1 +5))ds | dx
/szf ((Az)2 —ar it m e )
1 At th+s ~ 2
c/ 7/ [ PVIC, Ndrlds ) dx
Qr \ A Joar Jo_i+s

Int1 37 2
CAI/ / 07 VI, r)“drdx
Qf 2

IA

IA

3
< CvatH3 ulle(I i H@ ) (A.20)
It follows from (A.18) that,
N-1 3 3 -1
5 n+l o _ 3 1 8At| — 8At| 2
At Z 2||3A,g2 172, = (AD) X(:) el N IZ2,)
n=
(A1)
= O 182,720

2V a4, 02
= C(At) (X_2||at UHLZ(O,T;HI(Qf))' (Azl)
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Then we follow the same idea as before and obtain the following bound:
gV (Hi, Ha, (@G1 — G2), Go) < C(AN*Y), (A22)

where Q) is defined in (4.14). O

8 Appendix B: Sketch of proof: Corollary 4.5

Proof According to Corollary 4.4, we need to bound the terms on the right-hand side
of the inequality (4.15). The first term in (4.15) is bounded in Corollary 4.2 while the
last term in (4.15) can be easily bounded similar to (A.7). At last, the analysis to bound
the term EV (3p;05h1, da: 05 h2, IOy (g1 — g2), 0a10x €2) is almost identical to that
of the term 2V (Hy, Hy,aG1—G», éz) except the additional partial derivative which
does not affect the techniques. Therefore, we obtain the bound

EN (@ardhi, 0ar0ch2, 0a:0x (g1 — 82), 9a10xZ2) < C(AD?Y, (B.1)
where Y is defined in (4.16). This finishes the proof.
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