On the classification of sphecodine bees (Hymenoptera: Halictidae)

BY MICHAEL S. ENGEL

Division of Invertebrate Zoölogy, American Museum of Natural History, Central Park West at 79th Street, New York, New York 10024-5192, U.S.A.

Article history: Received: 25 May 2023; Accepted: 30 August 2023; Published: 26 January 2024

ABSTRACT

Taxonomic notes are presented for the exclusively eleptoparasitic halictine bee subtribe Sphecodina (Halictinae: Halictini). Keys are presented to the Western and Eastern Hemisphere genera of Sphecondina. In the New World fauna, the genus Melissocleptis Gonçalves is considered a subgenus of Austrosphecodes Michener s.l., and the following species transferred: Austrosphecodes (Melissocleptis) albifacies (Gibbs), A. (M.) capriciosus (Schrottky), A. (M.) coriae (Moure & Hurd), A. (M.) diablotinus (Gibbs), A. (M.) genaroi (Engel), A. (M.) nigritus (Ashmead), A. (M.) tainoi (Engel), A. (M.) variabilis (Schrottky) comb. n. A key is provided to the subgenera of Microsphecodes Eickwort & Stage s.l., with Trichosphecodes subgen. n., established for those species with elongate ocular setae. Keys are also presented for the species of Microsphecodes s.str. and Trichosphecodes, along with the descriptions of the species Microsphecodes (Microsphecodes) eickworti sp. n., M. (M.) multirugosus sp. n., M. (M.) quechua sp. n., and M. (Trichosphecodes) trichophthalmus sp. n. The Brazilian species Nesosphecodes depressus Gonçalves is transferred to Notoclops gen. n., resulting in the new combination Notoclops depressus (Gonçalves) comb. n. A key is presented to New World subgenera of Sphecodes Latreille, with the following new or resurrected groups: Proteraner Robertson, Drepanium Robertson, Sphecodium Robertson, Asphecodium subgen. n., and Boreosphecodes subgen. n. The following new species are described among New World Sphecodes: Sphecodes (Asphecodium) brevisulcatus sp. n., S. (Sphecodium) eustauros sp. n., S. (S.) electrum sp. n., S. (Sphecodes) zacatuche sp. n. The genus Caenosphecodes gen. n. is proposed for Sphecodes pseudoredivivus Astafurova & Proshchalykin and S. redivivus Blüthgen, differing from Sphecodes by the elongate free part of the marginal cell, in this respect resembling New World Microsphecodes. This results in the combinations Caenosphecodes pseudoredivivus (Astafurova & Proshchalykin), C. sauteri (Meyer), C. simlaensis (Blüthgen), and C. redivivus (Blüthgen) comb. n. The currently employed characters for subgenera of Eupetersia Blüthgen s.l. fail to distinguish the groups. Accordingly, the key to subgenera is revised and the species newly organized as to subgenera. Cephalosphecodes subgen. n. is established for Eupetersia macrocephala Pauly and E. mandibulata Blüthgen, Xanthocleptis subgen. n. is proposed for E. reticulata (Benoist), and Pollinicleptis subgen. n. is erected for E. nathani Baker, E. malayensis (Blüthgen), E. sabahensis Pauly, and E. singaporensis Pauly. A new species of Nesoeupetersia, E. dnophera sp. n., is described from Sabah, Malaysia and a tentative key provided to species of the subgenus. Thrausmus Buysson and Callosphecodes Friese are treated as independent genera, and the latter considered close to Melittocleptes gen. n., with Melittocleptes insularis (Smith) comb. n. as type species. A key is presented to Old World subgenera of Sphecodes, with the following new or resurrected groups: Proteraneropsis subgen. n., Paradrepanium subgen. n., Eusphecodes subgen. n., Sabulicola Verhoeff, Caenocleptes subgen. n., Xystoclops subgen. n., Callocleptes subgen. n., and Nomiocleptes subgen. n.

Keywords: Apoidea, Halictinae, Sphecodina, cleptoparasite, taxonomy

INTRODUCTION

Bees of the halictine subtribe Sphecodina (Halictinae: Halictini) are obligate cleptoparasites of a diversity of other bees, ranging from various Halictinae (most hosts) to the short-tongued bee subfamilies Colletinae and Neopasiphaeinae

(Colletidae), Andreninae and Panurginae (Andrenidae), and even Dasypodainae (Melittidae) (Michener 1978, 2007; Michener, Breed & Bell 1979). Where most other parasitic Halictidae are specialized derivatives or relatives of various unrelated lineages [e.g., cleptoparasitic species of Dialictus Robertson, Noctoraptor Engel et al. among Megalopta Smith, Temnosoma Smith, Echthralictus Perkins & Cheesman (a synonym under *Homalictus* Cockerell), parasitic *Thrinchostoma* Saussure], the sphecodines are a diverse monophyletic group of parasites, not derived from amongst their hosts. They are also one of the more challenging groups of Halictinae, with many similar-looking species with sometimes broad distributions and a variety of different hosts for a single parasite. Most species are arranged in the genus Sphecodes Latreille and, given the challenging mosaic of characters across the lineage, many historical classifications have simply lumped all sphecodines into Sphecodes for a lack of clear patterns. Robertson (1903) was one of the first to attempt a supraspecific classification of the group [although Buysson (1900) predated him in proposing other genera, Buysson did not associate his genus with sphecodines and instead considered it allied to *Nomia* Latreille or *Lipotriches* Gerstäcker], and it was followed by minor additions from Friese (1909), Blüthgen (1928a, 1928b), and Cockerell (1938), although most authors resorted to a retrograde organization whereby most taxa were simply lumped into a growingly diverse and complex genus Sphecodes (e.g., Meyer 1919a, 1919b; Blüthgen 1928a, 1928b; Cockerell 1938; Eickwort & Stage, 1972; Michener 1978, 2007). For the fauna of the Western Hemisphere two distinct clades were isolated from Sphecodes proper (Eickwort & Stage 1972; Michener 1978), and these were then joined by two others (Engel 2006b; Goncalves 2021). The far richer fauna of the Eastern Hemisphere, however, has continued to languish with only two lineages recognized – Eupetersia Blüthgen and Sphecodes – both overlapping in many features and each with currently ill-conceived infrageneric groups employed (Michener 2007). While regional treatments of species are exceptional and significantly aid the identification of species in Europe and much of Asia (e.g., Warncke 1992; Bogusch & Straka 2012; Astafurova, Proshchalykin & Schwarz 2018, 2020; Astafurova & Proshchalykin 2015, 2020), the sphecodines remain a largely intractable group for most melittologists and it has been challenging to identify putatively monophyletic subgroups that would be more manageable for revisionary work.

Building upon earlier treatments of sphecodines (*e.g.*, Engel 2006a, 2006b, 2011, 2013), I present here various notes on the classification of the subtribe that have accumulated over the last 25 years and based on the examination of specimens in many collections throughout the world during that same period, but especially those in the American Museum of Natural History, the University of Kansas Natural History Museum, the Natural History Museum London, the Museum für Naturkunde Berlin, the United States National Museum of Natural History (Smithsonian), and the California Academy of Sciences. It is hoped that these notes might stimulate more research into the relationships and biology of these remarkable bees. The classification presented herein is therefore merely meant as a first step toward a more robust and comprehensive organization.

MATERIAL AND METHODS

Morphological terminology follows Engel (2001) and Michener (2007), while the format for the descriptions follows the recent account of *Microsphecodes* Eickwort

& Stage by Mahlmann & Engel (2023: refer to that paper for an elaboration on methods), and generally abbreviated descriptions for all but the first species. Type material of the new species is deposited in the Division of Entomology, University of Kansas Natural History Museum, Lawrence, Kansas, USA (SEMC), with some paratypes in the Division of Invertebrate Zoölogy, American Museum of Natural History, New York, New York, USA (AMNH). Nomenclatural acts established herein are registered in ZooBank (www.zoobank.org) with LSID urn:lsid: zoobank.org:pub:7D4F730D-C13E-4679-B0FF-323B061A033F.

SYSTEMATICS

Subtribe Sphecodina Schenck

Sphecodina is one of five subtribes in the Halictini, the others being the diverse lineages Halictina and Gastrohalictina, the latter notable for the weakened distal wing veins, and the much smaller Thrinchostomatina¹ of the Afrotropical and Oriental regions and Mexalictina² of the southern Nearctic to Central America. The classification of the subtribe advocated herein is summarized in Table 1. For ease of use, the accounts that follow are segregated by broad geographic areas.

TABLE 1. CLASSIFICATION OF SPHECODINE BEES (HALICTINAE: HALICTINI: SPHECODINA)

Genus Austrosphecodes Michener s.l. Subgenus Austrosphecodes Michener s.str. Subgenus Melissocleptis Gonçalves

Genus Notoclops n.

Genus Microsphecodes Eickwort & Stage s.l.

Subgenus Baeosphecodes Engel

Subgenus Trichosphecodes n.

Subgenus Microsphecodes Eickwort & Stage s.str.

Genus Nesosphecodes Engel Genus Ptilocleptis Michener Genus Eupetersia Blüthgen s.l.

Subgenus Xanthocleptis n.

Subgenus Eupetersia Blüthgen s.str. = *Calleupetersia* Cockerell

Subgenus Cephalosphecodes n. Subgenus Nesoeupetersia Blüthgen

Subgenus Pollinicleptis n. Genus Thrausmus Buysson

Genus Callosphecodes Friese

Genus Melittocleptes n.

Genus Caenosphecodes n.

Genus Sphecodes Latreille s.l.

Subgenus Proteraner Robertson

Subgenus Proteraneropsis n.

Subgenus Eusphecodes n.

Subgenus Sabulicola Verhoeff Subgenus Boreosphecodes n.

Subgenus Sphecodes Latreille s.str.

Sphegodes Mayromoustakis

Subgenus Caenocleptes n.

Subgenus Xystoclops n.

Subgenus Paradrepanium n.

Subgenus Drepanium Robertson

= Dialonia Robertson

= Machaeris Robertson

Subgenus Asphecodium n.

Subgenus Sphecodium Robertson

= Stelidium Robertson

Subgenus Callocleptes n.

Subgenus Nomiocleptes n.

¹ Although Sakagami (1974) established the name using the incorrect stem, as Thrinchostomini (nomen imperfectum; recte Thrinchostomatini), I use the spelling where the name is corrected to the proper genitive derivation, as Thrinchostomatina. It is true that under the ICZN (1999) incorrect spellings of the stem of names proposed after 1999 are to be maintained (Art. 29.4); however, those prior to 1999 are to be maintained only if the form of the name is in prevailing usage (Art. 29.5), otherwise they should be corrected. Given that this name was established prior to 1999 (meaning Art. 29.4 does not apply), and that no 'prevailing usage' can be rightly justified since when the name has been used in the literature (which has been rare) both spellings have appeared (e.g., Pesenko 2004; Engel 2009; Dehon et al. 2014, 2017; Herhold et al. 2019) (meaning that Art. 29.5 cannot be defended), the name should therefore be corrected. Thrinchostomatina stands.

² Mexalictina Engel, subtribus novum (genus typicum: Mexalictus Eickwort, 1978, hic designatus); the diagnosis of the subtribe is identical to that of the type genus as outlined by Eickwort (1978) and supplemented by the absence of the facial 'foveae' bordering the compound eye found in Caenohalictini, the strong distal wing venation, metasomal terga I-IV typically without bands of pubescence (rarely present), and the epistomal sulcus acute to slightly obtuse. LSID: urn:lsid:zoobank.org:act:967E213F-9EA6-4A20-9FC0-91EF25D48AA7.

Western Hemisphere Sphecodina

Herein I recommend the recognition of six genera in the Western Hemisphere: Sphecodes, Microsphecodes, Austrosphecodes Michener, Nesosphecodes Engel, Notoclops gen. n., and Ptilocleptis Michener. I believe that there are good reasons to think that the recently established *Melissocleptis* Goncalves is either synonymous with Austrosphecodes or at least best considered as subgeneric given that the distinctions between the two are exceptionally minor and the key to Neotropical sphecodines provided (Goncalves 2021) contains some errors. By focusing solely on the Neotropical fauna, which may not be monophyletic relative to all Sphecodina and perhaps not even all Sphecodes s.l., some challenges were introduced. For example, the key (Goncalves 2021) assumes that Sphecodes have a preoccipital carina (many do not, including within the Neotropical region), that the female scape reaches the median ocellus (in some it does not, notably some Malagasy species, and this character is quite continuous), and that the males have a narrow pygidial plate (in some it is quite broad, easily encompassing that of species placed in Melissocleptis, again notably so in some Holarctic and African species as well as others from different regions), and thus will lead to misconceptions regarding character combinations for Sphecodes. Furthermore, an elongate mandible was indicated as a feature of Nesosphecodes (which is certainly true), in contrast to mandibles that are not elongate in *Melissocleptis* (true), *Austrosphecodes* (true), and Sphecodes (actually variable, with several species bearing quite elongate mandibles). By looking more broadly at characters across *Sphecodes* outside of the Neotropical region one finds that *Melissocleptis* falls entirely within the circumscription of Austrosphecodes and significantly overlaps subsets of Sphecodes, even in the Neotropical fauna. Indeed, if one ignores the length of the female scape, length of the male antenna, and width of the male pygidial plate (all of which are actually variable within *Sphecodes* rather than fixed as the key implies), then the species will run to Austrosphecodes in Gonçalves's key (2021), noting, however, that the diagnosis of Austrosphecodes also overlaps many groups of Sphecodes as defined. This is not to say that the recognition of *Melissocleptis* was misguided. On the contrary, I fully believe the group is a necessary contribution to the subject, although it differs so minorly from Austrosphecodes that it seems more informative to treat it as a subgenus therein. Nonetheless, even the distinction of Austrosphecodes from Sphecodes s.l. remains poor and needs further evaluation.

The points raised above emphasize the heterogeneous and ill-defined nature of *Sphecodes*, which has largely become a wastebasket for all other sphecodines not placed in more properly circumscribed units. The mosaic of characters among sphecodines, particularly those historically and currently placed in *Sphecodes*, is complex. Several studies already have emphasized the need to more carefully explore this wide-ranging and diverse group of cleptoparasitic bees, noting the necessary removal of groups like *Austrosphecodes* from therein (*e.g.*, Habermannová, Bogusch & Straka 2013; Gonçalves 2021). Regardless, when it comes to sphecodines and *Sphecodes* in particular, we still look through a glass darkly. Further clean-up will be needed and the account here is not meant to solve any of these challenges; indeed, it may well introduce new and unexpected hurdles, although it is sincerely hoped that this is not the case. Instead, the intended goal is that by providing some attempt at segregating these groups more finely this will stimulate the following future research: 1) more extensive treatments of sphecodine phylogeny to test the monophyly and relationships of the units; 2) careful surveys in

various regions of the world to improve sampling for most species (particularly Central America, Africa, and Indomalaya); 3) exploration of sphecodine biology; and 4) the ultimate construction of a robust subgeneric system for *Sphecodes* that will ease not only identification of the vast diversity but hopefully stimulate melittologists to tackle species-level revisions of monophyletic subsets over strictly, albeit helpful, faunal summations.

Key to New World genera of Sphecodina

- Anterior margin of mesoscutum abruptly declivitous, well differentiated from dorsal surface; head and mesosoma coarsely pitted; flagellomere II less than twice as long as flagellomere I; free part or marginal cell less than twice as long as part subtended by submarginal cells; preoccipital ridge variable, rounded to wholly or partly carinate 5
- 4(3) Flagellomere I broad, distinctly shorter than flagellomere II; clypeus exceptionally broad, apical margin scarcely extending below lower tangent of compound eyes, comparatively straight, lateral thirds scarcely slanting relative to medial third, thus forming a comparatively continuous straight margin between compound eyes; mandible of female longer than compound eye length; forewing with three submarginal cells; basal area of propodeum with fine radiating striae or rugae, without large areolae; metasoma black, concolorous with head and mesosoma [Greater Antilles] Nesosphecodes Engel
- 5(3) Female always with combination of mandible simple, metabasitibial plate absent (neither defined anteriorly nor posteriorly), and usually without spinelike setae on retrodorsal margin of metatibia, or such setae as long as plumose setae; preoccipital ridge carinate; metatarsomere II of male as narrow at base as metatarsomere III; gonocoxite not striate, gonapophyses narrow [Central America to Chile and Argentina] Austrosphecodes

 Michener s.l.

Mandible of female simple or with subapical tooth or angle; spinelike setae on retrodorsal margin of metatibia present or absent; metabasitibial plate typically obsolescent anteriorly and delimited posteriorly or entirely absent; preoccipital ridge variable, typically rounded; metatarsomere II of male broader at base than metatarsomere III; genital capsule variable [Alaska, USA and northern Canada to Central America] Sphecodes Latreille s.l.

Genus Austrosphecodes Michener, s.l.

Melissocleptis could render Austrosphecodes s.str. paraphyletic as the differences are comparatively minor and similar variation exists within Sphecodes where these same traits do not seem to unite natural groups. That does not mean that such characters do not do so within Austrosphecodes and so it is best to maintain the two subgenera, particularly as the recognition of Melissocleptis significantly aids identification of the Neotropical diversity. Once extensive phylogenetic work across all Sphecodina has been completed these groups can be properly evaluated and the potential need to synonymize Melissocleptis determined at that time.

Note that the gender of the name *Melissocleptis* is masculine, rather than feminine as cited by Gonçalves (2021), since Latin *cleptīs* is masculine, as is the Ancient Greek $\kappa\lambda \dot{\epsilon}\pi\tau\eta\varsigma$, from which it is derived. The same applies to the name *Ptilocleptis*, which was also wrongly cited as feminine (Michener 1978), and perhaps misled Gonçalves to consider his name similarly in gender.

The species once transferred to *Melissocleptis* (Gonçalves 2021) are here placed within a broader *Austrosphecodes*: *Austrosphecodes* (*Melissocleptis*) albifacies (Gibbs), *A.* (*M.*) capriciosus (Schrottky), *A.* (*M.*) coriae (Moure & Hurd), *A.* (*M.*) diablotinus (Gibbs), *A.* (*M.*) genaroi (Engel), *A.* (*M.*) nigritus (Ashmead), *A.* (*M.*) tainoi (Engel), and *A.* (*M.*) variabilis (Schrottky), all comb. n.

Key to subgenera of Austrosphecodes

Genus Microsphecodes Eickwort & Stage s.l.

The genus *Microsphecodes* has been diagnosed in detail by Eickwort & Stage (1972: as a subgenus of *Sphecodes*) and Engel (2013), the latter of which also provided a key to the species of *Baeosphecodes* Engel. Here the organization of the genus is augmented once again to place those species with prominent ocular setae in their own subgenus.

Key to subgenera of Microsphecodes

(revised from Engel 2013)

- Basal area of propodeum striate-foveolate, posteriorly delimited by distinct, strong carina (Figs 3, 6, 9, 14); pubescence of mesosoma prominent, particularly on pleura [continental]

- - Subgenus Microsphecodes Eickwort & Stage s.str.

Microsphecodes (*Microsphecodes*) *multirugosus* sp. n. (Figs 1–3)

Diagnosis: The new species is most similar to *M. stenochorus* Engel from Peru but differs from it in the colour of the mesosoma, the irregular rugosostriae of the basal area of the propodeum, and in the forewing 3Rs distinctly shorter than 4Rs, with r-rs about as long as 3Rs.

Description

♀: Total body length 5.20mm; forewing length 3.90mm. Head broader than long, width 1.42mm, length 1.13mm (as measured from clypeal apex to vertex in facial view). Mandible long, without subapical tooth. Clypeus width 2.8× medial length, width 0.70mm, medial length 0.25mm, with a faint apical depression. Frontal line carinate from lower tangent of antennal toruli to median ocellar diameter from median ocellus. Upper interorbital distance 0.88mm; lower interorbital distance 0.78mm; inner margin of compound eye slightly emarginate above level of antennal toruli. Gena more than one half as wide as compound eye in profile. Intertegular distance 0.78mm. Mesoscutellum without mediolongitudinal depression, uniformly convex. Inner metatibial spur simple, finely serrate. Hind wing with six distal hamuli arranged in a single series.

Integument shiny. Clypeus smooth with shallow punctures separated by less than a puncture width, those centrally larger and closer than those laterally; supraclypeal area smooth with punctures as on clypeus except sparser; remainder of head smooth and densely punctate, although punctures more spaced in ocellocular area and sparse on vertex, particularly posterior and between ocelli; gena smooth with minute punctures separated by $1-3\times$ a puncture width; postgena impunctate. Mesoscutum smooth to faintly imbricate with punctures separated by $2-5\times$ a puncture width, sparser medioanteriorly and denser outside of parapsidal lines, separated by $0.5-1\times$ a puncture width; mesoscutellum smooth and almost impunctate over disc, with minute punctures along anterior border separated by about a puncture width; metanotum smooth with shallow, nearly contiguous punctures. Pleura minutely rugulose. Basal area of propodeum rugosostriate, rugae-striae largely radiating from basal margin but interconnecting centrally and therefore without distinct areolae, particularly on either side of midline (Fig. 3), integument between rugae smooth and shining; lateral and posterior surfaces of propodeum rugosostriate-foveolate with irregular rugae (Fig. 3). Metasomal terga smooth, virtually impunctate except sparse minute punctures associated with setal bases.

Mandible orange testaceous, with reddish apex; labiomaxillary complex brown, labrum and clypeus yellowish orange, scape yellow, pedicel brown, flagellum dark brown, remainder of head dark brown to black (Fig. 2). Mesosoma yellowish orange except mesoscutum dark brown to black except yellowish medioanteriorly, above pronotal lobe, and thin margin bordering tegula; tegula semitranslucent yellow. Wing veins brown to dark brown; wing membrane hyaline (Fig. 1). Legs yellowish orange. Metasomal tergum I largely orange testaceous, with brown apically, tergum II largely brown except orange testaceous or orange brown basally, remaining terga brown to dark brown; sterna I–II yellowish orange, sternum III as on basal sterna except apically brown, remaining sterna brown.

Pubescence relatively sparse, fine, generally white except tinged yellowish on clypeus, pronotum, mesoscutellum, legs, and tinged yellowish brown on metasomal apex. Setae generally erect with minute branches, some simple; face with dense, decumbent, short, plumose setae, particularly on lower face (Fig. 2); mesosomal dorsum with scattered, erect, largely simple setae. Metasomal terga I and II almost glabrous, except long lateral setae, remaining terga uniformly and finely setose.

 \mathcal{E} : Latet.

Material examined

Holotype, ♀, ECUADOR: Sucumbios, Sacha Lodge, 0.5°S, 76.5°W, 270m, 14–24-III-1994, Hibbs, ex: Malaise (SEMC).

Etymology: The specific epithet is a combination of the Latin adjectives multus (meaning, 'many') and $r\bar{u}g\bar{o}sus$ (meaning, 'wrinkled').

ZooBank LSID: urn:lsid:zoobank.org:act:C51310FB-B0B7-46CB-8DAF-95E3 FA41EBF6.

Figs 1–3. — *Microsphecodes* (*Microsphecodes*) *multirugosus* sp. n., holotype, ♀, from Sucumbíos, Ecuador: 1, Lateral habitus; 2, Facial view; 3, Basal area of propodeum.

Microsphecodes (*Microsphecodes*) *eickworti* sp. n. (Figs 4–6)

Diagnosis: This species is most similar to *M. truncaticaudus* Michener from neighbouring Colombia but can be distinguished by the distinct and large areolae bordering the midline of the basal area of the propodeum (Fig. 6).

Figs 4–6. — *Microsphecodes (Microsphecodes) eickworti* sp. n., holotype, ♀, from Darien, Panamá: 4, Lateral habitus; 5, Facial view; 6, Basal area of propodeum.

Description

As described for *M. multirugosus* (vide supra), except as follows: ♀: Total body length 4.87mm; forewing length 3.93mm. Head broader than long, width 1.37mm, length 1.07mm (as measured from clypeal apex to vertex in facial view). Mandible long, without subapical tooth. Clypeus width 3× medial length, width 0.67mm, medial length 0.22mm, with a faint apical depression. Frontal line carinate from lower tangent of antennal toruli to about frons midlength. Upper interorbital distance 0.88mm; lower interorbital distance 0.78mm. Gena about one half as wide as compound eye in profile. Intertegular distance 0.87mm. Hind wing with five distal hamuli.

Clypeus smooth with coarse, shallow punctures separated by less than a puncture width; supraclypeal area smooth with punctures as on clypeus except smaller and more well-defined; remainder of head smooth with punctures separated by less than a puncture width, punctures more spaced in ocellocular area and on vertex; gena smooth with minute punctures separated by 0.5–1× a puncture width. Mesoscutum smooth with punctures separated by 1–4× a puncture width, sparser medioanteriorly and smaller and denser along posterior border, scarcely denser outside of parapsidal lines; mesoscutellum smooth and almost impunctate over disc, with minute punctures along midline and along anterior and posterior borders. Pleura smooth with punctures separated by a puncture width or less, particularly anteriorly and dorsally; hypoepimeral area longitudinally rugulose. Basal area of propodeum rugosostriate, rugae comparatively weak and incomplete medially, forming large areolae on either side of midline (Fig. 6), integument between rugae smooth and shining; lateral and posterior surfaces of propodeum rugosostriate-foveolate with irregular rugae (Fig. 6).

Mandible yellowish orange, with reddish apex; labiomaxillary complex dark brown, labrum dark brown, scape dark brown, pedicel brown, flagellum lighter brown, remainder of head black (Figs 4, 5). Mesosoma black (Figs 4, 6) except tegula semitranslucent brown. Legs yellowish orange except procoxa dark brown, meso- and metacoxae brown. Metasoma yellowish orange except diffusely brown on disc of tergum I (Fig. 4).

 δ : Latet.

Material examined

Holotype, ♀, PANAMA: Darien, Cana Biological Station, Serrania de Pirre, 1250m, 7°45′18″N, 77°41′6″W, 7 Jun 1996, J. Ashe, ex: flight intercept trap (SEMC).

Etymology: The specific epithet honours George Campbell Eickwort (1940–1994), former friend and mentor who introduced me to many fascinating lineages of halictines and who described, along with Gerald Irving Stage (1935–2014), the genus *Microsphecodes*. The day before George died we went collecting north of Ithaca, New York and dug nests of *Dialictus* on what can only be described as an idyllic summer day. We laughed, found many sweat bees, and had a grand time. He is missed.

ZooBank LSID: urn:lsid:zoobank.org:act:2841CD1C-AB97-445D-BC79-43DE 96B9F95C.

Microsphecodes (*Microsphecodes*) *quechua* sp. n. (Figs 7–9)

Diagnosis: This species is most similar to M. russeiclypeatus (Sakagami & Moure) from southeastern Brazil but can be distinguished by the darker coloration of the mesoscutellum (Fig. 9) and the shorter scape (Fig. 8), which in M. russeiclypeatus extends to the outer margin of the compound eyes.

Description

As described for *M. multirugosus* (vide supra), except as follows: ♀: Total body length 4.67mm; forewing length 3.87mm. Head broader than long, width 1.45mm, length 1.15mm (as

measured from clypeal apex to vertex in facial view). Mandible long, without subapical tooth. Clypeus width 3.8× medial length, scarcely projecting below lower tangent of compound eyes (Fig. 8), width 0.88mm, medial length 0.23mm, with a faint apical depression. Upper interorbital distance 0.95mm; lower interorbital distance 0.92mm; inner margin of compound eye faintly emarginate above level of antennal toruli. Intertegular distance 0.83mm. Hind wing with five distal hamuli.

Clypeus smooth with minute punctures separated by 1–2.5× a puncture width; supraclypeal area smooth with punctures as on clypeus except with distinct impunctate patch near border with

Figs 7–9. — *Microsphecodes* (*Microsphecodes*) quechua sp. n., holotype, ♀, from Tambopata, Perú: 7, Lateral habitus; 8, Facial view; 9, Basal area of propodeum.

clypeus; remainder of head smooth and densely punctate, although punctures more spaced in ocellocular area and sparse on vertex, particularly posterior and between ocelli; gena smooth with minute punctures separated by $1-3\times$ a puncture width; postgena impunctate. Mesoscutum smooth with small punctures sparse centrally, becoming closer laterally and posteriorly where separated by $1-3\times$ a puncture width; mesoscutellum smooth and almost impunctate over disc, with minute punctures in mediolongitudinal strip and along borders where separated by about $1-1.5\times$ a puncture width; basal area of propodeum rugosostriate, rugae-striae radiating from basal margin, with distinct and large areolae on either side of midline (Fig. 9), integument between rugae smooth and shining; lateral and posterior surfaces of propodeum rugosostriate-foveolate.

Mandible orange testaceous, with reddish apex; labrum and clypeus yellowish orange, scape yellowish orange, pedicel brown, flagellum dark reddish brown, remainder of head dark brown to black (Fig. 8). Mesosoma orange to reddish orange except mesoscutum, mesoscutellum, and much of mesepisternum dark reddish brown; tegula semitranslucent yellow. Wing veins brown to dark brown; wing membrane hyaline. Legs yellowish orange. Metasomal tergum I largely orange, remaining terga brown to dark brown except tergum II with orange basally; sterna I–II orange, with apical areas of brown, remaining sterna dark brown.

 \mathcal{E} : Latet.

Material examined

Holotype, \bigcirc , PERU: Tambopata Prov., 15km NE Pto. Maldonaldo, 20 June 1989, 200m, J. Ashe, R. Leschen, ex: flight intercept (SEMC).

Etymology: The specific epithet is the name of the indigenous language family spoken by Quechuan peoples. The name is treated as a noun in apposition.

ZooBank LSID: urn:lsid:zoobank.org:act:2FD7B67B-D202-4A0F-9C48-578DA 824C9DF.

Key to species of Microsphecodes s.str.

(females only; revised from Mahlmann & Engel 2023)

	()
1	Head and mesosoma entirely dark brown to black except pronotal lobe sometimes testaceous or ferruginous
-	Head dark brown or black with clypeus largely to entirely orange, orange red, or testaceous; mesosoma with large areas of orange, orange-red, or testaceous integument, particularly on pronotum, mesoscutellum, and metanotum, such areas sometimes infuscate
2(1)	Basal area of propodeum with areolae bordering midline not greatly enlarged relative to neighbouring areolae [Colombia]
_	Basal area of propodeum with areolae bordering midline greatly enlarged [Panama] M. eickworti sp. n.
3(1)	Basal area of propodeum with areolae on either side of midline distinctly enlarged relative to those between radiating striae (sometimes with incomplete rugae within the enlarged areolae)
-	Basal area of propodeum with areolae on either side of midline narrow, more similar in size relative to those between radiating striae
4(3)	Mesoscutum reddish brown, dark brown, or black; clypeus exceptionally broad, $3.5\times$ or more as wide as medially long
-	Mesoscutum orange testaceous (Figs 2, 4); clypeus 3× as wide as long [Amazonian Brazil]
5(4) -	Mesoscutellum orange to infuscate testaceous
6(5)	Mesoscutellum orange-red; clypeus 3.5–4× as wide as medially long [Costa Rica, Colombia]
-	Mesoscutellum infuscate testaceous; clypeus 4.5× as wide as medially long [southeastern Brazil]

Trichosphecodes subgen. n.

Type species: Microsphecodes (Trichosphecodes) trichophthalmus sp. n. (vide infra).

Diagnosis: Setae of compound eye prominent, longer than two ommatidial diameters (Figs 12, 13); pubescence of mesosoma and metasoma generally sparse although setae of pleura fine and numerous; basal area of propodeum striate-foveolate, with areolae bordering midline enlarged (Fig. 14), posteriorly delimited by distinct, strong carina (Fig. 14).

Etymology: The new subgeneric name is a combination of Ancient Greek trikhós [τρἴχός, genitive of thrίχ (θρἴξ, meaning, 'hair')] and Sphecodes Latreille [itself a combination of the genitive of sphḗχ (σφήξ, meaning, 'wasp') – sphēkós (σφηκός) – and the suffix $-\acute{o}dēs$ ($-\acute{o}\delta\eta\varsigma$, meaning, 'like' or 'full of')]. The name refers to the prominent setation of the compound eyes. The gender of the name is masculine.

ZooBank LSID: urn:lsid:zoobank.org:act:4949D700-82D9-475B-8ADC-3912 FA9DA5F8.

Microsphecodes (*Trichosphecodes*) *trichophthalmus* sp. n. (Figs 10–14)

Diagnosis: The new species is quite similar to *M. trichommus* Michener from Colombia but differs in the short first flagellomere (flagellomeres I and II are similar to each other in *M. trichommus*), the orange clypeus contrasting with the dark brown supraclypeal area (clypeus and supraclypeal area concolorous and dark brown in *M. trichommus*), the fine and minute punctures of the clypeus (punctures coarse and drawn apically in *M. trichommus*), and the mesosoma with extensive areas of orange (almost wholly dark brown to black in *M. trichommus*).

Description

As described for *M. multirugosus* (*vide supra*), except as follows: ♀: Total body length 5.73mm; forewing length 4.47mm. Head broader than long, width 1.63mm, length 1.28mm (as measured from clypeal apex to vertex in facial view). Mandible long, without subapical tooth. Clypeus width 3.1× medial length, width 0.87mm, medial length 0.28mm, with a faint apical depression. Frontal line carinate from lower tangent of antennal toruli to midpoint to median ocellar diameter. Upper interorbital distance 1.08mm; lower interorbital distance 1.08mm; inner margin of compound eye slightly emarginate above level of antennal toruli. Intertegular distance 0.95mm. Hind wing with six distal hamuli arranged in a single series.

Clypeus smooth with small punctures separated by a puncture width or less (denser in paratype); supraclypeal area smooth with punctures as on clypeus; remainder of head smooth and densely punctate, although punctures more spaced in ocellocular area and sparse on vertex, particularly posterior and between ocelli; gena smooth with minute punctures separated by a puncture width; postgena impunctate. Mesoscutum smooth with punctures sparse centrally, denser laterally and posteriorly, around and outside parapsidal lines separated by $0.5-1\times$ a puncture width; mesoscutellum smooth and almost impunctate over disc, with minute punctures

along borders separated by about a puncture width or less; metanotum smooth with shallow, nearly contiguous punctures. Pleura minutely rugulose. Basal area of propodeum rugosostriate, rugae-striae radiating from basal margin with large areolae on either side of midline (Fig. 14), integument between rugae smooth and shining; lateral and posterior surfaces of propodeum rugosostriate-foveolate.

Mandible orange, with reddish apex; labiomaxillary complex brown, labrum and clypeus orange, scape and pedicel yellowish orange, flagellum brown except flagellomere I lighter, remainder of head dark black. Mesosoma largely reddish orange except mesoscutum with

Figs 10–11. — *Microsphecodes (Trichosphecodes) trichophthalmus* sp. n., holotype, ♀, from Cochabamba, Bolivia: 10, Lateral habitus; 11, Dorsal habitus.

Figs 12–14. — *Microsphecodes (Trichosphecodes) trichophthalmus* sp. n., holotype, ♀, from Cochabamba, Bolivia: 12, Facial view; 13, Expanded detail of ocular setae; 14, Basal area of propodeum, metanotum, and mesoscutellum.

extensive reddish brown as in Fig. 11 and pleura largely reddish brown; tegula semitranslucent yellow. Wing veins brown to dark brown; wing membrane faintly infumate apically, otherwise hyaline. Legs largely yellowish orange except darker on coxae, metatrochanter, metafemur (except apex lighter), and metatibia brownish. Metasomal tergum I largely orange, with brown apically, tergum II largely brown except orange basally, remaining terga dark brown; sterna I–II orange to reddish orange with brown apically, remaining sterna brown.

δ : Latet.

Material examined

Holotype, \bigcirc , BOLIVIA: Cochabamba, Cochabamba, 67.5km NE- Est. Biol. Valle del Sajita, Univ. de San Simón, 300m, 17°6′33″S, 64°47′52″W, 9–13 Feb 1999, R. Hanley, ex: flight intercept trap (SEMC).

Paratype, 1♀, BOLIVIA: Cochabamba, Cochabamba, 67.5km NE, Est. Biol. Valle del Sajita, Univ. de San Simón, 300m, 17°6′33″S, 64°47′52″W, 9−13 Feb 1999, F. Genier, ex: flight intercept trap (AMNH).

Etymology: The specific epithet is a combination of the Ancient Greek τρ iχός (trikhós, genitive singular of θρ iξ / thrix, meaning, 'hair') and the noun $\dot{o}φθαλμός$ (ophthalmós, meaning, 'eye').

ZooBank LSID: urn:lsid:zoobank.org:act:A612ED57-1476-414B-851C-565956D DA96F.

Key to species of Trichosphecodes

(females only)

Notoclops gen. n.

Type species: Nesosphecodes depressus Gonçalves, 2021.

Diagnosis: This genus is superficially similar to the Caribbean Nesosphecodes but can be easily distinguished by the reddish orange to dark reddish brown metasoma (black in Nesosphecodes), apical margin of clypeus extending well below lower tangent of compound eyes and with lateral thirds sloping and converging apically (at or scarcely extending beyond lower tangent of compound eyes and nearly uniformly straight margin between compound eyes in Nesosphecodes), flagellomere I and II of nearly equal lengths (flagellomere I much shorter than flagellomere II in Nesosphecodes), mandible of female slightly shorter than compound eye length (as long as or longer than compound eye length in Nesosphecodes), basal area of propodeum with fine rugae and distinct, large, paramedial areolae (basal area with fine radiating striae or rugae, without areolae in Nesosphecodes), and usual presence of only two submarginal cells (always three submarginal cells in Nesosphecodes). The transfer of the type species from Nesosphecodes results in the following new combination: Notoclops depressus (Gonçalves) comb. n.

Etymology: The new genus-group name is a combination of the Ancient Greek vότος (nótos, meaning, 'south') and κλώψ (klδps, meaning, 'thief'). The gender of the name is masculine.

ZooBank LSID: urn:lsid:zoobank.org:act:5B622121-C420-4C28-821F-BADB 02E4CD98.

Genus Ptilocleptis Michener

The genus *Ptilocleptis* Michener includes three species that superficially resemble polybiine wasps (Fig. 15), but are likely highly derived from among *Sphecodes s.l.*, although such a phylogenetic placement is currently speculative. The genus has been recorded from central Mexico to eastern Peru and southeastern Brazil. Here a single female is newly recorded from Bolivia, representing the first occurrence of the genus for the country.

Ptilocleptis polybioides Michener (Figs 15–17)

New record

1, BOLIVIA: Cochabamba, Cochabamba, 67.5km NE, Est. Biol. Valle del Sajita, Univ. de San Simon, 300m, 17°6′33″S, 64°47′52″W, 9–13 Feb 1999, F. Genier, ex: flight intercept trap (SEMC).

Genus Sphecodes Latreille s.l.

Key to New World subgenera of Sphecodes

Figs 15–17. — *Ptilocleptis polybioides* Michener, \bigcirc , from Cochabamba, Bolivia: 15, Lateral habitus; 16, Facial view; 17, Posterior view of propodeum, metanotum, and mesoscutellum.

Hind wing with 5–6 hamuli
Hind wing with 7–14 hamuli
Propodeal posterior surface with ridges bordering pit roughly parallel to weakly divergent
in upper third, delimiting a narrow interspace
Propodeal posterior surface with ridges bordering pit distinctly diverging upward in upper
half to third and exposing large, polished, triangular interspace rounding into rim of basal
area

- - Asphecodium subgen. n.

Type species: Sphecodes (Asphecodium) brevisculcatus sp. n. (vide infra)

Diagnosis: This is one of two groups of New World Sphecodes in which the female mandible is simple. Unlike Drepanium Robertson, however, this subgenus includes typically smaller, less robust species in which the posterior rim of the basal area of the propodeum is rounded and polished (Fig. 21), smooth to sometimes faintly imbricate, and not delimited by a strong, irregular carina that is contiguous with the areolae or rugae of the basal area, lateral surfaces, and often the posterior surface, as is the case in Drepanium (Fig. 22).

Etymology: The new genus-group name is a combination of the Ancient Greek prefix $\check{\alpha}$ — (a—, the alpha privative indicating negation) and Sphecodium Robertson (itself a combination of Sphecodes and the neuter form of the suffix —ius, which is used to form adjectives from nouns or is often used to Latinize surnames). The gender of the name is neuter.

ZooBank LSID: urn:lsid:zoobank.org:act:C4663756-FD78-43F4-A834-620BBE 87A225.

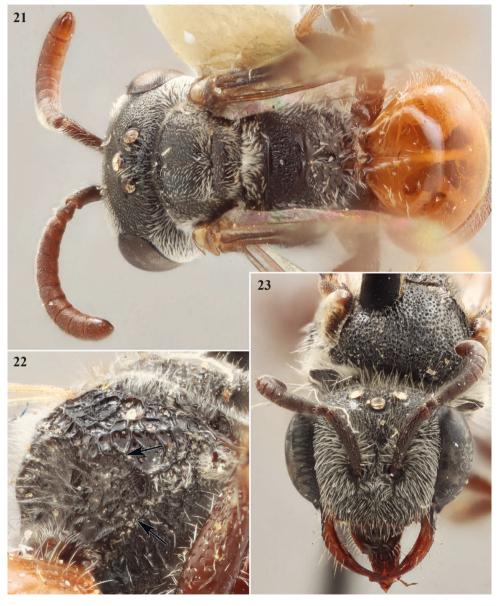
Sphecodes (Asphecodium) brevisulcatus sp. n. (Figs 18–21)

Diagnosis: Sphecodes brevisulcatus superficially resembles S. brachycephalus Mitchell but can be quickly distinguished by the simple mandible, the uniform density of facial punctures that do not become sparser in ocellocular area, the distinct tuft of erect white setae on the metanotum medially, the dense network of irregular reticulating rugae on the basal area of the propodeum, and the distinct, shallow, mediolongitudinal sulcus traversing the clypeus.

Description

As described for *M. multirugosus* (vide supra), except as follows: ♀: Total body length 4.13mm; forewing length 3.20mm. Head broader than long, width 1.40mm, length 1.10mm (as measured from clypeal apex to vertex in facial view). Mandible long, simple. Clypeus width 2.7× medial length, width 0.72mm, medial length 0.27mm, with a distinctive mediolongitudinal sulcus. Frontal line carinate from just above lower tangent of antennal toruli to mid-distance to median ocellus. Upper interorbital distance 0.95mm; lower interorbital distance 0.80mm; inner margin of compound eye slightly emarginate above level of antennal toruli. Intertegular distance 0.80mm. Mesoscutellum without mediolongitudinal depression, uniformly flattened. Hind wing with five distal hamuli.

Clypeus smooth, flat, with coarse, shallow punctures separated by $0.5\text{--}4\times$ a puncture width, particularly sparse on either side of midline, with distinct mediolongitudinal sulcus traversing from base to apex; supraclypeal area smooth with small, distinct punctures separated by much less than a puncture width; remainder of face smooth and punctured as on supraclypeal area, punctures not becoming more spaced in ocellocular area, punctures similar on vertex although slightly weaker and slightly more spaced, particularly between ocelli; gena smooth with punctures as on vertex except puncture smaller and separated by $1\text{--}2\times$ a puncture width; postgena impunctate. Mesoscutum smooth with punctures separated by a puncture width, slightly denser along borders; mesoscutellum smooth and sparsely impunctate over disc, with punctures separated by less than


a puncture width along borders and along midline; metanotum smooth with shallow, nearly contiguous punctures. Pleura minutely ruguloso-punctate. Basal area of propodeum with network of irregular reticulating rugae (Figs 20, 21), integument between rugae smooth and shining, posterior border rounded and polished; posterior surface largely smooth with irregular setigerous punctures; lateral surface irregularly and finely rugoso-foveolate (Fig. 18). Metasomal terga smooth, tergum I impunctate, remaining terga with minute punctures separated by a puncture width or less but becoming gradually sparser apically until impunctate in broad apical margins of

Figs 18–20. — Sphecodes (Asphecodium) brevisulcatus sp. n., holotype, ♀, from Humboldt County, California, USA: 18, Lateral habitus; 19, Facial view; 20, Dorsal view of head and mesosoma.

each tergum; sterna faintly and finely imbricate and largely impunctate except some setigerous punctures.

Mandible yellowish orange, with reddish apex; labrum yellowish orange except dark brown on basal area; labiomaxillary complex brown, clypeus dark brown except apical margin slightly lighter, scape and pedicel brown, flagellum brown, slightly lighter than scape, remainder of head black. Mesosoma black except pronotal lobe brown; tegula semitranslucent yellow. Wing veins

Figs 21–23. — Details of Western Hemisphere *Sphecodes* Latreille: 21, *Sphecodes* (*Asphecodium*) *brevisulcatus* sp. n., holotype, \subsetneq , from Humboldt County, California, USA; 22, Oblique posterior view of \subsetneq propodeum of *S.* (*Drepanium*) *confertus* Say (arrows indicate irregular carinae on posterior surface margins); 23, Facial view of \subsetneq of *S.* (*Drepanium*) *confertus*.

brown; wing membrane hyaline to slightly parchment coloured. Legs brown except yellowish to yellowish brown on tarsi and at femoral-tibial articulations. Metasoma reddish orange, slightly more brownish on apical two segments.

Pubescence white except slightly tinged yellow on apical metasomal segments; metanotum with distinct tuft of erect white setae medially (Fig. 21).

 \mathcal{E} : Latet.

Material examined

Holotype, ♀, CALIFORNIA: Humboldt Co., 2 mi S Redwood Valley, VII-7-75 [7 July 1975, no collector indicated] (SEMC).

Paratype, 1♀, CALIFORNIA: San Mateo Co., 4.V.17 [4 May 1917], F. Muir, W.M. Giffard (AMNH).

Etymology: The specific epithet is a combination of the Latin adjective brevis, meaning, 'short', 'low', 'shallow', or 'brief', and sulcātus, meaning, 'sulcate' or 'ploughed', and referring to the mediolongitudinal sulcus of the clypeus.

ZooBank LSID: urn:lsid:zoobank.org:act:6AB676A9-6F2C-47B8-B1A3-A29DC EED908E.

Boreosphecodes subgen. n.

Type species: Sphecodes asclepiadis Cockerell, 1898.

Diagnosis: This subgenus is quite similar to *Sphecodium* in a broad sense as construed herein, but differs in the roughly parallel-sided ridges, sometimes slightly diverging above, on either side of the propodeal pit, thereby creating a narrow interspace rather than the strongly diverging ridges of *Sphecodium*, which results in a large, polished, triangular interspace in the upper half to third and blending into the rounded posterior rim of the basal area. As in most groups of Sphecodes the mandible of the female has a small subapical tooth and the preoccipital area is rounded, while the hind wing has a reduced number of hamuli (5–6 hamuli).

Etymology: The new genus-group name is a combination of the Ancient Greek $Bop\acute{e}\bar{a}\varsigma$ ($Bor\acute{e}\bar{a}s$, personification of the north wind) and Sphecodes (for derivation of Sphecodes refer to etymology of Trichosphecodes, supra). The gender of the name is masculine.

ZooBank LSID: urn:lsid:zoobank.org:act:302FC64D-24A3-4DA9-B86D-52DA 1949B039.

Subgenus Sphecodium Robertson

Sphecodes (Sphecodium) eustauros sp. n. (Figs 24–28)

Diagnosis: Sphecodes eustauros is distinctive among Mexican Sphecodium for the combination of its wholly dark coloration, fine punctation of the head and mesosomal dorsum (in this respect superficially resembling species of Microsphecodes), the radiating striae that reach the polished posterior rim of the basal area of the propodeum, and metasomal punctation.

Description

As described for *M. multirugosus* (*vide supra*), except as follows: ♀: Total body length 6.07mm; forewing length 4.43mm. Head broader than long, width 1.63mm, length 1.23mm (as measured from clypeal apex to vertex in facial view). Mandible long, with small subapical tooth. Clypeus width 2.7× medial length, width 0.75mm, medial length 0.28mm, comparatively flat.

Frontal line carinate from just above lower tangent of antennal toruli to median ocellar diameter from median ocellus. Upper interorbital distance 1.03mm; lower interorbital distance 0.88mm; inner margin of compound eye slightly emarginate well above level of antennal toruli. Intertegular distance 1.07mm. Mesoscutellum without mediolongitudinal depression, gently convex. Hind wing with five distal hamuli.

Clypeus smooth with shallow, coarse punctures separated by less than a puncture width; supraclypeal area smooth with small distinct punctures separated by less than a puncture width;

Figs 24–28. — *Sphecodes (Sphecodium) eustauros* sp. n., holotype, ♀, from Veracruz, Mexico: 24, Lateral habitus; 25, Facial view; 26, Dorsal view of metasoma; 27, Anterior of mesoscutum; 28, Basal area of propodeum.

remainder of head smooth and densely punctate, punctures nearly contiguous to contiguous on frons, punctures in ocellocular area becoming separated by a puncture width, or slightly more toward lateral ocellus, vertex without distinct punctures, surface weakly wrinkled; gena smooth with faint, minute punctures separated by a puncture width or less posteriorly, anteriorly bordering compound eye surface minutely and weakly wrinkled; postgena impunctate. Mesoscutum smooth with comparatively shallow punctures separated by less than a puncture width (Fig. 27), centrally punctures more distinct and sparser, central disc with punctures separated by 1-4× a puncture width; mesoscutellum as on anterior of mesoscutum except punctures sparser in small paramedial patches; metanotum with coarse, shallow, nearly contiguous punctures. Pleura minutely rugulose except hypoepimeral area smooth with shallow punctures separated by a puncture width or slightly more. Basal area of propodeum with strong radiating striae, such ridges extending to polished posterior rim, integument between striae smooth and shining (Fig. 28); lateral and posterior surfaces of propodeum rugosostriate-foveolate with irregular rugae, albeit weaker on posterior surface. Metasomal terga largely smooth, tergum I impunctate, tergum II virtually impunctate except sparse, minute, setigerous punctures, remaining terga with more prevalent minute punctures albeit still sparse, all terga with broad impunctate apical margins (Fig. 26); sterna largely finely imbricate with scattered setigerous punctures.

Mandible brown, with reddish apex; labiomaxillary complex brown, labrum dark brown; scape and pedicel dark brown, flagellum dark brown, slightly lighter ventrally, remainder of head black (Fig. 25). Mesosoma black except pronotal lobe dark brown; tegula semitranslucent brown. Wing veins brown to dark brown; wing membrane faintly infumate. Legs dark brown. Metasoma dark brown.

Pubescence white except prepygidial fimbria fuscous (Fig. 26).

 \mathcal{E} : Latet.

Material examined

Holotype, ♀, MEXICO: Veracruz, 8km S Carrizal, 5 Nov 1991, R. Ayala, 140m, hot spring resort along river (SEMC).

Etymology: The specific epithet is a combination of the Ancient Greek prefix $\varepsilon \dot{v}$ —(eu—, meaning, 'good', 'well', 'genuine', or 'true') and the noun $\sigma \tau \alpha v \rho \dot{\sigma} \varsigma$ (staur'os, meaning, 'crucifix'). The name is a play on the name of Veracruz.

ZooBank LSID: urn:lsid:zoobank.org:act:35947E84-A0C3-4F09-8302-D58BFD 868D47.

Sphecodes (Sphecodium) electrum sp. n. (Figs 29–33)

Diagnosis: This is among the smallest species of *Sphecodes* in western North America, with a body length less than 4.00mm. It is distinctive for the combination of its small size, the mesosomal and mesoscutellar punctation (Fig. 32), the weakly bigibbous mesoscutellum, distinctive sculpturing of the basal area of the propodeum (Fig. 32), absence of reticulate-foveolate sculpturing on the posterior surface of the propodeum, and metasomal punctation (*vide infra*).

Description

As described for *M. multirugosus* (vide supra), except as follows: ♀: Total body length 3.87mm; forewing length 2.53mm. Head broader than long, width 1.13mm, length 0.92mm (as measured from clypeal apex to vertex in facial view). Mandible long, with small subapical tooth. Clypeus width 2.4× medial length, width 0.53mm, medial length 0.22mm. Frontal line carinate from just above lower tangent of antennal toruli to midlength of frons to median ocellus. Upper interorbital distance 0.77mm; lower interorbital distance 0.62mm; inner margin of compound eye slightly emarginate above level of antennal toruli. Intertegular distance 0.53mm. Mesoscutellum with weak mediolongitudinal depression, thus slightly bigibbous. Hind wing with five distal hamuli.

Clypeus smooth with coarse, shallow punctures separated by a puncture width or less basally and laterally, otherwise noticeably sparser in apical half; supraclypeal area punctured as on basal area of clypeus; remainder of head smooth with small punctures separated by a puncture width or less, including ocellocular space; vertex weakly and finely wrinkled transversely and nearly impunctate; gena with minute punctures separated by a puncture width or slightly more; postgena imbricate and impunctate. Mesoscutum smooth with punctures coarser than those of face, separated by about a puncture width (Fig. 32), sparser posteriorly and around posterior of

Figs 29–33. — *Sphecodes (Sphecodium) electrum* sp. n., holotype, \mathcal{P} , from Chiapas, Mexico: 29, Lateral habitus; 30, Facial view; 31, Dorsal view of metasoma; 32, Dorsal view of mesosoma; 33, Posterior view of propodeum.

parapsidal lines; mesoscutellum as on mesoscutum except punctures much sparser, particularly on paramedial elevations of weakly bigibbous surface (Fig. 32); metanotum smooth with shallow, nearly contiguous punctures. Pleura longitudinally rugosostriate. Basal area of propodeum with few prominent radiating arched striae, such striae ending just before polished posterior rim, with some weak, interconnecting rugae between or incomplete striae, thus surface appearing as large medial areolae, diminishing in size laterally (Figs 32, 33); lateral surface coarsely imbricate; posterior surface largely smooth, with scattered, shallow, setigerous punctures. Metasomal terga smooth, virtually impunctate except tergum II onward with sparse, minute, shallow, punctures associated with setal bases becoming absent in broad impunctate apical margins (Fig. 31); tergum I impunctate; tergum II with minute punctures sparse; remaining terga with punctures more abundant but still quite sparse; terga IV–VI finely and faintly imbricate; tergum VI with coarse, shallow, setigerous punctures separated by a about a puncture width.

Mandible orange, with reddish apex; labiomaxillary complex and labrum dark brown; head black; scape, pedicel, and basal flagellomeres dark brown, remainder of flagellum brown (Fig. 30). Mesosoma black except pronotal lobe dark brown; tegula semitranslucent brown. Wing veins brown to dark brown along anterior wing margin; wing membrane hyaline (Fig. 29). Legs dark brown except tarsi lighter. Metasomal segments I–III largely reddish orange except blending to dark brown centrally on disc of tergum III; tergum IV basally reddish orange, remainder dark brown; tergum V dark brown; tergum VI light brown on pregradular area, remainder dark brown; sterna I–III reddish orange; sternum IV reddish orange basally, remainder dark brown; sterna V and VI dark brown.

Pubescence white except slightly tinged yellow on apical metasomal segments; metanotum with distinct tuft of erect white setae medially (Fig. 32).

 \mathcal{E} : Latet.

Material examined

Holotype, \bigcirc , MEXICO: Chiapas, 18km S Palenque, Cascadas de Misolhá, 25-IV-1993 [25 April 1993], G. Eickwort (SEMC).

Etymology: The specific epithet is the Latin noun *ēlectrum*, meaning, 'amber', and refers to the both the colour of the metasoma and the fact that Chiapas is famous for its extensive outcrops of Miocene amber.

ZooBank LSID: urn:lsid:zoobank.org:act:FFF66446-C7D3-4F50-9200-974DD 90BD472.

Subgenus Sphecodes Latreille s.str.

Sphecodes (Sphecodes) zacatuche sp. n. (Figs 34–36)

Diagnosis: The is a rather robust higher elevation species distinctive for its wholly black integument; broad head, with the interocular distance greater than the compound eye length; distinctively raised frontal carina in upper portion of frons; abundant semi-translucent spinelike setae on the retrodorsal margin of the metatibia; prepygidial fimbria composed of fuscous setae with whitish tips; basal area of propodeum rugosostriate, with rugae-striae radiating from basal margin and with some interconnecting rugae, particularly apically where the interconnecting rugae form an apical row of areolae delimiting the carinate apical rim; and the characteristic sculpturing of the metasomal terga (vide infra).

Description

As described for *M. multirugosus* (*vide supra*), except as follows: ♀: Total body length 11.58mm; forewing length 8.74mm. Head much broader than long, width 3.03mm, length 2.23mm (as measured from clypeal apex to vertex in facial view). Mandible long, with small subapical tooth. Clypeus width 2.7× medial length, width 1.67mm, medial length 0.63mm.

Frontal line carinate from just above lower tangent of antennal toruli to median ocellar diameter from median ocellus, carina particularly raised in upper portion on frons. Upper interorbital distance 1.93mm; lower interorbital distance 1.83mm; inner margin of compound eye slightly emarginate well above level of antennal toruli. Intertegular distance 2.13mm. Mesoscutellum without mediolongitudinal depression, comparatively flat. Hind wing with eight distal hamuli.

Clypeus smooth with coarse, shallow punctures separated by less than a puncture width, nearly contiguous in many places; supraclypeal area deep, nearly contiguous punctures; remainder of

Figs 34–36. — *Sphecodes* (*Sphecodes*) *zacatuche* sp. n., holotype, \mathcal{P} , from Milpa Alta, Mexico: 34, Dorsal view of mesosoma; 35, Facial view; 36, Lateral habitus.

face finely rugoso-punctate, resulting in the appearance of contiguous irregular punctures, ocellocular space with punctures near compound eye distinct, rugosopunctate pattern blending gradually to vertex with weak transverse rugae and less distinct punctures; gena as on frons except anteriorly toward compound eye with puncture more distinct; postgena imbricate and impunctate. Mesoscutum smooth (where evident) with deep, coarse punctures contiguous to nearly contiguous, slightly more spaced around parapsidal lines and in posterior fifth; mesoscutellum smooth with punctures as on mesoscutum except sparser on posterior half of disc; metanotum coarsely rugoso-punctate. Pleura coarsely rugoso-punctate. Basal area of propodeum rugosostriate, with rugae-striae largely radiating from basal margin but with some interconnecting rugae, particularly apically where interconnecting rugae form an apical row of areolae delimiting carinate apical rim of basal area; lateral and posterior surfaces coarsely rugulose, except anteriorly finer on lateral surface. Metasomal terga smooth, with minute, shallow punctures, punctures sparser on more basal terga, but punctures of all terga becoming sparser apically to broad impunctate apical margins, punctures of terga II-VI noticeably smaller basally; tergum I with punctures separated by a puncture width or more; tergum II with punctures separated by a puncture width or less; remaining terga with punctures denser basally and becoming of two sizes apically, particularly on tergum IV; tergum V finely imbricate with minute, distinct punctures basally, blending to larger, shallow, coarse punctures in at least apical two-thirds; sterna imbricate with scattered, shallow, setigerous punctures.

Integument wholly dark brown to black (Figs 34–36); wing membranes lightly infumate, veins brown to dark brown.

Pubescence white except metasomal apex with setae fuscous or fuscous with whitish tips. *♂*: *Latet*.

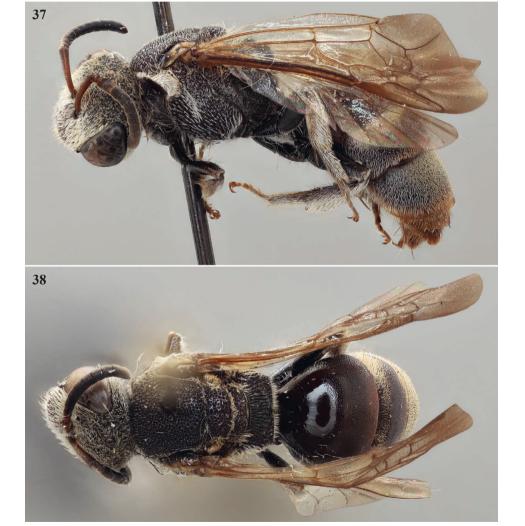
Material examined

Holotype, \bigcirc , MEXICO: D.F., 6km SW Milpa Alta, 12 Nov 1991, Ayala, 2600m, wooded area after cactus gardens (SEMC).

Paratype: 1♀, MEXICO: Mexico, 13km SW Milpa Alta, 2700m, 28 Oct 1991, T. Griswold, ex: Simsia amplexicaulis [(Cav.) Pers., Asteraceae: Asteroideae: Heliantheae: Helianthinae] (AMNH).

Etymology: The specific epithet is taken from the Spanish name, Zacatuche, for the endangered Volcano rabbit, Romerolagus diazi (Ferrari-Pérez) (Lagomorpha), the second-smallest species of Leporidae and endemic to the Milpa Alta – the same area to which this cuckoo bee is confined. The name is treated as a noun in apposition.

ZooBank LSID: urn:lsid:zoobank.org:act:2FBF520A-8F48-4ED4-9BD1-76523 981B3AC.


Eastern Hemisphere Sphecodina

In the Eastern Hemisphere fauna I currently advocate the recognition of six genera: Sphecodes s.l., Eupetersia s.l., Callosphecodes Friese, Thrausmus Buysson, Caenosphecodes gen. n. (for Sphecodes pseudoredivivus Astafurova & Proshchalykin and relatives), and Melittocleptes gen. n. (for S. insularis Smith). The two species of Callosphecodes were figured and their shared features briefly summarized by Rasmussen & Michener (2011). Callosphecodes, Thrausmus, and Melittocleptes all have a prominent preoccipital carina, thinly lamellate laterally in the latter two genera, and a strong hypostomal carina that is developed into a prominent tooth posteriorly, particularly so in Thrausmus. Each of these groups are remarkably distinctive, even more so than Eupetersia, and there is no clear affinity at this time to any subgroup of Sphecodes s.l. Accordingly, I believe it is worthy to classify each as a genus. Should phylogenetic studies indicate their derivation from among Sphecodes, then they can easily be demoted as subgenera. It seems that

Melittocleptes may be closely related to *Callosphecodes*, in which case they could be united as subgenera of a single group, but as this relationship remains speculative I have erred on the side of treating each as distinct.

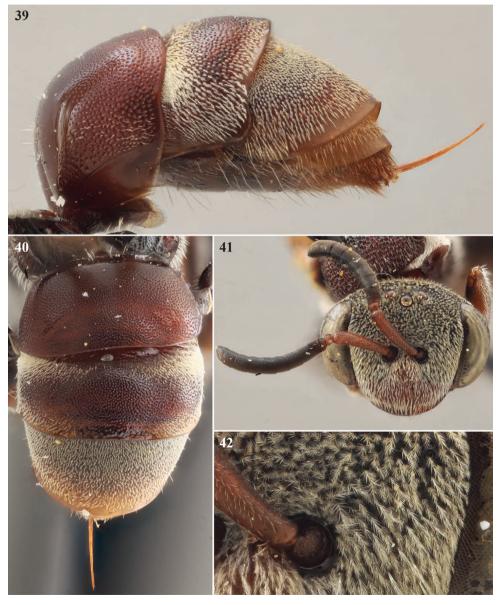
Key to Old World genera of Sphecodina

- Free part of marginal cell about 2.25–3× as long as part subtended by submarginal cells, submarginal cells not extending beyond tangent of pterostigmal apex (*i.e.*, juncture of 2rs-m and Rs at or before tangent of pterostigmal apex) [Indomalaya] ... *Caenosphecodes* gen. n.

Figs 37–38. — *Thrausmus grandidieri* Buysson, ♀, from Madagascar: 37, Lateral habitus; 38, Dorsal habitus.

- Hypostomal carina not projected posteriorly as a tooth; preoccipital carina typically absent, sometimes present laterally and often comparatively weak; mandible of female simple or with subapical tooth/subapical angle
 5

- Flagellomere II of male usually longer than broad, unlike flagellomere I; gonocoxa of male usually striate, without depression; body and especially propodeum usually coarsely pitted; mandible of female nearly always with preapical tooth (except in some subgenera such as *Drepanium* Robertson); horizontal surface of propodeum shorter than or about as long as mesoscutellum [Africa, Eurasia (inclusive of Malesia), Papuasia, Australia] . . . Sphecodes


 Latreille s.l.

Caenosphecodes gen. n.

Type species: Sphecodes pseudoredivivus Astafurova & Proshchalykin in Astafurova, Proshchalykin & Schwarz 2020.

Diagnosis: This genus is the Old World equivalent of Microsphecodes as both have the submarginal cells compressed and not extending beyond the tangent of the pterostigmal apex, rather fine punctation, and the mesoscutum low and rounding gently to the pronotal margin. In addition, the areolae on basal area of the propodeum, on either side of the midline, are enlarged and resemble those of Microsphecodes. However, unlike Microsphecodes the prepygidial fimbria is present. The genus is certainly closely allied to Eupetersia and resembles that group in most respects aside from the contracted forewing venation. Indeed, it could just as easily be treated as a subgenus under Eupetersia (there is considerable

resemblance to *Pollinicleptis*) were it not for the length of the basal area of the propodeum relative to the mesoscutellum. Until such time, I treat it here as a genus. The transfer of the type species from *Sphecodes* results in the following new combination: *Caenosphecodes pseudoredivivus* (Astafurova & Proshchalykin) comb. n. The genus also includes *C. sauteri* (Meyer) and, at least tentatively, *C. redivivus* (Blüthgen) comb. n. It is possible that *S. simlaensis* Blüthgen also belongs here and so it is tentatively included: *C. simlaensis* (Blüthgen) comb. n.

Figs 39–42. — *Thrausmus grandidieri* Buysson, ♀, from Madagascar: 39, Lateral view of metasoma; 40, Dorsal view of metasoma; 41, Facial view; 42, Detail of facial setae.

Etymology: The new genus-group name is a combination of the Ancient Greek adjective $\kappa \alpha i \nu \delta \zeta$ (kainós, meaning, 'novel' or 'new') and Sphecodes (for derivation of Sphecodes refer to etymology of Trichosphecodes, supra). The gender of the name is masculine.

ZooBank LSID: urn:lsid:zoobank.org:act:B842038B-5E1F-4E37-837F-CA0F 03117701.

Genus Eupetersia Blüthgen s.l.

A further challenge among sphecodines is the circumscription of *Eupetersia*, and particularly its two subgenera (Michener 2007). Most characters would indicate that Eupetersia is nothing more than a subtly different group of Sphecodes, and even Benoist (1962) suggested that they were not sufficiently distinct. Indeed, it is tempting to treat Eupetersia within Sphecodes if it were not for the preliminary results of Habermannová, Bogusch, P. & Straka (2013), which suggested it is a group sister to all other Sphecodes. One might therefore argue it should be an early diverging subgenus therein, but maintaining current usage, as it does not seem to render Sphecodes paraphyletic, seems a more stable option for the classification. Nonetheless, the organization of the species into the subgenera Eupetersia and Nesoeupetersia Blüthgen seems problematic (Michener 1978, 2007). For example, there are several species that fully intermingle the characters purported to segregate these two groups, thereby obviating their distinctions as currently circumscribed. Currently, Eupetersia s.str. purportedly comprises those species with dense mesoscutal punctation, a bigibbous mesoscutellum, and both 1m-cu and 2m-cu meeting the third submarginal cell (or 1m-cu confluent with 1rs-m), while Nesoeuptersia encompasses those species with a more scattered mesoscutal punctation, a gently convex to relatively flat mesoscutellum (not bigibbous), and 1m-cu entering the second submarginal cell. Yet, in the Malagasy species Eupetersia atra Pauly & Brooks the mesoscutum is punctured as in Nesoeupetersia, while the mesoscutellum is faintly bigibbous and 1m-cu is confluent as in Eupetersia s.str. The same is basically true for E. nathani Baker (Fig. 52), although 1m-cu enters the second submarginal cell. Conversely, E. angavokely Pauly & Brooks has a denser mesoscutal punctation and distinctly bigibbous mesoscutellum as in Eupetersia s.str., with 1m-cu entering the second submarginal cell as in Nesoeupetersia. There is a pattern for some species to have the hypoepimeral area polished and rather smooth compared with the remainder of the mesepisternum (typical in most Nesoeupetersia), while the hypoepimeral area may be coarsely sculptured as on the rest of the mesepisternum, which is more common in Eupetersia s.str. But again, this intermingles, with a putative species of *Nesoeupetersia*, E. emini Blüthgen, combining the typical features of Nesoeupetersia with the coarsely sculptured hypoepimeral area. Other species also intermingle the subgeneric traits in similar fashion. The concavity of the anterior margin of the pronotal collar also intergrades across the species (e.g., Figs 54–56). And, then there is a species like E. constricta (Benoist) (Fig. 48), which lacks a preoccipital carina and even obviates one of the distinctions between Eupetersia s.l. and Sphecodes. The point of this summation is that the character complexes across *Eupetersia s.l.* are fraught with challenges. The subgenera as currently circumscribed do not hold and their characters intermix. If one ignores the steady transition among the species from the flatter mesoscutella, to the convex, to the weakly bigibbous, and ultimately to the prominently bigibbous,

as well as the position of 1m-cu, then the mesoscutal sculpturing does appear to segregate the bees into nice groups, which could be natural, although they do not correspond in composition to the subgenera as currently populated. Furthermore, one species, *E. reticulata* (Benoist) (Figs 43–47), does not belong to any of the groups and is here treated as a distinct lineage in its own right and may be worthy of generic rank in the future. The arrangement of species to subgenera in the new system for *Eupetersia s.l.* is provided in Appendix I while a new species is presented in Appendix II.

Figs 43–44. — Eupetersia (Xanthocleptis) reticulata (Benoist), ♀, from Madagascar: 43, Lateral habitus; 44, Facial view.

Key to subgenera of *Eupetersia*

- Mandible as long as or longer than compound eye; interocular distance greater than compound eye length [tropical Africa] Cephalosphecodes subgen. n.

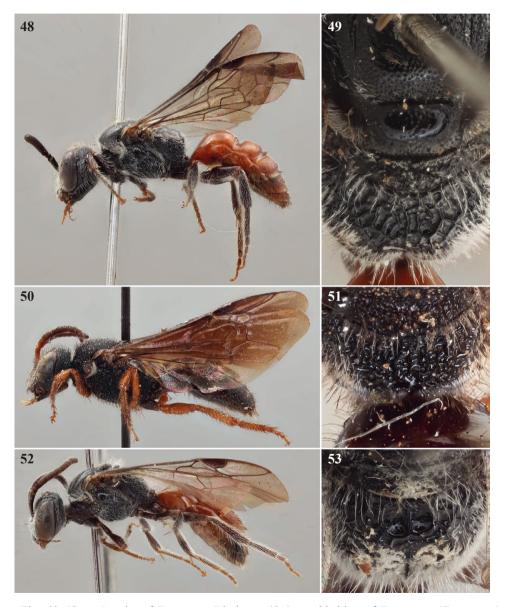
Xanthocleptis subgen. n.

Type species: Nomia reticulata Benoist, 1962.

Diagnosis: This is the most distinctive group of Eupetersia, and the species could easily be recognized as a separate genus but any further decision on its classification should await resolution of its relationship to other African Eupetersia or Sphecodes. The group is easily diagnosed by the following combination of characters (Figs 43–47): integument wholly yellow to reddish yellow, with sparse minute punctures, otherwise smooth; mandible slightly shorter than compound eye; antennal toruli low on face, near clypeus, with subantennal sulcus shorter than torular diameter; antenna of female compact, length of flagellum only slightly longer than length of scape, distinctly less than twice length of scape; flagellomere II of female similar to flagellomere III; pronotal lateral ridge wholly rounded with scant plumose pubescence dorsally; metatibia with spine-like setae on retrodorsal edge; basal area of propodeum with fine rugulae radiating from base to apex.

Etymology: The new genus-group name is a combination of the Ancient Greek adjective $\xi \check{\alpha} \nu \theta \acute{o} \varsigma$ (xanthós, meaning, 'yellow') and the noun κλέπτης (kléptēs, meaning, 'thief', which in Latin is cleptīs). The gender of the name is masculine.

ZooBank LSID: urn:lsid:zoobank.org:act:2D402C59-9448-4099-B519-5E09DE 254592.



Figs 45–47. — *Eupetersia (Xanthocleptis) reticulata* (Benoist), ♀, from Madagascar: 45, Detail of spinelike setae on retrodorsal margin of metatibia; 46, Dorsal habitus; 47, Dorsal view of head and mesosoma.

Pollinicleptis subgen. n.

Type species: Eupteresia nathani Baker, 1974.

Diagnosis: This subgenus can be distinguished by the following combination of characters: mandible of female shorter than compound eye; antennal toruli slightly below facial midlength, with subantennal sulcus as long as or longer than torular

Figs 48–53. — Species of *Eupetersia* Blüthgen: 48, Lateral habitus of *Eupetersia* (*Eupetersia*) constricta (Benoist); 49, Basal area of propodeum of *E.* (*E.*) constricta; 50, Lateral habitus of *E.* (*E.*) guillarmodi Michener; 51, Basal area of propodeum of *E.* (*E.*) guillarmodi; 52, Lateral habitus of *E.* (*Pollinicleptis*) nathani Baker (holotype); 53, Basal area of propodeum of *E.* (*P.*) nathani.

diameter; antenna of female not compact, length of flagellum twice or more length of scape and extending back well over mesoscutum; flagellomere II of female distinctly shorter than flagellomere III, more similar to flagellomere I; pronotal lateral ridge carinate (sometimes weakly so) to rounded; metatibia without spinelike setae on retrodorsal edge; basal area of propodeum with large, paired areolae on either side of midline.

Etymology: The new genus-group name is a combination of the Latin noun *pollen* (meaning, 'finest dust', 'milldust', and, of course, today referring to floral pollen; genitive *pollinis*) and the noun *cleptīs* (meaning, 'thief'). The gender of the name is masculine.

ZooBank LSID: urn:lsid:zoobank.org:act:0B668745-468E-4698-8DEA-BE4D6 A39CD95.

Cephalosphecodes subgen. n.

Type species: Eupetersia macrocephala Pauly, 1981.

Diagnosis: This subgenus can be distinguished by the following combination of characters: integument black with brown to dark orange on metasoma; head considerably broadened; mandible elongate, as long as or longer than compound eye; interocular distance greater than compound eye length; antennal toruli slightly below facial midlength, with subantennal sulcus as long as or longer than torular diameter; antenna of female not compact, length of flagellum twice or more length of scape and extending back well over mesoscutum; flagellomere II of female distinctly shorter than flagellomere III, more similar to flagellomere I; pronotal lateral ridge carinate or at least strongly angulate; mesoscutum with smaller and finer punctures, punctures separated by $2\times$ puncture width or more; metatibia without spine-like setae on retrodorsal edge; basal area of propodeum rugulose to rugosostriate (without large areolae on either side of midline).

Figs 54–56. — Species of *Eupetersia* Blüthgen, dorsal view of mesosoma: 54, *Eupetersia* (*Eupetersia*) constricta (Benoist); 55, E. (E.) guillarmodi Michener; 56, E. (*Pollinicleptis*) nathani Baker (holotype).

Etymology: The new genus-group name is a combination of the Ancient Greek κεφάλή (kephalé, meaning, 'head') and Sphecodes (for derivation of Sphecodes refer to etymology of Trichosphecodes, supra). The gender of the name is masculine.

ZooBank LSID: urn:lsid:zoobank.org:act:CF65A0AF-FC41-448F-BD0F-D5099 C3445EA.

Figs 57–58. — *Melittocleptes insularis* (Smith), \bigcirc (compared with holotype), from Central Sulawesi, Indonesia: 57, Lateral habitus; 58, Facial view.

Melittocleptes gen. n.

Type species: Sphecodes insularis Smith, 1858.

Diagnosis: As in *Thrausmus* and *Callosphecodes*, the hypostomal carina is strong and is developed at its posterior-end into a thick tooth, the preoccipital carina is strong and thinly lamellate laterally (as in *Thrausmus*), the mandible of the female is strongly bidentate, and metasomal segment II is depressed basally forming weak constrictions between the first and second terga and sterna. Like *Callosphecodes* the

Figs 59–61. — *Melittocleptes insularis* (Smith), ♀ (compared with holotype), from Central Sulawesi, Indonesia: 59, Dorsal view of mesosoma; 60, Basal area of propodeum; 61, Dorsal view of metasoma.

metabasitibial plate is raised and comparatively well-defined and the face below the upper frons is densely covered in white pubescence, but the integument of the head and mesosoma is black and the metasoma is largely reddish except apically dark brown to black (Figs 57–61) (versus wholly back with dark metallic blue, purple, or greenish tint in *Callosphecodes*) and the wings are hyaline (rather than infuscate). In addition, the first flagellomere of the female is compact and only about half as long as the second flagellomere (flagellomeres nearly equal in *Callosphecodes*). Both genera have the vertex elevated, raised to a peak above the level of the ocelli (Fig. 58), but lacking a keel or transverse ridge that sometimes occurs in *Sphecodes*, and the pronotal lateral angles are projected and slightly acute, forming a distinct and sharp angled point. The transfer of the type species from *Sphecodes* results in the following new combination: *Melittocleptes insularis* (Smith) comb. n.

Etymology: The new genus-group name is a combination of the Ancient Greek μέλιττἄ (mélitta, meaning, 'bee') and κλέπτης (kléptēs, meaning, 'thief'). The gender of the name is masculine.

ZooBank LSID: urn:lsid:zoobank.org:act:5DEE7DFD-4213-4483-AD3A-4B72 B9E44148.

Genus Sphecodes Latreille s.l.

Key to Old World subgenera of Sphecodes

1	Mandible of female simple
2(1)	Preoccipital carina absent
3(2)	Retrodorsal margin of female metatibia with spine-like setae [Holarctic, northern Africa]
-	Retrodorsal margin of female metatibia without spine-like setae [Europe, northern Africa]
4(1)	Hind wing with 7–14 hamuli
_ ` ´	Hind wing with 5–6 hamuli
5(4) -	Preoccipital carina present laterally
6(5)	Vertex without transverse ridge or keel
_	Vertex with transverse ridge or keel Eusphecodes subgen. n.
7(6)	Tegula unmodified, ovoid; retrodorsal margin of female metatibia with spinelike setae
-	Tegula expanded, anterior and anterolateral margins explanate; retrodorsal margin of female metatibia without spinelike setae [Madagascar] Nomiocleptes subgen. n.
8(5)	Lateral ridges on either side of propodeal pit roughly parallel along length, sometimes slightly diverging above but generally forming narrow space to margin with dorsal surface
-	Lateral ridges on either side of propodeal pit distinctly diverging dorsally, forming large triangular polished surface between in upper half to third Sabulicola Verhoeff
9(8)	Retrodorsal margin of female metatibia without spinelike setae; basal area of propodeum about as long as metanotum [Africa]

Proteraneropsis subgen. n.

Type species: Sphecodes spinulosus Hagens, 1875.

Diagnosis: As the name suggests, this subgenus is superficially similar to *Proteraner*, largely owing to the lateral preoccipital carina, the larger number of hamuli, the absence of ridge on the vertex, the subapical tooth of the female mandible, and the spinelike setae of the retrodorsal margin of the female metatibia, but can be most readily distinguished by the shorter flagellomeres of males, in which flagellomere II is elongate, but does not reach to $4\times$ or more the length of flagellomere I (as is the case in *Proteraner*).

Etymology: The new subgeneric name is a combination of *Proteraner* Robertson [itself a combination of the adjective *próteros* ($\pi\rho\delta\tau\epsilon\rho\sigma\varsigma$, meaning, 'before' or 'former') and the noun $an\acute{e}r$ ($\check{a}v\acute{\eta}\rho$, meaning, 'adult male'); Robertson (1903) was apparently referring to the early appearance of males in the Spring in the type species] and $\check{o}\psi\check{\iota}\varsigma$ ($\acute{o}psis$, meaning, 'sight' or 'countenance' or 'appearing like'). The gender of the name is feminine.

ZooBank LSID: urn:lsid:zoobank.org:act:186CAD98-CF35-42EE-8D23-B11E7 45AC4A8.

Paradrepanium subgen. n.

Type species: Sphecodes brunneipes Friese, 1914.

Diagnosis: This subgenus is similar to *Drepanium* as both have the female mandible simple, but unlike that group the preoccipital carina is present (wholly absent in *Drepanium*). In addition, there is a smaller number of hamuli on the hind wing (six or seven hamuli) and a weakly elevated vertex.

Etymology: The new subgeneric name is a combination of Ancient Greek πἄρἄ (pará, meaning, 'near' or 'beside') and Drepanium Robertson [itself formed of Ancient Greek δρεπἄνη (drepánē, meaning, 'sickle' or 'scythe') and the Latin suffix –ium (neuter of –ius, adjective-forming suffix)]. The gender of the name is neuter.

ZooBank LSID: urn:lsid:zoobank.org:act:60F41D74-544C-4E80-9D08-1A3BE 8E25CE7.

Xystoclops subgen. n.

Type species: Sphecodes hirtellus Blüthgen, 1923.

Diagnosis: Xystoclops is quite similar to Drepanium (e.g., simple female mandible and lack of a preoccipital carina) but can be distinguished by the absence of spinelike setae on the retrodorsal margin of the female metatibia.

Etymology: The new subgeneric name is a combination of Ancient Greek ζὕστός (xustós, meaning, 'scraped', 'cropped', or 'shaved')] and and κλώψ (klṓps, meaning, 'thief'). The name refers to the absence of the metatibial spine-like setae. The gender of the name is masculine.

ZooBank LSID: urn:lsid:zoobank.org:act:60C78AA3-CC78-4456-BAD5-22947 4B19979.

Eusphecodes subgen. n.

Type species: Sphecodes olivieri Lepeletier de Saint Fargeau & Audinet-Serville, 1828.

Diagnosis: Eusphecodes includes those species with a subapical tooth or subapical angle and a larger number of distal hamuli on the hind wing. The preoccipital carina is present laterally, and most importantly, there is a characteristic transverse ridge or keel on the vertex.

Etymology: The new subgeneric name is a combination of Ancient Greek prefix $\varepsilon \dot{v}$ —(eu—, meaning, 'good', 'well', 'genuine', or 'true') and Sphecodes Latreille (for derivation of Sphecodes refer to etymology of Trichosphecodes, supra). The gender of the name is masculine.

ZooBank LSID: urn:lsid:zoobank.org:act:F73F27C8-5326-47BC-94ED-8487 44C44E1F.

Caenocleptes subgen. n.

Type species: Sphecodes niger Hagens, 1874.

Diagnosis: Caenocleptes encompasses a group of Eurasian species similar to Sphecodium, with the hind wing bearing a smaller number of distal hamuli and the female mandible with a subapical tooth or subapical angle. Unlike Old World Sphecodium, the hypoepimeral area is polished and largely smooth, the sculpturing differing noticeably from that of the remainder of the mesepisternum.

Etymology: The new subgeneric name is a combination of the Ancient Greek adjective καινός (kainós, meaning, 'novel' or 'new') and κλέπτης (kléptēs, meaning, 'thief'). The gender of the name is masculine.

ZooBank LSID: urn:lsid:zoobank.org:act:216E4404-D0EF-458C-9AD4-836E6 888A67A.

Callocleptes subgen. n.

Type species: Sphecodes rufichelis Strand, 1911 [1912].

Diagnosis: *Callocleptes* is an African subgenus similar to *Sphecodes s.str.*, but differs in that the basal area of the propodeum is about as long as the metanotum (versus about as long as the mesoscutellum), combined with an absence of spinelike setae on the retrodorsal margin of the female metatibia.

Etymology: The new subgeneric name is a combination of Ancient Greek κάλλος (kállos, meaning, 'noble' or 'beauty') and κλέπτης (kléptēs, meaning, 'thief'). The gender of the name is masculine.

ZooBank LSID: urn:lsid:zoobank.org:act:1A1109FA-22FF-4496-810B-9A97A 880287D.

Nomiocleptes subgen. n.

Type species: Nomia rudiuscula Benoist, 1963 [1964].

Diagnosis: This subgenus is immediately distinctive for the explanate anterior and apicolateral margins of the tegula, superficially resembling the enlarged tegulae of

some nomiines (and perhaps partially leading Benoist to place his species in *Nomia*). In addition, the retrodorsal margin of the female metatibia lacks spinelike setae, the female mandible has a subapical tooth, the preoccipital carina is present laterally at least weakly so, the vertex lacks a distinct ridge, and the hind wing has a larger number of distal hamuli.

Etymology: The new subgeneric name is a combination of Ancient Greek Νομία (Nomia, an Arcadian nymph and a reference to the genus Nomia Latreille) and κλέπτης (kléptēs, meaning, 'thief'). The gender of the name is masculine.

ZooBank LSID: urn:lsid:zoobank.org:act:5679A99D-59A5-4B32-AA08-14C28 6AAE1C7.

ACKNOWLEDGEMENTS

I am grateful to Rebecca K. Hawkins and Victor H. Gonzalez for assistance with photography and to the late Charles D. Michener for countless discussions on the morphology, biology, and classification of bees (among a mickle of other topics), including my musings on the classification of sphecodines. I had hoped this would have been a more comprehensive consideration of these eyesome bees, particularly *Sphecodes*, but as this is perhaps my final contribution to the matter I felt it worthwhile to gather into quick form my notes in the hopes that erelong it shall push someone to either refute that which I have put down or to more fully develop what is only initiated herein. Partial support for this work was provided by U.S. National Science Foundation grant DBI-2101851 (to V.H. Gonzalez & M.S. Engel). I thank Evandson J. dos Anjos Silva for his helpful review comments.

REFERENCES

- **Astafurova, Y.V. & Proshchalykin, M.Y.** 2015. Bees of the genus *Sphecodes* Latreille, 1804 of Siberia, with a key to species (Hymenoptera: Apoidea: Halictidae). *Zootaxa* **4052**(1): 65–95.
- 2020. New and little-known bees of the genus *Sphecodes* Latreille, 1804 (Hymenoptera: Apoidea: Halictidae) from the Himalayas. *European Journal of Taxonomy* **729**(1): 74–120.
- **Astafurova, Y.V., Proshchalykin, M.Y. & Schwarz, M.** 2018. New and little known bees of the genus *Sphecodes* Latreille, 1804 (Hymenoptera: Apoidea: Halictidae) from Central Asia. *Zootaxa* 4441(1): 76–88.
- **Baker, D.B.** 1974. *Eupetersia*, a genus of parasitic halictine bees (Hym., Apoidea) new to the Oriental Region. *Entomologist's Monthly Magazine* **110**(1316–1318): 59–63, +1 pl.
- **Benoist, R.** 1962. Apides (Hyménoptères) recueillis à Madagascar par le Dr Fred Keiser en 1957–1958. Verhandlungen der Naturforschenden Gesellschaft in Basel 73(1): 107–148.
- **Blüthgen, P.** 1923. Beiträge zur Systematik der Bienengattung *Sphecodes Latr. Deutsche Entomologische Zeitschrift* 1923(5): 441–514.
- ——— 1928b. Beiträge zur Kenntnis der afrikanischen Halictinae (Hym., Apidae, Halictidae). Zoologische Jahrbücher, Abteilung für Systematik, Geographie und Biologie der Tiere **55**: 163–252.
- Bogusch, P. & Straka, J. 2012. Review and identification of the cuckoo bees of central Europe (Hymenoptera: Halictidae: *Sphecodes*). *Zootaxa* 3311: 1–41.
- Buysson, R., du. 1900. Sur quelques Hyménoptères de Madagascar. Annales de la Société Entomologique de France 69: 177–180.

- **Cockerell, T.D.A.** 1898. Tables for the determination of New Mexico bees. *Bulletin of the University of New Mexico* 1: 41–73.
- **Dehon, M., Michez, D., Nel, A., Engel, M.S. & De Meulemeester, T.** 2014. Wing shape of four new bee fossils (Hymenoptera: Anthophila) provides insights to bee evolution. *PLOS* [*Public Library of Science*] *ONE* 9(10): e108865 [1–16].
- **Dehon, M., Perrard, A., Engel, M.S., Nel, A. & Michez, D.** 2017. Antiquity of eleptoparasitism among bees revealed by morphometric and phylogenetic analysis of a Paleocene fossil nomadine (Hymenoptera: Apidae). *Systematic Entomology* **42**(3): 543–554.
- **Eickwort, G.C.** 1978. *Mexalictus*, a new genus of sweat bees from North America (Hymenoptera: Halictidae, Halictinae). *Journal of the Kansas Entomological Society* **51**(4): 567–580.
- **Eickwort, G.C. & Stage, G.I.** 1972. A new subgenus of Neotropical *Sphecodes* eleptoparasitic upon *Dialictus* (Hymenoptera: Halictidae, Halictinae). *Journal of the Kansas Entomological Society* **45**(4): 500–515.
- **Engel, M.S.** 2001. A monograph of the Baltic amber bees and evolution of the Apoidea (Hymenoptera). *Bulletin of the American Museum of Natural History* **259**: 1–192.
- 2006a. A new species of *Microsphecodes* from St. Kitts (West Indies) (Hymenoptera: Halictidae). *Mitteilungen des Internationalen Entomologischen Vereins* **31**(1–2): 51–54, +1 pl.
- ——— 2006b. A new genus of cleptoparasitic bees from the West Indies (Hymenoptera: Halictidae). *Acta Zoologica Cracoviensia* **49B**(1–2): 1–8.
- 2011. A new species of *Microsphecodes* from Jamaica (Hymenoptera, Halictidae). *ZooKeys* 111: 33–40.
- ——— 2013. A new species of *Microsphecodes* from Peru, with notes on the classification of the genus (Hymenoptera: Halictidae). *Journal of Melittology* **24**: 1–9.
- Friese, H. 1909. Die Bienenfauna von Neu-Guinea. Annales Historico-Naturales Musei Nationalis Hungarici 7(1): 179–288.
- ——— 1914. Die Bienenfauna von Java. Tijdschrift voor Entomologie 57(1): 1–61, +2 pls.
- Gonçalves, R.B. 2021. A revised genus-level classification for the Neotropical groups of the cleptoparasitic bee tribe Sphecodini Schenck (Hymenoptera, Apidae, Halictinae). *Revista Basileira de Entomologia* 65(1): e20200094 [1–10].
- Habermannová, J., Bogusch, P. & Straka, J. 2013. Flexible host choice and common host switches in the evolution of generalist and specialist cuckoo bees (Anthophila: Sphecodes). PLoS ONE 8(5): e64537.
- **Hagens, D., von.** 1874. Ueber die Genitalien der männlichen Bienen, besonders der Gattung *Sphecodes. Berliner Entomologische Zeitschrift* 18(1–2): 25–43.
- Herhold, H.W., Davis, S.R., Smith, C.S., Engel, M.S. & Grimaldi, D.A. 2019. Unique metasomal musculature in sweat bees (Hymenoptera: Apoidea: Halictidae) revealed by micro-CT scanning. *American Museum Novitates* **3920**: 1–28.
- **International Commission on Zoological Nomenclature.** 1999. *International Code of Zoological Nomenclature* [4th Edition]. London: International Trust for Zoological Nomenclature.
- Lepeletier de Saint Fargeau, A.L.M. & Audinet-Serville, J.G. 1828. [Sections] Sphecodes, pp. 447–448]]. In: Latreille, P.A. (Ed.). Encyclopédie Methodique. Histoire Naturelle. Entomologie, ou Histoire Naturelle des Crustacés, des Arachnides et des Insectes. Tome Dixième [Part II] [pp. 345–832]. Paris: Agasse.
- Mahlmann, T. & Engel, M.S. 2023. First occurrence of the eleptoparasitic bee genus *Microsphecodes* from Amazonian Brazil (Hymenoptera: Halictidae). *Entomologist's Monthly Magazine* **159**(2): 105–109.
- Meyer, R. 1919a [1920]. Apidae Sphecodinae. Archiv für Naturgeschichte, Abteilung A 85(1): 79–160. [Nota bene: issued July 1920]
- Michener, C.D. 1978. The parasitic groups of Halictidae (Hymenoptera, Apoidea). *University of Kansas Science Bulletin* **51**(10): 291–339.
- ——— 2007. The Bees of the World [2nd Ed.]. Baltimore: Johns Hopkins University Press.

Michener, C.D., Breed, M.D. & Bell, W.J. 1979. Seasonal cycles, nests, and social behavior of some Colombian halictine bees (Hymenoptera; Apoidea). *Revista de Biología Tropical* 27(1): 13–34.

Pauly, A. 1981. Note sur les abeilles cleptoparasites du genre Eupetersia avec une révision du sousgenre Eupetersia (Hymenoptera Halictidae). Bulletin et Annales de la Société Royale Belge d'Entomologie 117: 263–274.

Pesenko, Y.A. 2004. The phylogeny and classification of the tribe Halictini, with special reference to the *Halictus* genus-group (Hymenoptera: Halictidae). *Zoosystematica Rossica* **13**(1): 83–113.

Rasmussen, C. & Michener, C.D. 2011. Callosphecodes, a little-known bee (Hymenoptera, Halictidae, Sphecodes). ZooKeys 127: 61–68.

Robertson, C. 1903. Synopsis of Sphecodinae. Entomological News 14(4): 103–107.

Sakagami, S.F. 1974. Sozialstruktur und Polymorphismus bei Furchen- und Schmalbienen, pp. 257–293. In: G.H. Schmidt (Ed.). Sozialpolymorphismus bei Insekten: Probleme der Kastenbildung im Tierreich. Stuttgart; Wissenschaftliche Verlagsgesellschaft MBH.

Smith, F. 1858. Catalogue of hymenopterous insects collected at Celebes by Mr. A.R. Wallace. *Journal of the Proceedings of the Linnean Society of London, Zoology* 3: 4–27.

Strand, E. 1911 [1912]. Neue afrikanische Bienen der Gattungen Sphecodes und Ceratina. Archiv für Naturgeschichte 77(Band 1, Supplementheft 4): 12–27.

Warnke, K. 1992. Die westpaläarktischen Arten der Bienengattung Sphecodes Latr. (Hymenoptera, Apidae, Halictinae). Bericht der Naturforschenden Gesellschaft Augsburg 52(195): 9–64.

APPENDIX I

Checklist of species of Sphecodina

The following list summarizes currently valid species of Sphecodina (as of 24 July 2023), arranged by their placement to genus and subgenus. Synonyms are not indicated. Type species are indicated by an asterisk (*). Species of *Sphecodes* Latreille are not arranged as to subgenus given that I have yet to examine definitively identified material of perhaps 35% of the diversity and existing descriptions are inadequate for evaluating the placement of those species.

Genus Austrosphecodes Michener s.l.

subgenus Austrosphecodes Michener s.str.

- A. andinus (Schrottky)
- A. arequipe (Meyer)
- A. argentinus (Schrottky)
- A. asmodeus Gonçalves & Pereira
- A. balrog Gonçalves & Pereira
- A. bogotensis (Meyer)
- A. bonaerensis (Holmberg)
- A. brasiliensis (Schrottky)
- A. bruchi (Schrottky)
- A. cerberus Gonçalves & Pereira
- A. chilensis (Spinola)*
- A. convergens (Michener)
- A. cordillerensis (Jörgensen)
- A. costaricensis (Friese)
- A. equator (Vachal)
- A. friesei (Herbst)
- A. gorgon Gonçalves & Pereira
- A. granulosus (Sichel)
- A. krampus Gonçalves & Pereira
- A. inornatus (Schrottky)
- A. joergenseni (Meyer)
- A. jurupari Gonçalves & Pereira
- A. laetus (Meyer)
- A. lucifer Gonçalves & Pereira

- A. lunaris (Vachal)
- A. melanopus (Schrottky)
- A. mendocinus (Jörgensen)
- A. minarum (Schrottky)
- A. mutillaeformis (Schrottky)
- A. orcus Gonçalves & Pereira
- A. pallitarsis (Vachal)
- A. paraguayensis (Schrottky)
- A. patagonicus (Schrottky)
- A. peruensis (Meyer)
- A. rufiscapis (Vachal)
- A. rugulosus (Sichel)
- A. tartarus Gonçalves & Pereira
- A. vachali (Meyer)

subgenus Melissocleptis Gonçalves

- A. albifacies (Gibbs)
- A. capriciosus (Schrottky)
- A. coriae (Moure & Hurd)*
- A. diablotinus (Gibbs)
- A. genaroi (Engel)
- A. nigritus (Ashmead)
- A. tainoi (Engel)
- A. variabilis (Schrottky)

Genus Caenosphecodes Engel

- C. pseudoredivivus
 - (Astafurova & Proshchalykin)*

C. redivivus (Blüthgen)? M. kathleenae (Eickwort)* C. sauteri (Meyer) M. multirugosus Engel C. simlaensis (Blüthgen)? M. quechua Engel Genus Callosphecodes Friese M. russeiclypeatus (Sakagami & Moure) C. manskii (Rayment) M. stenochorus Engel M. truncaticaudus Michener C. ralunensis (Friese)* Subgenus Eupetersia Blüthgen s.l. subgenus Trichosphecodes Engel M. trichommus Michener subgenus Cephalosphecodes Engel E. macrocephala Pauly* M. trichophthalmus Engel* E. mandibulata Benoist Genus Nesosphecodes Engel N. anthracinus Engel* subgenus Eupetersia Blüthgen s.str. E. angavokely Pauly & Brooks N. halictophagus Engel E. arnoldi Blüthgen N. cubicola Engel Genus Notoclops Engel E. atra Pauly & Brooks E. atrocoerulea Pauly & Brooks N. depressus (Gonçalves)* Genus Ptilocleptis Michener E. avontuurensis Kuhlmann E. bequaerti (Meyer) P. eickworti Michener E. clypeata Blüthgen P. polybioides Michener E. coerulea Blüthgen P. tomentosus Michener* E. constricta (Benoist) Genus Sphecodes Latreille s.l. E. emini Blüthgen S. abessinicus Friese S. aeneiceps Friese E. guillarmodi Michener E. lasurea (Friese) S. albifrons Smith E. lettowvorbecki Blüthgen S. albilabris (Fabricius) E. neavei Blüthgen* S. albociliatus Meyer E. paradoxa Blüthgen S. algoensis Blüthgen E. plumosa Pauly S. almoransis Gupta & Saini E. robusta Benoist S. alternatus Smith E. ruficauda Pauly S. anatolicus Warncke E. ruficrus Blüthgen S. anonymus Blüthgen E. rufipes Pauly S. antennariae Robertson E. sakalava Blüthgen S. arnoldi Blüthgen E. sevrigi Blüthgen S. aroniae Mitchell E. similis Benoist S. arrovanus Cockerell E. subcoerulea Pauly S. arvensiformis Cockerell E. violacea Pauly S. asclepiadis Cockerell E. wissmanni Blüthgen S. aspericollis Sichel subgenus Nesoeupetersia Blüthgen S. assamensis Blüthgen E. dnophera Engel S. atlanticus Warncke E. picea Blüthgen S. atlantis Mitchell E. scotti (Cockerell)* S. atlassa Warncke E. yanegai Pauly S. atriapicatus Strand subgenus Pollinicleptis Engel S. autumnalis Mitchell S. bakeri Cockerell E. malayensis (Blüthgen) S. banksii Lovell E. nathani Baker* S. barbatus Blüthgen E. sabahensis Pauly S. basalis Sichel E. singaporensis Pauly subgenus Xanthocleptis Engel S. binghami Blüthgen E. reticulata (Benoist)* S. biroi Friese Genus Melittocleptes Engel S. bischoffi Blüthgen M. insularis (Smith)* S. bluethgeni Astafurova & Proshchalykin S. borealis Cockerell Genus Microsphecodes Eickwort & Stage s.l. subgenus Baeosphecodes Engel S. brachycephalus Mitchell S. braunsi Blüthgen M. dominicanus (Stage)* M. kittensis Engel S. brevisulcatus Engel M. solitarius (Ashmead) S. brunneipes Friese M. thoracicus (Ashmead) S. californicus Meyer M. xaymacensis Engel S. cameronii (Bingham) subgenus Microsphecodes Eickwort & Stage S. capensis Cameron

s.str.

M. eickworti Engel

M. amazonophilus Mahlmann & Engel

S. carolinus Mitchell

S. castaneae Mitchell

S. centralis Cockerell

S.	chapr	ensis	Blü	thgen
S.	chine	nsis I	Леуе	er
~				

S. clematidis Robertson

S. clypeatus Friese S. columbiae Cockerell

S. confertus Say

S. confusus Blüthgen S. congoensis (Benoit) S. connexus Blüthgen

S. cordovensis Cockerell

S. coronus Mitchell

S. crassanus Warncke S. crassicornis Smith

S. crassus Thomson

S. crawfordi Mitchell

S. cressonii (Robertson) S. cristatus Hagens

S. croaticus Meyer S. dathei Schwarz

S. davisii Robertson

S. dichrous Smith

S. dilutus Cockerell S. diremptus Cockerell

S. discoverlifei Astafurova & Proshchalykin

S. dissimilandus (Cameron)

S. distinctus Meyer

S. duplex Blüthgen S. dusmeti Blüthgen

S. dutti Blüthgen

S. ebmeri Astafurova & Proshchalykin

S. electrum Engel

S. engeli Astafurova & Proshchalykin

S. ephippius (Linnaeus)

S. eritrinus Friese S. eugnathus Blüthgen

S. eustauros Engel S. eustictus Cockerell

S. exaltus Mitchell S. fattigi Mitchell

S. ferruginatus Hagens S. fimbriatus Blüthgen

S. formosanus Cockerell

S. fortior Cockerell

S. fragariae Cockerell

S. fuelleborni Blüthgen

S. fulvicornis Blüthgen S. fumipennis Smith S. galeritus Blüthgen

S. galerus Lovell & Cockerell

S. geoffrellus (Kirby) S. gibbus (Linnaeus)*

S. grahami Cockerell S. guineensis Vachal S. hagensi Ritsema

S. hakkariensis Warncke S. haladai Warncke

S. hemirhodurus Cockerell

S. heraclei Robertson S. hirtellus Blüthgen

S. howardi Cockerell S. hyalinatus Hagens

S. hydrangeae Mitchell

S. ignitus Cockerell

S. ikudomei Mitai & Tadauchi

S. illinoensis (Robertson)

S. ilvadadaria Astafurova

S. intermedius Blüthgen S. invidus (Cameron)

S. iridescens Cockerell

S. iridipennis Smith

S. ituriensis Blüthgen

S. javanicus Friese

S. johnsonii Lovell

S. kershawi Perkins S. kincaidii Cockerell

S. kozlovi Astafurova & Proshchalykin

S. lasimensis Blüthgen

S. laticaudatus Tsuneki

S. laticeps Meyer

S. lautipennis Cockerell

S. levicinctus Cockerell

S. levis Lovell & Cockerell

S. libericus Cockerell S. longuloides Blüthgen

S. longulus Hagens

S. luteiventris Friese

S. luzonicus Blüthgen

S. macswaini Michener

S. magnipunctatus (Cockerell)

S. majalis Pérez

S. manchurianus Strand & Yasumatsu

S. mandibularis Cresson

S. manni Cockerell

S. marginatus Hagens S. maruyamanus Tsuneki

S. matheranensis Blüthgen

S. metanotiaeus Sichel

S. metathoracicus Sichel

S. mexicanorum Cockerell

S. millsi Cockerell

S. miniatus Hagens

S. minor Robertson

S. monilicornis (Kirby)

S. montanus Smith

S. murotai Tsuneki

S. nagasei Mitai & Tadauchi

S. nambui Tsuneki

S. natalensis Friese

S. niger Hagens

S. nigeriae Blüthgen

S. nigricans Timberlake

S. nigricorpus Mitchell

S. nippon Meyer

S. nipponicus Yasumatsu & Hirashima

S. nitidissimus Cockerell

S. nomioidis Pesenko

S. nvassanus Strand

S. okuyetsu Tsuneki

S. olivieri Lepeletier & Audinet-Serville

S. oneili Cameron

S. paraplesius Lovell

S. patruelis Cockerell

S. pecosensis Cockerell

S. pectoralis Morawitz

S. pellucidus Smith

S. perlustrans Cockerell

S. perplexus Nurse

S. persimilis Lovell & Cockerell

S. pesenkoi Astafurova & Proshchalykin

S. pieli Cockerell S. pilosulus Smith

S. pimpinellae Robertson S. pinguiculus Pérez

S. politulus Cockerell S. profugus Cockerell S. propinguus Blüthgen

S. prosphorus Lovell & Cockerell

S. prostygius Mitchell S. pseudocrassus Blüthgen S. pseudofasciatus Blüthgen

S. pulsatillae Cockerell S. punctatus Sichel

S. puncticeps Thomson S. puncticollis Sichel

S. punctiscutum Eardley & Urban

S. pusillus Cockerell S. pycnanthemi Robertson S. quadrimaculatus Blüthgen S. quettensis Blüthgen

S. ranunculi Robertson S. reticulatus Thomson

S. rhois (Cockerell) S. rohweri Cockerell

S. rotundiceps Cockerell S. rubicundus Hagens

S. rubripes Spinola S. rudiusculus (Benoist)

S. rufichelis Strand S. ruficrus (Erichson) S. rufiventris (Panzer)

S. rufoantennatus Benoit S. samarensis Blüthgen

S. sandykachis Astafurova & Proshchalykin

S. saxicolus Warncke S. scabricollis Wesmael S. schenckii Hagens S. schoanus Blüthgen

S. schwarzi Astafurova & Proshchalykin

S. scrobiculatus Pauly & Brooks

S. semicoloratus (Cockerell)

S. senegalensis Sichel

S. setiger Blüthgen S. shawi Lovell

S. shillongensis Blüthgen

S. sibuvanensis Cockerell S. sikkimensis Blüthgen

S. simillimus Smith

S. smilacinae Robertson

S. solidaginis Cockerell

S. solonis Graenicher

S. sophiae Cockerell S. spinulosus Hagens

S. strandi Meyer

S. stygius Robertson

S. subconfertus Sichel

S. sulcatulus Cockerell

S. sulcifera Tsuneki

S. tadschicus Blüthgen S. takaensis Blüthgen

S. tanoi Tsuneki

S. tantalus Nurse S. tertius Blüthgen

S. togoanus Strand

S. townesi Mitchell

S. trjapitzini Astafurova & Proshchalykin

S. trentonensis Cockerell S. tristellus Cockerell

S. tuckeri Friese

S. turanicus Astafurova & Proshchalykin

S. turneri Cockerell S. ugandae Blüthgen

S. uttaricus Astafurova & Proshchalykin

S. veganus Cockerell

S. villosulus Schwarz S. vumbuensis Blüthgen

S. washingtoni Cockerell

S. wheeleri Mitchell S. woodi Cockerell

S. zacatuche Engel

S. zangherii Noskiewicz

Genus Thrausmus Buysson

T. grandidieri (Buysson)*

APPENDIX II

A new Malaysian species of Eupetersia

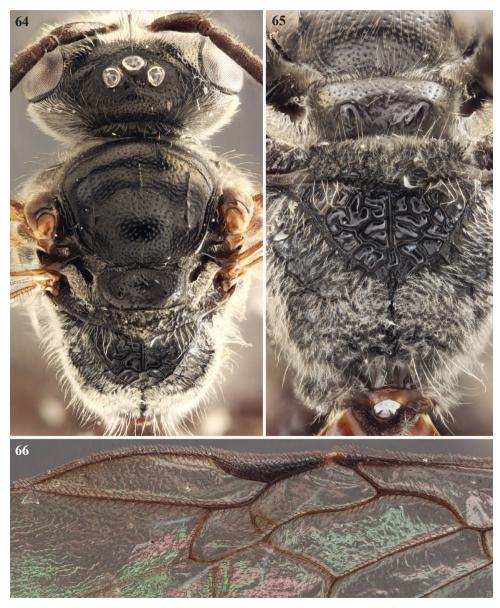
While this paper was in review a distinctive new species of *Eupetersia* came to my attention. Rather than follow this work with another small taxonomic paper on a genus treated herein I have appended a brief description and set of figures for this species.

Fig. 62. — Eupetersia (Nesoeupetersia) d
nophera sp. n., holotype, \circlearrowleft , from Sabah, Malaysia, lateral habitus.

Genus *Eupetersia* Blüthgen *s.l.*Subgenus *Nesoeupetersia* Blüthgen

Eupetersia (Nesoeupetersia) dnophera sp. n. (Figs 62–70)

Diagnosis: This a comparatively large species noteworthy for its deep black coloration (lacking the broader areas of orange on the mesosoma found in species such as *E. yanegai* and *E. scotti*, as well as the yellow legs of the latter), strongly bigibbous (almost bituberculate) mesoscutellum, and unique terminalia (Figs 67–70).


Description

3: Total body length 7.37mm, forewing length 6.00mm. Head broader than long, width (maximum width across compound eyes) 2.02mm, length (as measured from clypeal apex to peak of vertex in facial view) 1.52mm; upper interorbital distance 1.25mm, lower interorbital distance 1.04mm. Mandible simple, long but shorter than compound eye length. Malar space linear.

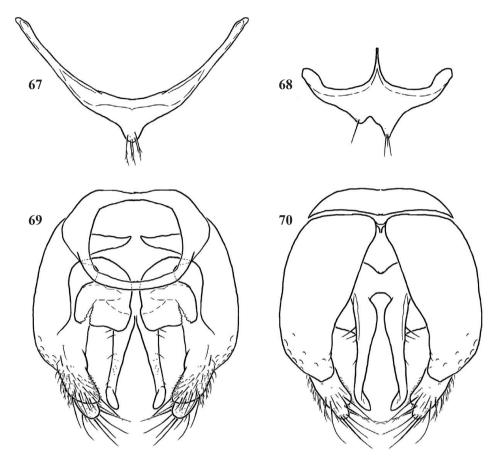


Fig. 63. — Eupetersia (Nesoeupetersia) dnophera sp. n., holotype, ♂, facial view.

Epistomal sulcus broadly obtuse. Frontal line strongly carinate from elevated peak at lower tangent of antennal toruli to point on upper frons where sparser punctation begins, slightly more than one median ocellar diameter in front of median ocellus. Scape slightly longer than torulocellar distance, length 0.69mm. Intertegular distance 1.31mm. Mesoscutellum deep depression, surface therefore bigibbous, paramedial elevations pronounced. Hind wing with five distal hamuli arranged 2-1-2. Terminalia as in Figs 67–70.

Figs 64–66. — Eupetersia (Nesoeupetersia) dnophera sp. n., holotype, ♂: 64, Dorsal view of head and mesosoma; 65, Dorsal-posterior oblique view of propodeum, metanotum, and mesoscutellum; 66, Apical-anterior forewing venation of left wing (note the anteriorly merged 2Rs and 1rs-m).

Figs 67–70. — Eupetersia (Nesoeupetersia) dnophera sp. n., holotype, &, terminalia: 67, Metasomal sternum VII; 68, Sternum VIII; 69, Genital capsule, ventral view; 70, Genital capsule, dorsal view.

Clypeus with irregular-sized, shallow punctures separated by less than a puncture width, integument between punctures smooth and shining; supraclypeal area with small, deep, nearly contiguous punctures; face with distinct punctures separated by less than a puncture width, integument between punctures smooth and shining, punctures slightly more spaced in lower paraocular area and in area bordering ocelli, ocellocular area with punctures noticeably sparser than face, separated by $2-3 \times a$ puncture width; vertex with punctures as on face except on average slightly more spaced; gena with small punctures separated by $1-2\times$ a puncture width, integument between punctures smooth and shining; postgena smooth with scattered setigerous punctures. Mesoscutum with small punctures separated by $1-2 \times a$ puncture width, punctures slightly more spaced anteriorly and outside of parapsidal lines, integument between punctures smooth and shining; mesoscutellum with punctures similar to mesoscutum except slightly denser, punctures separated by 0.5–1.5× a puncture width; metanotum rugulose; mesepisternum coarsely rugosoareolate posteriorly extending into widely separated longitudinal striae and elongate areolae; hypoepimeral area with minute punctures separated by about a puncture width, integument between punctures smooth and shining; metepisternum rugoso-areolate; basal area of propodeum coarsely, irregularly rugoso-areolate, lateral and posterior surfaces coarsely rugoso-areolate. Metasomal terga smooth, terga I and II virtually impunctate aside from sparse setigerous punctures laterally, remaining terga with sparsely scattered setigerous punctures; sterna with

small, distinct punctures intermixed with larger, shallow punctures, puncture separated by $0.5-2 \times$ a puncture width, sparser on sternum II.

Head and mesosoma black except mandible, labiomaxillary complex, and antenna dark brown and tegula semi-translucent brown except lighter laterally and posteriorly; legs dark brown; wing veins dark brown, membranes hyaline clear; metasoma dark brown.

Pubescence bright white except that of wings fuscous; pattern of pubescence typical for genus. Q: Latet.

Material examined

Holotype, ♂, MALAYSIA: Sabah (Borneo), Penampang Dist., Crocker Range, Kipandi Butterfly Park, 720m, 5°52′20″N, 116°14′53″E, 14–24.X.2011 [14–24 October 2011], Malaise, M. Hauser & S.D. Gaimari (AMNH).

Etymology: The specific epithet is the Ancient Greek adjective $\delta vo\varphi\eta\rho\bar{\alpha}'(dnopher\dot{\alpha})$, meaning, 'murky', 'gloomy', or 'dark', and is a reference to the coloration of the species.

ZooBank: urn:lsid:zoobank.org:act:45767C0B-846C-47BB-A2E5-162C39E7F44C

Remarks: The left forewing of the holotype has an aberrant formation of the second submarginal cell whereby 2Rs and 1rs-m are partly fused in their anterior third (Fig. 66). The result of this partial fusion is a narrow, triangular second submarginal cell separated from 3Rs (*i.e.*, there is no margin of the second submarginal cell anteriorly along what would be 3Rs). In the right forewing 2Rs and 1rs-m are wholly independent of each other and there is therefore an anterior border to the second submarginal cell along 3Rs.

Similarly, metasomal sternum VIII is asymmetrical (Fig. 68). When first dissected it was believed to be damaged but upon clearing and closer inspection is was clear that the sternum was complete and that one of the protrusions of the apical margin is significantly reduced relative to the other, although both bear distinct setae at their apices, indicating that the sternum developed this way. Whether this asymmetry is unique to this particular male, is variable within the species, or is fixed across all males remains to be discovered.

Key to Species of Nesoeupetersia (sensu herein)

1	Legs dark brown to black
	Legs wholly yellow to brownish yellow [Seychelles] E. scotti (Cockerell)
2(1)	Pronotum, mesoscutum, and mesoscutellum black
_	Pronotum, mesoscutum, and mesoscutellum orange [Thailand] E. yanegai Pauly
3(2)	Mesoscutellum gently convex, not bigibbous; metasoma with yellowish pubescence
	[Madagascar] E. picea Blüthgen
_	Mesoscutellum distinctly bigibbous; metasoma with bright white pubescence [Malaysia:
	Sabah]