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1 Introduction

In this paper, we consider the following elliptic optimal control problem. Let Q be a bounded convex polygonal/
polyhedral domain in R" (n = 2, 3), y4 € L2(RQ) and let 8 be a positive constant. Find

- .1
O, ) = arg r;;m[zuy - yall}, @ + guuuizm) : V&)
where (y, u) belongs to Hy(Q) x L,(®) if and only if

a(y,v) = J uvdx forallv e H)(Q). (12)
Q
Here the bilinear form a(-, -) is defined as
a(y,v) = J Vy-Vvdx + j(( -Vy)vdx + J yyvdx, 1.3
Q Q Q

where vector field ¢ € [W1*°(Q)]? and the function Y € Loo(Q) is nonnegative. If  # 0, then constraint (1.2) is
the weak form of a general second-order PDE with an advective/convective term. We assume

V—%V'CZV0>0 (1.4)

such that problem (1.2) is well-posed.

Remark 1.1. Throughout the paper we will follow the standard notation for differential operators, function
spaces and norms that can be found, for example, in [15, 22].
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It is well known [35, 42] that the solution of (1.1)-(1.2) is characterized by

a(q, p) = - ya, Pry@ forall q € Hy(Q), (1.52)
p+pBia=0, (1.5b)
a(y,z) = (4, 2)1,9) for all z € Hy(Q), (1.5¢)

where p is the adjoint state. After eliminating i, we arrive at the saddle point problem

a(q, D) - O, QL0 = ~Wa, Proe) forall g € Hy(Q),

(1.6)
~(P, 2)1,(9) - Ba(y,z) =0 forall z € HY(Q).

Notice that §is only in the second equation (1.6). In order to make the equations more balanced, we perform
a change of variables. Let

p=pBip and y=p iy 7

then system (1.6) becomes

B*a(q, p) - (7, DLy = -Bi (ya, QL0 forallqe HY(Q),

1 1.8)
-(P, 2)1,0) - B?a(y,z) =0 for all z € Hy(Q).

The scaling technique (1.7) can also be found in [13, 26, 27].

In this paper, we employ a discontinuous Galerkin (DG) method [2, 3, 37] to discretize the saddle point prob-
lem (1.8). There are several advantages to use DG methods; for example, DG methods are more flexible regarding
choices of meshes and more suitable for convection-dominated problems. It is well known that DG methods can
capture sharp gradients in the solutions such that spurious oscillations can be avoided. Our main goal is to design
multigrid methods for solving the discretized system resulting from the DG discretization that are robust with
respect to the regularization parameter . Note that we reformulate the optimal control problem into a saddle
point problem by eliminating the control variable @ (cf. [30]). Therefore, we do not discretize the control explic-
itly but recover the discrete control using the discrete analog of relation (1.5b). This is a well-known strategy to
discretize the optimal control problem.

Multigrid methods for (1.8) based on continuous Galerkin methods are intensively studied in the literature,
for example, in [6, 13, 36, 39-41] and the references therein. In [13], based on the approaches in [11, 12, 14], the
authors developed multigrid methods for (1.8) using a continuous P finite element method. Besides the robust-
ness of the multigrid methods with respect to f3, the estimates in [13] are established in a natural energy norm,
and the multigrid methods have a standard O(m™') performance, where m is the number of smoothing steps.
In this paper, we extend the results in [13] to DG methods where the diffusion term in (1.3) is discretized by
a symmetric interior penalty (SIP) method and the convection term in (1.3) is discretized by an unstabilized/
centered-fluxes DG method [18, 23]. Multigrid methods based on DG methods are investigated in [1, 9, 10, 16, 28,
31, 32] and the references therein. However, not much work has been done towards the multigrid methods based
on DG discretizations for optimal control problems with provable results. The general idea in this paper is to con-
struct a block-diagonal preconditioner and convert the saddle point problem (1.8) into an equivalent symmetric
positive definite (SPD) problem using the preconditioner. Therefore, well-known multigrid theories for SPD sys-
tem [7, 29] can be utilized. The preconditioner requires solving a reaction-diffusion equation (approximately)
based on a SIP discretization. This, however, does not affect the overall optimal computational complexity of
our multigrid methods since the preconditioner itself can be constructed by multigrid methods (cf. [16]).

Note that the extension of the analysis in [13] to DG methods is not trivial. First, DG methods are noncon-
forming methods in the sense that V, ¢ V. Consequently, the discrete bilinear form By is now different from
the continuous bilinear form B (see Section 4). Therefore, all the definitions at the discrete level are different
from the ones in [13], for example, the inter-grid transfer operators and the projection operators. Secondly, in
order to establish L, error estimates for the DG methods, we need to make sure that the adjoint consistency
(cf. [3]) of the DG methods hold; then a duality argument can be utilized (see Appendix B). Additionally, we need
multigrid methods for DG discretization of a singularly perturbed reaction-diffusion equation to construct the
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crucial preconditioner ql (cf. [16, 28]). At last, and most importantly, the proof of the approximation prop-
erty (Lemma 5.3) cannot rely on the continuous problem anymore. Instead, a connection between level k and
level k — 1is exploited, as well as the connection between primal and dual problems, to prove the approximation
property.

The rest of the paper is organized as follows. In Section 2, we gather some known results regarding the
continuous problem. In Section 3, we discretize the optimal control problem with a DG method and establish
concrete error estimates. A crucial block-diagonal preconditioner is introduced and the multigrid methods for
the discretized system are described in Section 4. In Sections 5 and 6, we establish the main theorem, which
is based on the smoothing and approximation properties of the multigrid methods. Finally, we provide some
numerical results in Section 7 and end with some concluding remarks in Section 8. Some technical proofs are
provided in Appendices A and B.

Throughout this paper, we use C (with or without subscripts) to denote a generic positive constant that
is independent of any mesh parameters and the regularization parameter S. Also, to avoid the proliferation of
constants, we use the notation A < B(or A > B) torepresent A < (constant)B. The notation A = Bis equivalent to
A < Band B < A. Note that we do not consider the convection-dominated case in this paper; hence the constants
might depend on ¢ and y.

2 Continuous Problem

We rewrite (1.8) in a concise form
BB, J), (4, 2) = -B% (Va, Pry@)  forall (g, z) € HY(Q) x HY(Q), @.1)

where
B(p.Y), (4.2)) = B a(q, P) = (¥, Dra@) ~ (B D@ — B, 2). 2.2)
Let ||p||Hl1?(Q) be defined by )
Pl o) = B? IPlinco) + P00
We have the following lemmas (cf. [13]) regarding the bilinear form B with respect to the norm | - || HY(@)-

Lemma 2.1. We have

B((p,y),(q, 2))
||p"Hé(S2) + ||y||H};(Q) = Sup Iql Iz

for any (p,y) € Hy(Q) x Hy(Q).
Remark 2.2. Lemma 2.1 guarantees the well-posedness of (1.8) by the standard theory [5, 17].

Remark 2.3. We also have the similar stability estimate

B((q,2),(p,y))
Pl + Do ~ w0 oS
(@2eHi@xHy@) 1AlH@) T 121HL )

for any (p,y) € Hy(Q) x Hy(Q).
We also need the following regularity results (cf. [13]) on convex domains. Let (p, y) € H(l)(Q) X H(l)(Q) satisfy
B(D,Y), (4, 2) = (f, Do) + (8 2)iy@)  forall (q, 2) € Hy(RQ) x Hy(Q), 23)
where (f; g) € La(Q) x Ly(Q) and B is defined in (2.2).
Lemma 2.4. The solution (p, y) of (2.3) belongs to H*(Q) x H*(Q), and we have
182 Pl + 18Tyl @) < (If @) + 1glLy@)-
Remark 2.5. Lemma 2.4 is also valid for the following dual problem. Find (p, y) € Hé(Q) X H(l)(Q) such that
B, 2), 0.Y)) = (f, Dry@) + (& 21,0 forall (q,2) € Hy(Q) x Hy(Q). 2.4
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3 Discrete Problem

In this section, we discretize the saddle point problem (1.8) by a DG method [2, 3, 18]. Let 7, be a shape regular
simplicial triangulation of Q. The diameter of T € Ty isdenoted by hr, and h = maxreg, hr is the mesh diameter.
Let &, = €} U &L, where €] (vesp. £2) represents the set of interior edges (resp. boundary edges).

We further decompose the boundary edges S;’I into the inflow part Eff and the outflow part SZ’*, which
are defined as follows:

e —feeeliecixeaQ: () n(x) <0}, Xt =ehyel.

For an edge e € &1, let h, be the length of e. For each edge, we associate a fixed unit normal n. We denote
by T* the element for which n is the outward normal, and T~ the element for which —n is the outward normal.
We define the discontinuous finite element space Vj as

Vi ={veLyQ):v|r € P(T) forall T € Tp}.

For v € V; on an edge e, we define v* = v|r+ and v~ = v|7r-. We define the jump and average for v € Vj, on an
edge e as follows:
RS

wl=vr-v, {v} 5

For e € £) with e € 9T, we let [v] = {v} = v|r. We also denote

(W, v)e = Jwv ds and (w,Vv)r:= Jwv dx.
e T

3.1 Discontinuous Galerkin Methods

The DG methods for (2.1) is to find (pp, yr) € Vi x Vp, such that

Br((BroJn), (4, 2)) = -B3 (Va, Qry)  forall (q, z) € Vi x Vi, 3.1)

where
3h((p,))), (qy Z)) = ﬁi ah(q) p) - (Y; q)Lz(Q) - (p) Z)Lz(Q) - ﬁfah(y) Z)- (32)
The bilinear form ap(-, -) is defined by

ap(u,v) = a;ip(u, v) +ay (u,v) forallu,ve Vy, (3.3)
where

AP wv)= Y (i, vr- Y (n-vu, e - Y (-l [ule+ 0 Y hp'([ul, [V])e (3.4)

TeTy eeéy eeéy eely

is the bilinear form of the SIP method with sufficiently large penalty parameter o and the unstabilized DG
scheme (cf. [18, 24]) for the advection-reaction term is defined as

aywv)y= Y (&-Vutywvr- 3 @l {vhe. 35)

TeTn eeSZU&Z”

Remark 3.1. We do not consider convection-dominated case in this paper. Therefore, the bilinear form aj(-, -)
does not contain any upwind stabilization terms. However, if we consider convection-dominated case, the well-
known upwind schemes [4, 18, 34] could be utilized.

It is also necessary to consider the general problem (2.3) and the dual problem (2.4). The DG method for (2.3) is
to find (pn, yn) € Vi x Vi, such that

Bn((Pr>Yn)s (q,2)) = (f, Pry0) + (& 21, forall(q,z) € Vi x Vp. (3.6)
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Similarly, the DG method for (2.4) is to find (pn, yn) € Vi x Vi, such that

Br((q, 2), (pr,yn) = (f, Or,0) + (& 2)1,0) forall(q,z) € Vi x Vy. (3.7

Let the norm || - || HY(Q:T) be defined as

1
1Py iy = BHIPIE 5+ 1PIE 0, (3.9)

where

1
I = 3 IVPIE, ey + D 3o MPUIL, )+ ) hellim- VpHIZ, .
TeTy ec&y € ecép

Let V = H3(Q)n Hé(sz). For the bilinear form ay(-, - ), we have
ap(w,v) < Clwlyplivia,n  forallw,v e V + Vy, (3.9)
an(v,v) = CIvl , forallw,v € Vy, (3.10)
for sufficiently large o. A proof is provided in Appendix A. Note that the constants in (3.9)-(3.10) might depend
on ¢ and y.
It follows from (3.2), (3.8), (3.9) and the Cauchy-Schwarz inequality that
Ba((p. ). (@.2)) < IPlesmy + W@t 1903 0im, + 1201 0ir,)? (311)
for any (p,y),(q,z) € (V + Vi) x (V + V).
We also have, by (3.2), (3.10) and a direct calculation,
Br((p, ), (p —Y,~y = P)) = BEan(p, p) + (0, P)ra@) + B2 an(¥,) + (0, Y1)
2 "p”%{é(g;g'h) + ”yn%{é(Q;m) (3.12)
and
Ip _yn%{;(gg;g'h) +-y - p”%{}g(g;g'h) = 2("[’"?{}9(9;7,1) + "yu%}lg(g;g'h)) (3.13)
by the parallelogram law. It follows from (3.11)-(3.13) that

Bn((pn,yn), (4, 2))
Pl @iz, + Whli@ay = sup brodu 4
(q,2)€Vpx Vi "q"H;;(Q;Th) + "Z”H;;(Q;'Th)

for all (pn, yn) € Vi x Vp. (3.14)

Similarly, we have

B b Z b b
IpnlEy @ + WallEy@m) = sup n((q, 2). (Pr. Y1) for all (pp, yr) € Vi x Vp. (3.15)
@2eVuxvy 1l @) + 121Ey @)

It follows immediately from (3.14) and (3.15) that the discrete problems (3.6) and (3.7) are uniquely solvable. We
also need the following lemma, which follows from a standard inverse estimate (cf. [15]) and trace inequalities
(cf. [21, Proposition 3.1]),

Lemma 3.2. Assuming T}, is a quasi-uniform triangulation of Q, we have the following inverse estimate:

IVlith < h Vi, forallv e V. (3.16)

3.2 Interpolation Operator I,

We use the usual continuous nodal interpolant (which belongs to V) [3, 15, 37] such that the following estimates
hold.

Lemma 3.3. We have
Iz - Mzl + hlz - Tnzla o) < h*|zlmey forall z € H*(Q) n Hy(Q).
Remark 3.4. We also have (cf. [15])

Iz - Mnzlip < izl forall z € HX(Q) N Hy(Q).
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3.3 Error Estimates

It is well known [3, 18, 37] that the DG method (3.1) is consistent. Hence, we have the following Galerkin orthog-
onality:
Br((p = pn,y —Yn),(q,2)) =0 forall(q,z) € Va x V. (3.17)

Lemma 3.5. Let the functions (p,y) (resp. (pn, yr)) be the solutions of (2.3) or (2.4) (resp. (3.6) or (3.7)), we have

I - Prlly@;m + Iy = Yllomy < CBR? + 12 B2 RA(If Iy + I€NLa@), (3.18)
1P~ o + 1y = Yrllze) < CBER2 + DB R (If lzy@) + Iglzace)- (3.19)

Proof. We only establish the estimates involving (2.3) and (3.6). Using estimate (3.14) and relation (3.17), we have

Ip - Prllt gy + Iy —yulat@ay < Inf (Ip - qlat@a,) + 1y — zlai@:74)-
B B (q,2)€VpxVp B A

By Lemma 3.3 and Lemma 2.4, we have
1 1 C
B2lp - Wnpl} , < CB2R2IpllFeq) < th(ufumm + lgllLy@),
2

C
Ip = Trpl7,q) < CRHIPIZ2 ) < Eh4(||f||Lz<m +l1glzy@)?

Thus we obtain
_1 _
Ip = Tl g,y < CBT2R* + B R o) + I8l

It is similar to estimate |y — th||§é(g;7h). Therefore, we have estimate (3.18). Estimate (3.19) is established by
a duality argument. Let (¢, 0) satisfy

BH-BE+-VE+yE-6=p-pr, £=0 onoQ,

1 (3.20)
—&-B2(-00-C-VO+(y-V-0)0)=y—-yn, 6=0 onaoQ.
The weak form of (3.20) is to find (¢, 0) € H}(Q) x Hy(®) such that
B((q,2), (§,0)) = (4, D = P)1s(0) + (2,Y =YWy forall(q,z) € Hy(Q) x Hy(Q). (3.21)
We can show that (cf. [33])
Ip = prlZ, o) + Iy = YallZ, () = Br((P - Pr.y = yn), (£, 6)). (3.22)

A proof is provided in Appendix B.
Then it follows from the Cauchy-Schwarz inequality, (3.17), (3.22) and Lemma 2.4 (apply to (3.21)) that

Ip = prlZ, o) + v = YalZ, ) = Br((P = Pr.y = yn), (£, 6)
= Bp((p - pr,Y = Yn), (§ = x¢, 6 — 11x0))
< (Ip = Pullgsosmy + 1V - Yaln oy,
x (1€ = TThgls g, + 16 — Ol i,
-1.2 1341 _ 2 _ 2 i
<(B he+ B RN (Ip Ph||L2(Q) +1ly yh||L2(Q))Z
x (Ip = Palis oy, + 1Y = Il im) (323)
Estimate (3.19) then follows from (3.23) and (3.18). O

Remark 3.6. Note that the performance of the DG method (3.1) in the norms | - ||l1,, and | - ||z,(q) will deteriorate
when S goes to 0 due to Lemma 3.5. Therefore, a very fine mesh should be used when f is small, in which case
it is necessary to have an efficient iterative solver.
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4 Multigrid Methods

In this section, we introduce the multigrid methods for (2.3). A crucial block-diagonal preconditioner € is intro-
duced. The general idea is to convert the saddle point problem into an SPD problem. Then the well-established
multigrid theories for SPD system [7, 16, 29] can be utilized. We omit some proofs since they are identical to
those of [13].

4.1 Set-Up

Let the triangulation J7, T, . . . be generated from the triangulation Ty through uniform subdivisions such that
hy = %hk_l and let Vi be the DG space associated with Tj. Our goal is to design multigrid methods for the
problem of finding (pk, k) € Vi x Vi such that

Br((PksYi), (q,2)) = F(q) + G(z) forall(q,z) € Vi x Vi, 4.1
where F, G € V,’(, and for the dual problem of finding (px, yx) € Vi x Vi such that
Br((q, 2), (pr, Yk)) = F(q) + G(z) forall(q, z) € Vi x V. “4.2)

Here By represents the bilinear form By on Vi x V.
Let (-,-)x be a mesh-dependent inner product on V,

ng

(v, W)k = hi Y v(pdw(p;) forallv,w e Vi,
i=1
where hy = maxreq, diam T and {p;}; are the nodes in .
Remark 4.1. It can be shown that (v, v)x = ||v||%2(g) for v € Vi (cf. [15]).
Then the mesh-dependent inner product [ -, - Jx on Vi x V is defined by
[(p,Y),(q, 21k = (P, Qi + Y, 2)k-

It is easy to see that
(@, 3), @]k = DI, 0) + I}, @ forall (p,y) € Vi x Vi. 4.3)

The coarse-to-fine operator I ,’§_1: Vik-1 x Vk-1 — Vi x Vi is the natural injection and the fine-to-coarse
operator I’,ﬁ‘l: Vik x Vi — Vk_1 X Vi1 is the transpose of I’,ﬁ_l with respect to the mesh-dependent inner
product, namely,

1 @), (@, D)k = [(0.), T4, D)k forall (p,y) € Viex Vi, (q,2) € Vit X Vit
Let the system operator By : Vi x Vx — Vi x Vi be defined by
Bk, ), (@, D)k = Bi((p,y), (q,2)) forall (p,y),(q,2) € Vi x Vi.
Then the k-th level problem (4.1) is equivalent to
Brp,y) = (.8, 4.4)
where (f, g) € Vi x Vi is defined by
(£, 8),(q, )]k = F(q) + G(z) forall(q,2) € Vi x Vi,

and the dual problem (4.2) becomes
By (p,y) = (f, &) 4.5)
Here, for all (p, y), (q, z) € Vx x Vi, we have

(B0, (@, Dk = [(P, ), Bi(q, 2)]k = Bi((q, 2), (D, y)).
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4.2 A Block-Diagonal Preconditioner

Let Lx: Vx — Vi be an operator that is SPD with respect to (-, - )x and satisfies
1
(Liv, Vi = B2IVIT  + IVIE ) forallv e Vi.

Then the operator €x: Vi x Vi — Vi x Vi given by €x(p,y) = (Lkp, Lxy) is SPD with respect to [ -, - Jx and we
have

Sk, ), (0, Y]k = "p",zqé(g;(]’h) + "yu,qulg(g;g'h) for all (p,y) € Vi x V.
Here the hidden constant is independent of k and §.

Remark 4.2. In practice, we use @;1 as a block preconditioner. The operation L;lq) can be computed approxi-
mately by solving the following boundary value problem:

—B%Au+u=¢ in Q,

u=0 onoQ, 46
using a SIP discretization. This can be constructed by multigrid [16, 28].
Lemma 4.3. We have
(BT, Br(P,Y), (P Yk = WPl 0., + Wiy @iy Sor all (p,) € Viex Vi, @7
[BrC B>y, (0 )k = 1Dl 07, + WlErso;my  for all (p,y) € Viex Vi 4.8)
Lemma 4.4. There exists positive constants Crin and Cpax, independent of k and f3, such that
Amin(B5€"By) > Cruin, Amin(Br€ BY) > Cruin, 4.9)
Amax(BLEIBL) < Crax(BEAZ +1),  Amax(Br€iBL) < Croan(BE R +1). (4.10)

Proof. We only prove the estimates involving %;@;1%;(; other estimates are similar. It follows from (4.7) and
(4.3) that

(B} Br®, ), 0, )]k = DI, 0) + WIF ) = [(,), @, )]k
Estimate (4.9) then is trivial by the Rayleigh quotient formula. We also have, by (4.7), (3.16) and (4.3), that
[BLC B (p.Y), P Yk < BERE + DIP.Y), (0. )]k
Estimate (4.10) is immediate by the Rayleigh quotient formula. O

Remark 4.5. Lemma 4.4 implies that the operators B¢ ¢, %8y, Bx¢;!B¢ are well-conditioned when g2 h;? < 1.

4.3 W-Cycle Algorithm

Let the output of the W-cycle algorithm for (4.4) with initial guess (po, yo) and m; (resp. my) pre-smoothing
(resp. post-smoothing) steps be denoted by MGw (k, (f, £), (Po, Yo), M1, my).

We use a direct solve for k = 0, i.e., we take MGy (0, (f; ), (Po, Yo), m1, my) to be Bal(f,g). For k > 1, we
compute MGy (k, (f; 8), (Po, Vo), m1, my) in three steps.

e Pre-Smoothing. The approximate solutions (p1,y1), . .., (Pm,,Ym,) are computed recursively by
(01, 3) = (Dj-1,Yj-1) + A€ B, 8) — Br(pj-1,Yj-1)) (4.11)
for 1 <j < my. The choice of the damping factor Ay is determined by the following criteria:
Ak = % when f2h;% > 1, (4.12a)
Brh . +1
Ak when g2 h;? < 1, (4.12b)

Amin + Amax

where Apin and Apax are the smallest and largest eigenvalues of %ﬁ{ql% k respectively.
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e Coarse Grid Correction. Let (f', g') = Il;‘l((f, &) — Br(Pm,,Yym,)) be the transferred residual of (pm,, ym,)
and compute (py, y;), (p3,Y5) € Vi1 x V1 by

(pi:y;) = MGW(k - 1) (f’) g’): (O) 0)1 ml: mZ),
(péﬁyé) = MGW(k - 1: (f” g’)) (p;:)’i)» ml) mz)'

We then take (pmy+1, Ymy+1) t0 be (Pmy, Ym,) + Ik, (D5, 35)-
e Post-Smoothing. The approximate solutions (pm,+2, Ymy+2)s - - - » (Pmy+my+1> Ymy+m,+1) are computed recur-
sively by
®;.9)) = (Pj-1,Yj-1) + AuBLE (S, &) — Br(Pj-1,Yj-1)) (4.13)

formy+2<j<mp+my+1.
The final output is MGw (k, (f, 8), (D0, Y0), M1, M2) = (Dmy+my+1, Ymy+my+1)-

Remark 4.6. The choice of (4.12a) is motivated by Lemma 4.4 such that Amax()lk%f{ql%k) < 1. The choice of
(4.12b) is motivated by the optimal choice of Richardson iteration [38] and the well-conditioning of ‘B;@f%k
(cf. Remark 4.5).

Remark 4.7. Note that the post-smoothing step is the Richardson iteration of the SPD system
B Br(p,y) = B (,8)

which is equivalent to (4.4).

4.4 V-Cycle Algorithm

Let the output of the V-cycle algorithm for (4.4) with initial guess (po, yo) and m (resp. my) pre-smoothing (resp.
post-smoothing) steps be denoted by MGy (k, (f, 8), (Po, Vo), m1, my).

The computation of MGy (k, (f, £), (po, Vo), m1, my) differs from the computation of the W-cycle algorithm
only in the coarse grid correction step, where we compute

(p1,y1) =MGy(k-1,(f',g"),(0,0), my, my)

and take (Pm,+1, Ymy+1) 10 b€ (Pmy, Ym,) + 1§ (DL, ¥)).

4.5 Multigrid Algorithms for (4.5)

We define W-cycle and V-cycle algorithms for (4.5) by simply interchanging B} and By in Sections 4.3 and 4.4.
The pre-smoothing step is given by

. Y)) = (Dj-1,Yj-1) + A Br((f, &) — BL(Pj-1,¥j-1))
and the post-smoothing step is given by

(P}, 3) = (j-1,Yj-1) + ABr& (f, §) — BLDpj-1,Yj-1)). (4.14)

5 Smoothing and Approximation Properties

In this section, we establish the smoothing property and the approximation property of the W-cycle algorithm.
These results can then be used to establish the convergence of W-cycle algorithm as in [13]. We omit some proofs
since they are identical to those of [13].
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5.1 AScale of Mesh-Dependent Norms
For 0 < s <1, we define

@, )llsk = [(BLE B (p,y), (p, ] forall (p,y) € Vi x Vi,
N5 4 = [(Br B (0, y), ()] forall (p,y) € Vi x Vi.

Note that
NG = 1DIZ, o) + VI3 o) = (. WIIG,)*  forall (p,y) € Vi x Vi,
by (4.3), and
P i = 1PN @) + W @ = U@ YIT,)* for all (p,y) € Viex Vi,
by (4.7) and (4.8).

5.2 Post-Smoothing Properties

The error propagation operator for one post-smoothing step defined by (4.13) is given by

Ry = Idy - AxBL &' By,

DE GRUYTER

(GNY)

where Idy is the identity operator on Vi x Vx. We also need the error propagation operator for one post-

smoothing step defined by (4.14), which is
Ry =1dy - Ak%kﬁil%i-
Lemma 5.1 (Smoothing Properties). In the case where ﬁ% h;l < 1, we have

IRk(P, W1,k < TP, Y1, forall (p,y) € Vi x Vi,
IRk (P YTy < TP T, for all (p,y) € Vi x Vi,

where 7 € (0,1) is independent of k and p.
In the case where ,B% h,‘(1 > 1, we have, for0 < s <1,

IR D, ik < CBERE + DEm 2, Wlh-sk  for all (p,y) € Vi x Vi,
IR @I < CBEME + DEm 3Ny, forall (p,y) € Vi x Vi,

where the constant C is independent of k and p.

5.3 Approximation Properties

(5.2)

The operators Py *: Vi x Vi — Vi1 x Vieg and P{: Vi x Vi — Vi_g x Vi_q are defined as follows. For all

(p,y) € Vik x Vi, (q,2) € Ve X Vi,

Bl (P, Y), (4, 2)) = Br((p, ), IK 1(q, 2)) = Br((p,y), (q, 2)),
Br-1((q, 2), P, y)) = BrUF_4(q, 2), (9, Y)) = Br((q, 2), (p, ).

Lemma 5.2. We have the following properties:

(Illi—lpi_l)z = Illi—lpi_lr (Idy - Illi—lplli_l)z =Idx - Illi—lpi_l’
(I PEY =T PEY, (i - I PEY? = Tdi - IF_ P

(5.3)
(54)

(5.5)
(5.6)
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Proof. We only prove the identities in (5.5), the ones in (5.6) are similar. Notice that, for (p,y) € Vi1 x Vik_1, we
have

Bre1 (PR L (0,Y), (q,2) = BrUE_(p,y), I¥_1(q, 2)) = Bra (9, ), (¢, 2))

for all (q, z) € Vk-1 x Vi_1. This implies Pi‘lll,ﬁ_l = Idk-1. Then equalities (5.5) are immediate by a direct calcu-
lation. O

Lemma 5.3 (Approximation Properties). We have, for all (p,y) € Vi x Vyandk > 1,
Ik - I PR lok < (B2 i + DB NP, Yl ks 5.7)
Idk — I B i < (BERE + DEB LRI I - (5.8)
Here the hidden constant is independent of k and J.
Proof. We will only prove (5.7); the argument for (5.8) is similar. Let (p, y) € Vi x Vi be arbitrary and
(& 1) = (di — IF_ P (. ).
By (4.3), it suffices to show that
1@ + Mty < (B2 hi? + D)2 B2 RN, V)l k.
Estimate (5.7) is established through a duality argument (cf. [16]). Let (&, 6) € H})(Q) X Hé(Q) satisfy
B 2), (€, 0)) = (, DLy + W, D)@ forall (q,2) € HY(Q) x HY(Q).
Moreover, we define (&x, Ox) € Vi x Vi and (Ex-1, Ok-1) € Vk-1 x Vk_1 by
Bi((q,2), Sk, Ok) = ({, Pry@) + (U, 2)1,0) forall(q,z) € Vi x Vi, (5.9)
Br-1((q, 2), (Ex-1, Ok-1)) = ({, Pry@) + (U, Z)1,@) Torall(q, z) € Vg x Vi_q. (5.10)
Note that (5.9) and (5.10) imply

Br((q, 2), (k, Ok)) = Bk-1((q, 2), (§k-1, Ok-1))  forall (q, z) € Vi—1 x Vi-1. (5.11)
It follows from (5.11) and (5.4) that
(Ex-1, Ox—1) = P (&k, O). (5.12)
We have the following by (3.18) and hy = }hy_1:
1€ = Elly @iy + 10 = Oxllmomy < CB2 e +1)2 B2 11 i) + el c@), (5.13)
1€ = Ecallm@my + 10 - Oallimomy < CB2 I + 12 B2 RE(N @) + litlny@)- (5.14)

Therefore, by (3.14), (5.3), (5.9), (5.12), (5.13) and (5.14), we have

1C12 o) + 10l o) = Bi((G, ), (Ek, Ok))

= Bi((Adx - IF_ PP, Y), Bk, Ok))
= Br((p,y), &k, 1)) = BrT_ PE(p,y), (Ek, 0x))
= Bi((p,Y), &k, 0K)) - Brea (P (D, y), PX 1 (Ek, 1))
= Bi((P,Y), ks 00)) = Bie1(PE (0, ), (Ek1, Ok1))
= Bi((p,Y), &k, 0K)) = Bi((D, ), If_; (Ex-1, Ox-1))
= Bi((p,Y), E, 0k) = If_; (Ex1, O1))
< (I6k = Sl @iy + 10k = Ol i) (NP Nt @iy + Wy, ®
< (B + DB ERE NNy c@) + Itla@)I (P, W),

which implies (5.7). O
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6 Convergence Analysis

Let Ex: Vi x Vi — Vi x Vi be the error propagation operator for the k-th level W-cycle algorithm for (4.4). The
following recursive relationship is well known (cf. [15, 29]):

Ex = RpP(Idg - If  PKY + IF L EX  PEHST, 6.1
where Ry is defined in (5.1) and
Sk = Idg — Ak € BE By
measures the effect of one pre-smoothing step (4.11).

Remark 6.1. We have the following adjoint relation:

Br(Sk(p,y), (4, 2)) = Br((p,y), Ri(q, 2)) forall (p,y),(q,z) € Vi x Vi, (6.2)

where Ry is defined in (5.2). Relation (6.2) is the reason why we consider the multigrid algorithms for (4.4) and
(4.5) simultaneously.

Lemma 6.2. We have
I(0dy - IX_ PEHSEN = IR 1y - IE_ P,
where || - || is the operator norm with respect to || - 1 k-

Proof. For all (p,y) € Vi x Vi, it follows from (3.14) that
Br((dy - IK_ PE)S™(p, y), (q, 2))
Id _Ik Pk*l Sm , ~ su k-1"k k
I =B aPi DS @M= sup 1@ 2.k
Br((p,y), R (1dk - If_,PF)(q, 2))
(DeVexVi ll(q, 2)lll,
< @, Ykl RF(Adk - IF_ P

This implies [|(Idx - IX_,PX")ST|| < |RF(Idk - If_,Pf™")|. The other direction of the estimate is similar. O

6.1 Convergence of the Two-Grid Algorithm

In the two-grid algorithm, the coarse grid residual equation is solved exactly (Ex_1 = 0 in (6.1)). We therefore
obtain the error propagation operator of the two-grid algorithm RZ'Z (Idg - I ’lﬁ_lP',i‘l)Sfl with my pre-smoothing
steps and m;y post-smoothing steps.

We have the following lemma for the convergence of the two-grid algorithm.

Lemma 6.3. In the case ofB*% hi <1, we have
IR (dx — If_, PXHSEH | < 7™,
In the case of B2 h} > 1, we have
IR} (1dx — IX_ PK-1)SI™ | < [max(1, my) max(1, my)] 2.

Proof. The proof can be found in [13, Section 5.1]. The key ingredients are (5.6), Lemma 5.1, Lemma 5.3 and
Lemma 6.2. O

6.2 Convergence of the W-Cycle Algorithm

It is well known that the convergence of the two-grid algorithm implies the convergence of the W-cycle algo-
rithm by a standard perturbation argument (cf. [15, 19, 29]). A delicate modification [13] of the standard argument
leads to the following theorem.
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Theorem 6.4. There exists a positive integer m., independent of k and B, such that

Ekll < Cyz™*me foralll <k < k., (6.3)
(Cy7™*™2) forallk >k, +1. (6.4)

IEkll < C,[max(1, my) max(1, my)] "2 + 472"

provided [max(1, mz) max(1, my)] = m.. Here Cy and C, are constants independent of k and B, and the integer
k. is the largest positive integer such that 2 h;z <1

Remark 6.5. The interpretations and implications of Theorem 6.4 are as follows.

(1) The W-cycle algorithm for the k-th level problem (4.4) is a contraction in the energy norm || - [|1 x if the
number of smoothing steps is large enough. The contraction number is hounded away from 1 uniformly in
k and . Therefore, the W-cycle algorithm is robust with respect to k and .

(2) Atcoarselevels (where 2 h;z < 1), estimate (6.3) indicates that the contraction numbers decrease exponen-
tially with respect to the number of smoothing steps. Estimate (6.4) implies that the contraction numbers
will be dominated by the term [max(1, my) max(1, ml)]’% at finer levels (where [3% h;z > 1) eventually.

7 Numerical Results

In this section, we report the numerical results of the symmetric W-cycle and V-cycle algorithms (m; = my = m).
The preconditioner Qj;l is computed using a V(4, 4) multigrid solve for (4.6) based on a SIP discretization [16].
The eigenvalues Apax and Api, in (4.12b) are estimated using power iterations. We employed the MATLAB/C++
toolbox FELICITY [43] in our computation.

Example 7.1 (Unit Square). Inthis example, we take Q = (0, 1)% and o = 6 in (3.4). For simplicity, we take ¢ = [1,0]*
and y = 01in (3.5). See Figure 1 for the initial triangulation Ty and the uniform refinements T; and T5.

We report the contraction numbers of the W-cycle algorithm in Tables 1-3 for 8 = 1072, = 10~* and 8 = 107°.
We observe that the contraction numbers of the symmetric W-cycle algorithm decay exponentially at coarse
levels and then approach the standard O(m~!) behavior at finer levels for all choices of B. Notice that our W-
cycle algorithm is clearly robust with respect to f and the performance agrees with Remark 6.5.

Figure 1: Triangulations Ty, T7 and T; for the unit square in Example 7.1.

m

k 2° 2! 2? 2 24 2 2

1 817e-01 6.87e-01 5.08e-01 2.94e-01 1.02e-01 1.25e-02  1.89%e-04

2 831e-01 7.02e-01 5.31e-01 3.29e-01 1.43e-01 4.19e-02  8.24e-03

3  896e-01 8.08e-01 6.74e-01 4.84e-01 2.92e-01 1.31e-01 4.48e-02

4  8.64e-01 7.55e-01 5.93e-01 4.05e-01 2.17e-01 1.01e-01 4.58e-02

5 849e-01 7.36e-01 5.63e-01 3.71e-01 1.95e-01 9.95e-02  4.59e-02

6 846e-01 7.35e-01 5.55e-01 3.61e-01 1.90e-01 9.50e-02  4.68e-02

7 845e-01 7.34e-01 552e-01 3.57e-01 1.90e-01 9.54e-02  4.70e-02

Table 1: The contraction numbers of the k-th level (k = 1, ..., 7) symmetric W-cycle algorithm for Example 7.1

with B =10"2andm =2°,...,2°.
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m
k 2° 2! 22 23 24 25 28
1 585e-01 3.74e-01 1.48e-01 2.42e-02 6.54e-04 4.81e-07 4.97e-14
2 8.08e-01 6.71e-01 4.65e-01 2.28e-01 5.52e-02 3.34e-03  1.13e-05
3 838e-01 7.26e-01 5.36e-01 3.31e-01 1.54e-01 3.87e-02 3.66e-03
4 936e-01 8.78e-01 7.82e-01 6.32e-01 4.38¢-01 2.49e-01 1.01e-01
5 885e-01 7.92e-01 6.54e-01 4.85e-01 2.94e-01 1.47e-01 6.19e-02
6 895e-01 7.46e-01 577e-01 3.87e-01 2.09e-01 1.06e-01  5.49e-02
7 848e-01 7.37e-01 5.58e-01 3.63e-01 1.95e-01 9.75e-02  4.89e-02
Table 2: The contraction numbers of the k-th level (k = 1, ..., 7) symmetric W-cycle algorithm for Example 7.1
with g =10"*and m = 2°,...,2°.
m
k 2° 2' 2? 2 24 2° 2
1 4.18e-01 1.75e-01 3.02e-02 9.45e-04 8.71e-07 1.07e-13  1.86e-16
2 4.35e-01 1.90e-01 3.60e-02 1.24e-03 1.53e-06 4.60e-13  2.30e-16
3  7.06e-01 5.10e-01 2.84e-01 8.65e-02 7.88e-03 7.14e-05 5.31e-07
4 833e-01 7.10e-01 5.22e-01 2.78e-01 9.24e-02 1.13e-02  1.76e-04
5 843e-01 7.30e-01 544e-01 3.50e-01 1.79e-01 5.68e-02  1.13e-02
6 9.14e-01 8.41e-01 7.24e-01 5.45e-01 3.50e-01 1.78e-01 8.27e-02
7 870e-01 7.67e-01 6.14e-01 4.38e-01 2.52e-01 1.24e-01 5.87e-02
Table 3: The contraction numbers of the k-th level (k = 1, ..., 7) symmetric W-cycle algorithm for Example 7.1
with =10 andm =2°,...,2°.
k

m 1 2 3 4 5 6 7

B=1072
22 508e-01 5.55e-01 6.79e-01 6.54e-01 6.50e-01 6.23e-01  6.15e-01
23 2.94e-01 3.45e-01 4.97e-01 4.68e-01 4.83e-01 4.54e-01 4.41e-01
24 1.02e-01  1.52e-01 2.92e-01 2.87e-01 2.88e-01 2.80e-01 2.52e-01

B=10"*
22 1.49e-01 4.65e-01 5.40e-01 7.84e-01 7.31e-01 7.07e-01 7.05e-01
23 242e-02 2.28e-01 3.30e-01 6.33e-01 5.82e-01 5.74e-01 5.66e-01
24 6.53e-04 5.60e-02 1.53e-01 4.38e-01 3.82e-01 3.75e-01 3.77e-01

B=10"°
22 3.08e-02 3.60e-02 2.72e-01 5.18e-01 554e-01 7.23e-01 6.94e-01
23 9.47e-04 1.26e-03 8.67e-02 2.83e-01 3.55e-01 5.47e-01 5.31e-01
24 7.11e-07 1.70e-06  8.02e-03 9.24e-02  1.80e-01 3.53e-01 3.33e-01
Table 4: The contraction numbers of the k-th level (k = 1, ..., 7) symmetric V-cycle algorithm for Example 7.1

with 8 =1072,1074,107% and m = 22,23, 24,

We have also tested the symmetric V-cycle algorithm for k-th level problem (4.4) and briefly report the
results in Table 4. We observe that our V-cycle algorithm is also a contraction with slightly more numbers of
smoothing steps (m = 4) and the contraction numbers are robust with respect to k and .

Example 7.2 (L-Shaped Domain). We also test our multigrid methods on nonconvex domains. In this example,
we take Q = (0,1)?\ (0.5,1)? and ¢ = 6 in (3.4). We also take ¢ = [1,0]¢ and y = 0 in (3.5). See Figure 2 for the
initial triangulation Ty and the uniform refinement 7.
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Figure 2: Triangulations Ty and T; for the L-shaped domain in Example 7.2.

m
k 2° 21 22 23 24 25 26

1 8.34e-01 7.18e-01 5371e-01 3.25e-01 1.30e-01 2.83e-02 1.62e-03

2 895e-01 8.09e-01 6.74e-01 4.84e-01 2.84e-01 1.22e-01 3.10e-02

3  8.64e-01 7.55e-01 5.96e-01 4.02e-01 2.17e-01 9.76e-02  3.76e-02

4  850e-01 7.35e-01 5.65e-01 3.72e-01 1.95e-01 9.48e-02 4.58e-02

5 846e-01 7.33e-01 5.56e-01 3.61e-01 1.91e-01 9.53e-02 4.70e-02

6 8.46e-01 7.34e-01 5.53e-01 3.59e-01 1.90e-01 9.52e-02 4.62e-02

7 8.45e-01 7.34e-01 5.52e-01 3.55e-01 1.91e-01 9.50e-02 4.71e-02

Table 5: The contraction numbers of the k-th level (k = 1, .. ., 7) symmetric W-cycle algorithm for Example 7.2

with g =10"2andm =2°,...,2°.

m
k 2° 2! 2? 2 24 2° 26
1 8.02e-01 6.63e-01 4.67e-01 2.26e-01 5.76e-02 3.57e-03 1.55e-05
2 837e-01 7.20e-01 533e-01 3.26e-01 1.52e-01 3.67e-02 2.71e-03
3 9.36e-01 878e-01 7.82e-01 6.29e-01 4.38e-01 2.50e-01  9.60e-02
4 8.85e-01 7.90e-01 6.52e-01 4.96e-01 291e-01 1.44e-01 6.13e-02
5 856e-01 7.47e-01 577e-01 3.87e-01 2.10e-01 1.06e-01  5.59e-02
6 848e-01 7.37e-01 558e-01 3.64e-01 1.95e-01 9.73e-02  4.83e-02
7 846e-01 7.35e-01 553e-01 3.56e-01 1.92e-01 9.57e-02 4.73e-02
Table 6: The contraction numbers of the k-th level (k = 1, ..., 7) symmetric W-cycle algorithm for Example 7.2

with g =10"*andm =2°,...,2°.

m
k 2° 2! 22 23 24 25 26
1 4.26e-01 1.88e-01 3.61e-02 1.23e-03 1.18e-06 2.27e-13  2.26e-16
2 7.07e-01 5.24e-01 2.84e-01 8.75e-02 8.40e-03 8.03e-05 3.31e-07
3  830e-01 7.04e-01 5.15e-01 2.81e-01 9.01e-02 1.06e-02  1.53e-04
4 842e-01 7.33e-01 5.43e-01 3.49e-01 1.78e-01 5.617e-02 1.28e-02
5 9.14e-01 8.41e-01 7.23e-01 5.45e-01 3.52e-01 1.78e-01  8.26e-02
6 870e-01 7.67e-01 6.14e-01 4.37e-01 2.50e-01 1.24e-01  5.85e-02
7 852e-01 7.42e-01 5.66e-01 3.73e-01 2.03e-01 1.03e-01  5.28e-02
Table 7: The contraction numbers of the k-th level (k = 1, ..., 7) symmetric W-cycle algorithm for Example 7.2

with g =10"%andm =2°,...,2°.

We report the contraction numbers of the W-cycle algorithm in Tables 5-7 for § = 1072, f = 104 and 8 = 107°.
We observe that the contraction numbers of the symmetric W-cycle algorithm decay exponentially at coarse
levels and then approach the standard O(m‘é) behavior for L-shaped domains at finer levels for all choices
of S. Notice that our W-cycle algorithm is clearly robust with respect to § and the performance agrees with
Remark 6.5.
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8 Concluding Remarks

We proposed and analyzed multigrid methods for an elliptic optimal control problem based on DG discretiza-
tions. We proved that, for a sufficiently large number of smoothing steps, the W-cycle algorithm is uniformly
convergent with respect to mesh refinements and a regularizing parameter. The numerical results coincide
with the theoretical findings. Our multigrid analysis can be also be extended to other DG methods. In fact, our
multigrid analysis should work for any DG methods with convergence results in H}i(Q; Tp) norm as that of
Lemma 3.5.

The analysis of our multigrid methods can also be extended to higher order polynomials assuming higher
regularity of the solutions to the optimal control problems. We briefly discuss the strategy. Note that one has the
following interpolation estimate [37]:

Iz = TMpzllp,@) + hlz - Tnzlm @) < "9 2] ), (8.1

where [ is the order of the polynomials. From (8.1), one can easily obtain the error estimates for the DG methods
as follows:

1. _ 1.1 i
Ip = prllei@my + Y - Yallay@my < (B2h 2 4 1)2 g2 prin(BLs),
Note that the inverse estimate (3.16) remains the same for higher order polynomials [37], and hence the smooth-
ing property (cf. Lemma 5.1) remains unchanged, which is

IR ()l < CBERE +DEm™ 2 (p, y)llo k-

The approximation property can be proved using the same idea as in Lemma 5.3, and it becomes

Ik - 1K, PEY @, ) llok < (BERE + 17 B2 (0, )l ke

The convergence of the multigrid can be obtained by combining the smoothing property and the approximation
property. In fact, we have

IR (Ady — IX_ PO < CBERE + DimE (B2 + 12 pript )

1

_ C(l " ﬁ_% hi)hr;in(lﬂ,s)—zm_z

<C+BhA)m 2.
We use the fact that min(l + 1, s) > 2 in the last inequality. Therefore, the assumptions on 8 and hy in Sections 4—
6 are still valid in the case of higher order polynomials. The theoretical results then follows as that of Section 6.
A more interesting problem is to consider an advection-dominated state equation. DG methods are promis-
ing for advection-dominated problem due to the natural built-in upwind stabilization and the weak treatment
of the boundary conditions. Related work can be found, for example, in [34]. However, the challenge for extend-

ing our result is to design proper preconditioner so that the multigrid methods are robust for the advection-
dominated case. This is under investigation in our ongoing projects.

A Proofs of (3.9) and (3.10)

For T € T, and v € H'*5(Q), where s € (1, 1], the following trace inequalities with scaling is standard (cf.
[25, Lemma 7.2] and [21, Proposition 3.1]):

_1 s_1
IVliz,o1) < CChp* IVllzycry + Ay * VlEs(T)- (A1

The following discrete Poincare inequality for DG functions [4, 8, 20] is valid for all v € Vj,:

1
M @ < C( X IVVE 0y + Y IV ). (42)
TeQ e

eedT
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Proof. It is well known that [3, 15, 37]
aPw,v) < Clwlypllviey  forallw,v e V+ Vi,
a;ip(v, V) > Cllvllih forallv e V.

For the advection-reaction term, we have, forall w,v € V + Vy,

ayw,v)= Y (§-Vw+yw,v)r— > @-§wl, (v

TeTy ecgluel”

1
< (X 19w, ) IVlzae) + Wl V@)

TG‘T}. 1 h 1
g 2 7
(Y pmie) (Y i)
ecelugh” ecelueh”
< 1wl lvlln,

17

where we use { € [IWh°(Q)]2, Y € Loo(R), (A1) and (A.2). Furthermore, upon integration by parts, we have, for

allv e Vy,

ayw,v)= Y (- Vv+ypu,v)r— Y (@- gVl {vhe

TeTn eeSLUSZ”
) T;'h((y B %V ‘ C)V, V)T ' T;J:'haJT %(C ' n)vz - eeé’%&’i' é[ c . n[V]{V} “
2 (-3 B

By assumption (1.4), we immediately have a}"(v, v) > 0. This finishes the proof.

B A Proof of (3.22)

Proof. It follows from (3.20) that

1P~ Pal? o) + 1y ~ Yhl?, gy = (BE(-DE+ - VE+YE) — 0,p - Pr)1ye)
+(-E+BHBO+ VO (y =V 0)0),y - YL,
= B2 (-DE,p - PRy + B Y (§-VE+YEp—pu)r

TeTy

= (0,0 - P, — (&Y = Yn)i,Q)

+BEAO.Y YWy + B Y (§-VO-(y-V-0)6,y - yn)r.

TeTy
By the consistency of the SIP method (cf. [3, 37]), we have
(-A&,p—pn) = @°(Ep-pr) and  (AB,y - yn) = -a@}° (Y ~ Y, ).
For the last term in (B.1), it follows from integration by parts that
Y @-VO-(-V-00,y-yr= Y (-{-V-yn), 01— (Y -yn), O)r
TeTy TeTy
+ Y [@mo-ynods.

TeTy oT

(B.1D

(B.2)

(B.3)
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The last term in (B.3) can be rewritten as the following [3, 24]:

Y [€wo-ywods= Y [¢-nip-ynoids+ Y [¢-n-ynods

TeTh gt ecEl e ecel e
- ¥ [¢eny-yierds+ ¥ [¢-npy-yuods
ecEl e ecel e
+ Y [¢-no-ywods. ®.4)
eceh e

It then follows from [8] = 0 on interior edges and 6 = 0 on 0Q that

> [@mo-yneds= ¥ [¢nly-yierds ®5)

TeThar eceluel™ e

According to (B.3)-(B.5), we conclude

Y €-VO-(y-V-08,y-yn)r = -a;(y - yn,0). (B.6)
TeTh
Similarly, we can show
Y (§-VE+yE p—pnr = ' (E,p—pn). (B.7)
TeTy

Therefore, we obtain the following by (B.2), (B.6), (B.7), (3.3) and (3.2):

1P~ prl?, o) + Iy = Yul2, o) = BEan(E P —pr) = (0,0 — PR)1o@) — (6 ~YW)1a@) — B2 an(y — yn, 6)
= Br((p - pr.y - yn), (§, 0)). O
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