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1 Introduction

In this paper, we consider the following elliptic optimal control problem. Let Ω be a bounded convex polygonal/
polyhedral domain in ℝn (n = 2, 3), yd ∈ L2(Ω) and let β be a positive constant. Find

( ̄y, ̄u) = argmin(y,u) [12 ‖y − yd‖2L2(Ω) + β2 ‖u‖2L2(Ω)], (1.1)

where (y, u) belongs to H1
0(Ω) × L2(Ω) if and only if

a(y, v) = ∫
Ω

uv dx for all v ∈ H1
0(Ω). (1.2)

Here the bilinear form a( ⋅ , ⋅ ) is defined as

a(y, v) = ∫
Ω

∇y ⋅ ∇v dx + ∫
Ω

(ζ ⋅ ∇y)v dx + ∫
Ω

γyv dx, (1.3)

where vector field ζ ∈ [W1,∞(Ω)]2 and the function γ ∈ L∞(Ω) is nonnegative. If ζ ̸= 0, then constraint (1.2) is
the weak form of a general second-order PDE with an advective/convective term. We assume

γ − 12∇ ⋅ ζ ≥ γ0 > 0 (1.4)

such that problem (1.2) is well-posed.

Remark 1.1. Throughout the paper we will follow the standard notation for differential operators, function
spaces and norms that can be found, for example, in [15, 22].
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It is well known [35, 42] that the solution of (1.1)–(1.2) is characterized by

a(q, ̄p) = ( ̄y − yd , q)L2(Ω) for all q ∈ H1
0(Ω), (1.5a)

̄p + β ̄u = 0, (1.5b)
a( ̄y, z) = ( ̄u, z)L2(Ω) for all z ∈ H1

0(Ω), (1.5c)

where ̄p is the adjoint state. After eliminating ̄u, we arrive at the saddle point problem

a(q, ̄p) − ( ̄y, q)L2(Ω) = −(yd , q)L2(Ω) for all q ∈ H1
0(Ω),

−( ̄p, z)L2(Ω) − βa( ̄y, z) = 0 for all z ∈ H1
0(Ω).

(1.6)

Notice that β is only in the second equation (1.6). In order tomake the equationsmore balanced, we perform
a change of variables. Let

̄p = β
1
4 ̃p and ̄y = β− 14 ̃y; (1.7)

then system (1.6) becomes

β
1
2 a(q, ̃p) − ( ̃y, q)L2(Ω) = −β 1

4 (yd , q)L2(Ω) for all q ∈ H1
0(Ω),

−( ̃p, z)L2(Ω) − β 1
2 a( ̃y, z) = 0 for all z ∈ H1

0(Ω).
(1.8)

The scaling technique (1.7) can also be found in [13, 26, 27].
In this paper, we employ a discontinuous Galerkin (DG) method [2, 3, 37] to discretize the saddle point prob-

lem (1.8). There are several advantages to use DGmethods; for example, DGmethods aremore flexible regarding
choices of meshes andmore suitable for convection-dominated problems. It is well known that DGmethods can
capture sharp gradients in the solutions such that spurious oscillations canbe avoided. Ourmain goal is to design
multigrid methods for solving the discretized system resulting from the DG discretization that are robust with
respect to the regularization parameter β. Note that we reformulate the optimal control problem into a saddle
point problem by eliminating the control variable ̄u (cf. [30]). Therefore, we do not discretize the control explic-
itly but recover the discrete control using the discrete analog of relation (1.5b). This is a well-known strategy to
discretize the optimal control problem.

Multigrid methods for (1.8) based on continuous Galerkin methods are intensively studied in the literature,
for example, in [6, 13, 36, 39–41] and the references therein. In [13], based on the approaches in [11, 12, 14], the
authors developed multigrid methods for (1.8) using a continuous P1 finite element method. Besides the robust-
ness of the multigrid methods with respect to β, the estimates in [13] are established in a natural energy norm,
and the multigrid methods have a standard O(m−1) performance, where m is the number of smoothing steps.
In this paper, we extend the results in [13] to DG methods where the diffusion term in (1.3) is discretized by
a symmetric interior penalty (SIP) method and the convection term in (1.3) is discretized by an unstabilized/
centered-fluxes DG method [18, 23]. Multigrid methods based on DG methods are investigated in [1, 9, 10, 16, 28,
31, 32] and the references therein. However, notmuchwork has been done towards themultigridmethods based
onDGdiscretizations for optimal control problemswith provable results. The general idea in this paper is to con-
struct a block-diagonal preconditioner and convert the saddle point problem (1.8) into an equivalent symmetric
positive definite (SPD) problem using the preconditioner. Therefore, well-knownmultigrid theories for SPD sys-
tem [7, 29] can be utilized. The preconditioner requires solving a reaction-diffusion equation (approximately)
based on a SIP discretization. This, however, does not affect the overall optimal computational complexity of
our multigrid methods since the preconditioner itself can be constructed by multigrid methods (cf. [16]).

Note that the extension of the analysis in [13] to DG methods is not trivial. First, DG methods are noncon-
forming methods in the sense that Vh ̸⊂ V . Consequently, the discrete bilinear form Bk is now different from
the continuous bilinear form B (see Section 4). Therefore, all the definitions at the discrete level are different
from the ones in [13], for example, the inter-grid transfer operators and the projection operators. Secondly, in
order to establish L2 error estimates for the DG methods, we need to make sure that the adjoint consistency
(cf. [3]) of the DGmethods hold; then a duality argument can be utilized (see Appendix B). Additionally, we need
multigrid methods for DG discretization of a singularly perturbed reaction-diffusion equation to construct the
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crucial preconditioner C−1k (cf. [16, 28]). At last, and most importantly, the proof of the approximation prop-
erty (Lemma 5.3) cannot rely on the continuous problem anymore. Instead, a connection between level k and
level k − 1 is exploited, aswell as the connection between primal and dual problems, to prove the approximation
property.

The rest of the paper is organized as follows. In Section 2, we gather some known results regarding the
continuous problem. In Section 3, we discretize the optimal control problem with a DG method and establish
concrete error estimates. A crucial block-diagonal preconditioner is introduced and the multigrid methods for
the discretized system are described in Section 4. In Sections 5 and 6, we establish the main theorem, which
is based on the smoothing and approximation properties of the multigrid methods. Finally, we provide some
numerical results in Section 7 and end with some concluding remarks in Section 8. Some technical proofs are
provided in Appendices A and B.

Throughout this paper, we use C (with or without subscripts) to denote a generic positive constant that
is independent of any mesh parameters and the regularization parameter β. Also, to avoid the proliferation of
constants, we use the notation A ≲ B (or A ≳ B) to represent A ≤ (constant)B. The notation A ≈ B is equivalent to
A ≲ B and B ≲ A. Note that we do not consider the convection-dominated case in this paper; hence the constants
might depend on ζ and γ.

2 Continuous Problem

We rewrite (1.8) in a concise form

B(( ̃p, ̃y), (q, z)) = −β
1
4 (yd , q)L2(Ω) for all (q, z) ∈ H1

0(Ω) × H
1
0(Ω), (2.1)

where
B((p, y), (q, z)) = β

1
2 a(q, p) − (y, q)L2(Ω) − (p, z)L2(Ω) − β 1

2 a(y, z). (2.2)

Let ‖p‖H1
β(Ω) be defined by

‖p‖2H1
β(Ω) = β 1

2 |p|2H1(Ω) + ‖p‖2L2(Ω) .
We have the following lemmas (cf. [13]) regarding the bilinear formB with respect to the norm ‖ ⋅ ‖H1

β(Ω).
Lemma 2.1. We have

‖p‖H1
β(Ω) + ‖y‖H1

β(Ω) ≈ sup(q,z)∈H1
0(Ω)×H1

0(Ω) B((p, y), (q, z))
‖q‖H1

β(Ω) + ‖z‖H1
β(Ω)

for any (p, y) ∈ H1
0(Ω) × H

1
0(Ω).

Remark 2.2. Lemma 2.1 guarantees the well-posedness of (1.8) by the standard theory [5, 17].

Remark 2.3. We also have the similar stability estimate

‖p‖H1
β(Ω) + ‖y‖H1

β(Ω) ≈ sup(q,z)∈H1
0(Ω)×H1

0(Ω) B((q, z), (p, y))
‖q‖H1

β(Ω) + ‖z‖H1
β(Ω)

for any (p, y) ∈ H1
0(Ω) × H

1
0(Ω).

We also need the following regularity results (cf. [13]) on convex domains. Let (p, y) ∈ H1
0(Ω) × H

1
0(Ω) satisfy

B((p, y), (q, z)) = (f, q)L2(Ω) + (g, z)L2(Ω) for all (q, z) ∈ H1
0(Ω) × H

1
0(Ω), (2.3)

where (f, g) ∈ L2(Ω) × L2(Ω) andB is defined in (2.2).

Lemma 2.4. The solution (p, y) of (2.3) belongs to H2(Ω) × H2(Ω), and we have

‖β
1
2 p‖H2(Ω) + ‖β 1

2 y‖H2(Ω) ≲ (‖f ‖L2(Ω) + ‖g‖L2(Ω)).
Remark 2.5. Lemma 2.4 is also valid for the following dual problem. Find (p, y) ∈ H1

0(Ω) × H
1
0(Ω) such that

B((q, z), (p, y)) = (f, q)L2(Ω) + (g, z)L2(Ω) for all (q, z) ∈ H1
0(Ω) × H

1
0(Ω). (2.4)
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3 Discrete Problem

In this section, we discretize the saddle point problem (1.8) by a DG method [2, 3, 18]. Let Th be a shape regular
simplicial triangulation ofΩ. The diameter of T ∈ Th is denoted by hT , and h = maxT∈Th hT is themesh diameter.
Let Eh = Ebh ∪ E

i
h , where E

i
h (resp. E

b
h) represents the set of interior edges (resp. boundary edges).

We further decompose the boundary edges Ebh into the inflow part Eb,−h and the outflow part Eb,+h , which
are defined as follows:

E
b,−
h = {e ∈ E

b
h : e ⊂ {x ∈ ∂Ω : ζ(x) ⋅ n(x) < 0}}, E

b,+
h = E

b
h \ E

b,−
h .

For an edge e ∈ Eih , let he be the length of e. For each edge, we associate a fixed unit normal n. We denote
by T+ the element for which n is the outward normal, and T− the element for which −n is the outward normal.
We define the discontinuous finite element space Vh as

Vh = {v ∈ L2(Ω) : v|T ∈ ℙ1(T) for all T ∈ Th}.

For v ∈ Vh on an edge e, we define v+ = v|T+ and v− = v|T− . We define the jump and average for v ∈ Vh on an
edge e as follows:

[v] = v+ − v− , {v} = v+ + v−2 .

For e ∈ Ebh with e ∈ ∂T , we let [v] = {v} = v|T . We also denote

(w, v)e := ∫
e

wv ds and (w, v)T := ∫
T

wv dx.

3.1 Discontinuous Galerkin Methods

The DG methods for (2.1) is to find ( ̃ph , ̃yh) ∈ Vh × Vh such that

Bh(( ̃ph , ̃yh), (q, z)) = −β
1
4 (yd , q)L2(Ω) for all (q, z) ∈ Vh × Vh , (3.1)

where
Bh((p, y), (q, z)) = β

1
2 ah(q, p) − (y, q)L2(Ω) − (p, z)L2(Ω) − β 1

2 ah(y, z). (3.2)

The bilinear form ah( ⋅ , ⋅ ) is defined by

ah(u, v) = a
sip
h (u, v) + a

ar
h (u, v) for all u, v ∈ Vh , (3.3)

where

asiph (u, v) = ∑
T∈Th

(∇u, ∇v)T − ∑
e∈Eh

({n ⋅ ∇u}, [v])e − ∑
e∈Eh

({n ⋅ ∇v}, [u])e + σ ∑
e∈Eh

h−1e ([u], [v])e (3.4)

is the bilinear form of the SIP method with sufficiently large penalty parameter σ and the unstabilized DG
scheme (cf. [18, 24]) for the advection-reaction term is defined as

aarh (u, v) = ∑
T∈Th

(ζ ⋅ ∇u + γu, v)T − ∑
e∈Ei

h∪Eb,−
h

(n ⋅ ζ[u], {v})e . (3.5)

Remark 3.1. We do not consider convection-dominated case in this paper. Therefore, the bilinear form aarh ( ⋅ , ⋅ )
does not contain any upwind stabilization terms. However, if we consider convection-dominated case, the well-
known upwind schemes [4, 18, 34] could be utilized.

It is also necessary to consider the general problem (2.3) and the dual problem (2.4). The DG method for (2.3) is
to find (ph , yh) ∈ Vh × Vh such that

Bh((ph , yh), (q, z)) = (f, q)L2(Ω) + (g, z)L2(Ω) for all (q, z) ∈ Vh × Vh . (3.6)
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Similarly, the DG method for (2.4) is to find (ph , yh) ∈ Vh × Vh such that

Bh((q, z), (ph , yh)) = (f, q)L2(Ω) + (g, z)L2(Ω) for all (q, z) ∈ Vh × Vh . (3.7)

Let the norm ‖ ⋅ ‖H1
β(Ω;Th) be defined as

‖p‖2H1
β(Ω;Th) = β 1

2 ‖p‖21,h + ‖p‖
2
L2(Ω) , (3.8)

where
‖p‖21,h = ∑

T∈Th

‖∇p‖2L2(T) + ∑
e∈Eh

1
he
‖[p]‖2L2(e) + ∑

e∈Eh

he‖{n ⋅ ∇p}‖2L2(e) .
Let V = H2(Ω) ∩ H1

0(Ω). For the bilinear form ah( ⋅ , ⋅ ), we have

ah(w, v) ≤ C‖w‖1,h‖v‖1,h for all w, v ∈ V + Vh , (3.9)
ah(v, v) ≥ C‖v‖21,h for all w, v ∈ Vh , (3.10)

for sufficiently large σ. A proof is provided in Appendix A. Note that the constants in (3.9)–(3.10) might depend
on ζ and γ.

It follows from (3.2), (3.8), (3.9) and the Cauchy–Schwarz inequality that

Bh((p, y), (q, z)) ≤ (‖p‖2H1
β(Ω;Th) + ‖y‖2H1

β(Ω;Th)) 12 (‖q‖2H1
β(Ω;Th) + ‖z‖2H1

β(Ω;Th)) 12 (3.11)

for any (p, y), (q, z) ∈ (V + Vh) × (V + Vh).
We also have, by (3.2), (3.10) and a direct calculation,

Bh((p, y), (p − y, −y − p)) = β
1
2 ah(p, p) + (p, p)L2(Ω) + β 1

2 ah(y, y) + (y, y)L2(Ω)
≳ ‖p‖2H1

β(Ω;Th) + ‖y‖2H1
β(Ω;Th) (3.12)

and
‖p − y‖2H1

β(Ω;Th) + ‖−y − p‖2H1
β(Ω;Th) = 2(‖p‖2H1

β(Ω;Th) + ‖y‖2H1
β(Ω;Th)) (3.13)

by the parallelogram law. It follows from (3.11)–(3.13) that

‖ph‖H1
β(Ω;Th) + ‖yh‖H1

β(Ω;Th) ≈ sup(q,z)∈Vh×Vh Bh((ph , yh), (q, z))
‖q‖H1

β(Ω;Th) + ‖z‖H1
β(Ω;Th) for all (ph , yh) ∈ Vh × Vh . (3.14)

Similarly, we have

‖ph‖H1
β(Ω;Th) + ‖yh‖H1

β(Ω;Th) ≈ sup(q,z)∈Vh×Vh Bh((q, z), (ph , yh))
‖q‖H1

β(Ω;Th) + ‖z‖H1
β(Ω;Th) for all (ph , yh) ∈ Vh × Vh . (3.15)

It follows immediately from (3.14) and (3.15) that the discrete problems (3.6) and (3.7) are uniquely solvable. We
also need the following lemma, which follows from a standard inverse estimate (cf. [15]) and trace inequalities
(cf. [21, Proposition 3.1]),

Lemma 3.2. Assuming Th is a quasi-uniform triangulation of Ω, we have the following inverse estimate:

‖v‖1,h ≲ h−1‖v‖L2(Ω) for all v ∈ Vh . (3.16)

3.2 Interpolation Operator Πh

We use the usual continuous nodal interpolant (which belongs to Vh) [3, 15, 37] such that the following estimates
hold.

Lemma 3.3. We have

‖z − Πhz‖L2(Ω) + h|z − Πhz|H1(Ω) ≲ h2|z|H2(Ω) for all z ∈ H2(Ω) ∩ H1
0(Ω).

Remark 3.4. We also have (cf. [15])

‖z − Πhz‖1,h ≲ h|z|H2(Ω) for all z ∈ H2(Ω) ∩ H1
0(Ω).
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3.3 Error Estimates

It is well known [3, 18, 37] that the DG method (3.1) is consistent. Hence, we have the following Galerkin orthog-
onality:

Bh((p − ph , y − yh), (q, z)) = 0 for all (q, z) ∈ Vh × Vh . (3.17)

Lemma 3.5. Let the functions (p, y) (resp. (ph , yh)) be the solutions of (2.3) or (2.4) (resp. (3.6) or (3.7)), we have

‖p − ph‖H1
β(Ω;Th) + ‖y − yh‖H1

β(Ω;Th) ≤ C(β 1
2 h−2 + 1) 12 β− 12 h2(‖f ‖L2(Ω) + ‖g‖L2(Ω)), (3.18)

‖p − ph‖L2(Ω) + ‖y − yh‖L2(Ω) ≤ C(β 1
2 h−2 + 1)β−1h4(‖f ‖L2(Ω) + ‖g‖L2(Ω)). (3.19)

Proof. We only establish the estimates involving (2.3) and (3.6). Using estimate (3.14) and relation (3.17), we have

‖p − ph‖H1
β(Ω;Th) + ‖y − yh‖H1

β(Ω;Th) ≲ inf(q,z)∈Vh×Vh(‖p − q‖H1
β(Ω;Th) + ‖y − z‖H1

β(Ω;Th)).
By Lemma 3.3 and Lemma 2.4, we have

β
1
2 ‖p − Πhp‖21,h ≤ Cβ

1
2 h2‖p‖2H2(Ω) ≤ C

β 1
2
h2(‖f ‖L2(Ω) + ‖g‖L2(Ω))2 ,

‖p − Πhp‖2L2(Ω) ≤ Ch4‖p‖2H2(Ω) ≤ Cβ h4(‖f ‖L2(Ω) + ‖g‖L2(Ω))2 .
Thus we obtain

‖p − Πhp‖2H1
β(Ω;Th) ≤ C(β− 12 h2 + β−1h4)(‖f ‖L2(Ω) + ‖g‖L2(Ω))2 .

It is similar to estimate ‖y − Πhy‖2H1
β(Ω;Th). Therefore, we have estimate (3.18). Estimate (3.19) is established by

a duality argument. Let (ξ, θ) satisfy

β
1
2 (−Δξ + ζ ⋅ ∇ξ + γξ) − θ = p − ph , ξ = 0 on ∂Ω,

−ξ − β
1
2 (−Δθ − ζ ⋅ ∇θ + (γ − ∇ ⋅ ζ)θ) = y − yh , θ = 0 on ∂Ω.

(3.20)

The weak form of (3.20) is to find (ξ, θ) ∈ H1
0(Ω) × H

1
0(Ω) such that

B((q, z), (ξ, θ)) = (q, p − ph)L2(Ω) + (z, y − yh)L2(Ω) for all (q, z) ∈ H1
0(Ω) × H

1
0(Ω). (3.21)

We can show that (cf. [33])

‖p − ph‖2L2(Ω) + ‖y − yh‖2L2(Ω) = Bh((p − ph , y − yh), (ξ, θ)). (3.22)

A proof is provided in Appendix B.
Then it follows from the Cauchy–Schwarz inequality, (3.17), (3.22) and Lemma 2.4 (apply to (3.21)) that

‖p − ph‖2L2(Ω) + ‖y − yh‖2L2(Ω) = Bh((p − ph , y − yh), (ξ, θ))
= Bh((p − ph , y − yh), (ξ − Πhξ, θ − Πhθ))
≲ (‖p − ph‖2H1

β(Ω;Th) + ‖y − yh‖2H1
β(Ω;Th)) 12

× (‖ξ − Πhξ‖2H1
β(Ω;Th) + ‖θ − Πhθ‖2H1

β(Ω;Th)) 12
≲ (β− 12 h2 + β−1h4) 12 (‖p − ph‖2L2(Ω) + ‖y − yh‖2L2(Ω)) 12
× (‖p − ph‖2H1

β(Ω;Th) + ‖y − yh‖2H1
β(Ω;Th)) 12 . (3.23)

Estimate (3.19) then follows from (3.23) and (3.18).

Remark 3.6. Note that the performance of the DGmethod (3.1) in the norms ‖ ⋅ ‖1,h and ‖ ⋅ ‖L2(Ω) will deteriorate
when β goes to 0 due to Lemma 3.5. Therefore, a very fine mesh should be used when β is small, in which case
it is necessary to have an efficient iterative solver.
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4 Multigrid Methods

In this section, we introduce themultigridmethods for (2.3). A crucial block-diagonal preconditioner Ck is intro-
duced. The general idea is to convert the saddle point problem into an SPD problem. Then the well-established
multigrid theories for SPD system [7, 16, 29] can be utilized. We omit some proofs since they are identical to
those of [13].

4.1 Set-Up

Let the triangulation T1 , T2 , . . . be generated from the triangulation T0 through uniform subdivisions such that
hk ≈ 1

2hk−1 and let Vk be the DG space associated with Tk . Our goal is to design multigrid methods for the
problem of finding (pk , yk) ∈ Vk × Vk such that

Bk((pk , yk), (q, z)) = F(q) + G(z) for all (q, z) ∈ Vk × Vk , (4.1)

where F, G ∈ V 󸀠k , and for the dual problem of finding (pk , yk) ∈ Vk × Vk such that

Bk((q, z), (pk , yk)) = F(q) + G(z) for all (q, z) ∈ Vk × Vk . (4.2)

HereBk represents the bilinear formBh on Vk × Vk .
Let ( ⋅ , ⋅ )k be a mesh-dependent inner product on Vk ,

(v, w)k = hnk
nk
∑
i=1 v(pi)w(pi) for all v, w ∈ Vk ,

where hk = maxT∈Tk diam T and {pi}nki=1 are the nodes in Tk .

Remark 4.1. It can be shown that (v, v)k ≈ ‖v‖2L2(Ω) for v ∈ Vk (cf. [15]).
Then the mesh-dependent inner product [ ⋅ , ⋅ ]k on Vk × Vk is defined by

[(p, y), (q, z)]k = (p, q)k + (y, z)k .

It is easy to see that
[(p, y), (p, y)]k ≈ ‖p‖2L2(Ω) + ‖y‖2L2(Ω) for all (p, y) ∈ Vk × Vk . (4.3)

The coarse-to-fine operator Ikk−1 : Vk−1 × Vk−1 → Vk × Vk is the natural injection and the fine-to-coarse
operator Ik−1k : Vk × Vk → Vk−1 × Vk−1 is the transpose of Ikk−1 with respect to the mesh-dependent inner
product, namely,

[Ik−1k (p, y), (q, z)]k−1 = [(p, y), Ikk−1(q, z)]k for all (p, y) ∈ Vk × Vk , (q, z) ∈ Vk−1 × Vk−1 .
Let the system operatorBk : Vk × Vk → Vk × Vk be defined by

[Bk(p, y), (q, z)]k = Bk((p, y), (q, z)) for all (p, y), (q, z) ∈ Vk × Vk .

Then the k-th level problem (4.1) is equivalent to

Bk(p, y) = (f, g), (4.4)

where (f, g) ∈ Vk × Vk is defined by

[(f, g), (q, z)]k = F(q) + G(z) for all (q, z) ∈ Vk × Vk ,

and the dual problem (4.2) becomes
Bt

k(p, y) = (f, g). (4.5)

Here, for all (p, y), (q, z) ∈ Vk × Vk , we have

[Bt
k(p, y), (q, z)]k = [(p, y),Bk(q, z)]k = Bk((q, z), (p, y)).
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4.2 A Block-Diagonal Preconditioner

Let Lk : Vk → Vk be an operator that is SPD with respect to ( ⋅ , ⋅ )k and satisfies

(Lkv, v)k ≈ β
1
2 ‖v‖21,h + ‖v‖

2
L2(Ω) for all v ∈ Vk .

Then the operator Ck : Vk × Vk → Vk × Vk given by Ck(p, y) = (Lkp, Lky) is SPD with respect to [ ⋅ , ⋅ ]k and we
have

[Ck(p, y), (p, y)]k ≈ ‖p‖2H1
β(Ω;Th) + ‖y‖2H1

β(Ω;Th) for all (p, y) ∈ Vk × Vk .

Here the hidden constant is independent of k and β.

Remark 4.2. In practice, we use C−1k as a block preconditioner. The operation L−1k ϕ can be computed approxi-
mately by solving the following boundary value problem:

−β
1
2 Δu + u = ϕ in Ω,

u = 0 on ∂Ω,
(4.6)

using a SIP discretization. This can be constructed by multigrid [16, 28].

Lemma 4.3. We have

[Bt
kC
−1
k Bk(p, y), (p, y)]k ≈ ‖p‖2H1

β(Ω;Th) + ‖y‖2H1
β(Ω;Th) for all (p, y) ∈ Vk × Vk , (4.7)

[BkC
−1
k Bt

k(p, y), (p, y)]k ≈ ‖p‖
2
H1
β(Ω;Th) + ‖y‖2H1

β(Ω;Th) for all (p, y) ∈ Vk × Vk . (4.8)

Lemma 4.4. There exists positive constants Cmin and Cmax, independent of k and β, such that

λmin(Bt
kC
−1
k Bk) ≥ Cmin , λmin(BkC

−1
k Bt

k) ≥ Cmin , (4.9)

λmax(Bt
kC
−1
k Bk) ≤ Cmax(β

1
2 h−2k + 1), λmax(BkC

−1
k Bt

k) ≤ Cmax(β
1
2 h−2k + 1). (4.10)

Proof. We only prove the estimates involving Bt
kC
−1
k Bk ; other estimates are similar. It follows from (4.7) and

(4.3) that
[Bt

kC
−1
k Bk(p, y), (p, y)]k ≥ ‖p‖2L2(Ω) + ‖y‖2L2(Ω) ≈ [(p, y), (p, y)]k .

Estimate (4.9) then is trivial by the Rayleigh quotient formula. We also have, by (4.7), (3.16) and (4.3), that

[Bt
kC
−1
k Bk(p, y), (p, y)]k ≲ (β

1
2 h−2k + 1)[(p, y), (p, y)]k .

Estimate (4.10) is immediate by the Rayleigh quotient formula.

Remark 4.5. Lemma 4.4 implies that the operatorsBt
kC
−1
k Bk ,BkC

−1
k Bt

k are well-conditioned when β
1
2 h−2k ≤ 1.

4.3 W-Cycle Algorithm

Let the output of the W -cycle algorithm for (4.4) with initial guess (p0 , y0) and m1 (resp. m2) pre-smoothing
(resp. post-smoothing) steps be denoted byMGW (k, (f, g), (p0 , y0),m1 ,m2).

We use a direct solve for k = 0, i.e., we take MGW (0, (f, g), (p0 , y0),m1 ,m2) to be B−10 (f, g). For k ≥ 1, we
computeMGW (k, (f, g), (p0 , y0),m1 ,m2) in three steps.
∙ Pre-Smoothing. The approximate solutions (p1 , y1), . . . , (pm1 , ym1 ) are computed recursively by

(pj , yj) = (pj−1 , yj−1) + λkC−1k Bt
k((f, g) −Bk(pj−1 , yj−1)) (4.11)

for 1 ≤ j ≤ m1. The choice of the damping factor λk is determined by the following criteria:

λk =
C

β 1
2 h−2k + 1 when β

1
2 h−2k ≥ 1, (4.12a)

λk =
2

λmin + λmax
when β

1
2 h−2k < 1, (4.12b)

where λmin and λmax are the smallest and largest eigenvalues ofBt
kC
−1
k Bk respectively.
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∙ Coarse Grid Correction. Let (f 󸀠 , g󸀠) = Ik−1k ((f, g) −Bk(pm1 , ym1 )) be the transferred residual of (pm1 , ym1 )
and compute (p󸀠1 , y󸀠1), (p󸀠2 , y󸀠2) ∈ Vk−1 × Vk−1 by

(p󸀠1 , y󸀠1) = MGW (k − 1, (f 󸀠 , g󸀠), (0, 0),m1 ,m2),
(p󸀠2 , y󸀠2) = MGW (k − 1, (f 󸀠 , g󸀠), (p󸀠1 , y󸀠1),m1 ,m2).

We then take (pm1+1 , ym1+1) to be (pm1 , ym1 ) + Ikk−1(p󸀠2 , y󸀠2).
∙ Post-Smoothing. The approximate solutions (pm1+2 , ym1+2), . . . , (pm1+m2+1 , ym1+m2+1) are computed recur-

sively by
(pj , yj) = (pj−1 , yj−1) + λkBt

kC
−1
k ((f, g) −Bk(pj−1 , yj−1)) (4.13)

for m1 + 2 ≤ j ≤ m1 + m2 + 1.
The final output isMGW (k, (f, g), (p0 , y0),m1 ,m2) = (pm1+m2+1 , ym1+m2+1).
Remark 4.6. The choice of (4.12a) is motivated by Lemma 4.4 such that λmax(λkBt

kC
−1
k Bk) ≤ 1. The choice of

(4.12b) is motivated by the optimal choice of Richardson iteration [38] and the well-conditioning of Bt
kC
−1
k Bk

(cf. Remark 4.5).

Remark 4.7. Note that the post-smoothing step is the Richardson iteration of the SPD system

Bt
kC
−1
k Bk(p, y) = Bt

kC
−1
k (f, g)

which is equivalent to (4.4).

4.4 V-Cycle Algorithm

Let the output of the V -cycle algorithm for (4.4) with initial guess (p0 , y0) andm1 (resp.m2) pre-smoothing (resp.
post-smoothing) steps be denoted byMGV (k, (f, g), (p0 , y0),m1 ,m2).

The computation of MGV (k, (f, g), (p0 , y0),m1 ,m2) differs from the computation of the W -cycle algorithm
only in the coarse grid correction step, where we compute

(p󸀠1 , y󸀠1) = MGV (k − 1, (f 󸀠 , g󸀠), (0, 0),m1 ,m2)

and take (pm1+1 , ym1+1) to be (pm1 , ym1 ) + Ikk−1(p󸀠1 , y󸀠1).
4.5 Multigrid Algorithms for (4.5)

We defineW -cycle and V -cycle algorithms for (4.5) by simply interchangingBt
k andBk in Sections 4.3 and 4.4.

The pre-smoothing step is given by

(pj , yj) = (pj−1 , yj−1) + λkC−1k Bk((f, g) −Bt
k(pj−1 , yj−1))

and the post-smoothing step is given by

(pj , yj) = (pj−1 , yj−1) + λkBkC
−1
k ((f, g) −B

t
k(pj−1 , yj−1)). (4.14)

5 Smoothing and Approximation Properties

In this section, we establish the smoothing property and the approximation property of theW -cycle algorithm.
These results can then be used to establish the convergence ofW -cycle algorithm as in [13].We omit some proofs
since they are identical to those of [13].
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5.1 A Scale of Mesh-Dependent Norms

For 0 ≤ s ≤ 1, we define

⦀(p, y)⦀s,k = [(Bt
kC
−1
k Bk)s(p, y), (p, y)]

1
2
k for all (p, y) ∈ Vk × Vk ,

⦀(p, y)⦀∼s,k = [(BkC
−1
k Bt

k)
s(p, y), (p, y)]

1
2
k for all (p, y) ∈ Vk × Vk .

Note that
⦀(p, y)⦀20,k ≈ ‖p‖

2
L2(Ω) + ‖y‖2L2(Ω) ≈ (⦀(p, y)⦀∼0,k)2 for all (p, y) ∈ Vk × Vk ,

by (4.3), and

⦀(p, y)⦀21,k ≈ ‖p‖
2
H1
β(Ω;Th) + ‖y‖2H1

β(Ω;Th) ≈ (⦀(p, y)⦀∼1,k)2 for all (p, y) ∈ Vk × Vk ,

by (4.7) and (4.8).

5.2 Post-Smoothing Properties

The error propagation operator for one post-smoothing step defined by (4.13) is given by

Rk = Idk − λkBt
kC
−1
k Bk , (5.1)

where Idk is the identity operator on Vk × Vk . We also need the error propagation operator for one post-
smoothing step defined by (4.14), which is

R̃k = Idk − λkBkC
−1
k Bt

k . (5.2)

Lemma 5.1 (Smoothing Properties). In the case where β 1
2 h−1k < 1, we have

⦀Rk(p, y)⦀1,k ≤ τ⦀(p, y)⦀1,k for all (p, y) ∈ Vk × Vk ,
⦀R̃k(p, y)⦀∼1,k ≤ τ⦀(p, y)⦀∼1,k for all (p, y) ∈ Vk × Vk ,

where τ ∈ (0, 1) is independent of k and β.
In the case where β 1

2 h−1k ≥ 1, we have, for 0 ≤ s ≤ 1,
⦀Rmk (p, y)⦀1,k ≤ C(β

1
2 h−2k + 1) s2m− s2 ⦀(p, y)⦀1−s,k for all (p, y) ∈ Vk × Vk ,

⦀R̃mk (p, y)⦀
∼
1,k ≤ C(β

1
2 h−2k + 1) s2m− s2 ⦀(p, y)⦀∼1−s,k for all (p, y) ∈ Vk × Vk ,

where the constant C is independent of k and β.

5.3 Approximation Properties

The operators Pk−1k : Vk × Vk → Vk−1 × Vk−1 and ̃Pk−1k : Vk × Vk → Vk−1 × Vk−1 are defined as follows. For all
(p, y) ∈ Vk × Vk , (q, z) ∈ Vk−1 × Vk−1,

Bk−1(Pk−1k (p, y), (q, z)) = Bk((p, y), Ikk−1(q, z)) = Bk((p, y), (q, z)), (5.3)
Bk−1((q, z), ̃Pk−1k (p, y)) = Bk(Ikk−1(q, z), (p, y)) = Bk((q, z), (p, y)). (5.4)

Lemma 5.2. We have the following properties:

(Ikk−1Pk−1k )
2 = Ikk−1Pk−1k , (Idk − Ikk−1Pk−1k )

2 = Idk − Ikk−1Pk−1k , (5.5)
(Ikk−1 ̃Pk−1k )

2 = Ikk−1 ̃Pk−1k , (Idk − Ikk−1 ̃Pk−1k )
2 = Idk − Ikk−1 ̃Pk−1k . (5.6)
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Proof. We only prove the identities in (5.5), the ones in (5.6) are similar. Notice that, for (p, y) ∈ Vk−1 × Vk−1, we
have

Bk−1(Pk−1k Ikk−1(p, y), (q, z)) = Bk(Ikk−1(p, y), Ikk−1(q, z)) = Bk−1((p, y), (q, z))
for all (q, z) ∈ Vk−1 × Vk−1. This implies Pk−1k Ikk−1 = Idk−1. Then equalities (5.5) are immediate by a direct calcu-
lation.

Lemma 5.3 (Approximation Properties). We have, for all (p, y) ∈ Vk × Vk and k ≥ 1,

⦀(Idk − Ikk−1Pk−1k )(p, y)⦀0,k ≲ (β
1
2 h−2k + 1) 12 β− 12 h2k⦀(p, y)⦀1,k , (5.7)

⦀(Idk − Ikk−1 ̃Pk−1k )(p, y)⦀
∼
0,k ≲ (β

1
2 h−2k + 1) 12 β− 12 h2k⦀(p, y)⦀∼1,k . (5.8)

Here the hidden constant is independent of k and β.

Proof. We will only prove (5.7); the argument for (5.8) is similar. Let (p, y) ∈ Vk × Vk be arbitrary and

(ζ, μ) = (Idk − Ikk−1Pk−1k )(p, y).

By (4.3), it suffices to show that

‖ζ‖L2(Ω) + ‖μ‖L2(Ω) ≲ (β 1
2 h−2k + 1) 12 β− 12 h2k⦀(p, y)⦀1,k .

Estimate (5.7) is established through a duality argument (cf. [16]). Let (ξ, θ) ∈ H1
0(Ω) × H

1
0(Ω) satisfy

B((q, z), (ξ, θ)) = (ζ, q)L2(Ω) + (μ, z)L2(Ω) for all (q, z) ∈ H1
0(Ω) × H

1
0(Ω).

Moreover, we define (ξk , θk) ∈ Vk × Vk and (ξk−1 , θk−1) ∈ Vk−1 × Vk−1 by
Bk((q, z), (ξk , θk) = (ζ, q)L2(Ω) + (μ, z)L2(Ω) for all (q, z) ∈ Vk × Vk , (5.9)

Bk−1((q, z), (ξk−1 , θk−1)) = (ζ, q)L2(Ω) + (μ, z)L2(Ω) for all (q, z) ∈ Vk−1 × Vk−1 . (5.10)

Note that (5.9) and (5.10) imply

Bk((q, z), (ξk , θk)) = Bk−1((q, z), (ξk−1 , θk−1)) for all (q, z) ∈ Vk−1 × Vk−1 . (5.11)

It follows from (5.11) and (5.4) that
(ξk−1 , θk−1) = ̃Pk−1k (ξk , θk). (5.12)

We have the following by (3.18) and hk ≈ 1
2hk−1:

‖ξ − ξk‖H1
β(Ω;Th) + ‖θ − θk‖H1

β(Ω;Th) ≤ C(β 1
2 h−2k + 1) 12 β− 12 h2k(‖ζ‖L2(Ω) + ‖μ‖L2(Ω)), (5.13)

‖ξ − ξk−1‖H1
β(Ω;Th) + ‖θ − θk−1‖H1

β(Ω;Th) ≤ C(β 1
2 h−2k + 1) 12 β− 12 h2k(‖ζ‖L2(Ω) + ‖μ‖L2(Ω)). (5.14)

Therefore, by (3.14), (5.3), (5.9), (5.12), (5.13) and (5.14), we have

‖ζ‖2L2(Ω) + ‖μ‖2L2(Ω) = Bk((ζ, μ), (ξk , θk))
= Bk((Idk − Ikk−1Pk−1k )(p, y), (ξk , θk))
= Bk((p, y), (ξk , θk)) −Bk(Ikk−1Pk−1k (p, y), (ξk , θk))
= Bk((p, y), (ξk , θk)) −Bk−1(Pk−1k (p, y), ̃P

k−1
k (ξk , θk))

= Bk((p, y), (ξk , θk)) −Bk−1(Pk−1k (p, y), (ξk−1 , θk−1))
= Bk((p, y), (ξk , θk)) −Bk((p, y), Ikk−1(ξk−1 , θk−1))
= Bk((p, y), (ξk , θk) − Ikk−1(ξk−1 , θk−1))
≲ (‖ξk − ξk−1‖2H1

β(Ω;Th) + ‖θk − θk−1‖2H1
β(Ω;Th)) 12 (‖p‖2H1

β(Ω;Th) + ‖y‖2H1
β(Ω;Th)) 12

≲ (β
1
2 h−2k + 1) 12 β− 12 h2k(‖ζ‖L2(Ω) + ‖μ‖L2(Ω))⦀(p, y)⦀1,k ,

which implies (5.7).
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6 Convergence Analysis

Let Ek : Vk × Vk → Vk × Vk be the error propagation operator for the k-th levelW -cycle algorithm for (4.4). The
following recursive relationship is well known (cf. [15, 29]):

Ek = Rm2
k (Idk − I

k
k−1Pk−1k + I

k
k−1E2k−1Pk−1k )S

m1
k , (6.1)

where Rk is defined in (5.1) and
Sk = Idk − λkC−1k Bt

kBk

measures the effect of one pre-smoothing step (4.11).

Remark 6.1. We have the following adjoint relation:

Bk(Sk(p, y), (q, z)) = Bk((p, y), R̃k(q, z)) for all (p, y), (q, z) ∈ Vk × Vk , (6.2)

where R̃k is defined in (5.2). Relation (6.2) is the reason why we consider the multigrid algorithms for (4.4) and
(4.5) simultaneously.

Lemma 6.2. We have
‖(Idk − Ikk−1Pk−1k )S

m
k ‖ ≈ ‖R̃

m
k (Idk − I

k
k−1 ̃Pk−1k )‖,

where ‖ ⋅ ‖ is the operator norm with respect to ⦀ ⋅ ⦀1,k .

Proof. For all (p, y) ∈ Vk × Vk , it follows from (3.14) that

⦀(Idk − Ikk−1Pk−1k )S
m
k (p, y)⦀1,k ≈ sup(q,z)∈Vk×Vk Bk((Idk − Ikk−1Pk−1k )S

m
k (p, y), (q, z))

⦀(q, z)⦀1,k

= sup(q,z)∈Vk×Vk Bk((p, y), R̃mk (Idk − I
k
k−1 ̃Pk−1k )(q, z))

⦀(q, z)⦀1,k
≲ ⦀(p, y)⦀1,k‖Rmk (Idk − I

k
k−1 ̃Pk−1k )‖.

This implies ‖(Idk − Ikk−1Pk−1k )S
m
k ‖ ≲ ‖R̃

m
k (Idk − I

k
k−1 ̃Pk−1k )‖. The other direction of the estimate is similar.

6.1 Convergence of the Two-Grid Algorithm

In the two-grid algorithm, the coarse grid residual equation is solved exactly (Ek−1 = 0 in (6.1)). We therefore
obtain the error propagation operator of the two-grid algorithm Rm2

k (Idk − I
k
k−1Pk−1k )S

m1
k withm1 pre-smoothing

steps and m2 post-smoothing steps.
We have the following lemma for the convergence of the two-grid algorithm.

Lemma 6.3. In the case of β− 12 h2k < 1, we have
‖Rm2

k (Idk − I
k
k−1Pk−1k )S

m1
k ‖ ≲ τ

m1+m2 .

In the case of β− 12 h2k ≥ 1, we have
‖Rm2

k (Idk − I
k
k−1Pk−1k )S

m1
k ‖ ≲ [max(1,m2)max(1,m1)]− 12 .

Proof. The proof can be found in [13, Section 5.1]. The key ingredients are (5.6), Lemma 5.1, Lemma 5.3 and
Lemma 6.2.

6.2 Convergence of the W-Cycle Algorithm

It is well known that the convergence of the two-grid algorithm implies the convergence of the W -cycle algo-
rithmbya standardperturbation argument (cf. [15, 19, 29]). A delicatemodification [13] of the standard argument
leads to the following theorem.
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Theorem 6.4. There exists a positive integer m∗, independent of k and β, such that
‖Ek‖ ≤ C♯τm1+m2 for all 1 ≤ k ≤ k∗ , (6.3)

‖Ek‖ ≤ C♭[max(1,m2)max(1,m1)]− 12 + 41−2k−k∗ (C♯τm1+m2 ) for all k ≥ k∗ + 1. (6.4)

provided [max(1,m2)max(1,m1)] ≥ m∗. Here C♯ and C♭ are constants independent of k and β, and the integer
k∗ is the largest positive integer such that β 1

2 h−2k < 1.
Remark 6.5. The interpretations and implications of Theorem 6.4 are as follows.
(1) The W -cycle algorithm for the k-th level problem (4.4) is a contraction in the energy norm ⦀ ⋅ ⦀1,k if the

number of smoothing steps is large enough. The contraction number is bounded away from 1 uniformly in
k and β. Therefore, theW -cycle algorithm is robust with respect to k and β.

(2) At coarse levels (where β 1
2 h−2k < 1), estimate (6.3) indicates that the contraction numbers decrease exponen-

tially with respect to the number of smoothing steps. Estimate (6.4) implies that the contraction numbers
will be dominated by the term [max(1,m2)max(1,m1)]− 12 at finer levels (where β 1

2 h−2k ≥ 1) eventually.
7 Numerical Results

In this section,we report the numerical results of the symmetricW -cycle and V -cycle algorithms (m1 = m2 = m).
The preconditioner C−1k is computed using a V(4, 4) multigrid solve for (4.6) based on a SIP discretization [16].
The eigenvalues λmax and λmin in (4.12b) are estimated using power iterations. We employed the MATLAB/C++
toolbox FELICITY [43] in our computation.

Example 7.1 (Unit Square). In this example, we takeΩ = (0, 1)2 and σ = 6 in (3.4). For simplicity, we take ζ = [1, 0]t
and γ = 0 in (3.5). See Figure 1 for the initial triangulation T0 and the uniform refinements T1 and T2.

We report the contraction numbers of theW -cycle algorithm in Tables 1–3 for β = 10−2, β = 10−4 and β = 10−6.
We observe that the contraction numbers of the symmetric W -cycle algorithm decay exponentially at coarse
levels and then approach the standard O(m−1) behavior at finer levels for all choices of β. Notice that our W -
cycle algorithm is clearly robust with respect to β and the performance agrees with Remark 6.5.

Figure 1: Triangulations T0, T1 and T2 for the unit square in Example 7.1.

m

k 20 21 22 23 24 25 26

1 8.17e−01 6.87e−01 5.08e−01 2.94e−01 1.02e−01 1.25e−02 1.89e−04
2 8.31e−01 7.02e−01 5.31e−01 3.29e−01 1.43e−01 4.19e−02 8.24e−03
3 8.96e−01 8.08e−01 6.74e−01 4.84e−01 2.92e−01 1.31e−01 4.48e−02
4 8.64e−01 7.55e−01 5.93e−01 4.05e−01 2.17e−01 1.01e−01 4.58e−02
5 8.49e−01 7.36e−01 5.63e−01 3.71e−01 1.95e−01 9.95e−02 4.59e−02
6 8.46e−01 7.35e−01 5.55e−01 3.61e−01 1.90e−01 9.50e−02 4.68e−02
7 8.45e−01 7.34e−01 5.52e−01 3.57e−01 1.90e−01 9.54e−02 4.70e−02

Table 1: The contraction numbers of the k-th level (k = 1, . . . , 7) symmetric W-cycle algorithm for Example 7.1
with β = 10−2 and m = 20 , . . . , 26.
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m

k 20 21 22 23 24 25 26

1 5.85e−01 3.74e−01 1.48e−01 2.42e−02 6.54e−04 4.81e−07 4.97e−14
2 8.08e−01 6.71e−01 4.65e−01 2.28e−01 5.52e−02 3.34e−03 1.13e−05
3 8.38e−01 7.26e−01 5.36e−01 3.31e−01 1.54e−01 3.87e−02 3.66e−03
4 9.36e−01 8.78e−01 7.82e−01 6.32e−01 4.38e−01 2.49e−01 1.01e−01
5 8.85e−01 7.92e−01 6.54e−01 4.85e−01 2.94e−01 1.47e−01 6.19e−02
6 8.95e−01 7.46e−01 5.77e−01 3.87e−01 2.09e−01 1.06e−01 5.49e−02
7 8.48e−01 7.37e−01 5.58e−01 3.63e−01 1.95e−01 9.75e−02 4.89e−02

Table 2: The contraction numbers of the k-th level (k = 1, . . . , 7) symmetric W-cycle algorithm for Example 7.1
with β = 10−4 and m = 20 , . . . , 26.

m

k 20 21 22 23 24 25 26

1 4.18e−01 1.75e−01 3.02e−02 9.45e−04 8.71e−07 1.07e−13 1.86e−16
2 4.35e−01 1.90e−01 3.60e−02 1.24e−03 1.53e−06 4.60e−13 2.30e−16
3 7.06e−01 5.10e−01 2.84e−01 8.65e−02 7.88e−03 7.14e−05 5.31e−07
4 8.33e−01 7.10e−01 5.22e−01 2.78e−01 9.24e−02 1.13e−02 1.76e−04
5 8.43e−01 7.30e−01 5.44e−01 3.50e−01 1.79e−01 5.68e−02 1.13e−02
6 9.14e−01 8.41e−01 7.24e−01 5.45e−01 3.50e−01 1.78e−01 8.27e−02
7 8.70e−01 7.67e−01 6.14e−01 4.38e−01 2.52e−01 1.24e−01 5.87e−02

Table 3: The contraction numbers of the k-th level (k = 1, . . . , 7) symmetric W-cycle algorithm for Example 7.1
with β = 10−6 and m = 20 , . . . , 26.

k

m 1 2 3 4 5 6 7

β = 10−2
22 5.08e−01 5.55e−01 6.79e−01 6.54e−01 6.50e−01 6.23e−01 6.15e−01
23 2.94e−01 3.45e−01 4.97e−01 4.68e−01 4.83e−01 4.54e−01 4.41e−01
24 1.02e−01 1.52e−01 2.92e−01 2.87e−01 2.88e−01 2.80e−01 2.52e−01

β = 10−4
22 1.49e−01 4.65e−01 5.40e−01 7.84e−01 7.31e−01 7.07e−01 7.05e−01
23 2.42e−02 2.28e−01 3.30e−01 6.33e−01 5.82e−01 5.74e−01 5.66e−01
24 6.53e−04 5.60e−02 1.53e−01 4.38e−01 3.82e−01 3.75e−01 3.77e−01

β = 10−6
22 3.08e−02 3.60e−02 2.72e−01 5.18e−01 5.54e−01 7.23e−01 6.94e−01
23 9.47e−04 1.26e−03 8.61e−02 2.83e−01 3.55e−01 5.47e−01 5.31e−01
24 7.11e−07 1.70e−06 8.02e−03 9.24e−02 1.80e−01 3.53e−01 3.33e−01

Table 4: The contraction numbers of the k-th level (k = 1, . . . , 7) symmetric V-cycle algorithm for Example 7.1
with β = 10−2 , 10−4 , 10−6 and m = 22 , 23 , 24.

We have also tested the symmetric V -cycle algorithm for k-th level problem (4.4) and briefly report the
results in Table 4. We observe that our V -cycle algorithm is also a contraction with slightly more numbers of
smoothing steps (m = 4) and the contraction numbers are robust with respect to k and β.

Example 7.2 (L-Shaped Domain). We also test our multigrid methods on nonconvex domains. In this example,
we take Ω = (0, 1)2 \ (0.5, 1)2 and σ = 6 in (3.4). We also take ζ = [1, 0]t and γ = 0 in (3.5). See Figure 2 for the
initial triangulation T0 and the uniform refinement T1.
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Figure 2: Triangulations T0 and T1 for the L-shaped domain in Example 7.2.

m

k 20 21 22 23 24 25 26

1 8.34e−01 7.18e−01 5.31e−01 3.25e−01 1.30e−01 2.83e−02 1.62e−03
2 8.95e−01 8.09e−01 6.74e−01 4.84e−01 2.84e−01 1.22e−01 3.10e−02
3 8.64e−01 7.55e−01 5.96e−01 4.02e−01 2.17e−01 9.76e−02 3.76e−02
4 8.50e−01 7.35e−01 5.65e−01 3.72e−01 1.95e−01 9.48e−02 4.58e−02
5 8.46e−01 7.33e−01 5.56e−01 3.61e−01 1.91e−01 9.53e−02 4.70e−02
6 8.46e−01 7.34e−01 5.53e−01 3.59e−01 1.90e−01 9.52e−02 4.62e−02
7 8.45e−01 7.34e−01 5.52e−01 3.55e−01 1.91e−01 9.50e−02 4.71e−02

Table 5: The contraction numbers of the k-th level (k = 1, . . . , 7) symmetric W-cycle algorithm for Example 7.2
with β = 10−2 and m = 20 , . . . , 26.

m

k 20 21 22 23 24 25 26

1 8.02e−01 6.63e−01 4.67e−01 2.26e−01 5.76e−02 3.57e−03 1.55e−05
2 8.37e−01 7.20e−01 5.33e−01 3.26e−01 1.52e−01 3.67e−02 2.71e−03
3 9.36e−01 8.78e−01 7.82e−01 6.29e−01 4.38e−01 2.50e−01 9.60e−02
4 8.85e−01 7.90e−01 6.52e−01 4.96e−01 2.91e−01 1.44e−01 6.13e−02
5 8.56e−01 7.47e−01 5.77e−01 3.87e−01 2.10e−01 1.06e−01 5.59e−02
6 8.48e−01 7.37e−01 5.58e−01 3.64e−01 1.95e−01 9.73e−02 4.83e−02
7 8.46e−01 7.35e−01 5.53e−01 3.56e−01 1.92e−01 9.57e−02 4.73e−02

Table 6: The contraction numbers of the k-th level (k = 1, . . . , 7) symmetric W-cycle algorithm for Example 7.2
with β = 10−4 and m = 20 , . . . , 26.

m

k 20 21 22 23 24 25 26

1 4.26e−01 1.88e−01 3.61e−02 1.23e−03 1.18e−06 2.27e−13 2.26e−16
2 7.07e−01 5.24e−01 2.84e−01 8.75e−02 8.40e−03 8.03e−05 3.31e−07
3 8.30e−01 7.04e−01 5.15e−01 2.81e−01 9.01e−02 1.06e−02 1.53e−04
4 8.42e−01 7.33e−01 5.43e−01 3.49e−01 1.78e−01 5.61e−02 1.28e−02
5 9.14e−01 8.41e−01 7.23e−01 5.45e−01 3.52e−01 1.78e−01 8.26e−02
6 8.70e−01 7.67e−01 6.14e−01 4.37e−01 2.50e−01 1.24e−01 5.85e−02
7 8.52e−01 7.42e−01 5.66e−01 3.73e−01 2.03e−01 1.03e−01 5.28e−02

Table 7: The contraction numbers of the k-th level (k = 1, . . . , 7) symmetric W-cycle algorithm for Example 7.2
with β = 10−6 and m = 20 , . . . , 26.
We report the contraction numbers of theW -cycle algorithm in Tables 5–7 for β = 10−2, β = 10−4 and β = 10−6.
We observe that the contraction numbers of the symmetric W -cycle algorithm decay exponentially at coarse
levels and then approach the standard O(m− 23 ) behavior for L-shaped domains at finer levels for all choices
of β. Notice that our W -cycle algorithm is clearly robust with respect to β and the performance agrees with
Remark 6.5.
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8 Concluding Remarks

We proposed and analyzed multigrid methods for an elliptic optimal control problem based on DG discretiza-
tions. We proved that, for a sufficiently large number of smoothing steps, the W -cycle algorithm is uniformly
convergent with respect to mesh refinements and a regularizing parameter. The numerical results coincide
with the theoretical findings. Our multigrid analysis can be also be extended to other DG methods. In fact, our
multigrid analysis should work for any DG methods with convergence results in H1

β(Ω;Th) norm as that of
Lemma 3.5.

The analysis of our multigrid methods can also be extended to higher order polynomials assuming higher
regularity of the solutions to the optimal control problems.We briefly discuss the strategy. Note that one has the
following interpolation estimate [37]:

‖z − Πhz‖L2(Ω) + h|z − Πhz|H1(Ω) ≲ hmin(l+1,s)|z|Hs(Ω) , (8.1)

where l is the order of the polynomials. From (8.1), one can easily obtain the error estimates for the DGmethods
as follows:

‖p − ph‖H1
β(Ω;Th) + ‖y − yh‖H1

β(Ω;Th) ≲ (β 1
2 h−2 + 1) 12 β− 12 hmin(l+1,s) .

Note that the inverse estimate (3.16) remains the same for higher order polynomials [37], and hence the smooth-
ing property (cf. Lemma 5.1) remains unchanged, which is

⦀Rmk (p, y)⦀1,k ≤ C(β
1
2 h−2k + 1) 12m− 12 ⦀(p, y)⦀0,k .

The approximation property can be proved using the same idea as in Lemma 5.3, and it becomes

⦀(Idk − Ikk−1Pk−1k )(p, y)⦀0,k ≲ (β
1
2 h−2k + 1) 12 β− 12 hmin(l+1,s)k ⦀(p, y)⦀1,k .

The convergence of themultigrid can be obtained by combining the smoothing property and the approximation
property. In fact, we have

‖Rmk (Idk − I
k
k−1Pk−1k )‖ ≤ C(β

1
2 h−2k + 1) 12m− 12 (β 1

2 h−2k + 1) 12 β− 12 hmin(l+1,s)k

= C(1 + β− 12 h2k)hmin(l+1,s)−2k m− 12
≤ C(1 + β− 12 h2k)m− 12 .

Weuse the fact thatmin(l + 1, s) ≥ 2 in the last inequality. Therefore, the assumptions on β and hk in Sections 4–
6 are still valid in the case of higher order polynomials. The theoretical results then follows as that of Section 6.

A more interesting problem is to consider an advection-dominated state equation. DGmethods are promis-
ing for advection-dominated problem due to the natural built-in upwind stabilization and the weak treatment
of the boundary conditions. Related work can be found, for example, in [34]. However, the challenge for extend-
ing our result is to design proper preconditioner so that the multigrid methods are robust for the advection-
dominated case. This is under investigation in our ongoing projects.

A Proofs of (3.9) and (3.10)

For T ∈ Th and v ∈ H1+s(Ω), where s ∈ ( 12 , 1], the following trace inequalities with scaling is standard (cf.
[25, Lemma 7.2] and [21, Proposition 3.1]):

‖v‖L2(∂T) ≤ C(h− 12T ‖v‖L2(T) + hs− 12T |v|Hs(T)). (A.1)

The following discrete Poincaŕe inequality for DG functions [4, 8, 20] is valid for all v ∈ Vh:

‖v‖2L2(Ω) ≤ C(∑
T∈Ω‖∇v‖2L2(T) + ∑e∈∂T 1

he
‖[v]‖2L2(e)). (A.2)
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Proof. It is well known that [3, 15, 37]

asiph (w, v) ≤ C‖w‖1,h‖v‖1,h for all w, v ∈ V + Vh ,

asiph (v, v) ≥ C‖v‖
2
1,h for all v ∈ Vh .

For the advection-reaction term, we have, for all w, v ∈ V + Vh ,

aarh (w, v) = ∑
T∈Th

(ζ ⋅ ∇w + γw, v)T − ∑
e∈Ei

h∪Eb,−
h

(n ⋅ ζ[w], {v})e

≲ ( ∑
T∈Th

‖∇w‖2L2(T)) 12 ‖v‖L2(Ω) + ‖w‖L2(Ω)‖v‖L2(Ω)
+ ( ∑

e∈Ei
h∪Eb,−

h

σ
he
‖[w]‖2L2(e)) 12 ( ∑

e∈Ei
h∪Eb,−

h

he
σ
‖{v}‖2L2(e)) 12

≲ ⦀w⦀h⦀v⦀h ,

where we use ζ ∈ [W1,∞(Ω)]2, γ ∈ L∞(Ω), (A.1) and (A.2). Furthermore, upon integration by parts, we have, for
all v ∈ Vh ,

aarh (v, v) = ∑
T∈Th

(ζ ⋅ ∇v + γv, v)T − ∑
e∈Ei

h∪Eb,−
h

(n ⋅ ζ[v], {v})e

= ∑
T∈Th

((γ − 12∇ ⋅ ζ)v, v)T
+ ∑
T∈Th

∫
∂T

1
2 (ζ ⋅ n)v

2 ds − ∑
e∈Ei

h∪Eb,−
h

∫
e

ζ ⋅ n[v]{v} ds

= ∑
T∈Th

((γ − 12∇ ⋅ ζ)v, v)T
+ ∫
∂Ω

1
2 |ζ ⋅ n|v

2 ds.

By assumption (1.4), we immediately have aarh (v, v) ≥ 0. This finishes the proof.

B A Proof of (3.22)

Proof. It follows from (3.20) that

‖p − ph‖2L2(Ω) + ‖y − yh‖2L2(Ω) = (β 1
2 (−Δξ + ζ ⋅ ∇ξ + γξ) − θ, p − ph)L2(Ω)
+ (−ξ + β

1
2 (Δθ + ζ ⋅ ∇θ − (γ − ∇ ⋅ ζ)θ), y − yh)L2(Ω)

= β
1
2 (−Δξ, p − ph)L2(Ω) + β 1

2 ∑
T∈Th

(ζ ⋅ ∇ξ + γξ, p − ph)T

− (θ, p − ph)L2(Ω) − (ξ, y − yh)L2(Ω)
+ β

1
2 (Δθ, y − yh)L2(Ω) + β 1

2 ∑
T∈Th

(ζ ⋅ ∇θ − (γ − ∇ ⋅ ζ)θ, y − yh)T . (B.1)

By the consistency of the SIP method (cf. [3, 37]), we have

(−Δξ, p − ph) = a
sip
h (ξ, p − ph) and (Δθ, y − yh) = −a

sip
h (y − yh , θ). (B.2)

For the last term in (B.1), it follows from integration by parts that

∑
T∈Th

(ζ ⋅ ∇θ − (γ − ∇ ⋅ ζ)θ, y − yh)T = ∑
T∈Th

(−ζ ⋅ ∇(y − yh), θ)T − (γ(y − yh), θ)T

+ ∑
T∈Th

∫
∂T

(ζ ⋅ n)(y − yh)θ ds. (B.3)
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The last term in (B.3) can be rewritten as the following [3, 24]:

∑
T∈Th

∫
∂T

(ζ ⋅ n)(y − yh)θ ds = ∑
e∈Ei

h

∫
e

ζ ⋅ n[(y − yh)θ] ds + ∑
e∈Eb

h

∫
e

ζ ⋅ n(y − yh)θ ds

= ∑
e∈Ei

h

∫
e

ζ ⋅ n[y − yh]{θ} ds + ∑
e∈Ei

h

∫
e

ζ ⋅ n{y − yh}[θ] ds

+ ∑
e∈Eb

h

∫
e

ζ ⋅ n(y − yh)θ ds. (B.4)

It then follows from [θ] = 0 on interior edges and θ = 0 on ∂Ω that

∑
T∈Th

∫
∂T

(ζ ⋅ n)(y − yh)θ ds = ∑
e∈Ei

h∪Eb,−
h

∫
e

ζ ⋅ n[y − yh]{θ} ds. (B.5)

According to (B.3)–(B.5), we conclude

∑
T∈Th

(ζ ⋅ ∇θ − (γ − ∇ ⋅ ζ)θ, y − yh)T = −aarh (y − yh , θ). (B.6)

Similarly, we can show
∑
T∈Th

(ζ ⋅ ∇ξ + γξ, p − ph)T = aarh (ξ, p − ph). (B.7)

Therefore, we obtain the following by (B.2), (B.6), (B.7), (3.3) and (3.2):

‖p − ph‖2L2(Ω) + ‖y − yh‖2L2(Ω) = β 1
2 ah(ξ, p − ph) − (θ, p − ph)L2(Ω) − (ξ, y − yh)L2(Ω) − β 1

2 ah(y − yh , θ)
= Bh((p − ph , y − yh), (ξ, θ)).

Acknowledgment: The author would like to thank Prof. Susanne C. Brenner, Prof. Li-Yeng Sung and Prof. Yi
Zhang for the helpful discussion regarding this project.

Funding: The revision of thismaterial is based uponwork supported by the National Science Foundation under
Grant No. DMS-1929284 while the author was in residence at the Institute for Computational and Experimen-
tal Research in Mathematics in Providence, RI, during the “Numerical PDEs: Analysis, Algorithms, and Data
Challenges” program.

References
[1] P. F. Antonietti, M. Sarti and M. Verani, Multigrid algorithms for hp-discontinuous Galerkin discretizations of elliptic problems, SIAM

J. Numer. Anal. 53 (2015), no. 1, 598–618.
[2] D. N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal. 19 (1982), no. 4, 742–760.
[3] D. N. Arnold, F. Brezzi, B. Cockburn and L. D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J.

Numer. Anal. 39 (2001/02), no. 5, 1749–1779.
[4] B. Ayuso and L. D. Marini, Discontinuous Galerkin methods for advection-diffusion-reaction problems, SIAM J. Numer. Anal. 47 (2009),

no. 2, 1391–1420.
[5] I. Babuška, The finite element method with Lagrangian multipliers, Numer. Math. 20 (1973), no. 3, 179–192.
[6] A. Borzi and V. Schulz, Multigrid methods for PDE optimization, SIAM Rev. 51 (2009), no. 2, 361–395.
[7] J. H. Bramble, Multigrid Methods, Pitman Res. Notes in Math. Ser. 294, John Wiley & Sons, New York, 1993.
[8] S. C. Brenner, Poincaré–Friedrichs inequalities for piecewise H1 functions, SIAM J. Numer. Anal. 41 (2003), no. 1, 306–324.
[9] S. C. Brenner, J. Cui, T. Gudi and L.-Y. Sung, Multigrid algorithms for symmetric discontinuous Galerkin methods on graded meshes,

Numer. Math. 119 (2011), no. 1, 21–47.
[10] S. C. Brenner, J. Cui and L.-Y. Sung, Multigrid methods for the symmetric interior penalty method on graded meshes, Numer. Linear

Algebra Appl. 16 (2009), no. 6, 481–501.
[11] S. C. Brenner, H. Li and L.-Y. Sung, Multigrid methods for saddle point problems: Stokes and Lamé systems, Numer. Math. 128 (2014),

no. 2, 193–216.



S. Liu, Robust DG-MG for an Elliptic Optimal Control Problem  19

[12] S. C. Brenner, H. Li and L.-Y. Sung, Multigrid methods for saddle point problems: Oseen system, Comput. Math. Appl. 74 (2017), no. 9,
2056–2067.

[13] S. C. Brenner, S. Liu and L.-Y. Sung, Multigrid methods for saddle point problems: Optimality systems, J. Comput. Appl. Math. 372
(2020), Article ID 112733.

[14] S. C. Brenner, D.-S. Oh and L.-Y. Sung, Multigrid methods for saddle point problems: Darcy systems, Numer. Math. 138 (2018), no. 2,
437–471.

[15] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Texts Appl. Math. 15, Springer, New York, 2008.
[16] S. C. Brenner and J. Zhao, Convergence of multigrid algorithms for interior penalty methods, Appl. Numer. Anal. Comput. Math. 2

(2005), no. 1, 3–18.
[17] F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, Rev.

Française Automat. Informat. Rech. Opér. Sér. Rouge 8 (1974), no. R2, 129–151.
[18] F. Brezzi, L. D. Marini and E. Süli, Discontinuous Galerkin methods for first-order hyperbolic problems, Math. Models Methods Appl.

Sci. 14 (2004), no. 12, 1893–1903.
[19] W. L. Briggs, V. E. Henson and S. F. McCormick, A Multigrid Tutorial, Society for Industrial and Applied Mathematics, Philadelphia,

2000.
[20] Z. Chen and H. Chen, Pointwise error estimates of discontinuous Galerkin methods with penalty for second-order elliptic problems,

SIAM J. Numer. Anal. 42 (2004), no. 3, 1146–1166.
[21] P. Ciarlet, Jr., Analysis of the Scott–Zhang interpolation in the fractional order Sobolev spaces, J. Numer. Math. 21 (2013), no. 3,

173–180.
[22] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, Stud. Math. Appl. 4, North-Holland, Amsterdam, 1978.
[23] D. A. Di Pietro and A. Ern, Discrete functional analysis tools for discontinuous Galerkin methods with application to the

incompressible Navier–Stokes equations, Math. Comp. 79 (2010), no. 271, 1303–1330.
[24] D. A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods, Math. Appl. (Berlin) 69, Springer, Heidelberg, 2012.
[25] A. Ern and J.-L. Guermond, Finite element quasi-interpolation and best approximation, ESAIM Math. Model. Numer. Anal. 51 (2017),

no. 4, 1367–1385.
[26] F. Gaspoz, C. Kreuzer, A. Veeser and W. Wollner, Quasi-best approximation in optimization with PDE constraints, Inverse Problems 36

(2020), no. 1, Article ID 014004.
[27] W. Gong, Z. Tan and Z. Zhou, Optimal convergence of finite element approximation to an optimization problem with PDE constraint,

Inverse Problems 38 (2022), no. 4, Article ID 045004.
[28] J. Gopalakrishnan and G. Kanschat, A multilevel discontinuous Galerkin method, Numer. Math. 95 (2003), no. 3, 527–550.
[29] W. Hackbusch, Multigrid Methods and Applications, Springer Ser. Comput. Math. 4, Springer, Berlin, 1985.
[30] M. Hinze, A variational discretization concept in control constrained optimization: The linear-quadratic case, Comput. Optim. Appl. 30

(2005), no. 1, 45–61.
[31] Q. Hong, J. Kraus, J. Xu and L. Zikatanov, A robust multigrid method for discontinuous Galerkin discretizations of Stokes and linear

elasticity equations, Numer. Math. 132 (2016), no. 1, 23–49.
[32] G. Kanschat and Y. Mao, Multigrid methods for Hdiv-conforming discontinuous Galerkin methods for the Stokes equations, J. Numer.

Math. 23 (2015), no. 1, 51–66.
[33] D. Leykekhman, Investigation of commutative properties of discontinuous Galerkin methods in PDE constrained optimal control

problems, J. Sci. Comput. 53 (2012), no. 3, 483–511.
[34] D. Leykekhman and M. Heinkenschloss, Local error analysis of discontinuous Galerkin methods for advection-dominated elliptic

linear-quadratic optimal control problems, SIAM J. Numer. Anal. 50 (2012), no. 4, 2012–2038.
[35] J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Grundlehren Math. Wiss. 170, Springer, New York, 1971.
[36] J. W. Pearson, M. Stoll and A. J. Wathen, Regularization-robust preconditioners for time-dependent PDE-constrained optimization

problems, SIAM J. Matrix Anal. Appl. 33 (2012), no. 4, 1126–1152.
[37] B. Rivière, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations, Front. Appl. Math. 35, Society for Industrial and

Applied Mathematics, Philadelphia, 2008.
[38] Y. Saad, Iterative Methods for Sparse Linear Systems, Society for Industrial and Applied Mathematics, Philadelphia, 2003.
[39] J. Schöberl, R. Simon and W. Zulehner, A robust multigrid method for elliptic optimal control problems, SIAM J. Numer. Anal. 49 (2011),

no. 4, 1482–1503.
[40] S. Takacs and W. Zulehner, Convergence analysis of all-at-once multigrid methods for elliptic control problems under partial elliptic

regularity, SIAM J. Numer. Anal. 51 (2013), no. 3, 1853–1874.
[41] S. Ta’asan, “One-shot” methods for optimal control of distributed parameter systems 1: Finite dimensional control, Technical Report

IICASE-Report 91-2, NASA Langley Research Center, Hampton, 1991.
[42] F. Tröltzsch, Optimal Control of Partial Differential Equations: Theory, Methods, and Applications, Grad. Stud. Math. 112, American

Mathematical Society, Providence, 2010.
[43] S. W. Walker, FELICITY: A MATLAB/C++ toolbox for developing finite element methods and simulation modeling, SIAM J. Sci. Comput.

40 (2018), no. 2, C234–C257.


	Robust Multigrid Methods for Discontinuous Galerkin Discretizations of an Elliptic Optimal Control Problem
	1 Introduction
	2 Continuous Problem
	3 Discrete Problem
	3.1 Discontinuous Galerkin Methods
	3.2 Interpolation Operator $\Pi_{h}$
	3.3 Error Estimates

	4 Multigrid Methods
	4.1 Set-Up
	4.2 A Block-Diagonal Preconditioner
	4.3 $W$-Cycle Algorithm
	4.4 $V$-Cycle Algorithm
	4.5 Multigrid Algorithms for (4.5)

	5 Smoothing and Approximation Properties
	5.1 A Scale of Mesh-Dependent Norms
	5.2 Post-Smoothing Properties
	5.3 Approximation Properties

	6 Convergence Analysis
	6.1 Convergence of the Two-Grid Algorithm
	6.2 Convergence of the $W$-Cycle Algorithm

	7 Numerical Results
	8 Concluding Remarks
	A Proofs of (3.9) and (3.10)
	B A Proof of (3.22)


