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accurately from the linear matter power spectrum. Although the free streaming can erase
much of the EMDE-driven boost to density perturbations, we use our findings to show that
the (re-)formation of halos after the EMDE nevertheless proceeds before redshift ≥ 1000.
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1 Introduction

The history of the universe between a purported period of inflationary expansion [1–3] and
Big Bang Nucleosynthesis (BBN) is poorly understood. Standard cosmology assumes that
radiation dominated the Universe between the end of inflation and the onset of the last
matter-dominated epoch. However, a wide variety of models predict alternative histories of
the early universe [4], including a possible early matter-dominated era (EMDE). EMDEs
can arise due to oscillating string moduli fields whose energy density dominates the early
universe [5] or in theories in which long-lived hidden-sector particles become the dominant
component of the Universe [6–11]. Such scenarios also include cannibal domination [12].
Current observations only require that the heavy species that drives an EMDE decay into
Standard Model (SM) radiation by a reheat temperature TRH larger than a few MeV [13, 14].

While a potentially weak SM coupling or high mass could leave this early matter species
inaccessible to terrestrial experiments, the EMDE can leave a detectable gravitational imprint
on the late-time Universe. Subhorizon matter perturbations grow linearly with the scale
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factor during an EMDE, leading to a small-scale enhancement to the matter power spectrum
that can persist in the dark matter after the end of the EMDE [15–18]. This enhancement
results in the formation of nonlinear structures much earlier than in standard cosmological
scenarios [15, 16, 18]. While these small-scale dark matter microhalos do not appreciably
change the large-scale structure of the universe, their dense cores reside as substructure
in current-day halos and boost the dark matter annihilation rate [18–21]. In addition,
these structures can be detected via their e�ects on pulsar timing [22–24] or through their
microlensing of stars [25–28].

If the EMDE is su�ciently long and the dark matter su�ciently cold, bound microhalos
can even form and accrete dark matter during the EMDE itself. Such a scenario has been
previously considered in the context of hidden-sector dark matter models [20] but is also a
likely outcome for more minimal dark matter models (such as the supersymmetric models
discussed by ref. [19]; see ref. [21]). As the dominant particles decay, these early-forming
structures evaporate, and the dark matter particles residing in them shoot out at boosted
speeds in random directions. The free streaming that results from this gravitational heating
potentially erases some of the boosted small-scale power, thereby suppressing subsequent
microhalo formation [20, 29]. In order to predict the observational consequences of these
scenarios, it is necessary to understand the nature of this suppression.

In this paper, we carry out the first cosmological N -body simulations of the formation
of structure during an EMDE and its subsequent evaporation as the EMDE ends. This
process was previously studied by refs. [20, 29] using analytic approximations. We find that
the impact of gravitational heating can be accurately modeled as a free-streaming cut-o� to
the matter power spectrum, as suggested by ref. [20]. Moreover, even though gravitational
heating is a nonlinear process, the cut-o� scale is related in a simple way to the matter
power spectrum calculated in linear theory, which has been studied in detail for EMDEs (e.g.,
refs. [15, 30]). Consequently, the matter power spectrum long after reheating can be predicted
straightforwardly from such analytic results. As a demonstration, we show that the suppression
of structure due to gravitational heating is su�ciently weak that dark matter microhalos are
expected to begin forming either before or not long after matter-radiation equality, even in
scenarios with an arbitrarily large degree of structure formation during the EMDE.

This paper is organized as follows. In section 2, we review the evolution of the homo-
geneous background and density perturbations during an EMDE. Section 3 explains the
formation of nonlinear structures during an EMDE and the idea of gravitational heating due to
their evaporation. In section 4, we describe our suite of N -body simulations and show qualita-
tively how halos form and subsequently dissipate. Section 5 analyzes the free-streaming cut-o�
to the power spectrum that arises in the simulations after reheating and develops a connection
between the scale of this cut-o� and the linear power spectrum during the EMDE. In section 6,
we use this connection to explore how gravitational heating impacts the (re-)formation of
structure long after reheating, particularly focusing on how the time of microhalo formation is
a�ected. Finally, section 7 summarizes our results and looks at future prospects for extending
and applying them. This paper uses natural units throughout, in which c = ~ = 1.
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2 Background and perturbation evolution

2.1 The homogeneous background

Although we expect the results of this work to be applicable to EMDEs in general, for concrete-
ness we adopt the class of hidden-sector models considered in ref. [30] (hereafter G23). These
models consist of a universe with three fluids: the dark matter (X), the Y particles that drive
the EMDE, and the SM radiation (denoted by the subscript R). The X and Y particles reside
in a hidden sector kinetically decoupled from the SM, with temperature Ths, while the tempera-
ture of the SM is T . The X particles are nonrelativistic with their energy density evolving with
scale factor as flX Ã a

≠3. The Y particles are initially relativistic but become nonrelativistic as
Ths decreases. The nonrelativistic Y particles come to dominate the energy density of the Uni-
verse and cause an epoch of early matter domination, but they decay into SM radiation with
a rate �. Although we do not appeal to any dark matter-SM interaction in this work, we note
that in the models, the Y particles are the lightest in the hidden sector and act as mediators
between the heavier X and the Standard Model; dark matter annihilates via XX æ Y Y .

The equations for the homogeneous energy densities of the three components are:

fl̇Y + 3H(1 + wY )flY = ≠�mnY ; (2.1a)
fl̇R + 4HflR = �mnY ; (2.1b)
fl̇X + 3HflX = 0, (2.1c)

where overdots denote d/dt and H © ȧ/a. In eq. (2.1a), nY is the number density of Y

particles while wY is their time-varying equation of state parameter, the ratio of their pressure
to their density. As wY falls from 1/3 to 0, the Y particles transition from being relativistic
to nonrelativistic. The terms on the r.h.s. of eqs. (2.1a) and (2.1b) depend on mnY instead
of flY because the longer lab-frame lifetimes of faster particles compensate for the higher
energies released by their decays [12]. For details of the methods used to numerically solve
for the evolution of the hidden sector temperature and the density and pressure of the Y

particles, we refer the reader to G23.
Figure 1 shows the time evolution of the background densities of the three fluids, obtained

by solving eqs. (2.1). Equation (2.1b) shows that the SM radiation density drops as flR Ã a
≠4

when �mnY π HflR. When �mnY becomes comparable to HflR, flR Ã a
≠3/2 due to the

entropy injection from the decay of the Y particles into the visible sector. After the Y

particles decay away, flR Ã a
≠4 again.

At the start of our calculations, flY Ã a
≠4 because the Y particles are relativistic. As

Ths drops below the Y particle mass (m), the Y particles become nonrelativistic. This
transition can be modelled as a broken power law with a sharp pivot point at the scale factor
ap = baiThs,i/m, where b = 2.70 for bosonic Y particles and 3.15 for fermionic Y particles [30],
and the subscript i indicates any time when the Y particles are relativistic. When the Y

particles become nonrelativistic, flY Ã a
≠3 until �/H ≥ 1. When flY exceeds flR, the universe

becomes matter-dominated. This phase is shown by the yellow shaded region in figure 1.
When �/H becomes comparable to unity, the decay of the Y particles begins to significantly
a�ect their abundance, and their comoving number density falls rapidly. Radiation domination
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Figure 1. The background evolution of the energy densities of the Y particles, SM radiation (R)
and dark matter (X) as a function of scale factor. The yellow shaded region shows the EMDE.
The particular scenario exhibited here is one in which the SM radiation initially dominates (÷ > 1);
scenarios are also possible in which relativistic Y particles initially dominate (÷ < 1).

starts shortly thereafter. This process is called reheating, and, although it does not happen
instantaneously, it is conventional to define the reheat temperature via the relation

� ©

Û
8fiG

3
fi2

30gú(TRH)T 4

RH
, (2.2)

which equates � to what the Hubble rate would be in a purely radiation-dominated universe
at temperature TRH. Another quantity that is useful to define is the scale factor aRH of
reheating, given by

aRH

a0

= 1
1.02

5
gúS(T0)

gúS(0.204TRH)

6 1
3

5
T0

TRH

6
, (2.3)

where a0 and T0 are respectively the scale factor and the radiation temperature today [30].
Note that both TRH and aRH are defined quantities and T (aRH) ”= TRH.

The behavior of the homogeneous background universe is controlled by three parameters.
The ratio ÷ of the SM and Y energy densities when the Y particles are relativistic controls
which component dominates the universe before the EMDE. The Y particle mass m decides
when the Y particles become nonrelativistic. Together, ÷ and m determine when flY exceeds
flR. For a fixed ÷, a higher value of m means the Y particles become nonrelativistic earlier
and the EMDE begins earlier. For the same value of m, a higher value of ÷ means the EMDE
begins later. In addition to these, TRH determines when the EMDE ends by setting the
decay rate of the Y particles — a smaller value of TRH for the same ÷ and m means that
reheating happens later and the EMDE is longer.

– 4 –



J
C
A
P
0
4
(
2
0
2
4
)
0
1
5

The case shown in figure 1 has ÷ = 100, which implies that SM radiation dominates the
energy budget of the universe before the EMDE. There can be cases with ÷ < 1, in which
flY > flR initially and the EMDE begins when the Y particles become nonrelativistic.

2.2 Perturbation evolution and power spectra

Subhorizon matter perturbations evolve linearly with the scale factor in a matter-dominated
era, as opposed to the logarithmic evolution seen during radiation domination [18]. As a
result, in cosmologies with an EMDE, small-scale modes which enter the horizon during or
before the EMDE are enhanced in amplitude compared to cases without an EMDE. This e�ect
corresponds to an enhancement of the matter power spectrum on small scales. Additionally,
the relativistic pressure of the Y particles acts against gravity and suppresses the growth of Y

density perturbations ”Y . Modes which enter the horizon when the Y particles have significant
pressure experience inhibited growth until the Y particle becomes nonrelativistic and the
pressure subsides. This e�ect leads to a small-scale cut-o� in the power spectrum of ”Y .

During the EMDE, the Y particles are the dominant component in the universe and they
cluster to form gravitational wells. The X particles fall into these gravitational centers. As a
result, the X density perturbations ”X track ”Y and the dark matter (X) power spectrum
inherits the shape and amplitude of the ”Y power spectrum, including the enhancement due to
the EMDE and the small-scale cut-o� resulting from the relativistic pressure of the Y particles.

Figure 2 (taken from G23) illustrates the time evolution of two perturbation modes
in Newtonian gauge, showing ”X and ”Y scaled by �0, the primordial metric perturbation
in a radiation-dominated universe. It also shows the evolution of ”Y,c/�0, the Y density
perturbation if the Y particles were pressureless. The left panel shows the evolution of the
density perturbations for a mode which enters the horizon when the Y particles are nearly
pressureless, as evidenced by the equation of state wY at horizon entry being 0.00017. In this
case, ”X , ”Y and ”Y,c evolve like a cold dark matter perturbation. The right panel shows the
evolution of the same three for a mode which enters the horizon when wY = 0.18 and the Y

particles have significant relativistic pressure. Here, the growth of ”Y is initially suppressed
compared to ”Y,c, before the pressure subsides and ”Y starts growing linearly with scale factor
during the EMDE. In addition, ”X starts tracking ”Y after some time has elapsed in the
EMDE, on account of falling into the gravitational wells created by the Y particles.

The exact nature of the e�ect of the Y particle pressure on the matter power spectrum
was worked out in G23 using a custom Boltzmann solver that incorporated the e�ects of the
varying equation of state and sound speed of the Y particles into the perturbation equations
for the three fluid densities and velocities. Figure 3 shows one example solution, showing the
dimensionless X power spectrum P(k) © [k3

/(2fi
2)]P (k) evaluated in linear theory:

P(k) © As

3
k

k0

4ns≠1 34
9

4 3
”X(k)

�0

42

, (2.4)

where As = 2.2 ◊ 10≠9, k0 = 0.05 Mpc≠1, and ns = 0.965 are taken from the Planck 2015
results [31]. The first two factors in eq. (2.4) are the power spectrum of primordial curvature
perturbations ’, and the remaining factors translate this into the matter power spectrum
(since the primordial gravitational potential �0 = ≠2’/3). The power spectrum is shown
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Figure 2. The evolution of perturbations for two modes, normalized to the primordial potential and
plotted as a function of a/ak, where ak is the scale factor of horizon entry for the mode. The mode in
the left panel enters the horizon after the Y particles have become pressureless (Ths/m = 0.00018 at
horizon entry, corresponding to equation of state parameter wY = 0.00017); there is no suppression
of ”Y for this mode. The mode in the right panel enters the horizon when the Y particles have
significant pressure (Ths/m = 0.21 at horizon entry, corresponding to wY = 0.145) because of which
”Y is suppressed compared to ”Y,c, the Y density perturbation if the Y particles are nonrelativistic.
Dark matter perturbations ”X eventually track ”Y in both cases.

at aRH = 1.64 ◊ 10≠11 for a case with a bosonic Y particle of m = 1 TeV, ÷ = 100 (so
that SM radiation initially dominates), and TRH = 10 MeV. The vertical dashed line shows
kRH © aRH�. For modes with k & kRH, the power spectrum is enhanced due to the EMDE.
Modes that enter the horizon during the EMDE (kRH < k < kdom) grow linearly with a from
horizon entry until aRH. For these modes, ”X(k, aRH) Ã (k/kRH)2 and P(k) Ã (k/kRH)4.
Modes with k > kdom enter the horizon in the radiation-dominated era before the EMDE
and experience logarithmic growth with a before linear growth during the EMDE. If the Y

particles were pressureless, this growth would imply that P(k) Ã [ln(k/kdom)]2 for k > kdom.
This transition to logarithmic shape at kdom is apparent in figure 3. In contrast, for a case
with initial Y domination (÷ < 1), P(k) Ã (k/kRH)4 for all k > kRH down to the cut-o�
scale arising due to the Y particle pressure.

Due to the pressure of the Y particles, the growth of modes with k & 108 Mpc≠1 in
figure 3 is suppressed. This suppression leads to a characteristic peak in the power spectrum.
For scales smaller than the peak scale, the amplitude of P(k) displays an oscillating pattern
with a decaying envelope. This decaying amplitude is because smaller scales enter the horizon
earlier and experience a longer period of suppressed growth.
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Figure 3. The dimensionless power spectrum P(k) © [k3
/(2fi

2)]P (k) of dark matter density
perturbations, evaluated in linear theory at aRH = 1.64 ◊ 10≠11 for a cosmology with TRH = 10 MeV,
÷ = 100 (implying that SM radiation initially dominates), and a bosonic Y particle of mass m = 1 TeV
that dominates the energy density of the universe during the EMDE. The vertical dashed line shows
kRH, roughly the wavenumber corresponding to the horizon at the end of the EMDE. The dotted line
marks the wavenumber that enters the horizon at the onset of the EMDE.

3 Structure formation during the EMDE and gravitational heating

In the scenario shown in figure 3, the linearly extrapolated matter power spectrum significantly
exceeds 1 (dashed horizontal line) at reheating. Consequently, nonlinear structures would
have already formed during the EMDE. According to Press-Schechter theory [32], the fraction
fbound of matter in halos is

fbound(a) = 2
⁄ Œ

”c/‡
d‹

e≠‹2/2

Ô
2fi

= erfc
A

”c
Ô

2‡(a)

B

(3.1)

at the scale factor a, where ‡(a) = [
s

P(k, a)d ln k]1/2 is the rms of the unfiltered linear density
contrast field, ”c ƒ 1.686 is the linear threshold for spherical collapse, and erfc(x) © 1 ≠ erf(x)
is the complementary error function.1 To quantify the dominance of nonlinear structure
formation during the EMDE, we consider fbound(aRH), the fraction of Y particles bound
in halos by the time of reheating. For a case with {m, ÷, TRH} = {2 TeV, 10, 20 MeV}, the
bound fraction is 0.805. That is, more than 80% of the Y particles are in bound structures
at reheating in this case. Since the X particles fall into the gravitational wells created by the
Y particles, we can assume a similar fraction of X particles are in bound halos at this time.

1
In Press-Schechter theory, particles lying at a point in the initial conditions become part of a halo at

some later time if the linear density contrast about that point exceeds the threshold, ”c, when smoothed on

some scale. In eq. (3.1), fbound/2 is the fraction of points at which the unfiltered density exceeds the collapse

threshold. The factor of 2 accounts for the points for which the density only exceeds the threshold when

smoothed on a nonzero scale [33].
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Bound microhalos that form before reheating are mostly composed of the Y particles,
since flY ∫ flX . Around the time of reheating, as the decay of the Y particles suppresses
their abundance, the gravitational support of these structures vanishes. The X particles that
have virialized in a microhalo cannot adjust their orbits adiabatically to this evaporation
of the halo’s mass, so they leave the halo at boosted speeds in random directions. This
gravitational heating leads to free streaming of dark matter after reheating, which suppresses
density perturbations on comoving length scales smaller than the free-streaming length
⁄fs. Reference [20] estimated that structures formed after about 10≠6

aRH will dissipate at
reheating, releasing their dark matter particles to stream freely.

If the population of dark matter particles has some (peculiar) velocity dispersion ‡v,
the free-streaming length is given by

⁄fs(t) ≥

⁄ t

tRH

‡v(tÕ)
a

dt
Õ
. (3.2)

Assuming that nonlinear growth stops at aRH and the velocity dispersion redshifts after that
as ‡v(a) = ‡vRHaRH/a, the above integral can be recast as

⁄fs(a) ≥ ‡vRHaRH

⁄ a

aRH

da
Õ

aÕ3H(aÕ) . (3.3)

During the period of radiation domination that follows the EMDE, we have H(a) Ã a
≠2,

where we neglect the minor influence of changes in the relativistic content. This implies
a

2
H(a) = a

2

RH
H(aRH), using which the integral is

⁄fs(a) ≥
‡vRH

aRHH(aRH)

⁄ a

aRH

da
Õ

aÕ = ‡vRH

aRHH(aRH) ln
5

a

aRH

6
. (3.4)

Finally, defining kfs = ⁄
≠1

fs
and using kRH = aRH� = 0.96aRHH(aRH),2 where H(aRH) is the

Hubble rate in a radiation-dominated universe, we can write

kfs

kRH

≥
1

‡vRH

3
ln

5
a

aRH

64≠1

. (3.5)

Note that this discussion is conceptual, as ‡vRH is set by nonlinear gravitational evolution
and cannot be evaluated directly (see section 5 for a numerically precise analysis).

This free streaming will result in a suppression of power on scales with k & kfs, leading to
a fall-o� in the matter power spectrum after the EMDE ends. As eq. (3.5) shows, the cut-o�
scale grows larger (kfs decreases) with time, as the dark matter particles cover increasing
distances. This growth is logarithmic during the radiation epoch but comes to a halt
after matter-radiation equality, since during matter domination, the integral

s
da/[a3

H(a)]
converges in the infinite future.

As the free-streaming scale grows larger, the enhancement to the power spectrum resulting
from the EMDE is erased up to larger scales. Yet as long as kfs/kRH > 1 around the time of
matter-radiation equality, some of the enhancement to the power spectrum due to the EMDE

2
The numerical factor here corresponds to � = H(TRH) = 0.96H(aRH), where H is the radiation-dominated

extrapolation of the Hubble rate, and follows from eq. (2.3).
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remains even after the impact of gravitational heating, and microhalos can start forming
much earlier than they do in standard �CDM scenarios. Since the density of a halo forming
at af scales as a

≠3

f , these early-forming structures will have cores much denser than halos
which form in standard cosmologies, greatly boosting their annihilation signals while also
increasing their susceptibility to detection by gravitational means. Accurate modeling of the
free-streaming scale and the manner in which it suppresses the matter power spectrum is
therefore important for developing observational constraints on these EMDE scenarios.

Reference [20] previously estimated the cut-o� to the power spectrum imposed by
gravitational heating by considering the virial velocities of the halos that form during the
EMDE. We improve upon this treatment by using cosmological N -body simulations, which
we describe next.

4 Simulations

To analyze the formation of nonlinear structures during the EMDE and the impact of their
subsequent evaporation on the matter power spectrum, we used a modified version of the
N -body simulation code GADGET-2 [34]. The code was changed to include SM radiation
as in refs. [35, 36] by adding homogeneous density terms to the expression for the Hubble
rate in the time integrals that are used to calculate the drifts and kicks in the simulations.
The decaying Y particles are modeled in the same way at the homogeneous level, and their
inhomogeneity is accounted for by scaling the e�ciency of gravitational kicks proportionally
to the time-varying quantity (fl̄Y + fl̄X)/fl̄X ;3 this is conceptually equivalent to scaling the
simulation particle mass M as

M =
3

fl̄Y + fl̄X

fl̄X

4
M0, (4.1)

where M0 is the simulation particle mass at late times. This scheme was developed for and
tested in ref. [20], and similar methods have been employed in simulations of decaying dark
matter [37–39]. Since the X and Y particles are coupled gravitationally during the EMDE,
we represent both species together in each simulation particle.

We used our modified code to run a suite of nine cosmological simulations. The initial
conditions in each case were set by sampling a random initial density field from the power
spectrum of Y particles obtained using the Boltzmann solver described in G23. Simulation
particles were initially on a uniform grid, and their positions and velocities were perturbed
using the Zel’dovich approximation.

We began all of our simulations during the EMDE, at a = 0.02aRH, with the exception
of two cases (YD1 and YD2), which began at the earlier time a = 0.01aRH and 0.005aRH,
respectively. The starting times were chosen to ensure that the matter power spectrum
is initially in the linear regime, as much as possible. Periodic boundary conditions were
assumed and the comoving box sizes were set to half the size of the comoving horizon at the
starting time. The RMS density fluctation at the scale of the mean interparticle distance,
‡ = [

s
P(k, astart)d log k]1/2 in each box was less than 0.15 at the starting time, with the

3
More specifically, we scale the time integrand for gravitational kicks. This approach avoids introducing

artifacts associated with the finite time-step resolution.
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Case m (TeV) ÷ TRH (GeV) aRH kRH (1/Mpc) Bound % at aRH

RD1 2 70 0.02 8.21◊10≠12 2.36◊105 59.66
RD2 2 10 0.02 8.21◊10≠12 2.36◊105 80.54
RD3 2 10 0.05 3.29◊10≠12 6.68◊105 36.02
YD1 2 0.01 0.02 8.21◊10≠12 2.36◊105 86.72
YD2 2 0.01 0.005 3.31◊10≠11 5.77◊104 97.23
YD3 2 0.01 0.069 2.37◊10≠12 9.51◊105 32.84
YD4 20 0.01 0.5 2.85◊10≠13 1.26◊107 27.46
RD4 2 400 0.02 8.21◊10≠12 2.36◊105 14.61
RD5 2 100 0.05 3.29◊10≠12 6.68◊105 1.81

Table 1. List of simulations with the model parameters m, ÷ and TRH, the values of aRH and kRH,
and the percentage of matter bound in halos at reheating, evaluated using eq. (3.1).

exception of YD2, for which it was 0.35. The comoving softening length for the simulation
particles was set to 0.03 times the initial grid spacing.

Table 1 lists the hidden-sector model parameters {m, ÷, TRH} and the details of the
various simulation runs. The three parameters were varied to cover cases with di�erent
amounts of predicted bound structure at aRH to check the impact of di�ering levels of
structure formation on the post-reheating cut-o� that arises due to gravitational heating.
Our simulations go from a case with 1% bound structure at reheating to a case with nearly
all of the matter bound in halos at reheating. The range of models is also associated with a
variety of di�erent shapes of the linear matter power spectrum during the EMDE.

Figure 4 shows slices of the RD2 simulation box at various times. The slices have a thick-
ness of 0.05 times the box size and extend across 0.45 times the box size in the other directions;
the particles are plotted as dots. The top left panel shows the box at 0.10aRH, when the pertur-
bations in the density field are small. The top right panel shows the box just after reheating,
at 1.13aRH, displaying the formation of a web of structure with clumps and filaments. The bot-
tom left panel displays the box at 11.27aRH. By this time, the structure formed at reheating is
already being erased, with the clearly defined web visible at 1.13aRH blurred and smoothed out.
By 389.24aRH (bottom right panel), the structure formed during the EMDE has been almost
completely wiped out. The progression of the box shown via these four snapshots illustrates
the formation of structures during the EMDE and their subsequent dissipation after reheating.

In figure 5, we show the power spectra of the simulation particles for the four snapshots
corresponding to the four panels in figure 4. The panels show P(k) from the simulation as
dashed lines and the linear theory P(k) as solid lines. For a = 0.10aRH, the smallest scales in
the box are already nonlinear, as the power spectrum on these scales is higher than unity
(shown by the grey dotted line). At a = 1.13aRH, the scales with k > 108

h/Mpc in the
box have become nonlinear, which corresponds to the formation of the web of structures
seen in the top right panel of 4.
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Figure 4. Density plots of slices of thickness 4.5 ◊ 10≠5 kpc/h from the RD2 simulation box, for
which aRH = 8.21 ◊ 10≠12. The box size is 9.01 ◊ 10≠4 kpc/h; the x-y plane is shown from 0 to
5 ◊ 10≠4 kpc/h . The four slices show the formation and erasure of structure as the box evolves
towards and past reheating.

At a = 11.27aRH, as the bottom left panel of figure 4 shows, erstwhile bound structures
have mostly dissipated. This is shown in the fall-o� of the simulation power spectrum in the
bottom left panel of figure 5. The simulation power spectrum is much lower than the linear
version for almost all scales. This suppression results from the free streaming of the X particles
after reheating. The bottom right panel of figure 5 shows that the peak of the post-reheating
power spectrum has moved to larger scales by 389.24aRH, confirming that the free-streaming
cut-o� has moved to larger scales with time. The slight rise in the simulation power spectrum
at the highest k in the bottom two panels of figure 5 arises due to the Poisson noise of the
discrete simulation particles. It is also apparent from figure 5 that the free-streaming cut-o�
function is much shallower than the Gaussian cut-o� used in ref. [20], allowing significant
power to persist more than a decade in k beyond the scale at which suppression begins.
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Figure 5. The dimensionless power spectrum P(k) taken from the RD2 simulation box (dashed lines)
compared to the linear theory P(k) (solid lines). The times of the simulation snapshots correspond to
the four panels of figure 4. The grey dotted line marks P = 1.

5 Analyzing the free-streaming cut-o�

We quantify the free-streaming cut-o� induced by gravitational heating as the ratio between
the simulation and linear power spectrum as a function of time for each of our simulation
runs, given by4

Rfs(k, a) ©

Û
Psim(k, a)
Plin(k, a) , (5.1)

for a > 10aRH. Here we evaluate the linear-theory power spectrum Plin(k, a) by using the
Boltzmann solver described in G23 to obtain Plin(k, 10aRH) and extrapolating it to later
times using Plin(k, a) Ã [ln(a/aRH)]2.

We analyzed snapshots from 11aRH to 790aRH for each case. Figure 6 shows Rfs at
di�erent times taken from the RD5 simulation box. As a/aRH increases, Rfs(k, a) decreases
and the wavenumber at which Rfs = 0.5 (dashed line) moves to smaller k, indicating that
the free-streaming cut-o� to the power spectrum moves to larger scales. The noise at low k

(also visible in figure 5) is due to the low number of modes sampled at scales close to the
simulation box size and is not related to free streaming.

For each snapshot, Rfs(k, a) was computed and fit to a function of the form

1
1 + (k/kfs)n

, (5.2)

4
Since Psim is the nonlinear power spectrum, the Rfs inferred from eq. (5.1) could be influenced by nonlinear

e�ects instead of only free streaming. However, we find that this is not a significant concern. For example, in

figure 7, Psim peaks at 0.4 in the first panel and 0.2 in the last, and the form of the cut-o� is nevertheless

essentially the same between them.
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Figure 6. Free-streaming cut-o� Rfs =


Psim/Plin from the RD5 simulation box, shown at di�erent
times after reheating. The grey dashed horizontal line indicates Rfs = 0.5.

where kfs and n were treated as free parameters. We found that n ¥ 2.5 fits the fall-o�
in Rfs for the range of our cases, so we subsequently fixed n = 2.5 and fit this function
to the simulation Rfs while treating only kfs as a fitting parameter. Figure 7 shows the
Rfs obtained from the RD1 simulation (orange dots) at three di�erent times. The blue
curve in each panel shows the fit to eq. (5.2) with n = 2.5. The bottom panels show the
relative error between the simulation-based Rfs values and the fit function. For the range
of wavenumbers in which Rfs drops, the error stays roughly within a 10% bound, exceeding
10% only when Rfs ƒ 0.25. As in figure 6, the noise at low k is an artifact of the finite
box size and is unrelated to free streaming.

This fitting procedure yields a value of kfs for each value of a. Figure 8 shows the values of
kfs/kRH obtained by this fitting for the RD1, RD3 and YD1 cases as red crosses, plotted against
[ln(a/aRH)]≠1. Guided by eq. (3.5), we fit the array of kfs values obtained to the function

kfs

kRH

= –[ln(a/aRH)]≠1
, (5.3)

treating – as a fitting parameter. The dark blue lines in figure 8 show the best fit lines using
the above function. A total of 18 snapshots from a ƒ 106aRH to a ƒ 790aRH were used for
this linear fit, in order to avoid the transients resulting from the decay of the Y particle
population and fit the free-streaming scale values only during radiation domination. For each
of our nine simulation cases, we obtain the best fit value of –, showing in table 2.
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Figure 7. Rfs =


Psim/Plin from the RD1 simulation box, shown at di�erent times after reheating.
The blue curves show the function given by eq. (5.2) with n = 2.5, while the bottom panels show the
relative error between the Rfs from simulations and the blue curves.
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Figure 8. The best fit values of kfs for the RD1, RD3 and YD1 simulation runs, with [ln(a/aRH)]≠1

on the x-axis. The red crosses show the kfs values obtained by fitting the Rfs from the simulations
to eq. (5.2) with n = 2.5. The dark blue lines show the best fit of these kfs values to a function
proportional to [ln(a/aRH)]≠1.

5.1 Relating the cut-o� to the linear power spectrum
According to eq. (3.5), the value of – is inversely proportional to the average velocity dispersion
of the dark matter particles at reheating, denoted by ‡vRH. To test this relation, we use
the linear power spectrum evaluated at aRH to calculate the linear velocity dispersion for
each of our nine cases. The power spectrum at aRH determines the linear velocity dispersion,
which we take to be

‡lin,RH © kRH

3⁄ Œ

0

dk

k

P(k, aRH)
k2

41/2

(5.4)

based on the derivation given in appendix A (we leave out the numerical factor for simplicity).
Table 2 shows the linear velocity dispersion for each case. Also shown is the product ‡lin,RH–.
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Case ‡lin,RH (km/s) Bound % at aRH – ‡lin,RH–/105 (km/s)
RD1 851.26 59.66 786.17 6.69
RD2 1738.77 80.54 593.51 10.32
RD3 898.54 36.02 741.59 6.66
YD1 2841.66 86.72 539.78 15.34
YD2 7276.62 97.23 554.65 40.36
YD3 1168.94 32.84 611.03 7.14
YD4 1081.34 27.46 630.61 6.82
RD4 385.80 14.61 1650.05 6.37
RD5 377.40 1.81 1636.21 6.18

Table 2. The proportionality constant – relating kfs/kRH and [ln(a/aRH)]≠1 for the various simulation
runs. Also listed are the linear velocity dispersion ‡lin,RH and the product of linear velocity dispersion
and –. Note that ‡lin,RH is calculated using eq. (5.4) and converted to km/s from natural units.

Two distinct classes can be identified from table 2. For the six cases RD1, RD3, YD3, YD4,
RD4 and RD5, the product ‡lin,RH– has an average of 6.63 ◊ 105 km/s, with the maximum
deviation of the product from the average being 7.7% (YD3). Within this error, for these cases,
– Ã 1/‡lin,RH. For the other three cases, the product values are higher than those of the other
six cases, and the product increases as the predicted bound fraction at reheating increases.

The three cases with the high ‡lin,RH– values are those with significant structure having
formed at aRH. Since eq. (5.4) is valid in the linear regime, it is not expected to hold in
these scenarios. As particles become bound into virialized structures, their velocities stop
growing, so in general the correct nonlinear velocity dispersion is smaller than the linear
extrapolation. The most massive halos have the largest virial velocities, so we expect them
to dominate the nonlinear contributions to the velocity dispersion.

This motivates a truncated integral for the velocity dispersion, in which the integrand of
eq. (5.4) stops contributing for modes with k > kú, where P(kú, aRH) crosses some threshold
value C. We define the truncated linear velocity dispersion to be

‡t,RH © kRH

3⁄ Œ

0

dk

k

Pt(k, aRH)
k2

41/2

, (5.5)

where

Pt ©

Y
]

[
P, P < C

C
2
/P, P > C

(5.6)

is the truncated linear power spectrum. The only motivation of this form is that it suppresses
the contribution of modes with P ∫ C in a continuous way and fits the simulation results
well, as we will see.

Various values of C were tried to obtain values of ‡t,RH that would bring the product
‡t,RH– for the three high-bound-fraction cases closer to the products in the six other cases.
We found C = 4.3 to be an appropriate threshold. Table 3 shows the truncated linear velocity
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Case Bound % at aRH ‡t,RH (km/s) – ‡t,RH–/105 (km/s)
% di�. from
avg. ‡t,RH–

RD1 59.66 851.26 786.17 6.69 0.04
RD2 80.54 1130.70 593.51 6.71 0.31
RD3 36.02 898.54 741.59 6.66 0.40
YD1 86.72 1245.33 539.78 6.72 0.48
YD2 97.23 1252.44 554.65 6.95 3.84
YD3 32.84 1168.94 611.03 7.14 6.77
YD4 27.46 1081.34 630.61 6.82 1.93
RD4 14.61 385.80 1650.05 6.37 4.84
RD5 1.81 377.40 1636.21 6.18 7.70

Table 3. The truncated linear velocity dispersion given by eq. (5.5) with a threshold of C = 4.3 (cf.
table 2). The second column from the right lists the product of ‡t,RH and –. The rightmost column
shows the percentage by which the product di�ers from the average product in the nine cases. The
percentage di�erence is within 7.7%, demonstrating that ‡t,RH is inversely proportional to –.

dispersion and the products ‡t,RH– for all nine cases with C = 4.3. This truncation of the
linear velocity dispersion does not a�ect the six cases in which the bound fraction at reheating
is less than 80%, but the values of ‡t,RH– are close to each other for all the nine cases, with
a maximum deviation of 7.7% from the mean value.

This prescription of calculating ‡t,RH yields a velocity dispersion that is inversely pro-
portional to – within 7.7% error for our nine cases, covering the wide range of scenarios,
with the bound percentages at aRH ranging from 1.81% to 97.23%. For the range of cases
studied in this work, the free-streaming cut-o� is given by

kfs(a)
kRH

= 2.23
‡t,RH

5
ln

3
a

aRH

46≠1

, (5.7)

where the numerical factor is the average of the ‡t,RH– values from table 3 (converted to
units of c).

For the RD4 and RD5 cases, since the amount of structure formed at aRH is not
very high, the free-streaming fall-o� in Rfs is a little shallower than a (k/kfs)≠2.5 power
law. Figure 9 shows Rfs from the RD4 simulations compared to the fitting form given by
(1 + (kfs/kRH)2.5)≠1. At 66.22aRH, the slopes of the fall-o� from the simulation and the
fitting function are noticeably di�erent. At 889.59aRH, the slopes are much closer to each
other. The relative error between the Rfs from the simulation and the best fit curve remains
within 10% for Rfs & 0.25. Cases with such low amounts of bound structure at aRH present
the boundaries down to which the (1 + (kfs/kRH)2.5)≠1 fitting form is valid. For cases with
lower bound percentages at aRH, the fall-o� in Rfs is much shallower than (k/kfs)≠2.5; we
leave the detailed study of these cases to future work.

Finally, we remark that due to discreteness noise, it is di�cult to resolve the precise
form of the free-streaming cut-o� for k ∫ kfs. This regime can nevertheless be important,
since the linear power spectrum arising from an EMDE can grow so rapidly as a function
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Figure 9. Rfs =


Psim/Plin from the RD4 simulation box, shown at di�erent times after reheating.
The blue curves show the function given by eq. (5.2) with n = 2.5, while the bottom panels show the
relative error between the Rfs from simulations and the blue curves.

of k. Another possibility is to derive the form of the cut-o� from the velocity distribution
in the simulations. We use this approach in appendix B to obtain an alternative expression
for the cut-o� function Rfs and the free-streaming scale kfs. For the remainder of this
article, however, we will continue to use the simple cut-o� expression given by eq. (5.2) (with
free-streaming scale given by eq. (5.7)).

6 Structure formation after reheating

With the shape and scale of the free-streaming cut-o� ascertained, we can obtain the matter
power spectrum in the post-EMDE era in scenarios with gravitational heating. The power spec-
trum in turn determines the microhalo distribution that arises in connection with the scenario.

We first make a technical note. The expression ⁄fs Ã ln(a/aRH) is derived under the
assumption of radiation domination. During the transition to late matter domination,

⁄fs Ã

⁄ a

aRH

da
Õ

aÕaeq + aÕ

Ã ln

S

WU

Q

a
1 +

Ò
1 + aRH/aeq

1 +
Ò

1 + a/aeq

R

b
2

a

aRH

T

XV ƒ ln

S

WU

Q

a 2
1 +

Ò
1 + a/aeq

R

b
2

a

aRH

T

XV (6.1)

(compare eq. (3.4)), where we assume aeq ∫ aRH and again neglect changes to the radiation
content. This expression is approximately ln(a/aRH) when a π aeq but asymptotes to
ln(4aeq/aRH) in the a ∫ aeq limit. We therefore evaluate the free-streaming cuto� arising
from gravitational heating by replacing ln(a/aRH) with the logarithm in eq. (6.1) in the
expression for the cut-o� scale, eq. (5.7).
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6.1 The linear matter power spectrum

Figure 10 shows the �CDM power spectrum P at aeq (black solid curve). We first evaluated
the linear power spectrum using CAMB at z = 500 and translated it back in time to aeq

via the growth factor derived in appendix C. This growth factor ignores the scale-dependent
evolution of modes that enter the horizon after reheating, but the amplitudes of these modes
are not a�ected by the EMDE, so they are largely irrelevant when evaluating how the EMDE
influences structure formation. The dashed colored curves show the power spectra without
the e�ects of free-streaming for three EMDE cosmologies, computed by multiplying the
�CDM power spectrum by the transfer functions from G23. The orange and green dashed
curves are di�erent only in the value of the Y particle mass m. The shape of the power
spectrum peak is similar for these two cases, since the value of ÷ is the same. The case with
the lower m (orange) has a larger cut-o� scale from the pressure of the Y particles compared
to the green power spectrum. In contrast, the blue dashed curve is associated with the same
m and TRH as the green dashed curve, but its value of ÷ is much higher. This di�erence
leads to a much shallower peak for the blue dashed curve.

The solid curves show the power spectra for the same EMDE cases with the free-streaming
cut-o� included by multiplying the dashed curves by the cut-o� function R

2

fs
from eq. (5.2) with

cut-o� scale kfs given by eq. (5.7) (modified as described after eq. (6.1)) at a = aeq. In all three
cases, the power spectrum peaks move to much larger scales and smaller amplitudes due to the
e�ects of gravitational heating. Nonetheless, a significant portion of the EMDE enhancement
is retained in all cases. For example, the case with the green curves has a 65% predicted bound
fraction at reheating, and yet the power spectrum peak after including free-streaming e�ects
is roughly four orders of magnitude larger than the �CDM counterpart at the same scale.

It is noteworthy that with gravitational heating accounted for, all three EMDE power
spectra in figure 10 peak around P ≥ 1 at matter-radiation equality. In fact, this is generally
expected as long as the dimensionless linear power spectrum during the EMDE scales more
steeply than P ≥ k

2, because then the velocity dispersion integral in eq. (5.4) is dominated by
high-k contributions. That is, for such power spectra, modes that are just becoming nonlinear
at reheating (as opposed to modes that are still linear) contribute the most to the velocity
dispersion. This leads to ‡t,RH ≥ kRH/kú, where kú is the nonlinear scale (where P ≥ 1) at
reheating. Equation (5.7) then implies that kfs ≥ kú/ ln(a/aRH). Shortly after reheating, the
power spectrum thus peaks at P ≥ 1 (see also figure 5), since kfs is close to the nonlinear scale
kú. Over time, kfs shifts to logarithmically larger scales, and the power spectrum also grows
logarithmically (per eq. (C.3)). The former e�ect tends to win, causing the peak in the power
spectrum to slightly drop over time (as is evident in figure 5). For example, if P(k) = (k/kú)n

at reheating, then the combination of linear growth and continued free streaming results in
the power spectrum peaking at a value around P ≥ [ln(a/aRH)]2(kfs/kú)n

≥ [ln(a/aRH)]2≠n

at later times during radiation domination, which drops over time as long as n > 2. But
since this drop is only logarithmic, we expect that the power spectrum still peaks at some
value P ≥ 1 at the onset of late matter domination.

Nevertheless, figure 10 shows a tendency where if the power spectrum without the
gravitational heating suppression (dashed curves) peaks at a higher value, the peak with
the suppression accounted for (solid curves) is lower. Figure 11 demonstrates this trend
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Figure 10. The �CDM power spectrum (black) along with three EMDE-enhanced power spectra
(dashed) and the same power spectra with the free-streaming cut-o� (solid), all evaluated at a = aeq.

more broadly. Here we plot the logarithm of
Ò

P(kpk, aeq)/P(kRH, aeq), the factor by which
density variations at the scale of the peak in the power spectrum exceed density variations
at kRH (which are not a�ected by the EMDE). This ratio quantifies the degree to which
the EMDE boosts the power spectrum, and we plot its value with gravitational heating
accounted for as a function of its value with gravitational heating neglected. Generally,
as the unsuppressed value of

Ò
P(kpk, aeq)/P(kRH, aeq) rises from ≥ 103.5, its gravitational

heating-suppressed value drops from ≥ 102.4.
More precisely, each of the three curves in figure 11 represents a family of EMDE models

where one parameter out of m, ÷ and TRH is varied while the others are held fixed. The
red and green curves are obtained by varying ÷; as indicated by the comparison between
the blue and green dashed curves in figure 10, smaller values of ÷ raise the peak value of P

while shifting it to larger scales. Both of these e�ects raise the velocity dispersion during
the EMDE, since it involves an integral over k

≠2
P(k) (see eq. (5.4)), which explains why

the gravitational heating-suppressed value of
Ò

P(kpk, aeq)/P(kRH, aeq) in figure 11 drops
sharply as a function of its unsuppressed value. In contrast, the purple curve is obtained
by varying the Y particle mass m; as illustrated by the orange and green dashed curves in
figure 10, when ÷ is large, increasing m raises the peak value of P while shifting it to smaller
(not larger) scales. These two changes to the power spectrum influence the velocity dispersion
during the EMDE oppositely — increasing P raises it while moving the peak to smaller scales
lowers it — which is why the purple curve in figure 11 drops more shallowly.

Figure 11 suggests that the free-streaming-suppressed value of
Ò

P(kpk, aeq)/P(kRH, aeq)
does not drop below a factor of ≥ 101.6. The presence of such a limit is explained because
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Figure 11. The logarithm of
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P(kpk, aeq)/P(kRH, aeq), which shows the peak enhancement to the
power spectrum. The x-axis shows the peak with the e�ects of gravitational heating ignored, while
the y-axis shows the peak with the free-streaming cut-o� included for the same EMDE cosmology.
The red and green curves are obtained by varying ÷ for di�erent values of m, while the purple curve
corresponds to varying m with fixed ÷.

it corresponds to the scenario where the unsuppressed linear power spectrum at reheating
is P(k) ƒ 0.15As(k/kRH)4 down to arbitrarily small scales (high k; compare figure 3). Here
As is the primordial spectral amplitude; we neglect the spectral tilt for simplicity. Since
the truncated linear velocity dispersion relevant to gravitational heating, given by eq. (5.5),
involves an integral only over scales that are linear or mildly nonlinear (P . 1), it converges to a
finite value that evaluates to ‡t,RH ƒ 0.73A

1/4

s ƒ 0.005 (1500 km/s), assuming As = 2.2◊10≠9.
The free-streaming scale at matter-radiation equality is then kfs ≥ ‡

≠1

t,RH
[ln(aeq/aRH)]≠1

kRH,
and thus

Ò
P(kpk, aeq)/P(kRH, aeq) ≥ (kfs/kRH)2

≥ ‡
≠2

t,RH
[ln(aeq/aRH)]≠2. Since ‡t,RH ƒ

0.005 and ln(aeq/aRH) ≥ O(10), small-scale density variations remain strongly enhanced
even in this limiting scenario.

6.2 Dark matter halo formation

To illustrate how the gravitational heating cut-o� a�ects halo formation, we consider the halo
mass function dn/d ln M , the number density of bound halos in logarithmic bins of mass, at
di�erent times around the epoch of matter-radiation equality. According to Press-Schechter
theory [32],

dn

d ln M
=

Ú
2
fi

fl̄X

M

----
d ln ‡

d ln M

----
”c

‡(M) exp
C

≠
”

2
c

2‡2(M)

D

, (6.2)
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where ‡(M) is the rms density contrast smoothed on the mass scale M and fl̄X is the comoving
density of dark matter. Following common practice for cosmologies with a small-scale cut-o�
to the power spectrum, we use a sharp k-space smoothing filter and evaluate ‡

2(M) =s kM
0

P(k)dk/k with the smoothing wavenumber kM defined by M © (4fi/3)fl̄X(2.5/kM )3; the
factor of 2.5 is motivated in ref. [40] by a match to simulations, since there is no natural rela-
tionship between length and mass scales for this smoothing filter. Since we will focus on times
close to matter-radiation equality, we use the time-dependent fitting function given in ref. [20]
for the spherical collapse threshold, ”c, which is valid for mixed matter-radiation domination.

Figure 12 shows the mass function for the case m = 2 TeV, ÷ = 50 and TRH = 20 MeV, the
same cosmology as the green curves in figure 10. The solid lines show the mass function with
the gravitational heating cut-o� imposed on the power spectrum using the results of section 5.
The dashed lines show the version without the cut-o�, with the EMDE enhancement intact.
The dashed lines are significantly higher than their solid counterparts for low masses, showing
the formation of a significantly higher number of halos at small scales. This phenomenon is
strongly inhibited by the e�ects of heating. The solid lines show a high density of bound halos
of sub-Earth mass, even as early as 0.1aeq. For a < aeq, the mass function shown by the solid
lines grows as more small-scale halos form. For a > aeq, the same mass function decreases
with time for M . 10≠8

M§ and increases for larger masses as smaller halos merge to make
larger ones. For comparison, the mass function at the scales shown in figure 12 is lower than
10≠150Mpc≠3 at aeq if a �CDM power spectrum with a Gaussian cut-o� at 106 Mpc≠1 is used.
The cut-o� wavenumber imposed by gravitational heating is kfs ¥ 40kRH for this EMDE
scenario, which shows that even with a small portion of the EMDE-induced bump persisting,
the number of small-scale halos is significantly higher than in cases without an EMDE.

In cases with higher enhancement on small scales due to the EMDE, more structure forms
in the EMDE and the free-streaming scale at matter-radiation equality is larger. Therefore,
the higher the EMDE enhancement, the greater the suppression of structure formation after
the EMDE due to gravitational heating. Figure 13 illustrates this point. The fraction of
dark matter in bound halos (eq. (3.1)) is plotted versus a/aeq for the three cases in figure 10,
which we now label using ‡eq, the value that the rms linear density fluctuation would reach
at a = aeq if gravitational heating were neglected. That is,

‡eq ©

5⁄
Pemde(k, aeq)d ln k

6
1/2

, (6.3)

where Pemde is the power spectrum without the free-streaming cut-o� (corresponding to the
dashed curves in figure 10). ‡eq thus quantifies the extent of the enhanced perturbation
growth during an EMDE.

The dashed curves show the predicted bound fraction for each case with gravitational
heating neglected. The bound fraction predicted under this assumption at any given time is
always larger with higher ‡eq, and in all three cases nearly all of the matter is predicted to
be bound in halos by the time of matter-radiation equality. The solid curves show the same
cases with the free-streaming cut-o� from gravitational heating now imposed. For higher
‡eq, the bound fraction shown by the solid curves at a given time is lower. This inversion
shows the e�ect of gravitational heating: more structure formation during the EMDE (higher
‡eq) leads to a larger free-streaming scale and hence more suppression of structure formation
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Figure 12. The halo mass function, or di�erential number density of halos per logarithmic mass
interval, as a function of mass at di�erent times around matter-radiation equality for an EMDE
scenario with m = 2 TeV, ÷ = 50, TRH = 20 MeV. The solid curves show the mass function evaluated
with the free-streaming cut-o�, while the dashed curves show the version calculated without the
cut-o�, with the EMDE enhancement intact.

after the EMDE. For comparison, the solid black line shows the predicted bound fraction
without the EMDE; here a �CDM power spectrum is assumed with a Gaussian cut-o� at
106 Mpc≠1, which corresponds to the smallest microhalos being earth-mass (see [41] for an
example). Even with the gravitational heating-induced suppression, the bound fraction is
much higher at a ¥ 10aeq in cases with an EMDE.

Figure 14 shows, as a function of ‡eq, the time a10 at which 10% of the dark matter is
predicted to be bound in halos after matter-radiation equality. By eq. (3.1), this happens
when the rms linear density contrast is ‡ = 0.608”c (‡ = 1.025 during matter domination)
when gravitational heating is accounted for. The three colors here correspond to the same
three families of EMDE model considered in figure 11, each obtained by changing one of m, ÷

and TRH while keeping the others fixed. The solid curves account for the free-streaming cut-o�
imposed by gravitational heating and mark the scenarios where at least 1 percent of the matter
is bound into halos by reheating (corresponding to ‡eq & 40). In this regime, increasing ‡eq

raises the bound fraction at reheating, leading to significant gravitational heating and the
consequent erasure of some of the EMDE-induced boost to the power spectrum. This erasure
causes a reduction in the peak amplitude of the power spectrum (as we showed previously
in figure 11), and this results in later formation of nonlinear structure after reheating. The
same trends are apparent in figure 14 as in figure 11; varying ÷ causes a10 to change more
mildly as a function of ‡eq, compared to varying m, due to how the scale of the peak in P(k)
shifts as a result of these changes. As discussed above, the EMDE-induced enhancement
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Figure 13. The bound fraction calculated using Press-Schechter theory at di�erent times after
matter-radiation equality for three EMDE scenarios, which are the same ones considered in figure 10.
The amount of small-scale enhancement to the power spectrum due to the EMDE is quantified
by ‡eq. The dashed lines show the bound fractions if no free-streaming cut-o� is imposed on the
power spectrum after the EMDE, while the solid lines show the bound fraction with the cut-o�. For
comparison, we also show a standard �CDM scenario (black curve), where we impose a Gaussian
cut-o� at 106 Mpc≠1 (corresponding to the smallest microhalos being roughly earth-mass; e.g. ref. [41]),
although the result is only very weakly sensitive to this choice.

to small-scale density variations remains large even in scenarios with an arbitrarily large
degree of structure formation during the EMDE. That outcome is reflected in figure 14 in
how a10 remains below about 3aeq (redshift 1000) in all cases.

The dotted curve in figure 14 shows how a10 varies with ‡eq when gravitational heating
is neglected. Under this assumption, ‡eq completely determines the unsmoothed rms density
contrast and hence the bound fraction during the late matter era (see eq. (3.1)), so there is
only one curve. Higher ‡eq leads to earlier halo formation, and when ‡eq & 1, a significant
halo population forms during the radiation era,5 but only as long as no significant nonlinear
structures arise during the EMDE. Further work is needed to understand how the dotted
curve (with no gravitational heating) transitions into the solid curves (with gravitational
heating) in the 1 . ‡eq . 40 regime. As an illustration, the thin dashed curves in figure 14

5
But deviations from spherical symmetry are particularly important for halo formation during radiation

domination [42–44], so our use of the spherical collapse threshold may yield inaccurate results in this regime.
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Figure 14. The scale factor at which 10% of the dark matter is predicted to be bound in halos
according to Press-Schechter theory, plotted against ‡eq (eq. (6.3)), which quantifies the extent to which
the small-scale power spectrum is enhanced during an EMDE. The curves are obtained by varying ÷

(red and green) and m (purple) to vary ‡eq by varying the shape and peak of the EMDE-enhanced power
spectrum. The dashed curves show cases in which the bound fraction at aRH < 0.01, the regime in which
our free-streaming cut-o� prescription is untested. The dotted line shows a10 for the same EMDE cases
without the free-streaming cut-o�, which only depends on ‡eq regardless of the power spectrum shape.

use our gravitational heating prescription to extend the solid curves to include cases with less
than 1% of the matter bound in halos at reheating. However, the prescription is untested in
this regime, and indeed it is unclear whether the underlying principles should continue to hold.
If density variations remain linear during the EMDE, then even though particle velocities
are boosted, they remain associated with coherent fluid motions rather than the velocity
dispersion that is required to produce a free-streaming cut-o�. Nevertheless, the qualitative
outcome should hold that higher ‡eq results in earlier halo formation until ‡eq ≥ O(10),
beyond which point the trend should reverse.

7 Summary and discussion

In cosmologies with an early matter-dominated era (EMDE) prior to Big Bang Nucleosynthesis,
the small-scale power spectrum is enhanced due to the linear growth of subhorizon matter
perturbations with scale factor [18]. This enhancement causes the formation of dense
microhalos much earlier than bound structures form in non-EMDE scenarios [15, 16, 18].
These new sub-Earth-mass structures boost the dark matter annihilation signal [18, 20, 21]
and can be detected gravitationally via caustic microlensing [25–28] and pulsar timing
arrays [23, 24, 28]. However, if perturbations are su�ciently boosted, microhalos can form
during the EMDE itself. They would dissipate when the EMDE ends, releasing their dark
matter particles at boosted speeds in random directions [20]. This gravitational heating
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imprints a free-streaming cut-o� on the matter power spectrum after the EMDE, which
suppresses some of the EMDE-induced enhancement to the power spectrum. Ascertaining the
nature of this free-streaming cut-o� is thus essential for understanding the halo populations
that arise from these EMDE scenarios and hence their observational constraints and prospects.

To analyze the shape and scale of the free-streaming cut-o�, we employed a modified
version of GADGET-2 to run the first suite of N -body simulations of the process of microhalo
formation during the EMDE and their evaporation at the end of the EMDE. We found the
formation of a rich web of small-scale structure during the EMDE, which gets wiped out as
structures evaporate when the particle driving the EMDE decays and radiation domination
starts. By analyzing the power spectra of our simulations during the subsequent radiation
era, we found a free-streaming cut-o� that evolved to larger scales as time elapsed. The
various simulation runs adopted di�erent EMDE model parameters in order to cover a range
of scenarios, including variations in the level of structure formation during the EMDE.

We found that free streaming due to gravitational heating suppresses the matter power
spectrum P(k) during the subsequent radiation epoch by a factor that is fit well by the
function [1 + (k/kfs)2.5]≠2 (or an alternative form given in appendix B). The free-streaming
wavenumber kfs can be straightforwardly calculated by means of eq. (5.7); it is tightly
connected to an expression given by eq. (5.5) for the velocity dispersion during the EMDE.
Given the linear power spectrum due to an EMDE (expressions for which are provided in
ref. [30]), these results enable easy analytic computation of the impact of gravitational heating.

Finally, we used our results to explore how gravitational heating impacts structure
formation during the late matter epoch. Free streaming erases a large portion of the
EMDE-induced boost to the linear matter power spectrum; its peak value at the time of
matter-radiation equality, aeq, can be 4-5 orders of magnitude smaller than its peak value at
the end of the EMDE. Despite this, su�cient power typically persists to form a significant
microhalo population around aeq. In cases where ≥ 1 percent of the matter is bound in
halos by the end of the EMDE, about 10 percent of the dark matter is expected to be in
microhalos already as early as a = 0.1aeq. Without an EMDE, the formation of a similar
amount of bound structure would not occur until a ≥ 100aeq (z ≥ 30). As the level of
structure formation during the EMDE is raised, the free-streaming scale due to gravitational
heating also grows, which results in greater erasure of the EMDE-induced boost to the power
spectrum and hence later microhalo formation times after the EMDE. However, even in cases
where most of the matter is bound in halos by the end of the EMDE, microhalo formation
afterward occurs at most marginally later than aeq.

Our prescription for the impact of gravitational heating will allow explorations of the
observational accessibility of EMDE scenarios to be extended to a far wider range of parameters.
For example, a significant portion of the parameter space that ref. [30] considered in relation
to observational probes is impacted by gravitational heating. For scenarios in which the
maximum enhancement of density variations would be ≥ 104.4, which ref. [30] took to be the
regime where gravitational heating begins to be important, we found that the enhancement is
already suppressed by free streaming down to the ≥ 102 level (see figure 11). That outcome
makes these scenarios compatible with the Fermi collaboration’s measurement of the isotropic
gamma-ray background [45], whereas without gravitational heating they would have been

– 25 –



J
C
A
P
0
4
(
2
0
2
4
)
0
1
5

ruled out. Gravitational heating is of great relevance to the observational prospects of
EMDE scenarios, both via dark matter annihilation and through gravitational detection of
microhalos, but we leave a fuller analysis for future work.

A limitation to our results is that we only explored scenarios in which the fraction of
matter bound into halos by the end of the EMDE exceeds about 1%. Also, for bound fractions
around the 10% level, the form of the cut-o� in the power spectrum due to gravitational
heating can already begin to di�er from the parametrization that is valid for high-bound-
fraction cases (see figure 9). Further work is needed to establish the impact of gravitational
heating in cases with only marginal structure formation during the EMDE. We remark
that this is also the regime in which microhalo formation is expected to begin deep in the
radiation-dominated epoch, and further work is separately needed to understand the halos
that arise in this way [44].
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A Calculating the linear velocity dispersion

This appendix shows how the velocity dispersion is connected to the power spectrum at linear
order in perturbations. Let x̨ be the comoving Lagrangian coordinate. If the linear density
contrast field is ”(x̨), the comoving displacement field s̨(x̨) is related to ”(x̨) by Ò · s̨ = ≠”

at linear order. In Fourier space, this implies

s̨(k̨) = įk
k̨2

”(k̨) (A.1)

if s̨ is irrotational. During matter domination, the comoving velocity field is

˙̨s(k̨) = Hs̨(k̨) = H
įk
k̨2

”(k̨) (A.2)

by the Zel’dovich approximation, where H is the Hubble rate. Using the inverse Fourier
transform s̨(x̨) © (2fi)≠3

s
d3

k̨eįk·x̨
s̨(k̨), we write the squared comoving velocity dispersion as

È[ ˙̨s(x̨)]2Í = H
2

⁄ d3
k̨

(2fi)3

⁄ d3
k̨

Õ

(2fi)3
e≠i(k̨≠k̨Õ

)·x̨
Ès̨

ú(k̨) · s̨(k̨Õ)Í

= H
2

⁄ d3
k̨

(2fi)3

⁄ d3
k̨

Õ

(2fi)3
e≠i(k̨≠k̨Õ

)·x̨ k̨ · k̨
Õ

k̨2k̨Õ2
È”

ú(k̨)”(k̨Õ)Í. (A.3)

But È”
ú(k̨)”(k̨Õ)Í = (2fi)3

”
3

D
(k̨ ≠ k̨

Õ)P (k), where P (k) is the power spectrum of ” and ”
3

D
is

the three-dimensional Dirac delta function. Thus,

È[ ˙̨s(x̨)]2Í = H
2

⁄ d3
k̨

(2fi)3

P (k)
k2

= H
2

⁄ Œ

0

dk

k

P(k)
k2

, (A.4)
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where P(k) © k
3
P (k)/(2fi

2) is the dimensionless power spectrum. The peculiar velocity
dispersion is then

‡lin = aÈ[ ˙̨s(x̨)]2Í
1/2 = aH

3⁄ Œ

0

dk

k

P(k)
k2

41/2

, (A.5)

and at reheating it is

‡lin|a=aRH = 1.04kRH

3⁄ Œ

0

dk

k

P(k, aRH)
k2

41/2

, (A.6)

since (aH)|a=aRH = 1.04aRH� = 1.04kRH. The numerical factor here follows from the separate
definitions of TRH and aRH; see eq. (2.3) and footnote 2.

B Predicting the free-streaming cut-o� using the velocity distribution

In section 5, we presented a prescription for the free-streaming cut-o� that arises from
gravitational heating. That prescription, given by eqs. (5.2) and (5.7), was motivated solely
by the ratio Psim(k)/Plin(k) of the matter power spectrum in the simulations to that evaluated
using linear theory alone. Here we present an alternative prescription, in which we additionally
employ information about the velocity distribution in the simulations.

As long as particles cover distances proportional to their streaming velocities, the
distribution of particle displacements due to free streaming is just a rescaled version of the
velocity distribution. Consequently, the impact of free streaming is to convolve the density
field with this rescaled version of the velocity distribution. This means that — up to a
rescaling in k — the cut-o� function Rfs is the Fourier transform of the velocity distribution.

A more explicit way to see this is to start with the collisionless Boltzmann equation
without gravity,

df

dt
= ˆf

ˆt
+ vi

ˆf

ˆxi
= 0, (B.1)

where f(x̨, v̨, t) is the distribution function and the repeated index is summed over. We neglect
cosmic expansion for simplicity, but it is easy to check that the conclusion is unchanged
if expansion is accounted for. In Fourier space

ˆf/ˆt + iv̨ · k̨f = 0, (B.2)

the solution to which is

f(k̨, v̨, t) = f(k̨, v̨, 0)e≠įk·v̨t (B.3)

for some initial time t = 0. Now approximate that the distribution function is separable,
f(k̨, v̨, t) = fl(k̨, a)fv(v̨), i.e., the velocity distribution fv is independent of position. Integrating
eq. (B.3) over velocities then yields

fl(k̨, t) = fl(k̨, 0)
⁄

d3
v̨fv(v̨)e≠įk·v̨t = fl(k̨, 0)f̃v(k̨t), (B.4)
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Figure 15. The velocity distribution (left) and its Fourier transform (right) in the RD2 simulation at
several times (di�erent colors). We show the spherical average and normalize to the velocity dispersion
‡ = Èv̨

2
Í
1/2. The distribution evidently does not vary after about 3aRH. We show as black dotted

curves the fit to the late-time velocity distribution, given by eq. (B.5), in the left panel, and a fit to
its Fourier transform, eq. (B.6), in the right panel. For comparison, the gray dashed curves show the
Maxwell-Boltzmann distribution.

where f̃v is the Fourier transform of fv. The k-space density fl(k̨, t) is evidently suppressed, in
relation to fl(k̨, 0), by the Fourier transform of the velocity distribution, scaled in wavenumber
by a time-dependent factor. Accounting for cosmic expansion changes the time dependence
but otherwise leaves the result unchanged.

The velocity distribution in the RD2 simulation is shown in the left panel of figure 15.
The distribution of normalized velocities v̨/‡, where ‡ = Èv̨

2
Í
1/2 is the velocity dispersion,

converges quickly after reheating to a form that is well approximated by

f(x̨) = 3.98 ◊ 10≠11
Ë
e(x/14.9)

1.94
≠ 0.953

È≠7.06

(B.5)

(dotted curve), where x̨ = v̨/‡. This distribution has a significantly more pronounced
low-velocity tail than the Maxwell-Boltzmann distribution (faint dashed curve).

The right panels of figure 15 show the three-dimensional Fourier transforms of the
velocity distributions in the left panels. At late times, the Fourier transformed distribution
is well approximated by

f̃(x̨) =
Ë
2.43e(x/3.69)

1.99
≠ 1.43

È≠2.81

(B.6)

(dotted curve). The strong low-velocity support in eq. (B.5) evidently leads to a long tail
in the Fourier transform; f̃ is significantly larger for x ∫ 1 than the Fourier transformed
Maxwell-Boltzmann distribution (faint dashed curve), which is just a Gaussian function. Per
the discussion above, this implies that gravitational heating leads to a longer tail in the
cut-o� to the power spectrum, in qualitative agreement with the findings in section 5.

Motivated by eq. (B.6), we fit the simulation cut-o� Rfs(k, a) (eq. (5.1)) to a function
of the form

Ë
2.43e(k/kfs)

1.99
≠ 1.43

È≠2.81

. (B.7)
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Figure 16. Rfs =


Psim/Plin from the YD1 simulation box, shown at di�erent times after reheating.
The blue curves show the function given by eq. (B.7) with kfs given by eq. (B.8), while the bottom
panels show the relative error between the Rfs from simulations and the blue curves.

We find that the above fitting form works well for the RD1, RD2, RD3, YD1, YD2, YD3,
and YD4 simulations. The cut-o� scale obtained by this fitting follows the relation

kfs(a)
kRH

= 7.41
‡t,RH

5
ln

3
a

aRH

46≠1

. (B.8)

Figure 16 shows the Rfs obtained from the YD1 simulation, with the function given by
eq. (B.7) and kfs given by eq. (B.8). The error between the exponential fitting function and
the simulation-based cut-o� (lower panel) remains within 10% for modes for which Rfs & 0.2.
For the RD4 and RD5 cases, the fall-o� in Rfs is much shallower than in the other seven
cases because of lower structure formation before aRH. The prescription in this section does
not adequately fit the free-streaming cut-o� in these cases. In cases with significant structure
formation during the EMDE (& 20%), the exponential fit works well.

Compared to the simpler form in eq. (5.2), the cut-o� function in eq. (B.7) is not an
obviously better fit to the simulation results, but it has a stronger theoretical motivation.
However, several simplifying assumptions were made in associating the cut-o� with the
velocity distribution. First, the velocity distribution was assumed to be the same everywhere.
In practice, the velocities arise from structure formation and are hence inhomogeneously
distributed. Although particles in the high-velocity tail should rapidly homogenize, the
low-velocity portion of figure 15 (left panel) may include a significant contribution from
coherent large-scale motions, which would not suppress power. Additionally, free streaming is
assumed to begin instantaneously, whereas in practice the Y particles decay over an extended
time interval. These considerations limit the degree to which the velocity distribution can be
assumed to predict the correct power spectrum cut-o�. For this reason, we continue to adopt in
the main text the simpler form obtained in section 5 from the simulation power spectra alone.
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C Linear growth function in mixed matter-radiation domination

Here we derive an expression that is valid long after reheating for the growth of perturbations
that entered the horizon before reheating. During the radiation-dominated epoch that follows
an EMDE, we can write the general growth function as

D(a) Ã ln(Ba/aRH) (C.1)

for subhorizon modes, where B is a constant and aRH is defined as in eq. (2.3). Note that

B = e(d ln D/d ln a)
≠1

/(a/aRH). (C.2)

We numerically evaluate D(a) starting during an arbitrary EMDE at a = 10≠6
aRH and find

that the value of B given by eq. (C.2) rapidly settles for a & 4aRH to a value of B ƒ 1.733.
That is, the growth function during the radiation-dominated epoch following an EMDE is

D(a) Ã ln(1.733a/aRH) (C.3)

for modes that are already subhorizon.
At the small scales relevant to EMDE-enhanced structure, baryons are a homogeneous

background even during the late matter epoch. Reference [46] derived the linear growth
solutions during the transition to late matter domination under this assumption; they are

Di(a) = (1 + a/aeq)µi
2F1

A

≠µi,
1
2 ≠ µi;

1
2 ≠ 2µi;

1
1 + a/aeq

B

(C.4)

for i = 1 and 2, where 2F1 is the hypergeometric function. Here

µi = ±
5
4

Ú
1 ≠

24
25fb ≠

1
4 (C.5)

with + and ≠ for i = 1 and 2, respectively, where fb ƒ 0.157 is the fraction of the late
matter density that is in baryons. Note that when a ∫ aeq, the hypergeometric function
approaches 1, so D1 Ã a

µ1 becomes the growing mode and D2 Ã a
µ2 the decaying mode. In

the radiation-dominated a π aeq limit, ref. [46] showed that

Di(a) æ ≠
�(1/2 ≠ 2µi)

�(≠µi)�(1/2 ≠ µi)
[ln(a/aeq) + Â(≠µi) + Â(1/2 ≠ µi) ≠ 2Â(1)] , (C.6)

where �(x) is the gamma function and Â(x) © d ln �(x)/dx is the digamma function.
Let us write the growth function as

D(a) = A1D1(a) + A2D2(a). (C.7)

In the radiation-dominated a π aeq limit, we can match eqs. (C.3) and (C.7) as well as
their first derivatives to obtain

A2 = ≠A1

�(≠µ2)�(1/2 ≠ µ2)�(1/2 ≠ 2µ1)
�(≠µ1)�(1/2 ≠ µ1)�(1/2 ≠ 2µ2)

◊
ln(1.733aeq/aRH) ≠ Â(≠µ1) ≠ Â(1/2 ≠ µ1) + 2Â(1)
ln(1.733aeq/aRH) ≠ Â(≠µ2) ≠ Â(1/2 ≠ µ2) + 2Â(1) . (C.8)
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Meanwhile, if we normalize the growth function so that

D(a) æ A1(a/aeq)µ1 © a
µ1 (C.9)

in the matter-dominated a ∫ aeq limit, then

A1 = a
µ1
eq . (C.10)

The linear growth function during mixed matter-radiation domination, for modes that entered
the horizon prior to the last radiation-dominated epoch, is thus given by the combination
eq. (C.7) of the solutions given by eq. (C.4) with coe�cients given by eqs. (C.10) and (C.8).

D Code

The routines for the time-dependent critical density threshold taken from ref. [20], the EMDE
transfer functions from ref. [30], the growth factor used in this paper, and the free-streaming
cut-o� are available here.
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