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We study core-periphery structure in networks using inference methods based on a flexible network
model that allows for traditional onion-like cores within cores, but also for hierarchical tree-like
structures and more general non-nested types of structure. We propose an efficient Monte Carlo
scheme for fitting the model to observed networks and report results for a selection of real-world data
sets. Among other things, we observe an empirical distinction between networks showing traditional
core-periphery structure with a dense core weakly connected to a sparse periphery, and an alternative
structure in which the core is strongly connected both within itself and to the periphery. Networks
vary in whether they are better represented by one type of structure or the other. We also observe
structures that are a hybrid between core-periphery structure and community structure, in which
networks have a set of non-overlapping cores that correspond roughly to communities, surrounded
by a single undifferentiated periphery. Computer code implementing our methods is available.

I. INTRODUCTION

Networks are widely used as a compact and convenient
mathematical representation of the connections between
the elements of a complex system, such as data con-
nections on the Internet, citations between papers, so-
cial contacts among people or animals, synaptic connec-
tions between brain cells, and biological and biochemi-
cal networks of many kinds [1, 2]. A significant amount
of effort has been devoted in recent years to analyz-
ing and understanding large-scale structure in such net-
works, especially community structure [3, 4], but also
nested [3, 5] and overlapping [6, 7] communities and strat-
ification [8, 9], as well as the related issues of embedding
and graph representation learning [10]. In this paper we
focus on a less well-studied form of large-scale structure,
core-periphery structure, in which a network is divided
into a densely connected core of nodes surrounded by
a sparser periphery [11–13]. The observation of core-
periphery structure communicates different information
about a network from community structure. Where com-
munity structure deals with the identification of groups
or types of nodes, core-periphery structure focuses on
their roles and centrality. Core-periphery structure is
integral to understanding the link between node posi-
tion and function in networks, for instance in the Inter-
net [14, 15], neuroscience [16], and economics [17].
A range of heuristic methods have been proposed in the

past for detecting core-periphery structure in networks.
In the simplest case the challenge is to take unlabelled
network data and assign each node of the network in some
automated fashion to either the core or the periphery. In
more complex cases one may attempt to infer a onion-like
sequence of deeper and deeper cores within cores.
The problem, however, is not entirely well posed, since

we have not precisely defined what “core” and “periph-
ery” mean. Various researchers have chosen to define
them in various ways and there is, as a result, a cor-
responding spectrum of algorithmic approaches. Per-
haps the oldest approach is the k-core decomposition, in

which nodes are recursively removed from a network in
order of increasing degree and the sequence in which they
are removed defines a sliding scale from core to periph-
ery [18]. This method essentially equates the core with
high-degree nodes. Another well-established method is
that of Borgatti and Everett [11], who defined a quality
function akin to the well-known modularity function for
community detection [19]. Borgatti and Everett’s func-
tion takes as input a network and a putative division
into core and periphery and returns a score that indi-
cates whether the division is a “good” one in a certain
sense. Then by maximizing the function over all possi-
ble divisions one can find the “best” core-periphery de-
composition. Variants of the same idea have been ex-
plored by Rombach et al. [13], as well as by Kojaku and
Masuda [20] who proposed a multi-group version. Cu-
curingu et al. [21] have explored several methods for find-
ing core-periphery structure based on counting geodesic
paths and on spectral network properties. Other meth-
ods use node-level properties of the network such as the
clustering coefficient [12] or centrality measures [22].
Stochastic block models, commonly used in commu-

nity detection [23, 24], have also been applied to core-
periphery structure. In these models, one assumes that
nodes are divided into types (e.g., core and periphery)
and that the probability ωrs of an edge between a pair
of nodes depends on the types r and s of the nodes.
Zhang et al. [25] studied a two-group version of this
model with ω11 > ω12 > ω22, which generates net-
works with classic core-periphery structure, then fitted
the model to empirical network data to detect structure.
Gallagher et al. [26] took a similar approach but with
more than two groups and multiple nested cores such
that ωrs = f [max(r, s)] for some function f [r].
In this paper we also take a model-fitting approach to

the study of core-periphery structure, but we formulate
a more general model that includes the classic two-group
structure but also allows for more flexible structures as
well. In particular, we consider a hierarchical model with
any number of groups, the number being determined by
the network structure using Bayesian model selection,
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signed to group 2, including nodes already in groups 0
and 1, have probability ω2 of connection, overriding ω0

and ω1, and so forth. The end result is a model that
starts out as a random graph but then adds variation
and detail to the network wherever it is needed to cap-
ture local structural features. This approach has some
similarities to those of Kojaku and Masuda [20] and Gal-
lagher et al. [26], but it differs crucially in that it does
not force the groups to be either strictly nested within
each other or non-overlapping. Given the definition of
the model, our goal is now to fit it to observed network
data to infer the best choice of groups gru for each node.

Suppose we have a network of n nodes, represented by
its n × n adjacency matrix A with elements auv = 1 if
there is an edge between nodes u and v and 0 otherwise.
Then the probability of observing a particular network if
it was generated from our model with given k and given
group memberships g is

P (A|ω, k, g) =
∏

u<v

ωauv

h(u,v)

[

1− ωh(u,v)

]1−auv

=
k−1
∏

r=0

ωmr

r (1− ωr)
tr−mr , (1)

where h(u, v) is the highest common group of nodes u
and v, and

tr =
∑

u<v

δr,h(u,v) (2)

is the number of node pairs with highest common group r,
and

mr =
∑

u<v

auvδr,h(u,v) (3)

is the number of such pairs that are connected by an
edge.
Our primary interest in performing the fit is to de-

termine the group memberships gru. The values of the
parameters ωr are not of particular interest, so we elim-
inate them by marginalizing. We assume a uniform
prior P (ωr) = 1 for all r and write

P (A|k, g) =

∫

P (A,ω|k, g) dω

=

∫

P (A|ω, k, g)P (ω) dω

=
k−1
∏

r=0

∫ 1

0

ωmr

r (1− ωr)
tr−mr dωr

=

k−1
∏

r=0

mr!(tr −mr)!

(tr + 1)!
. (4)

A. Prior on group assignments

We consider two different scenarios. In the first, the
number k of groups in the network is fixed; in the second

it is not. The number might be fixed if, for instance,
our goal is to find traditional core-periphery structure,
for which there are always two groups, the core and the
periphery. In other cases, we may be interested in allow-
ing the number of groups to vary and determining what
number best fits the network we observe.
If the number of groups is fixed, we can write

P (g|A, k) =
P (A|g, k)P (g|k)

P (A|k)
, (5)

and we can maximize this quantity to find the most prob-
able values of g, or sample from the distribution it defines
to generate plausible core-periphery structures in propor-
tion to their probability. In this paper we do the latter,
using a Monte Carlo method.
To do this we need to make a choice for the

prior P (g|k). Naively we might assume a prior that
is uniform over all assignments g, but this would be a
mistake. Such a choice produces group sizes that are
narrowly peaked about 1

2n, which is highly unrealistic.
Similar problems occur in traditional community detec-
tion [27, 28], where a good solution is instead to choose
the sizes of the groups to be uniform rather than the as-
signments and we take an analogous approach here. For
each group r > 0 we first choose a size nr uniformly at
random between 0 and n, each value thus having prob-
ability 1/(n + 1). Then we choose uniformly at random
one of the

(

n

nr

)

ways to assign nr nodes to the group,

each choice thus having probability 1/
(

n

nr

)

. Hence for all
groups the total probability of an assignment is

P (g|k) =

k−1
∏

r=1

1

(n+ 1)
(

n

nr

) =
k−1
∏

r=1

nr!(n− nr)!

(n+ 1)!
. (6)

B. Prior on number of groups

In traditional core-periphery structure calculations one
considers the existence of a single core and a single
periphery, and this is the approach taken for instance
in [25]. If our goal, however, is to find multiple groups
of unknown number, including multiple or overlapping
cores, then we need to allow k to vary, which means
choosing a prior on k. Here we adopt the approach taken
in [29, 30] and use a Poisson distribution with mean 1:

P (k) =
e−1

(k − 1)!
. (7)

Note that group 0 always exists, so the distribution of the
number of groups is effectively a distribution over k − 1,
which is why we have 1/(k − 1)! in the denominator.
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With this choice, we can now write

P (g, k|A) = P (k)P (g|A, k) =
P (k)P (g|k)P (A|g, k)

P (A)

∝
1

(k − 1)!

k−1
∏

r=1

nr!(n− nr)!

(n+ 1)!

k−1
∏

r=0

mr!(tr −mr)!

(tr + 1)!
.

(8)

Again, we can sample from this probability to generate
a selection of values k and group assignments g that are
representative of the network. In the following section
we describe the algorithm we use to achieve this.

III. SAMPLING FROM THE POSTERIOR

DISTRIBUTION

Our goal is to sample from the posterior distribu-
tion (8), which we do using a Markov-chain Monte Carlo
method. This procedure effectively generates a series
of plausible core-periphery decompositions of the given
network, not a single decomposition, although in prac-
tice one can simply examine the highest-probability state
found as an indication of the structure present in the net-
work. We describe the method first for the simpler case
where the number of groups k is fixed, then for the more
complicated case of varying k.

A. Monte Carlo algorithm for the case of fixed k

For the case of fixed k our Monte Carlo scheme is as
follows.

1. We choose a group s uniformly at random from
1 . . . k − 1.

2. With equal probability 1
2 we propose to either re-

move a node from group s or add a node to it. If
we are removing, the node to be removed is cho-
sen uniformly at random from those currently in
the group. If there are no nodes in the group, we
do nothing and move on to the next Monte Carlo
step. If we are adding, the node to be added is cho-
sen uniformly at random from those currently not
in the group. If the group is full—all n nodes are
already members—we do nothing and move on to
the next step.

3. The proposed move is accepted with the
Metropolis-Hastings style acceptance probability

α(g → g′) = min

(

1,
P (A|g′, k)

P (A|g, k)

)

, (9)

where g′ represents the group assignments after the
addition or removal. If the move is accepted, the
chosen node is added or removed as proposed. If
the move is not accepted, the group assignments g
remain unchanged on this step.

4. Repeat from step 1.

In the limit where this algorithm tends to an equilib-
rium distribution of states, that distribution will be the
one given in Eq. (5). To demonstrate this, it suffices to
prove two results: first that the algorithm is ergodic and
second that it satisfies detailed balance. Ergodicity re-
quires that every state of the system be accessible from
every other by a finite sequence of moves. This is triv-
ially true in the present case, since the membership of
any group can be set to anything we like in at most n
moves by first removing any nodes we don’t want and
then adding in those we do.
Detailed balance is a little more complicated. Detailed

balance requires that in equilibrium the average rate of
moves g → g′ equals the average rate g′ → g, which
means

P (g|A, k)P (g → g′) = P (g′|A, k)P (g′ → g), (10)

where P (g → g′) is the probability of making the transi-
tion g → g′. This probability can be written as

P (g → g′) = π(g → g′)α(g → g′), (11)

where π(g → g′) is the probability of proposing the move
and α(g → g′) is the probability of accepting it as in
Eq. (9). Then Eq. (10) can be written as

P (g′|A, k)

P (g|A, k)
=

π(g → g′)α(g → g′)

π(g′ → g)α(g′ → g)
. (12)

We can show that this condition is satisfied by the pro-
posed Monte Carlo algorithm as follows.
From Eq. (5) we have

P (g′|A, k)

P (g|A, k)
=

P (A|g′, k)P (g′|k)

P (A|g, k)P (g|k)
, (13)

while from Eq. (9) the ratio of the two acceptance prob-
abilities is

α(g → g′)

α(g′ → g)
=

P (A|g′, k)

P (A|g, k)
. (14)

Substituting (13) and (14) into (12), a factor of
P (A|g′, k)/P (A|g, k) cancels and we are left with

P (g′|k)

P (g|k)
=

π(g → g′)

π(g′ → g)
. (15)

If our Monte Carlo algorithm satisfies this condition, then
it satisfies detailed balance.
Using Eq. (6), the left-hand side can be written as

P (g′|k)

P (g|k)
=

k−1
∏

r=1

n′

r!(n− n′

r)!

nr!(n− nr)!
, (16)

where nr is the number of nodes in group r before the
move and n′

r is the number afterwards. Suppose the par-
ticular move we are considering g → g′ is one that adds
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a node to group s. Then n′

s = ns + 1, while n′

r = nr for
all other groups, so (16) simplifies to

P (g′|k)

P (g|k)
=

(ns + 1)!(n− ns − 1)!

ns!(n− ns)!
=

ns + 1

n− ns

. (17)

For the right-hand side of Eq. (15), for the same move
that adds a node to group s, the proposal probability is

π(g → g′) =
1

k − 1
×

1

2
×

1

n− ns

=
1

2(k − 1)(n− ns)
.

(18)
Here the factor 1/(k − 1) is the probability of choosing
the particular group r out of all k − 1 possibilities, the
factor 1

2 is the probability of choosing to add a node, and
the factor 1/(n − ns) is the probability of choosing the
particular node to be added from the n−ns possibilities.
Meanwhile, for the reverse move g′ → g, which involves
removing the same node from group s again, the proposal
probability is

π(g′ → g) =
1

k − 1
×

1

2
×

1

ns + 1
=

1

2(k − 1)(ns + 1)
,

(19)
since there are now ns +1 nodes in the group. The ratio
of the two proposal probabilities is thus

π(g → g′)

π(g′ → g)
=

1/2(k − 1)(n− ns)

1/2(k − 1)(ns + 1)
=

ns + 1

n− ns

, (20)

which agrees with Eq. (17) and hence Eq. (15) is satis-
fied and detailed balance is obeyed in this instance. The
proof for the case where we remove a node from group s
follows the same lines and leads to the same conclusion:
the algorithm satisfies detailed balance and hence sam-
ples correctly from the target distribution P (g|A, k) in
equilibrium.

B. Algorithm for varying k

When k is allowed to vary the algorithm is more com-
plex, involving two types of moves that each take us from
a combined state (g, k) to a state (g′, k′), as follows.

Type 1: In a move of type 1 we choose a group s uni-
formly at random from 1 . . . k − 1. With probability 1

2
we add a new node to the group chosen uniformly from
the set of nodes that do not currently belong; otherwise,
we remove an existing node from the group, chosen uni-
formly from those in the group. If we choose to add a
node but group s is already full then we do nothing and
move on to the next Monte Carlo step. If we choose to
remove a node and group s is already empty then the
entire group is deleted and the number of groups k de-
creases by one, with the labels of all groups above s also
decreasing by one so that they still run to a maximum
of k − 1.
Type 2: In a move of type 2 we choose a group index s

uniformly at random from 1 . . . k. We increase by one the

labels of all groups s and greater (if there are any), create
a new empty group with label s, and increase the value
of k by one.

With these definitions, the complete algorithm is now
as follows:

1. With probability 1 − 1/2k(n + 1) propose a move
of type 1.

1a) If k = 1 do nothing, since this implies all nodes
are in group 0 only, so there are no moves to
be made and there is no change of state on
this Monte Carlo step.

1b) Otherwise when k > 1 choose a random move
of type 1.

2. Else, with probability 1/2k(n+1), choose a random
move of type 2.

3. Accept the proposed move with probability

α(g, k → g, k) = min

(

1,
P (A|g′, k′)

P (A|g, k)

)

. (21)

Accepted moves are performed as proposed. If the
move is not accepted the state of the system re-
mains unchanged.

4. Repeat from step 1.

This algorithm again satisfies the condition of ergod-
icity trivially: we can reach any state with any number
of groups in a finite number of moves by first removing
all nodes from all groups except group 0, then removing
the groups themselves, then adding back the appropri-
ate number of groups and filling them with the desired
nodes. The algorithm also satisfies the condition of de-
tailed balance, which for this algorithm takes the form

P (g′, k′|A)

P (g, k|A)
=

π(g, k → g′, k′)α(g, k → g′, k′)

π(g′, k′ → g, k)α(g′, k′ → g, k)
. (22)

The left-hand side can be written as

P (g′, k′|A)

P (g, k|A)
=

P (g′, k′)P (A|g′, k′)

P (g, k)P (A|g, k)
, (23)

and the ratio of acceptance probabilities is

α(g, k → g′, k′)

α(g′, k′ → g, k)
=

P (A|g′, k′)

P (A|g, k)
. (24)

Substituting from (23) and (24) into (22), a factor of
P (A|g′, k′)/P (A|g, k) cancels and our detailed balance
condition reduces to

P (g′, k′)

P (g, k)
=

π(g, k → g′, k′)

π(g′, k′ → g, k)
. (25)

From Eqs. (6) and (7) the left-hand side is

P (g′, k′)

P (g, k)
=

(k − 1)!
∏k−1

r=1 n
′

r!(n− n′

r)!/(n+ 1)!

(k′ − 1)!
∏k′

−1
r=1 nr!(n− nr)!/(n+ 1)!

. (26)
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Consider first the case where we propose a move of type 1
that adds a node to group s. Then k′ = k and n′

s = ns+1,
and n′

r = nr for all other groups r, so Eq. (26) becomes

P (g′, k′)

P (g, k)
=

ns + 1

n− ns

. (27)

The probability of proposing such a move is

π(g, k → g′, k′)

=

(

1−
1

2k(n+ 1)

)

×
1

k − 1
×

1

2
×

1

n− ns

=

(

1−
1

2k(n+ 1)

)

1

2(k − 1)(n− ns)
, (28)

while the probability of proposing the reverse move is

π(g′, k′ → g, k) =

(

1−
1

2k(n+ 1)

)

1

2(k − 1)(ns + 1)
.

(29)
Thus the ratio of the two is

π(g, k → g′, k′)

π(g′, k′ → g, k)
=

ns + 1

n− ns

. (30)

Between Eqs. (27) and (30), our detailed balance condi-
tion (25) is now satisfied. By a similar argument we can
show that detailed balance is also satisfied when a node
is removed from a group.
Now consider a move of type 2, which creates a new

empty group with a random label s. For such a move
Eq. (26) becomes

P (g′, k′)

P (g, k)
=

(k − 1)!
∏k

r=1 n
′

r!(n− n′

r)!/(n+ 1)!

k!
∏k−1

r=1 nr!(n− nr)!/(n+ 1)!

=
1

k(n+ 1)
, (31)

where all factors inside the products have canceled except
for those pertaining to the new group, which gives us the
factor of 1/(n+ 1).
The proposal probability for this move is equal to the

probability that we decide to do a move of type 2 times
the probability that we choose to add a new group with
a particular label s out of the k possibilities, giving

π(g, k → g′, k′) =
1

2k(n+ 1)
×

1

k
=

1

2k2(n+ 1)
. (32)

The reverse move on the other hand occurs when we per-
form a move of type 1 and choose group s from the k pos-
sibilities, then attempt to remove a node only to discover
that the group is already empty, causing us to delete the
entire group. The proposal probability for this move is

π(g′, k′ → g, k) =

(

1−
1

2(k + 1)(n+ 1)

)

×
1

k
×

1

2

=
1

2k

(

1−
1

2(k + 1)(n+ 1)

)

. (33)

Now the ratio of the two probabilities is

π(g, k → g′, k′)

π(g′, k′ → g, k)
=

4k(k + 1)(n+ 1)/(2(k + 1)(n+ 1)− 1)

2k2(n+ 1)

=
2(k + 1)/k

2(k + 1)(n+ 1)− 1

=
1

k(n+ 1)
+ O(1/n2). (34)

Here we assume n is large and hence that terms of
order 1/n2 can be neglected, making Eq. (34) equal
to Eq. (31), and hence our detailed balance condition,
Eq. (25), is satisfied.
This completes the proof of correctness of our algo-

rithms. In the following sections we apply these algo-
rithms to fit our model to a variety of networks in order
to study core-periphery structure.

C. Implementation

The algorithms described above are reasonably effi-
cient. The bottlenecks for run time are the evaluation
of the quantities tr, Eq. (2), and—for the algorithm with
varying numbers of groups—the addition and removal of
groups.
When a node u is added to or removed from group r,

the highest common group between u and any of the
other members of r may change, requiring updates to
the variables tr. In the present implementation we iter-
ate individually over all nodes in r to check for changes.
The highest common group between two nodes can be
calculated in constant time, so this procedure takes time
of order the average size of a group, which is n/k. For the
version of the algorithm in which k is fixed, this gives a
contribution of order n to the run time per Monte Carlo
step.
For the version of the algorithm with varying num-

ber of groups, there is extra work to be done when the
number of groups changes. As described in Section III B,
when we delete a group, the labels of all nodes in higher-
numbered groups must be decreased by one, which takes
worst-case time O(n). On the other hand, moves that de-
crease the number of groups are relatively rare, occurring
approximately k/n of the time, so that on average the re-
labeling of nodes contributes time O(n)× k/n = O(k) to
the run time.
Overall, therefore, we expect the run time per step to

be O(n+k), or O(n) if we assume that n increases faster
than k, and numerical tests confirm this behavior. As-
suming that the number of Monte Carlo steps for the
entire calculation scales as the number of nodes, this im-
plies the total run time will be O(n2), which is workable
though not ideal: many community detection algorithms
run in O(n2) time, but the fastest, such as the Louvain
algorithm [35], run in time O(n log n). It is possible that
one might be able to find a shortcut that would allow one
to compute updates to the tr faster than O(n), but we
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IV. EXAMPLE APPLICATIONS

In this section we give example applications of our
methods to a selection of real-world networks, revealing a
range of behaviors and structures of interest in the core-
periphery divisions of these systems.

A. Traditional two-group core-periphery structure

For our first set of examples, we perform calculations
in which the number of groups is fixed at k = 2, which
corresponds to the traditional two-group core-periphery
structure, as studied by many previous authors. Figure 2
shows examples of such structure found in four different
networks. For each network the structure shown is the
highest-probability structure found during a single run
of our algorithm with 109 Monte Carlo steps and in each
case the algorithm finds clear core-periphery divisions, as
highlighted by the colors.
A number of interesting features emerge in these ex-

amples. First, we note that, as our model is defined, it is
arguably the edges that belong to groups, not the nodes.
As we have said, a node can belong to any number of
groups, but an edge only belongs to one: the proper-
ties of each edge are determined solely by the highest-
numbered group to which its two nodes both belong and
in this sense the edge belongs to this group only. In Fig. 2
we have colored the edges according to the group they be-
long to and this provides a clear and useful visualization.
(The same trick will also be useful in Section IVB when
we study divisions with larger numbers of groups.)
All the images in Fig. 2 use the same color scheme:

group 0 is in yellow and group 1 is in blue. The figure
reveals that there are two distinctly different types of
core-periphery structure, one where the core is group 0
and one where it is group 1. Recall that the probabil-
ity ωr of connection between two nodes depends on their
highest common group r, meaning in this case that edges
between nodes that are both in group 1 have probabil-
ity ω1 while all others have probability ω0. With this in
mind take a look at the figure.
Figures 2(a) and (b) show results for a network of air-

line routes [31] and a network of associations among a
group of terrorists [32] respectively. In both of these cases
the core found in the network is represented by group 1
(in blue) and the periphery by group 0 (in yellow), with
ω1 > ω0. This implies that there is a high probability of
edges within the core (blue edges) and a lower probabil-
ity both in the periphery and also between the core and
the periphery (yellow edges).
Conversely, in Figs. 2(c) and (d), which represent the

Internet at the autonomous system level [33] and a net-
work of political weblogs [34], the groups are reversed,
with the core being group 0 and the periphery being
group 1, and ω1 < ω0. In this “inside-out” type of
structure there is a high probability of connections both
within the core and between the core and periphery (yel-

FIG. 3: Political books network with a periphery and
two cores corresponding to left and right leaning books.

low edges), and a lower probability in the periphery (blue
edges).
These two types of core-periphery structure represent

quite different circumstances. In the first, the core is iso-
lated from the periphery in the sense that it is densely
connected only within itself and sparsely connected to
everything else. In the second, the core is strongly
connected everywhere, both to itself and to others and
dominates the connectivity of the network. The lat-
ter (“inside-out”) structure is particularly interesting be-
cause it deviates from the traditional definition of core-
periphery structure as formulated for instance by Bor-
gatti and Everett [11], who assumed an isolated core.
Our method naturally and automatically distinguishes
between the two types of structure.
The two types make some sense in the present case. For

the airline route network, for instance, the core broadly
represents airline hubs and the periphery represents re-
gional airports. One expects strong connections between
hubs—almost all pairs of hubs have direct flights—but
one expects only weak connections to the outlying air-
ports, many of which only fly to a single hub. Conversely,
in the weblog network, for example, the core represents
the most influential blogs, ones which most members of
the community link to, so we expect connections to be
strong not only within the core but also between the core
and the periphery.

B. Structure with an arbitrary number of groups

Now let us look at what happens when we allow the
number of groups to vary, taking whatever value is nec-
essary to best fit the structure of the network. Here
again we find some interesting features. As a first exam-
ple, Fig. 3 shows a copurchasing network of books. The
nodes in this network represent 105 popular books on US
politics and the edges represent frequent copurchase on
Amazon.com, i.e., purchase by the same buyers. This
network, which has been studied previously by a number
of authors [36, 37], is known to show clear community
structure in which the network divides into communi-
ties of left- and right-leaning books. Our core-periphery
analysis, as indicated by the colors in the figure, finds
three groups: two cores and a single periphery. The two
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FIG. 4: American Football network where each of the
cliques are connected to each other via the periphery.

cores correspond to the innermost members of the left-
and right-leaning communities while the periphery cap-
tures the remainder of the network. Thus, the algorithm
has found the political divide between left and right but
also finds a large group of peripheral books that, at least
in this analysis, are well represented as a homogeneous
mass, suggesting that they are not strongly connected to
either side of the political aisle.
Figure 4 shows a similar finding for another well stud-

ied example of community structure, a network of com-
petition between US college teams in the sport of Amer-
ican football [3]. College football teams are divided into
a number of groups or “conferences,” and most games
are played between teams in the same conference, so the
network of games played, as analyzed here, has strong
community structure which can easily be discovered with
a range of community detection algorithms. Again, how-
ever, our core-periphery analysis returns a more subtle
picture, as shown in the figure. Our algorithm finds a sep-
arate core for each conference, accurately dividing most
teams into the 11 conferences in the network. A small
number of teams—many of them independents who be-
long to no conference—are not assigned to any core, and
all inter-conference games are assigned to the periph-
ery. This makes good sense: it tells us that the con-
ferences constitute a clear set of separate groups in the
network, while inter-conference play and non-conference
teams constitute a single periphery. This is an accu-
rate description of the network and a more economi-
cal one than the standard community structure division,
as found for instance using the stochastic block model,
which also assigns a separate community for each con-

(a) Traditional community structure

(b) Core-periphery structure

FIG. 5: Structure found in the network of windsurfers.

ference but in addition assigns a separate probability for
inter-conference play between every single pair of confer-
ences, rather than recognizing that a single periphery is
an adequate and more parsimonious description.
In these last two examples our algorithm has found a

hybrid of core-periphery structure and community struc-
ture. While this is illuminating for these particular exam-
ples, it is important to realize that this is not inevitable,
and that the algorithm will return other structures where
appropriate. Figure 5 shows an example. The network
in this figure is a famous one from the social networks
literature, a network of interactions observed by Free-
man [38] between a group of people windsurfing off the
California coast in 1986. This network is known to have
a clear two-group community structure which is easily
found by community detection—see Fig. 5a. When an-
alyzed using the methods of this paper we also find two
groups, but they are not the same: now we find core and
periphery but no clear division between the communities,
suggesting that connections within the core may be just
as important as divisions between the two communities.

V. CONCLUSIONS

In this paper we have proposed a hierarchical model of
core-periphery structure in networks and a Monte Carlo
scheme for fitting it to observed network data. Apply-
ing these methods to a variety of real-world networks
we find a number of interesting patterns. The method
is able to capture traditional two-group core-periphery
structure consisting of a dense core weakly connected to
a sparse periphery. In some networks, however, we find
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that a better fit is given by a novel “inside-out” struc-
ture in which the core is connected strongly both within
itself and to the periphery. Various networks are better
represented by one or other of the two types of structure
and the distinction between the two could offer a more
nuanced view of structure and function in these networks.
We have also investigated cases where there are more

than two groups in the network, generalizing the tra-
ditional core-periphery structure (as other authors have
also done). For this we use a Monte Carlo scheme that
allows the number of groups to vary freely, automatically
choosing the number that best fits the network in ques-
tion. In some cases, we find a structure akin to a hybrid
between core-periphery structure and community struc-
ture in which there is a separate core in each of several
communities plus a single periphery surrounding all of
them. In other cases, we find pure core-periphery struc-
ture without any communities.
There are a number of possible directions for further

research using these methods. First, we have looked here
at only the highest probability structures found by our
algorithms but in principle the algorithms return a com-
plete sample of high-probability structures drawn from
the posterior distribution of the model and it would be
interesting to study the range of structures within such

a sample. Are they all closely similar, so that a sin-
gle consensus structure can well represent them all, or is
there significant variation between structures, and if so
of what kind? Second, one could examine generalizations
of the method to broader classes of networks, such as di-
rected and weighted networks and multiplex networks.
Another interesting question is whether there exists a
natural “degree-corrected” version of the model akin to
the degree-corrected stochastic block model of [24]. The
model proposed here is not degree corrected, which could
cause issues with networks that have a very broad degree
distribution. These questions, however, we leave for fu-
ture work.
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