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Abstract—As edge devices become readily available and indispensable,
there is an urgent need for effective and efficient intelligent applications
to be deployed widespread. However, fairness has always been an issue,
especially in edge medical applications. Although many approaches have
been proposed to mitigate the unfairness problem, their edge performance
is not desirable. By examining the fairness performance of different
network architectures, we observed that compared to pure convolutional
neuron network (CNN) architecture, hybrid models with CNN and
Vision Transformer (ViT) have exhibited better performance in terms
of fairness and accuracy. After further analyzing the feature maps of
intermediate layers of CNNs, ViTs, and hybrid models, we found that ViT
has a strong ability to extract global information, which contributes to
alleviating the unfairness problem. However, ViTs consume large amounts
of computational and memory resources, which hinders their application
on edge devices. To address the challenges abovementioned, we propose
the first hardware-oriented co-design NAS framework to explore hybrid
ViT-CNN architecture for the fair dermatology classification, namely
HeViFa, which can produce light-weight models for edge devices with low
unfairness scores and high classification accuracy. Experimental results
show that compared with FaHaNa-Small, HeViFa-Small could search for
a hybrid ViT model that reaches 10.57% and 4.03% higher accuracy as
well as 0.179 and 0.0403 higher PQD score on Mix and Fitzpatrick17k
dataset, repectively, and speed up by 1.21x on Samsung S21 mobile
phone, 1.18x on iPhone 13 Pro and 1.37x on Raspberry Pi.

I. INTRODUCTION

With the continuous progress of Al achieving high performance
and efficiency, we have witnessed the stream of success of deep neural
networks deployed on edge devices for medical applications [1],
[2], e.g., mobile dermatology assistant, mobile eye cancer detection,
and medical imaging and diagnostics. While many efforts have been
made in the medical image analysis domain about deriving higher
performance through deep learning algorithms, unfortunately, existing
Al systems mainly strive for entirely high accuracy with fast on-
device speed while overlooking the fairness between different human
groups. The need for fairness in deep learning models was highlighted
by observations stemming from a super-resolution algorithm called
PLUSE [3]. Concerns were raised when it was discovered that a
portrait image of Barack Hussein Obama produced a clearer output
image with a white man’s face after being processed by PULSE.
This incident was accused of exhibiting racial bias or “racism”.
Furthermore, gender and skin-type biases have been identified in
commercial Al systems. Reports [4] also indicate that these systems
achieved an accuracy rate of 70% for the entire dataset but only
34.7% for women and a mere 17% for individuals with dark skin.

As is widely recognized, fairness presupposes that all people
have the same right and should be treated equally, and there have
been existing works to address fairness issues. However, current
debiasing methods for fairness-aware neural networks focus on either
modifying neural network models to make them interpretable on
fairness [5] or by fairness-aware data collection [6]. While these
approaches made important attempts at mitigating the unfairness
problem, the models still do not perform well enough in terms of
fairness. [7] is the most closely related work to ours, representing
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Fig. 1. Fairness comparison with current methods on Predictive Quality
Disparity (PQD) vs Latency. The Latency is measured on an iPhone 13 Pro.
The proposed HeViFa has a better PQD score as well as lower latency.

the state-of-art trade-offs on accuracy, speed, and fairness by a novel
fairness-aware NAS framework. However, its fairness improvement is
insignificant at around 1.7 x. Furthermore, due to limited hardware
resources on edge devices, models deployed to edge devices need
to be lightweight. And [7] points out that smaller neural network
models generally have lower fairness, which makes fairness an even
more challenging task on edge devices. Vision Transformer (ViT)
is a different architecture that has better global context extraction
ability, so we analyzed ViT and found that with a similar storage size
(8.8MB v.s. 8.5MB), DeiT-T has better fairness performance than
MobileNet-V2 (PQD score: 0.881 v.s. 0.714). Thus, we argue that
the performance of the previous attempt is limited to CNN-type only
candidates. Furthermore, we attempt to figure out and explain why
ViT-based models currently have superior fairness performance over
pure CNN models by analyzing feature maps of intermediate layers.
We discovered that ViT-based models have a larger receptive field
compared with pure CNN models on minority group datasets, which
leads to better performance. Nevertheless, a well-known concern is its
quadratic time and memory complexity. Due to the massive number
of parameters and model design, e.g., attention mechanism, ViT-based
models are generally times slower than lightweight convolutional
networks. Therefore, the deployment of ViT for real-time applica-
tions is particularly challenging, especially on resource-constrained
hardware such as edge devices. Also, when it comes to the trade-
off between task accuracy, fairness and on-device speed, it is still
uncertain which choice is best among pure ViT, pure CNN, or CNN-
ViT hybrid models.

Traditional methods manually fine-tune the models to achieve
better fairness, but with the difficulty of quickly generating models
deployable for target computing platforms. In this work, we are
trying to achieve fairness through automatic neural architecture search
(NAS). Although there are already some works trying to solve the
fairness issue by utilizing NAS [7] and pruning [8], they are all

Authorized licensed use limited to: Northeastern University. Downloaded on August 30,2024 at 17:55:01 UTC from IEEE Xplore. Restrictions apply.



Phase 1: Supernet training with weight entanglement

Embedding E

(CH1, CH2), 1X1

A
[(CHI.CHZ),KXK] [(cm,cm), Kxx] [(CHI,CH]),I/I ]

(CH2, CH3), 1 X1

{Conv3x3H MB-Block x4 ]—) RepCNN x2 —> DeiT x2

Phase 2: Obtain optimal subnets under fairness & hardware constrain

(7 N \
Subnet 1 s 1
[Sensitivc sub dataset 1 Wl .” ] Fairness
- . -
Inference | Sensitive sub dataset 2 >
Accuracy
Subnet 3 on : >Evolution
Search
: Sensitive sub dataset N u n
.
Predict latency Latency
MLP: >
—

Fig. 2. Overall framework of HeViFa. In phase 1, we train the supernet with weight entanglement. The components of the supernet is shown above. After
we get a well-trained supernet, we utilize the evolution algorithm to search the optimal model in phase 2. Fairness and latency constraints is integrated in the

search procedure.

based on CNN, and none of them have explored the power of ViT to
solve fairness problem. The fairness-aware search scheme in [7] is
constrained by the convolutional structure and thus cannot be directly
applied to our transformer-type layer. In addition, NAS itself is known
for its lengthy search time. Therefore, a fundamental question is: Can
we design and fast-generate vision models equipped with transformer
layers that are more accurate, fairer, and more hardware-friendly for
target devices?

In this paper, we first analyze why CNN and ViT has different
performance on fairness by visualizing feature maps and find out
that CNN-ViT hybrid model is superior to both pure CNN and pure
ViT models. We also profile the hardware performance of different
architectures and figure out that the hybrid model can reach the best
trade-off between accuracy and on-device latency. Thus, we choose
hybrid model as supernet in our design. To leverage the strengths of
CNN-based and ViT-based operations, along with the target of deriv-
ing models that can run real-time on target edge devices, we propose a
novel fairness-aware and hardware-oriented NAS framework, namely
HeViFa. Given a target hardware platform, HeViFa will search for the
CNN-VIiT hybrid neural architectures with the best accuracy, fairness,
and latency. Meanwhile, the latency can meet specific hardware
specifications by our hardware-aware NAS. We also refine the NAS
method with the weight entanglement strategy, which is efficient and
precise for the optimization of transformer search. In addition, this
framework is general for different edge computing platforms, which
implies the fast deployment of Al medical applications.

This paper makes the following contributions:

« Discovery By visualizing intermediate feature maps, we explain
why CNN and ViT models have different performances on fair-
ness in detail and introduce a hardware-oriented convolutional
operator. This paves the way for us to use CNN-based and ViT-
based operators simultaneously and efficiently.

o Framework To the best of our knowledge, HeViFa is the
first hardware-oriented NAS co-design framework to explore
hybrid ViT-CNN architecture to solve unfairness problems on
dermatology classification.

« Efficiency We can achieve the best trade-off on accuracy,
fairness and latency on multiple devices, and also better NAS
training efficiency by utilizing weight entanglement and latency
constraints.

o Performance Compared with the previous state-of-the-art meth-
ods, HeViFa achieves higher accuracy and PQD (Perceptual
Quality Difference) scores recorded at 82.17% and 0.937 on the
Mix datasets and 80.13% and 0.87 on Fitzpatrick17k datasets
with 1.18x to 1.37x speed up on multiple resource-constrained
computing devices.

In the rest of the paper: Section II reviews the background and
related works; Section III shows our discovery and analysis. Then we
reveals our motivations. Section IV defines the problem and presents
our HeViFa framework. Experimental results are shown in Section V
and concluding remarks are given in Section VL.

II. RELATED WORKS
A. Fairness Mitigation Methods

Fairness has emerged as a significant concern in the machine
learning (ML) community, leading to the development of various
approaches aimed at addressing the issue of unfairness. Current
methods for debiasing primarily concentrate on modifying datasets
and optimizing training procedures.

Distribution-based methods focus on modifying the data distri-
bution to better represent minority groups or eliminate undesired
biases from the dataset. For instance, [9], [10] propose algorithms that
modify objects in the dataset based on predefined rules. [11] addresses
under- or over-sampling techniques to mitigate under-representation
of individuals in protected groups. However, it is important to note
that deep neural networks rely heavily on large amounts of data,
making undersampling strategies impractical as they may reduce the
data to a point where training becomes infeasible.

One-Step-Training methods are integrated into the main training
procedure. Some approaches, such as [12], [13], utilize adversarial
frameworks to train the model not to rely on undesired biases.
However, adversarial-based methods often require annotations of
protected variables or groups in the dataset, which can be a drawback
due to the need for additional annotations. Additionally, optimization
methods for the training process have been proposed by [8], [14].
Nevertheless, modifications to the optimization process may introduce
a trade-off between fairness and accuracy, which must be carefully
managed.

In contrast, we propose a vision model that directly bypasses the
aforementioned drawbacks by effectively combining convolutional
and self-attention operators. Our model aims to mitigate biasing and
unfairness while maintaining accuracy and efficiency.

B. Vision Transformer

Transformers are initially proposed to handle the learning of long
sequences in NLP tasks. Great interest has surged following the
work [15] that applies a pure transformer architecture for image
classification without reliance on convolutional architectures. The
universality of Transformer architectures from NLP to CV is at-
tributed to the uniform representations across all layers than CNNs,
self-attention mechanism enabling early aggregation of global infor-
mation, and ViT residual connections that strongly propagate features
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Fig. 4. Visualization of the feature map obtained by different model structures.

from lower to high layers [16]. Since then, various ViTs [17]-[21]
have been proposed for different CV tasks, including object detection,
semantic segmentation, and image retrieval.

Different designs of CNN-ViT hybrid models have been explored
to reap the benefits of convolutions and transformers. For instance,
ViT-C [22] adds an early convolutional stem to ViT. CvT [23]
modifies the multi-head attention in transformers and uses depth-
wise separable convolutions instead of linear projections. ConViT
[24] incorporates soft convolutional inductive biases using a gated
positional self-attention. Though these models can achieve compet-
itive performance to CNNs, they still exhibit high computation and
memory complexity. Unfortunately, there is a dearth of literature on
hardware-oriented CNN-ViT hybrid model paradigms.

C. Neural Architecture Search

In edge AI, such as medical AI [25], fairness, accuracy, and
hardware efficiency hold equal importance. The absence of any of
these characteristics renders the architecture ineffective. For instance,
SqueezeNet exhibits low accuracy, MobileNetV2 violates latency
requirements, and MnasNet 0.5 lacks fairness [7]. Therefore, a holis-
tic optimization approach is necessary to address all these metrics
simultaneously.

Neural architecture search (NAS) methods have been developed
to automatically identify neural architectures for maximum accu-
racy [26]. Together with the consideration of the hardware specifica-
tions, hardware-aware NAS [27], [28] further explores the hardware
design space, thus jointly identifying the best architecture and hard-
ware designs. After that, FaHaNa [7] is the first work to introduce
Fairness in NAS. However, the search space of FaHaNa does not
include self-attention operators, which are characterized by a large
dimension definition, e.g., Q/K/V, head number, and head dimension.
This potentially means an inefficient NAS method.

III. DISCOVERY AND MOTIVATIONS

Through an examination of the fairness performance of various
network architectures, we have observed that ViTs have demonstrated
superior performance in terms of both fairness and accuracy when
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Fig. 5. CKA between each value in the last 12 output feature maps.

compared to pure CNN architectures. To optimize fairness and task
accuracy, we analyze the feature maps of intermediate layers of
CNNs, ViTs, and hybrid models to identify their strengths and
weaknesses in visual modeling. Meanwhile, to improve network
runtime speed practically, we consider on-device memory cost and
degree of parallelism and introduce an efficient operator with its
fusion techniques for model implementation.

Image feature modeling by different architectures. To analyze
the advantages of different operators in modeling vision features,
we first examine the accuracy distribution of representative CNN-
based and ViT-based models, as shown in Figure 3. We conducted
the analysis using a sample consisting of 100 images of the light
and 100 images of the dark. The CNN-based model demonstrates
significant accuracy in identifying the skin state of the light but
falls short in accurately identifying the skin state of the dark. On
the contrary, the ViT-based model exhibits a clear advantage in
accurately identifying the skin state of the dark. According to [29],
convolutional operations excel at capturing texture-level information
and extracting global information by deepening the model, while
self-attention operations (key operations inside ViTs) aim to directly
extract abstract-level information by capturing the global receptive
field. This means self-attention operations have higher robustness
to the noise of background information. Next, we analyze the
heatmaps of the last feature map in CNN-based (ResNet-50) and ViT-
based (DeiT-Small) models for both light-skinned and dark-skinned
individuals. These feature maps are crucial for the final prediction.
In Figure 4, it is evident that CNN-based models precisely capture
texture details in the images of light individuals, but they struggle to
distinguish pathological skin conditions in the dark. This observation
also indicates that the convolution operation is less robust in dealing
with interference from background information. Conversely, thanks
to its global analysis capability, the ViT-based model can effectively
detect pathological skin conditions in the dark. Considering the
distinctive characteristics of both models, our approach (HeViFa) is
capable of providing a clear assessment of the skin status for both
light and dark individuals. Furthermore, we calculate the centered
kernel alignment (CKA) [30] in the last 12 output feature maps of the
dark, which measures the average similarity between each value, as
depicted in Figure 5. Our findings reveal that the CNN-based model
exhibits higher similarity among different feature values compared to
the other two methods. This implies that the CNN-based models are
more sensitive to background noise and capture a relatively smaller
amount of information than ViT-based models.

Authorized licensed use limited to: Northeastern University. Downloaded on August 30,2024 at 17:55:01 UTC from IEEE Xplore. Restrictions apply.



[3x3 || 3x3 [ 3x3

S

9

3x3

Training (3-branch) Inference ( l—branch)i Perspective of structure

Fig. 6. RepCNN structure. We also show the training status and the inference
status of this structure, respectively.

Fusing multiple branches into one single branch in reparameter-
ized CNNs. The development of efficient network architectures for
resource-limited devices has greatly benefited from reduced param-
eters and floating-point operations (FLOPs) and improved accuracy.
However, conventional efficiency metrics, such as FLOPs, overlook
memory cost and degree of parallelism. Multi-branch structures
come with increased data movement cost, as the activation values
of each branch are saved into processing engine (PE) memory or
on-chip memory (if the PE memory is insufficient) to compute the
subsequent tensor in the graph. Additionally, the synchronization
cost arising from multiple branches impacts the overall runtime [31].
To address these challenges, we use RepCNN [32] (Figure 6) as
a network component, which fuses multiple branches into more
single-branch substructures during inference. This approach enables
even distribution of computation among multiple PEs, preventing im-
balanced computation overheads associated with multiple branches.
The resulting operator fusion improves memory access and parallel
computation on multiple PEs.

IV. HEVIFA FRAMEWORK

Based on the analysis of feature modeling and network runtime
overhead in Section III, we propose a fairness-aware and hardware-
oriented vision model design paradigm named HeViFa , which excels
at capturing features. HeViFa employs an efficient NAS algorithm to
address the comprehensive optimization loop.

A. Preliminaries

Our work proposes a fair dermatology classification method with
real-time inference on multiple edge devices. This section will
address definitions of the problem we propose.

Fairness. In this work, we provide our definition of fairness
and adapt earlier fairness metrics originally designed for binary
classification or binary-sensitive attributes to our task, which involves
multiple disease classes and skin types. As a result, we have derived
three metrics:

(i) Predictive Quality Disparity (PQD) measures the difference
in prediction quality among different skin-type groups. PQD is
computed as the ratio between the lowest accuracy and the highest
accuracy across the skin-type groups, as represented by the equation:

min (accj, j € S)

PRD = max (accj,j € S)

M

Here, S represents the set of skin types.

(i1) Demographic Disparity (DP) is a fairness metric that quantifies
the difference in positive outcomes across different demographic or
sensitive groups. It measures the percentage diversity of positive
outcomes for each sensitive group, calculated as:

M . ~ N
pp- L~ min[p(g=1ls=j),j € 5]
M & max[p(g = 1|s = j), j € 5]

@

In the equation, p(j = 1|s = j) represents the probability of
predicting a positive outcome ( = 1) given the sensitive attribute
7 (e.g., skin type, gender). S denotes the set of sensitive groups or
attributes, and M represents the total number of sensitive groups.

(iii) Equality of Opportunity (EO) states that different sensi-
tive groups should have similar true positive rates. We compute
DPM and EOM across multiple skin conditions, where m €&
{1,2,..., M}, using the following equations:

min[p(§ =1y =1,s=j),j € ]
max [p(§ =1y =1,s =j),j € 5]

In the equation, p(§ = 1|y = 1,s = j) represents the probability
of predicting a positive outcome (§ = 1) given that the true label is
positive (y = 1) and the sensitive attribute is j. S denotes the set of
sensitive groups or attributes.

Classification. Let D be a dataset. We define C =
{c1,¢2,--- ,cm} as a set of M classes, where each data d; € D
belongs to a class ¢; € C. In other words, there exists a mapping
function f : f (d;) = ¢;. A neural network N is trained to establish
the mapping function from D to C. By utilizing a training dataset,
N learns a function fj that approximates f. If f(d;) = fu (di),
it signifies a correct prediction for data d;, whereas an incorrect
prediction is indicated otherwise. The accuracy A (fy, D) represents
the proportion of data in D that receives correct predictions using the
model N.

Diverse Groups. In addition to the category feature (C'), each data
d; € D may possess other inherent features such as skin color, race,
sex, and so on. For a specific inherent feature I, it can partition
the dataset D into K groups: D = {Dgy,,Dg,, -+, Dy, }. Let’s
consider skin color as an example. It can divide D into two groups:
light skin (g1 = light) and dark skin (g> = dark). If the number of
data instances in Dy, is smaller than that in Dy, i.e., | Dy, | < |ng ,
we refer to Dy, (e.g., dark skin) as the minority group compared to
Dy, (e.g., light skin). It is important to note that the proposed method
can handle fairness considerations for more than two diverse groups.

Problem Formulation. Based on the previously defined terms,
we can formally state the problem of “fairness-hardware-neural-
architecture co-optimization™ as follows: Given a dataset D consisting
of M classes and an inherent feature I that divides D into K groups,
along with a hardware configuration H and design specifications
(e.g., timing constraint T'C' and accuracy constraint AC), our ob-
jective is to automatically generate a neural architecture N. This
architecture should maximize the accuracy A (fy, D), minimize the
unfairness score U (fy, D), and ensure that the latency L(H, N)
satisfies the design specifications.

In Fig. 2, we show the overall architecture of the proposed HeViFa,
and it includes 2 phases. This section presents each component of
HeViFa framework and its functions.

EO = 3)

B. HeViFa framework

HeViFa Overview. In Fig. 2, we show the overall architecture of
our proposed HeViFa framework. The search process is composed
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TABLE 1
COMPARISON WITH EXISTING WORKS. THE FIRST GROUP H.D. INDICATES HUMAN-DESIGNED MODELS AND THE SECOND FOR NAS-BASED ONES.

Accurac . Search Cost FPS
Group Model #Params Light Dark y Average PQD Score | Fairness Comp. | Storage (MB) (GPU days) | Android iPhone  Raspberry Pi
DeiT-Tiny 5.9M 83.02% | 73.14%  78.08% 0.881 baseline 8.80 - 15.8 79.4 0.1
DeiT-Small 22.0M 84.49% | 75.53%  80.01% 0.894 +1.30% 33.72 - 5.3 40.9 -
H.D. MobileNetV2 2.23M 81.27% | 58.02%  69.65% 0.714 -16.71% 8.51 - 83.3 180.5 0.5
MobileNetV3(L) 421M 80.00% | 34.57%  57.29% 0.432 -44.89% 16.05 - 78.1 164.1 0.4
ResNet-50 23.52M | 83.98% | 6543%  74.71% 0.779 -10.19% 89.72 - 30.5 118.4 1.0
ProxylessNAS(M) 2.81M 81.56% | 50.62%  66.09% 0.621 -26.03% 10.70 1.8 66.8 108.2 0.2
MnasNet1.0 3.11IM 80.98% | 51.85%  66.42% 0.640 -24.07% 11.86 4.4 34.4 539 0.3
ProxylessNAS(G) 5.40M 83.46% | 56.79%  70.13% 0.680 -20.05% 20.60 2.5 58.3 92.5 0.3
NAS FaHaNa-Small 4.22M 81.46% | 61.73%  71.60% 0.758 -12.32% 1.61 2.1 142.9 2923 3.0
FaHaNa-Fair 5.50M 84.22% | 66.67%  75.45% 0.792 -8.94% 20.99 2.4 134.6 276.5 1.7
HeViFa-Small 6.93M 84.82% | 79.51%  82.17% 0.937 +5.64% 3.15 1.1 173.1 345.9 4.1
HeViFa-Large 8.06M 85.71% | 80.85%  83.28% 0.943 +6.23% 9.62 1.6 156.7 316.8 3.1
TABLE 11
COMPARISON WITH EXISTING WORKS ON FITZPATRICK 17K. FAIRNESS COMPARISON IS CALCULATED BASED ON PQD.
Group Model #Params T1 ) T3 Actzll_liacy Ts T6 Average PQD | DPM | EOM | Fairness Comp.
DeiT-Tiny 5.9M 70.68% 72.77% | 74.17% | 78.28% 82.41% 84.25% | 77.09% 0.839 | 0.527 | 0.710 baseline
HD DeiT-Small 22.0M 72.41% 73.57% | 75.01% | 78.94% 83.16% 84.73% | 77.97% 0.855 | 0.530 | 0.718 +1.57%
- MobileNetV2 2.23M 56.49% 59.66% | 65.68% | 73.46% 83.39% 83.46% | 70.36% 0.677 | 0.493 | 0.689 -16.21%
ResNet-50 23.52M | 62.48% 67.84% | 72.49% | 79.11% 84.99% 83.87% | 75.13% 0.735 | 0.523 | 0.719 -10.38%
ProxylessNAS(G) 5.40M 59.92% 71.35% | 75.15% | 77.48% 83.57% 83.14% | 75.10% 0.717 | 0.518 | 0.726 -12.19%
FaHaNa-Small 4.22M 68.84% 72.73% | 74.98% | 76.29% 82.04% 81.74% | 76.10% 0.839 | 0.534 | 0.731 +0.02%
NAS FaHaNa-Fair 5.50M 71.19% 7422% | 771.04% | 79.35% 85.02% 84.25% | 78.51% 0.837 | 0.522 | 0.734 -0.16%
Ours-Small 6.93M 75.79% | 76.73% | 77.80% | 80.43% | 85.36% | 84.67% | 80.13% | 0.876 | 0.537 | 0.736 +4.90%
Ours-Large 8.06M 76.41% | 77.44% | 78.32% | 80.79% | 85.81% | 85.50% | 80.71% | 0.879 | 0.540 | 0.740 +5.15%

of 2 phases. In Phase 1, we train the supernet with weight entangle-
ment. After we get a well-trained supernet, we utilize the evolution
algorithm to search for the optimal model in Phase 2. We utilized the
weight entanglement training strategy, which is dedicated to vision
transformer architecture search. The main concept is to enable weight
sharing among different transformer blocks for their common parts
within each layer. To elaborate further, let’s consider a subnet o € A
consisting of a stack of [ layers. We represent the structure and
weights of this subnet as:

(a(l), a® L a®
(w(l), w® wm)
Here, ¥ refers to the selected block in the i-th layer. Therefore,

a® and w® are actually chosen from a set of n block candidates
within the search space, as defined by:

o=
(C))

w

a® ¢ bﬁ”,...bg“,...bsf)}

_ . _ _ (5)
w® e {wﬁ”, o wj(-l), . wﬁf)}

In the above formulation, b;i) represents a candidate block in the
(@)
J :
that for any two blocks bg-l) and b
condition holds:

represents its associated weights. This means
(4)
k

search space, and w
in the same layer, the following

(2)

(@) (@)
wjl C w,

or wy” C w} O

The training of any block will impact the weights of others in their
overlapping sections, as depicted in Figure 2.

Equipped with weight entanglement, HeViFa is capable of search-
ing transformer architectures efficiently and effectively. Compared
with classical search methods, our method could search for hybrid
models quickly with lower memory costs.

Supernet Design. In Fig. 2, we show the supernet design and
search space based on different basic computing blocks. Motivated

by FaHaNa [7], we also utilize multi-stage architecture to extract
abstract information gradually. Unlike FaHaNa using a CONV7 x 7
layer in the front, we replace it with a CONV3 x 3 layer since it
will consume less memory and latency on I/O transfer. In the first
two stages, we delopy CNN for its better capacity to model local
information. We consider the MobileNetV2 and RepCNN blocks as
candidate blocks. And search space includes channel numbers and
kernel sizes. In the third stage, we take DeiT-Tiny as a candidate and
the search space includes five dimensions: embedding dimension, Q-
K-V dimension, number of heads, MLP ratio, and network depth.
After that, a linear layer is added to perform the final classification.

Search Space. We design a search space that combines five
variable factors in transformer building blocks and two variable
factors in CNN building blocks. All these factors are important for
model capacities.

Following one-shot NAS methods, we encode the search space
into a supernet. That is, every model in the space is a part/subset
of the supernet. All subnets share the weights of their common
parts. The supernet is the largest model in the space, and its
architecture is shown in Figure 2. In particular, the supernet stacks the
maximum number of transformer blocks with the largest embedding
dimension, Q-K-V dimension and MLP ratio as defined in the space.
During training, all possible subnets are uniformly sampled, and the
corresponding weights are updated.

Fairness constraints. After a sub-network is generated, we will
evaluate it on the part of the dataset and get an unfairness score
Uevai. In this work, we define the unfairness score as the difference
in accuracy between the Light skin and Dark skin datasets. With
target unfairness target Usqrger, We will get unfairness loss Lyqir =
|Uta'rget - Uevall

Latency constraints. Prior works [33], [34] either collect on-
device latency data to build a lookup table for latency estimate, or
deploy each candidate on chip to gather real latency data. Clearly,
the existing methods mentioned above have drawbacks in terms
of significant estimation errors or introducing additional overhead
by relying on real on-chip latency data during the search process.
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Therefore, we propose a novel approach to address these issues.
Our solution involves generating a diverse set of candidate building
blocks within the search space and measuring their latency on the
mobile device. Subsequently, we utilize this collected data to train a
deep neural network that predicts the speed or latency of candidate
architectures. Remarkably, we have found that a compact DNN
consisting of a few fully connected layers is sufficient for achieving
this objective. An additional advantage of this approach is the once-
for-all benefit, meaning that the latency model can be reused as long
as the target device remains the same. Consequently, searching for
new sub-networks under different constraints does not incur extra
evaluation costs. The regularization term based on latency is then
defined as follows: LA = |Zb S{o1,1,s,8", k} — $|2

where S denotes the DNN to predict latency based on block
characteristics (feature size, input and output channel, etc.). S is the
target latency, and ), denotes latency measured by blocks.

Search Pipeline. Our search pipeline includes two phases.

Phase 1: Supernet Traning. To search ViT-based supernet with
faster convergence speed and better performance, we introduce
Weight Entanglement technique [35]. In each iteration, a subnet is
uniformly sampled from the search space and updates its correspond-
ing weights inside the supernet while freezing the rest.

Phase 2: Evolution Search under fairness and Latency Constraints.
After Phase 1, we get a fully-trained supernet. The evolution algo-
rithm generates a set of subnets. At the onset of the evolution search,
we select N random architectures as initial seeds. From these, the top
k architectures are chosen as parents for generating the subsequent
generation through crossover and mutation. During each generation,
two randomly chosen candidates undergo crossover to produce a new
architecture, while each candidate has a probability of P; to mutate its
depth. Additionally, with a probability of P,,, each candidate mutates
its blocks to create a new architecture. Following the generation of
a child network, it undergoes evaluation based on fairness, accuracy,
and latency. To accomplish this objective, we first input the subnet
into the latency predictor to determine if it meets the hardware’s
latency specifications. If it fails to do so, a negative loss term is
generated to further regulate the search process. In order to expedite
the evaluation and enable automated optimization, we assess the
performance of each block offline on the provided hardware device.
This allows for efficient estimation of latency during the search
process. Once the final neural network architecture is identified, we
conduct an end-to-end evaluation on the target devices. The fairness
and accuracy of this set of models are evaluated on a subset of the
training dataset.

V. EXPERIMENTS

A. Experiments Setting

1) Datasets: We use two dermatology datasets, Fitzpatrickl7k
and a mixed dataset. Fitzpatrickl17k dataset [36] compiled 16,577
clinical images with skin condition labels and annotated them with
Fitzpatrick skin-type labels. There are 114 different skin conditions,
and each one has at least 53 images. They further divided these skin
conditions into two more advanced categories: 3 (malignant, non-
neoplastic, benign) and 9. Fitzpatrick labeling system is a six-point
scale initially developed for classifying the sun reactivity of skin and
adjusting clinical treatment according to skin phenotype. The Mix
dataset we use is a dermatology dataset that is built on the open-
access datasets, including 2019 [37]-[39] for light-skin, Dermnet
[40], and Atlas dermatology [41] for dark-skin. These images are used
for a classification task with five dermatology diseases: Melanoma,

TABLE III
DATA DISTRIBUTION FOR DERMATOLOGY DISEASE TYPE AND SKIN TONES
ON FITZPATRICK 17K AND MIX DATASETS.

Dataset Dermatology Skin tones

diseases T1 T2 T3 T4 TS5 T6 Total

Benign 444 671 475 367 159 44 2160

FI7K Malignant 453 742 456 301 147 61 2160
Non-neoplastic 2050 | 3395 | 2377 | 2113 | 1227 | 530 | 11692
Total 2947 | 4808 | 3308 | 2781 | 1533 | 635 | 16012

Dark Light Total

Melanoma 143 1533 1676

Melanocytic nevus 111 678 789

Mix Basal cell carcinoma 366 1251 1617
Dermatofibroma 147 240 387

Squamous cell carcinoma 145 465 610

Total 912 4167 5079

Melanocytic nevus, Basal cell carcinoma, Dermatofibroma, and Squa-
mous cell carcinoma.

In Table III, we can observe obvious data biases occur in derma-
tology diseases and skin tones. In F17K datasets, the non-neoplastic
group dominates the dermatology diseases with a 73% share. The T2
group has the most samples of all skin tone groups, with a proportion
of 7.5 times of the minor T6 group. Similarly, in Mix dataset the Light
skin tone group dominates the skin tone with 4.6 times of data than
the minority Dark skin tone group. Such imbalance data distribution
of sensitive groups makes unfairness mitigation a challenge.

2) Metrics: As discussed in Section IV, we use Predictive Qual-
ity Disparity (PQD), Demographic Disparity (DP) and Equality of
Opportunity (EO) to measure the fairness of the models. We use ac-
curacy to measure models’ skin condition classification performance.

3) Training Settings: We start the fairness and latency-aware
search from a fully pretrained supernet on the classification task.
We use stochastic gradient descent (SGD) optimizer and momentum
is set to 0.9, and set batch size to 64 on each GPU. For both
datasets, the learning rate is set to 0.1 initially with “poly” policy
and is determined as (1 — ﬁ)og where iter refers to the current
iteration number. The pretraining of supernet takes 100k iterations,
while the search and fine-tune process both take 40k iterations. For
the Fitzpatrickl17k dataset, we carry out a three-class classification
to perform an experimental task, in which the train and test sets are
randomly split in an 8:2 ratio. For the Mix dataset, we perform an
in-domain five-class classification using the same train-test ratio of
8:2. Images are augmented through random cropping, rotation, and
flipping to boost data diversity, then resized to 224 x 224 x 3. We
use Adam optimizer to train the model with an initial learning rate
1 x 10™*, which changes through a linear decay scheduler whose
step size is 2, and decay factor v is 0.9. We set the training epochs
for both datasets to 200.

4) Experiment Enviroments: The Android latency is tested on
the GPU of a Samsung Galaxy S21 smartphone with Qualcomm
Snapdragon 888 mobile platform integrated with Qualcomm Kryo
680 Octa-core CPU and a Qualcomm Adreno 660 GPU. The compiler
we deploy and test the model is TFLite. The iPhone latency is
measured on the NPU of the Apple iPhone 13 Pro with an A15
processor with iOS version 16.1 on NPU. CoreMLTools is used to
deploy the run-time model. The Raspberry Pi latency is tested on
Raspberry 4 B with 8GB of RAM on ONNX Runtime. All results
are averaged over 1,000 runs.

B. Exploration by HeViFa

In the first set of experiments, we demonstrate that HeViFa can
significantly push forward the Pareto frontiers among fairness, accu-
racy, and model size, compared with the competitors. The efficacy
of HeViFa’s search engine is also evaluated.
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1) Accuracy vs. Latency: Figure 7 reports the design space ex-
ploration results on Mix datasets, where the x-axis is the latency
in Frames Per Second (FPS), and the y-axis is the classification
accuracy. The ideal solution is located in the top right corner. In
Figure 7, each triangle point corresponds to a HeViFa-Net and each
circle is related to an existing network. From this figure, we observe
that HeViFa-Small on the top right corner dominates all the existing
neural networks in terms of fairness and latency; while HeViFa-Fair
on the right-top corner achieves the highest fairness.

2) Fairness vs. Latency: We further investigate the trade off
between fairness and latency in Figure 1. Results in Figure 1 shows
the the fairness and latency performance of each candidate on Mix
datasets. It consistently show that HeViFa can push forward the
Pareto frontier compared with the existing neural networks. More
specifically, HeViFa-Fair is the architecture that is the closest to the
ideal solution. On the other hand, even HeViFa-small has the smallest
size, it can still dominate most of the existing neural architectures.
These two architectures will be used for further detailed comparison.

3) Fairness vs. Accuracy: We further investigate the trade off
between fairness and accuracy in Figure 8. Results in Figure 8 show
that with 0.937 PQD score and 82.17% of average accuracy on Mix
dataset, HeViFa-Small defeat all other competitors in both metrics.

4) Search space and search cost: The efficiency and effectiveness
of the weight entanglement method are evaluated by comparing GPU
days. We compare the search time in Table I. There are several
observations in Table I. First, thanks to the weight entanglement
technique, HeViFa can significantly reduce the search space and

therefore improve the search efficiency, compared with other arts.
Compared with FaHaNa with 2.1 and 2.4 GPU days of search cost,
HeViFa reduce it to 1.1 and 1.6 GPU days for Small and Large
variations, respectively. Second, benefiting from the reduced search
space, HeViFa can search for more valid architectures. Even with
the larger number of parameters, the latency for multiple devices is
lower and the fairness score is higher. This is because the latency
and fairness constraint will pull down candidates that have slow
inference speed on target device or has bad fairness performance.
Overall, HeViFa can shrink the search space to examine more valid
networks for better-performance architectures; meanwhile, the search
time can be significantly reduced.

C. HeViFa vs. Existing Neural Architectures

Next, we compare HeViFa-Nets against competitors. We divide all
neural architectures into two groups in terms of technique to produce
the model. Group H.D. contains hand-designed architectures; Group
NAS contains networks produced by Neural Architecture Search. We
select the architecture with the best trade-off between latency and
fairness from all the competitors in all groups as the baseline: DeiT-
Tiny for both group H.D. and group NAS. Table III and II report
the results of each competitor on the Mix dataset and Fitzpatrick17k
dataset. With accuracies of 85.71% and 85.81%, and PQD scores of
0.943 and 0.879 respectively, HeViFa-Large outperformed all other
competitors in the Mix dataset and Fitzpatrick17K dataset.

1) HeViFa-Small has the lowest latency: From Table I and II,
we have several observations. We observed that HeViFa-Small is the
fairest architecture among all competitors in both datasets. Compared
with the baseline, DeiT-Tiny with a 0.881 PQD score, HeViFa-Small
can get 0.937 which has a 5.64% improvement. Compared with other
architectures, the fairness improvement of HeViFa-Small can reach up
to 50.53% (i.e., MobileNetV3(L)). Third, HeViFa-Small has the best
architecture tailored for target hardware; thus, it has the best hardware
performance: 3.15M of storage, 173.1 FPS on Android phones, and
345.9 FPS on iPhone, which is far beyond real-time.

These results, in response to our initial question, verified we can
find a small neural network to achieve fairness for edge devices.

2) HeViFa-Fair can achieve the highest fairness: The HeViFa-
Fair model stands out as the most equitable among all competitors
in both the H.D. and NAS groups, boasting a PQD score of 0.943.
In comparison to the previous SOTA method, FaHaNa-Fair, HeViFa-
Fair demonstrates a remarkable improvement of 0.151 on the PQD
score. Even its smaller variant, HeViFa-Small, remains a formidable
contender against all other competitors.

3) Pareto frontier: Figure 9 further shows the comparison of
Pareto frontiers in terms of the accuracy-latency tradeoff built by
all models. In Figure 9 (a), the red points form the Pareto frontier of
HeViFa-Small. It is clear that HeViFa-Small dominates all other com-
petitors. Similarly in 9 (b), HeViFa-Small dominates all architectures
in fairness-latency tradeoff. These figures clearly show that HeViFa
can significantly push forward the Pareto frontiers in the accuracy
and model size tradeoff. All these results show the superiority of
HeViFa-Nets over the existing neural architectures in terms of trade-
off among latency, fairness, and accuracy.

D. Compatibility of HeViFa with Data Balancing Techiques

One typical approach for fairness improvement is to generate
more minority data [6]. In table IV, we show the proposed HeViFa
framework is compatible with the data balancing techniques. We
apply the same method in [6] to get 5x more minority data for
training. It is obvious that after data balancing, all networks except
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TABLE IV
RESULTS AFTER DATA BALANCING ON MIX DATASET.

Accuracy
Model Tight | Dark | PQD | Tmpr
DeiT-Tiny §3.39% | 73.45% | 0.881 | 0.000
MobileNetV2 | 82.14% | 66.86% | 0.814 | -0.080
ProxylessNAS(M) | 81.53% | 66.86% | 0.820 | 0.199
MnasNet 0.5 | 78.82% | 60.58% | 0.769 | 0.345
MnasNet 1.0 | 80.20% | 6435% | 0.802 | 0.162
FaHaNa-Small | 82.02% | 68.37% | 0.834 | 0.076
HeViFa-Small | 84.99% | 79.74% | 0.948 | 0.011
HeViFa-Large | 85.94% | 81.92% | 0.953 | 0.010

MnasNet 1.0 can improve both accuracy and fairness; even for
MnasNet 1.0, it can achieve a 0.162 higher PQD score in fairness with
0.51% accuracy degradation. From the results in Table IV, HeViFa-
Large can also get benefits from data balancing to improve accuracy
by 0.74% while achieving 0.010 fairness improvement. What’s more,
HeViFa-Large is still the fairest model.

E. Ablation Studies

In the framework we proposed, we utilized the hybrid search
space of CNN and ViT as we observed hybrid models have better
unfairness mitigating ability as shown in Section III. To demonstrate
its advantages, we compare the performance with pure CNN and pure
ViT search spaces in Table V on F17K datasets. For a fair comparison,
we construct the pure CNN and pure ViT models in similar parameter
numbers with the hybrid model. Detailed search space is shown in
Figure 10. As shown in Table V, with similar parameter numbers, the
hybrid model HeViFa-Small has 0.136 and 0.042 higher PQD score
than pure CNN and pure ViT candidates.

(Conv3x3H MB-Block x6 '—) RepVGG x6

(a) Architecture of pure CNN supernet.

(b) Architecture of pure ViT supernet.

Fig. 10. Architectures of supernet for ablation study

TABLE V
ABLATION STUDY ON THE MODEL ARCHITECTURE OF SEARCH SPACE.

Parameter Accurac Fairness

Model number Light ])Sark PQD Comparison
Pure CNN 6.95M 84.73% | 67.84% | 0.801 baseline
Pure ViT 6.90M 83.26% | 74.52% | 0.895 +0.094
HeViFa-Small 6.93M 85.71% | 80.85% | 0.937 +0.136

TABLE VI
ABLATION STUDY ON LATENCY AND FAIRNESS CONSTRAINTS.

Constraint Accuracy Latency

Latency | Fairness Light Dark PQD Impr. (FPS) Tmpr.
84.83% | 75.24% | 0.887 | baseline 257.2 baseline

v 84.85% | 75.09% | 0.885 -0.002 342.5 +85.3

v 84.79% | 79.62% | 0.939 | +0.052 271.7 +14.5

v v 84.82% | 79.51% | 0.937 | +0.050 3459 +88.7

FE Insignts from HeViFa

Figure 2 provides the visualization of HeViFa-Small. An insightful
observation is that we applied pure CNN blocks to extract local
features in the while utilizing DeiT blocks at the end layers to extract
global features so as to better address the fairness issue. Such an
architecture can make a good tradeoff between hardware specifi-
cations and fairness requirements: (1) thanks to re-parameterization
technique and depthwise separable convolutions, the RepCNN block
could speed the inference without degrading the performance. and
(2) the end layers are sensitive to fairness thus ViTs are applied
to achieve higher fairness. The key observation is that employing a
homogeneous design with identical blocks fails to achieve a balance
between accuracy, fairness, and latency. However, the HeViFa model,
with its ability to flexibly select different types of blocks, overcomes
this limitation and successfully achieves the desired equilibrium.

G. Experiment Results and Analysis

We showed our search results in Table I. Compared with other
methods with similar resource constraints, our method reaches the
highest accuracy and PQD score on both datasets . HeViFa get 0.943
and 0.879 of PQD score, respectively, much lower than other NAS
methods e.g., HeViFa-Fair and ProxylessNAS(M) with the highest
FPS on all devices. Furthermore, when it comes to the cost of
searching, the weight entanglement technique has played a crucial
role in minimizing search expenses. As a result, we have achieved
the lowest search cost, requiring only 1.1 and 1.6 GPU days.

VI. CONCLUSIONS

In this work, we introduce HeViFa, an innovative hardware-
oriented NAS framework aimed at addressing the issue of unfair-
ness. It integrate fairness and hardware-aware latency in NAS to
design a CNN-VIT hybrid neural architecture for the first time. By
doing so, HeViFa generates a diverse set of neural architectures
that significantly improve the Pareto frontier in terms of accuracy,
fairness, and latency compared to existing architectures. Furthermore,
HeViFa seamlessly integrates with existing techniques for enhancing
fairness, making it compatible and complementary to current fairness
improvement methods. HeViFa also underwent extensive experiments
to assess its performance, achieving a frame rate of 173.1 FPS on
a Samsung S21 mobile phone and 345.9 FPS on an iPhone 13 Pro.
The accuracy and PQD (Perceptual Quality Difference) scores were
recorded at 82.17% and 0.937 respectively, while on the Mix and
Fitzpatrick17k datasets, it achieved scores of 80.13% and 0.876.
Notably, HeViFa demonstrated superior accuracy and fairness while
maintaining similar latency constraints across multiple edge devices.
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