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Abstract—As edge devices become readily available and indispensable,

there is an urgent need for effective and efficient intelligent applications

to be deployed widespread. However, fairness has always been an issue,

especially in edge medical applications. Although many approaches have

been proposed to mitigate the unfairness problem, their edge performance

is not desirable. By examining the fairness performance of different

network architectures, we observed that compared to pure convolutional

neuron network (CNN) architecture, hybrid models with CNN and

Vision Transformer (ViT) have exhibited better performance in terms

of fairness and accuracy. After further analyzing the feature maps of

intermediate layers of CNNs, ViTs, and hybrid models, we found that ViT

has a strong ability to extract global information, which contributes to

alleviating the unfairness problem. However, ViTs consume large amounts

of computational and memory resources, which hinders their application

on edge devices. To address the challenges abovementioned, we propose

the first hardware-oriented co-design NAS framework to explore hybrid

ViT-CNN architecture for the fair dermatology classification, namely

HeViFa, which can produce light-weight models for edge devices with low

unfairness scores and high classification accuracy. Experimental results

show that compared with FaHaNa-Small, HeViFa-Small could search for

a hybrid ViT model that reaches 10.57% and 4.03% higher accuracy as

well as 0.179 and 0.0403 higher PQD score on Mix and Fitzpatrick17k

dataset, repectively, and speed up by 1.21× on Samsung S21 mobile

phone, 1.18× on iPhone 13 Pro and 1.37× on Raspberry Pi.

I. INTRODUCTION

With the continuous progress of AI achieving high performance

and efficiency, we have witnessed the stream of success of deep neural

networks deployed on edge devices for medical applications [1],

[2], e.g., mobile dermatology assistant, mobile eye cancer detection,

and medical imaging and diagnostics. While many efforts have been

made in the medical image analysis domain about deriving higher

performance through deep learning algorithms, unfortunately, existing

AI systems mainly strive for entirely high accuracy with fast on-

device speed while overlooking the fairness between different human

groups. The need for fairness in deep learning models was highlighted

by observations stemming from a super-resolution algorithm called

PLUSE [3]. Concerns were raised when it was discovered that a

portrait image of Barack Hussein Obama produced a clearer output

image with a white man’s face after being processed by PULSE.

This incident was accused of exhibiting racial bias or ”racism”.

Furthermore, gender and skin-type biases have been identified in

commercial AI systems. Reports [4] also indicate that these systems

achieved an accuracy rate of 70% for the entire dataset but only

34.7% for women and a mere 17% for individuals with dark skin.

As is widely recognized, fairness presupposes that all people

have the same right and should be treated equally, and there have

been existing works to address fairness issues. However, current

debiasing methods for fairness-aware neural networks focus on either

modifying neural network models to make them interpretable on

fairness [5] or by fairness-aware data collection [6]. While these

approaches made important attempts at mitigating the unfairness

problem, the models still do not perform well enough in terms of

fairness. [7] is the most closely related work to ours, representing

§Equal contribution

Fig. 1. Fairness comparison with current methods on Predictive Quality
Disparity (PQD) vs Latency. The Latency is measured on an iPhone 13 Pro.
The proposed HeViFa has a better PQD score as well as lower latency.

the state-of-art trade-offs on accuracy, speed, and fairness by a novel

fairness-aware NAS framework. However, its fairness improvement is

insignificant at around 1.7×. Furthermore, due to limited hardware

resources on edge devices, models deployed to edge devices need

to be lightweight. And [7] points out that smaller neural network

models generally have lower fairness, which makes fairness an even

more challenging task on edge devices. Vision Transformer (ViT)

is a different architecture that has better global context extraction

ability, so we analyzed ViT and found that with a similar storage size

(8.8MB v.s. 8.5MB), DeiT-T has better fairness performance than

MobileNet-V2 (PQD score: 0.881 v.s. 0.714). Thus, we argue that

the performance of the previous attempt is limited to CNN-type only

candidates. Furthermore, we attempt to figure out and explain why

ViT-based models currently have superior fairness performance over

pure CNN models by analyzing feature maps of intermediate layers.

We discovered that ViT-based models have a larger receptive field

compared with pure CNN models on minority group datasets, which

leads to better performance. Nevertheless, a well-known concern is its

quadratic time and memory complexity. Due to the massive number

of parameters and model design, e.g., attention mechanism, ViT-based

models are generally times slower than lightweight convolutional

networks. Therefore, the deployment of ViT for real-time applica-

tions is particularly challenging, especially on resource-constrained

hardware such as edge devices. Also, when it comes to the trade-

off between task accuracy, fairness and on-device speed, it is still

uncertain which choice is best among pure ViT, pure CNN, or CNN-

ViT hybrid models.

Traditional methods manually fine-tune the models to achieve

better fairness, but with the difficulty of quickly generating models

deployable for target computing platforms. In this work, we are

trying to achieve fairness through automatic neural architecture search

(NAS). Although there are already some works trying to solve the

fairness issue by utilizing NAS [7] and pruning [8], they are all
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Fig. 2. Overall framework of HeViFa. In phase 1, we train the supernet with weight entanglement. The components of the supernet is shown above. After
we get a well-trained supernet, we utilize the evolution algorithm to search the optimal model in phase 2. Fairness and latency constraints is integrated in the
search procedure.

based on CNN, and none of them have explored the power of ViT to

solve fairness problem. The fairness-aware search scheme in [7] is

constrained by the convolutional structure and thus cannot be directly

applied to our transformer-type layer. In addition, NAS itself is known

for its lengthy search time. Therefore, a fundamental question is: Can

we design and fast-generate vision models equipped with transformer

layers that are more accurate, fairer, and more hardware-friendly for

target devices?

In this paper, we first analyze why CNN and ViT has different

performance on fairness by visualizing feature maps and find out

that CNN-ViT hybrid model is superior to both pure CNN and pure

ViT models. We also profile the hardware performance of different

architectures and figure out that the hybrid model can reach the best

trade-off between accuracy and on-device latency. Thus, we choose

hybrid model as supernet in our design. To leverage the strengths of

CNN-based and ViT-based operations, along with the target of deriv-

ing models that can run real-time on target edge devices, we propose a

novel fairness-aware and hardware-oriented NAS framework, namely

HeViFa. Given a target hardware platform, HeViFa will search for the

CNN-ViT hybrid neural architectures with the best accuracy, fairness,

and latency. Meanwhile, the latency can meet specific hardware

specifications by our hardware-aware NAS. We also refine the NAS

method with the weight entanglement strategy, which is efficient and

precise for the optimization of transformer search. In addition, this

framework is general for different edge computing platforms, which

implies the fast deployment of AI medical applications.

This paper makes the following contributions:

• Discovery By visualizing intermediate feature maps, we explain

why CNN and ViT models have different performances on fair-

ness in detail and introduce a hardware-oriented convolutional

operator. This paves the way for us to use CNN-based and ViT-

based operators simultaneously and efficiently.

• Framework To the best of our knowledge, HeViFa is the

first hardware-oriented NAS co-design framework to explore

hybrid ViT-CNN architecture to solve unfairness problems on

dermatology classification.

• Efficiency We can achieve the best trade-off on accuracy,

fairness and latency on multiple devices, and also better NAS

training efficiency by utilizing weight entanglement and latency

constraints.

• Performance Compared with the previous state-of-the-art meth-

ods, HeViFa achieves higher accuracy and PQD (Perceptual

Quality Difference) scores recorded at 82.17% and 0.937 on the

Mix datasets and 80.13% and 0.87 on Fitzpatrick17k datasets

with 1.18× to 1.37× speed up on multiple resource-constrained

computing devices.

In the rest of the paper: Section II reviews the background and

related works; Section III shows our discovery and analysis. Then we

reveals our motivations. Section IV defines the problem and presents

our HeViFa framework. Experimental results are shown in Section V

and concluding remarks are given in Section VI.

II. RELATED WORKS

A. Fairness Mitigation Methods

Fairness has emerged as a significant concern in the machine

learning (ML) community, leading to the development of various

approaches aimed at addressing the issue of unfairness. Current

methods for debiasing primarily concentrate on modifying datasets

and optimizing training procedures.

Distribution-based methods focus on modifying the data distri-

bution to better represent minority groups or eliminate undesired

biases from the dataset. For instance, [9], [10] propose algorithms that

modify objects in the dataset based on predefined rules. [11] addresses

under- or over-sampling techniques to mitigate under-representation

of individuals in protected groups. However, it is important to note

that deep neural networks rely heavily on large amounts of data,

making undersampling strategies impractical as they may reduce the

data to a point where training becomes infeasible.

One-Step-Training methods are integrated into the main training

procedure. Some approaches, such as [12], [13], utilize adversarial

frameworks to train the model not to rely on undesired biases.

However, adversarial-based methods often require annotations of

protected variables or groups in the dataset, which can be a drawback

due to the need for additional annotations. Additionally, optimization

methods for the training process have been proposed by [8], [14].

Nevertheless, modifications to the optimization process may introduce

a trade-off between fairness and accuracy, which must be carefully

managed.

In contrast, we propose a vision model that directly bypasses the

aforementioned drawbacks by effectively combining convolutional

and self-attention operators. Our model aims to mitigate biasing and

unfairness while maintaining accuracy and efficiency.

B. Vision Transformer

Transformers are initially proposed to handle the learning of long

sequences in NLP tasks. Great interest has surged following the

work [15] that applies a pure transformer architecture for image

classification without reliance on convolutional architectures. The

universality of Transformer architectures from NLP to CV is at-

tributed to the uniform representations across all layers than CNNs,

self-attention mechanism enabling early aggregation of global infor-

mation, and ViT residual connections that strongly propagate features
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Fig. 4. Visualization of the feature map obtained by different model structures.

from lower to high layers [16]. Since then, various ViTs [17]–[21]

have been proposed for different CV tasks, including object detection,

semantic segmentation, and image retrieval.

Different designs of CNN-ViT hybrid models have been explored

to reap the benefits of convolutions and transformers. For instance,

ViT-C [22] adds an early convolutional stem to ViT. CvT [23]

modifies the multi-head attention in transformers and uses depth-

wise separable convolutions instead of linear projections. ConViT

[24] incorporates soft convolutional inductive biases using a gated

positional self-attention. Though these models can achieve compet-

itive performance to CNNs, they still exhibit high computation and

memory complexity. Unfortunately, there is a dearth of literature on

hardware-oriented CNN-ViT hybrid model paradigms.

C. Neural Architecture Search

In edge AI, such as medical AI [25], fairness, accuracy, and

hardware efficiency hold equal importance. The absence of any of

these characteristics renders the architecture ineffective. For instance,

SqueezeNet exhibits low accuracy, MobileNetV2 violates latency

requirements, and MnasNet 0.5 lacks fairness [7]. Therefore, a holis-

tic optimization approach is necessary to address all these metrics

simultaneously.

Neural architecture search (NAS) methods have been developed

to automatically identify neural architectures for maximum accu-

racy [26]. Together with the consideration of the hardware specifica-

tions, hardware-aware NAS [27], [28] further explores the hardware

design space, thus jointly identifying the best architecture and hard-

ware designs. After that, FaHaNa [7] is the first work to introduce

Fairness in NAS. However, the search space of FaHaNa does not

include self-attention operators, which are characterized by a large

dimension definition, e.g., Q/K/V, head number, and head dimension.

This potentially means an inefficient NAS method.

III. DISCOVERY AND MOTIVATIONS

Through an examination of the fairness performance of various

network architectures, we have observed that ViTs have demonstrated

superior performance in terms of both fairness and accuracy when
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Fig. 5. CKA between each value in the last 12 output feature maps.

compared to pure CNN architectures. To optimize fairness and task

accuracy, we analyze the feature maps of intermediate layers of

CNNs, ViTs, and hybrid models to identify their strengths and

weaknesses in visual modeling. Meanwhile, to improve network

runtime speed practically, we consider on-device memory cost and

degree of parallelism and introduce an efficient operator with its

fusion techniques for model implementation.

Image feature modeling by different architectures. To analyze

the advantages of different operators in modeling vision features,

we first examine the accuracy distribution of representative CNN-

based and ViT-based models, as shown in Figure 3. We conducted

the analysis using a sample consisting of 100 images of the light

and 100 images of the dark. The CNN-based model demonstrates

significant accuracy in identifying the skin state of the light but

falls short in accurately identifying the skin state of the dark. On

the contrary, the ViT-based model exhibits a clear advantage in

accurately identifying the skin state of the dark. According to [29],

convolutional operations excel at capturing texture-level information

and extracting global information by deepening the model, while

self-attention operations (key operations inside ViTs) aim to directly

extract abstract-level information by capturing the global receptive

field. This means self-attention operations have higher robustness

to the noise of background information. Next, we analyze the

heatmaps of the last feature map in CNN-based (ResNet-50) and ViT-

based (DeiT-Small) models for both light-skinned and dark-skinned

individuals. These feature maps are crucial for the final prediction.

In Figure 4, it is evident that CNN-based models precisely capture

texture details in the images of light individuals, but they struggle to

distinguish pathological skin conditions in the dark. This observation

also indicates that the convolution operation is less robust in dealing

with interference from background information. Conversely, thanks

to its global analysis capability, the ViT-based model can effectively

detect pathological skin conditions in the dark. Considering the

distinctive characteristics of both models, our approach (HeViFa) is

capable of providing a clear assessment of the skin status for both

light and dark individuals. Furthermore, we calculate the centered

kernel alignment (CKA) [30] in the last 12 output feature maps of the

dark, which measures the average similarity between each value, as

depicted in Figure 5. Our findings reveal that the CNN-based model

exhibits higher similarity among different feature values compared to

the other two methods. This implies that the CNN-based models are

more sensitive to background noise and capture a relatively smaller

amount of information than ViT-based models.
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Fusing multiple branches into one single branch in reparameter-

ized CNNs. The development of efficient network architectures for

resource-limited devices has greatly benefited from reduced param-

eters and floating-point operations (FLOPs) and improved accuracy.

However, conventional efficiency metrics, such as FLOPs, overlook

memory cost and degree of parallelism. Multi-branch structures

come with increased data movement cost, as the activation values

of each branch are saved into processing engine (PE) memory or

on-chip memory (if the PE memory is insufficient) to compute the

subsequent tensor in the graph. Additionally, the synchronization

cost arising from multiple branches impacts the overall runtime [31].

To address these challenges, we use RepCNN [32] (Figure 6) as

a network component, which fuses multiple branches into more

single-branch substructures during inference. This approach enables

even distribution of computation among multiple PEs, preventing im-

balanced computation overheads associated with multiple branches.

The resulting operator fusion improves memory access and parallel

computation on multiple PEs.

IV. HEVIFA FRAMEWORK

Based on the analysis of feature modeling and network runtime

overhead in Section III, we propose a fairness-aware and hardware-

oriented vision model design paradigm named HeViFa , which excels

at capturing features. HeViFa employs an efficient NAS algorithm to

address the comprehensive optimization loop.

A. Preliminaries

Our work proposes a fair dermatology classification method with

real-time inference on multiple edge devices. This section will

address definitions of the problem we propose.

Fairness. In this work, we provide our definition of fairness

and adapt earlier fairness metrics originally designed for binary

classification or binary-sensitive attributes to our task, which involves

multiple disease classes and skin types. As a result, we have derived

three metrics:

(i) Predictive Quality Disparity (PQD) measures the difference

in prediction quality among different skin-type groups. PQD is

computed as the ratio between the lowest accuracy and the highest

accuracy across the skin-type groups, as represented by the equation:

PQD =
min (accj , j ∈ S)

max (accj , j ∈ S)
(1)

Here, S represents the set of skin types.

(ii) Demographic Disparity (DP) is a fairness metric that quantifies

the difference in positive outcomes across different demographic or

sensitive groups. It measures the percentage diversity of positive

outcomes for each sensitive group, calculated as:

DP =
1

M

M
∑

i=1

min [p(ŷ = 1|s = j), j ∈ S]

max [p(ŷ = 1|s = j), j ∈ S]
(2)

In the equation, p(ŷ = 1|s = j) represents the probability of

predicting a positive outcome (ŷ = 1) given the sensitive attribute

j (e.g., skin type, gender). S denotes the set of sensitive groups or

attributes, and M represents the total number of sensitive groups.

(iii) Equality of Opportunity (EO) states that different sensi-

tive groups should have similar true positive rates. We compute

DPM and EOM across multiple skin conditions, where m ∈
{1, 2, . . . ,M}, using the following equations:

EO =
min [p(ŷ = 1|y = 1, s = j), j ∈ S]

max [p(ŷ = 1|y = 1, s = j), j ∈ S]
(3)

In the equation, p(ŷ = 1|y = 1, s = j) represents the probability

of predicting a positive outcome (ŷ = 1) given that the true label is

positive (y = 1) and the sensitive attribute is j. S denotes the set of

sensitive groups or attributes.

Classification. Let D be a dataset. We define C =
{c1, c2, · · · , cM} as a set of M classes, where each data di ∈ D

belongs to a class cj ∈ C. In other words, there exists a mapping

function f : f (di) = cj . A neural network N is trained to establish

the mapping function from D to C. By utilizing a training dataset,

N learns a function f ′

N that approximates f . If f (di) = f ′

N (di),
it signifies a correct prediction for data di, whereas an incorrect

prediction is indicated otherwise. The accuracy A (f ′

N , D) represents

the proportion of data in D that receives correct predictions using the

model N .

Diverse Groups. In addition to the category feature (C), each data

di ∈ D may possess other inherent features such as skin color, race,

sex, and so on. For a specific inherent feature I , it can partition

the dataset D into K groups: D = {Dg1 , Dg2 , · · · , DgK}. Let’s

consider skin color as an example. It can divide D into two groups:

light skin (g1 = light) and dark skin (g2 = dark). If the number of

data instances in Dgi is smaller than that in Dgj , i.e., |Dgi | <
∣

∣Dgj

∣

∣,

we refer to Dgi (e.g., dark skin) as the minority group compared to

Dgj (e.g., light skin). It is important to note that the proposed method

can handle fairness considerations for more than two diverse groups.

Problem Formulation. Based on the previously defined terms,

we can formally state the problem of ”fairness-hardware-neural-

architecture co-optimization” as follows: Given a dataset D consisting

of M classes and an inherent feature I that divides D into K groups,

along with a hardware configuration H and design specifications

(e.g., timing constraint TC and accuracy constraint AC), our ob-

jective is to automatically generate a neural architecture N . This

architecture should maximize the accuracy A (f ′

N , D), minimize the

unfairness score U (f ′

N , D), and ensure that the latency L(H,N)
satisfies the design specifications.

In Fig. 2, we show the overall architecture of the proposed HeViFa,

and it includes 2 phases. This section presents each component of

HeViFa framework and its functions.

B. HeViFa framework

HeViFa Overview. In Fig. 2, we show the overall architecture of

our proposed HeViFa framework. The search process is composed
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TABLE I
COMPARISON WITH EXISTING WORKS. THE FIRST GROUP H.D. INDICATES HUMAN-DESIGNED MODELS AND THE SECOND FOR NAS-BASED ONES.

Group Model #Params
Accuracy

PQD Score Fairness Comp. Storage (MB)
Search Cost
(GPU days)

FPS
Light Dark Average Android iPhone Raspberry Pi

H.D.

DeiT-Tiny 5.9M 83.02% 73.14% 78.08% 0.881 baseline 8.80 - 15.8 79.4 0.1
DeiT-Small 22.0M 84.49% 75.53% 80.01% 0.894 +1.30% 33.72 - 5.3 40.9 -

MobileNetV2 2.23M 81.27% 58.02% 69.65% 0.714 -16.71% 8.51 - 83.3 180.5 0.5
MobileNetV3(L) 4.21M 80.00% 34.57% 57.29% 0.432 -44.89% 16.05 - 78.1 164.1 0.4

ResNet-50 23.52M 83.98% 65.43% 74.71% 0.779 -10.19% 89.72 - 30.5 118.4 1.0

NAS

ProxylessNAS(M) 2.81M 81.56% 50.62% 66.09% 0.621 -26.03% 10.70 1.8 66.8 108.2 0.2
MnasNet1.0 3.11M 80.98% 51.85% 66.42% 0.640 -24.07% 11.86 4.4 34.4 53.9 0.3

ProxylessNAS(G) 5.40M 83.46% 56.79% 70.13% 0.680 -20.05% 20.60 2.5 58.3 92.5 0.3
FaHaNa-Small 4.22M 81.46% 61.73% 71.60% 0.758 -12.32% 1.61 2.1 142.9 292.3 3.0
FaHaNa-Fair 5.50M 84.22% 66.67% 75.45% 0.792 -8.94% 20.99 2.4 134.6 276.5 1.7

HeViFa-Small 6.93M 84.82% 79.51% 82.17% 0.937 +5.64% 3.15 1.1 173.1 345.9 4.1

HeViFa-Large 8.06M 85.71% 80.85% 83.28% 0.943 +6.23% 9.62 1.6 156.7 316.8 3.1

TABLE II
COMPARISON WITH EXISTING WORKS ON FITZPATRICK17K. FAIRNESS COMPARISON IS CALCULATED BASED ON PQD.

Group Model #Params
Accuracy

PQD DPM EOM Fairness Comp.
T1 T2 T3 T4 T5 T6 Average

H.D.

DeiT-Tiny 5.9M 70.68% 72.77% 74.17% 78.28% 82.41% 84.25% 77.09% 0.839 0.527 0.710 baseline
DeiT-Small 22.0M 72.41% 73.57% 75.01% 78.94% 83.16% 84.73% 77.97% 0.855 0.530 0.718 +1.57%

MobileNetV2 2.23M 56.49% 59.66% 65.68% 73.46% 83.39% 83.46% 70.36% 0.677 0.493 0.689 -16.21%
ResNet-50 23.52M 62.48% 67.84% 72.49% 79.11% 84.99% 83.87% 75.13% 0.735 0.523 0.719 -10.38%

NAS

ProxylessNAS(G) 5.40M 59.92% 71.35% 75.15% 77.48% 83.57% 83.14% 75.10% 0.717 0.518 0.726 -12.19%
FaHaNa-Small 4.22M 68.84% 72.73% 74.98% 76.29% 82.04% 81.74% 76.10% 0.839 0.534 0.731 +0.02%
FaHaNa-Fair 5.50M 71.19% 74.22% 77.04% 79.35% 85.02% 84.25% 78.51% 0.837 0.522 0.734 -0.16%
Ours-Small 6.93M 75.79% 76.73% 77.80% 80.43% 85.36% 84.67% 80.13% 0.876 0.537 0.736 +4.90%

Ours-Large 8.06M 76.41% 77.44% 78.32% 80.79% 85.81% 85.50% 80.71% 0.879 0.540 0.740 +5.15%

of 2 phases. In Phase 1, we train the supernet with weight entangle-

ment. After we get a well-trained supernet, we utilize the evolution

algorithm to search for the optimal model in Phase 2. We utilized the

weight entanglement training strategy, which is dedicated to vision

transformer architecture search. The main concept is to enable weight

sharing among different transformer blocks for their common parts

within each layer. To elaborate further, let’s consider a subnet α ∈ A
consisting of a stack of l layers. We represent the structure and

weights of this subnet as:







α =
(

α(1), . . . α(i), . . . α(l)
)

w =
(

w(1), . . . w(i), . . . w(l)
) (4)

Here, α(i) refers to the selected block in the i-th layer. Therefore,

α(i) and w(i) are actually chosen from a set of n block candidates

within the search space, as defined by:







α(i) ∈
{

b
(i)
1 , . . . b

(i)
j , . . . b

(i)
n

}

w(i) ∈
{

w
(i)
1 , . . . w

(i)
j , . . . w

(i)
n

} (5)

In the above formulation, b
(i)
j represents a candidate block in the

search space, and w
(i)
j represents its associated weights. This means

that for any two blocks b
(i)
j and b

(i)
k in the same layer, the following

condition holds:

w
(i)
j ⊆ w

(i)
k or w

(i)
k ⊆ w

(i)
j (6)

The training of any block will impact the weights of others in their

overlapping sections, as depicted in Figure 2.

Equipped with weight entanglement, HeViFa is capable of search-

ing transformer architectures efficiently and effectively. Compared

with classical search methods, our method could search for hybrid

models quickly with lower memory costs.

Supernet Design. In Fig. 2, we show the supernet design and

search space based on different basic computing blocks. Motivated

by FaHaNa [7], we also utilize multi-stage architecture to extract

abstract information gradually. Unlike FaHaNa using a CONV7× 7
layer in the front, we replace it with a CONV3 × 3 layer since it

will consume less memory and latency on I/O transfer. In the first

two stages, we delopy CNN for its better capacity to model local

information. We consider the MobileNetV2 and RepCNN blocks as

candidate blocks. And search space includes channel numbers and

kernel sizes. In the third stage, we take DeiT-Tiny as a candidate and

the search space includes five dimensions: embedding dimension, Q-

K-V dimension, number of heads, MLP ratio, and network depth.

After that, a linear layer is added to perform the final classification.

Search Space. We design a search space that combines five

variable factors in transformer building blocks and two variable

factors in CNN building blocks. All these factors are important for

model capacities.

Following one-shot NAS methods, we encode the search space

into a supernet. That is, every model in the space is a part/subset

of the supernet. All subnets share the weights of their common

parts. The supernet is the largest model in the space, and its

architecture is shown in Figure 2. In particular, the supernet stacks the

maximum number of transformer blocks with the largest embedding

dimension, Q-K-V dimension and MLP ratio as defined in the space.

During training, all possible subnets are uniformly sampled, and the

corresponding weights are updated.

Fairness constraints. After a sub-network is generated, we will

evaluate it on the part of the dataset and get an unfairness score

Ueval. In this work, we define the unfairness score as the difference

in accuracy between the Light skin and Dark skin datasets. With

target unfairness target Utarget, we will get unfairness loss Lfair =
|Utarget − Ueval|

Latency constraints. Prior works [33], [34] either collect on-

device latency data to build a lookup table for latency estimate, or

deploy each candidate on chip to gather real latency data. Clearly,

the existing methods mentioned above have drawbacks in terms

of significant estimation errors or introducing additional overhead

by relying on real on-chip latency data during the search process.
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Therefore, we propose a novel approach to address these issues.

Our solution involves generating a diverse set of candidate building

blocks within the search space and measuring their latency on the

mobile device. Subsequently, we utilize this collected data to train a

deep neural network that predicts the speed or latency of candidate

architectures. Remarkably, we have found that a compact DNN

consisting of a few fully connected layers is sufficient for achieving

this objective. An additional advantage of this approach is the once-

for-all benefit, meaning that the latency model can be reused as long

as the target device remains the same. Consequently, searching for

new sub-networks under different constraints does not incur extra

evaluation costs. The regularization term based on latency is then

defined as follows: LLAT
reg =

∣

∣

∑

b
S{o1, i, s, s

′, k} − S
∣

∣

2

where S denotes the DNN to predict latency based on block

characteristics (feature size, input and output channel, etc.). S is the

target latency, and
∑

b
denotes latency measured by blocks.

Search Pipeline. Our search pipeline includes two phases.

Phase 1: Supernet Traning. To search ViT-based supernet with

faster convergence speed and better performance, we introduce

Weight Entanglement technique [35]. In each iteration, a subnet is

uniformly sampled from the search space and updates its correspond-

ing weights inside the supernet while freezing the rest.

Phase 2: Evolution Search under fairness and Latency Constraints.

After Phase 1, we get a fully-trained supernet. The evolution algo-

rithm generates a set of subnets. At the onset of the evolution search,

we select N random architectures as initial seeds. From these, the top

k architectures are chosen as parents for generating the subsequent

generation through crossover and mutation. During each generation,

two randomly chosen candidates undergo crossover to produce a new

architecture, while each candidate has a probability of Pd to mutate its

depth. Additionally, with a probability of Pm, each candidate mutates

its blocks to create a new architecture. Following the generation of

a child network, it undergoes evaluation based on fairness, accuracy,

and latency. To accomplish this objective, we first input the subnet

into the latency predictor to determine if it meets the hardware’s

latency specifications. If it fails to do so, a negative loss term is

generated to further regulate the search process. In order to expedite

the evaluation and enable automated optimization, we assess the

performance of each block offline on the provided hardware device.

This allows for efficient estimation of latency during the search

process. Once the final neural network architecture is identified, we

conduct an end-to-end evaluation on the target devices. The fairness

and accuracy of this set of models are evaluated on a subset of the

training dataset.

V. EXPERIMENTS

A. Experiments Setting

1) Datasets: We use two dermatology datasets, Fitzpatrick17k

and a mixed dataset. Fitzpatrick17k dataset [36] compiled 16,577

clinical images with skin condition labels and annotated them with

Fitzpatrick skin-type labels. There are 114 different skin conditions,

and each one has at least 53 images. They further divided these skin

conditions into two more advanced categories: 3 (malignant, non-

neoplastic, benign) and 9. Fitzpatrick labeling system is a six-point

scale initially developed for classifying the sun reactivity of skin and

adjusting clinical treatment according to skin phenotype. The Mix

dataset we use is a dermatology dataset that is built on the open-

access datasets, including 2019 [37]–[39] for light-skin, Dermnet

[40], and Atlas dermatology [41] for dark-skin. These images are used

for a classification task with five dermatology diseases: Melanoma,

TABLE III
DATA DISTRIBUTION FOR DERMATOLOGY DISEASE TYPE AND SKIN TONES

ON FITZPATRICK17K AND MIX DATASETS.

Dataset
Dermatology

diseases
Skin tones

T1 T2 T3 T4 T5 T6 Total

F17K

Benign 444 671 475 367 159 44 2160
Malignant 453 742 456 301 147 61 2160

Non-neoplastic 2050 3395 2377 2113 1227 530 11692
Total 2947 4808 3308 2781 1533 635 16012

Mix

Dark Light Total
Melanoma 143 1533 1676

Melanocytic nevus 111 678 789
Basal cell carcinoma 366 1251 1617

Dermatofibroma 147 240 387
Squamous cell carcinoma 145 465 610

Total 912 4167 5079

Melanocytic nevus, Basal cell carcinoma, Dermatofibroma, and Squa-

mous cell carcinoma.

In Table III, we can observe obvious data biases occur in derma-

tology diseases and skin tones. In F17K datasets, the non-neoplastic

group dominates the dermatology diseases with a 73% share. The T2

group has the most samples of all skin tone groups, with a proportion

of 7.5 times of the minor T6 group. Similarly, in Mix dataset the Light

skin tone group dominates the skin tone with 4.6 times of data than

the minority Dark skin tone group. Such imbalance data distribution

of sensitive groups makes unfairness mitigation a challenge.

2) Metrics: As discussed in Section IV, we use Predictive Qual-

ity Disparity (PQD), Demographic Disparity (DP) and Equality of

Opportunity (EO) to measure the fairness of the models. We use ac-

curacy to measure models’ skin condition classification performance.

3) Training Settings: We start the fairness and latency-aware

search from a fully pretrained supernet on the classification task.

We use stochastic gradient descent (SGD) optimizer and momentum

is set to 0.9, and set batch size to 64 on each GPU. For both

datasets, the learning rate is set to 0.1 initially with “poly” policy

and is determined as
(

1− iter
total iter

)0.9
where iter refers to the current

iteration number. The pretraining of supernet takes 100k iterations,

while the search and fine-tune process both take 40k iterations. For

the Fitzpatrick17k dataset, we carry out a three-class classification

to perform an experimental task, in which the train and test sets are

randomly split in an 8:2 ratio. For the Mix dataset, we perform an

in-domain five-class classification using the same train-test ratio of

8:2. Images are augmented through random cropping, rotation, and

flipping to boost data diversity, then resized to 224 × 224 × 3. We

use Adam optimizer to train the model with an initial learning rate

1 × 10−4, which changes through a linear decay scheduler whose

step size is 2, and decay factor γ is 0.9. We set the training epochs

for both datasets to 200.

4) Experiment Enviroments: The Android latency is tested on

the GPU of a Samsung Galaxy S21 smartphone with Qualcomm

Snapdragon 888 mobile platform integrated with Qualcomm Kryo

680 Octa-core CPU and a Qualcomm Adreno 660 GPU. The compiler

we deploy and test the model is TFLite. The iPhone latency is

measured on the NPU of the Apple iPhone 13 Pro with an A15

processor with iOS version 16.1 on NPU. CoreMLTools is used to

deploy the run-time model. The Raspberry Pi latency is tested on

Raspberry 4 B with 8GB of RAM on ONNX Runtime. All results

are averaged over 1,000 runs.

B. Exploration by HeViFa

In the first set of experiments, we demonstrate that HeViFa can

significantly push forward the Pareto frontiers among fairness, accu-

racy, and model size, compared with the competitors. The efficacy

of HeViFa’s search engine is also evaluated.
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Fig. 7. Comparison with current methods on Accuracy vs Latency. The
Latency is measured on an iPhone 13 Pro.

Fig. 8. Comparison with current methods on Accuracy v.s. Fairness.

1) Accuracy vs. Latency: Figure 7 reports the design space ex-

ploration results on Mix datasets, where the x-axis is the latency

in Frames Per Second (FPS), and the y-axis is the classification

accuracy. The ideal solution is located in the top right corner. In

Figure 7, each triangle point corresponds to a HeViFa-Net and each

circle is related to an existing network. From this figure, we observe

that HeViFa-Small on the top right corner dominates all the existing

neural networks in terms of fairness and latency; while HeViFa-Fair

on the right-top corner achieves the highest fairness.

2) Fairness vs. Latency: We further investigate the trade off

between fairness and latency in Figure 1. Results in Figure 1 shows

the the fairness and latency performance of each candidate on Mix

datasets. It consistently show that HeViFa can push forward the

Pareto frontier compared with the existing neural networks. More

specifically, HeViFa-Fair is the architecture that is the closest to the

ideal solution. On the other hand, even HeViFa-small has the smallest

size, it can still dominate most of the existing neural architectures.

These two architectures will be used for further detailed comparison.

3) Fairness vs. Accuracy: We further investigate the trade off

between fairness and accuracy in Figure 8. Results in Figure 8 show

that with 0.937 PQD score and 82.17% of average accuracy on Mix

dataset, HeViFa-Small defeat all other competitors in both metrics.

4) Search space and search cost: The efficiency and effectiveness

of the weight entanglement method are evaluated by comparing GPU

days. We compare the search time in Table I. There are several

observations in Table I. First, thanks to the weight entanglement

technique, HeViFa can significantly reduce the search space and

therefore improve the search efficiency, compared with other arts.

Compared with FaHaNa with 2.1 and 2.4 GPU days of search cost,

HeViFa reduce it to 1.1 and 1.6 GPU days for Small and Large

variations, respectively. Second, benefiting from the reduced search

space, HeViFa can search for more valid architectures. Even with

the larger number of parameters, the latency for multiple devices is

lower and the fairness score is higher. This is because the latency

and fairness constraint will pull down candidates that have slow

inference speed on target device or has bad fairness performance.

Overall, HeViFa can shrink the search space to examine more valid

networks for better-performance architectures; meanwhile, the search

time can be significantly reduced.

C. HeViFa vs. Existing Neural Architectures

Next, we compare HeViFa-Nets against competitors. We divide all

neural architectures into two groups in terms of technique to produce

the model. Group H.D. contains hand-designed architectures; Group

NAS contains networks produced by Neural Architecture Search. We

select the architecture with the best trade-off between latency and

fairness from all the competitors in all groups as the baseline: DeiT-

Tiny for both group H.D. and group NAS. Table III and II report

the results of each competitor on the Mix dataset and Fitzpatrick17k

dataset. With accuracies of 85.71% and 85.81%, and PQD scores of

0.943 and 0.879 respectively, HeViFa-Large outperformed all other

competitors in the Mix dataset and Fitzpatrick17K dataset.

1) HeViFa-Small has the lowest latency: From Table I and II,

we have several observations. We observed that HeViFa-Small is the

fairest architecture among all competitors in both datasets. Compared

with the baseline, DeiT-Tiny with a 0.881 PQD score, HeViFa-Small

can get 0.937 which has a 5.64% improvement. Compared with other

architectures, the fairness improvement of HeViFa-Small can reach up

to 50.53% (i.e., MobileNetV3(L)). Third, HeViFa-Small has the best

architecture tailored for target hardware; thus, it has the best hardware

performance: 3.15M of storage, 173.1 FPS on Android phones, and

345.9 FPS on iPhone, which is far beyond real-time.

These results, in response to our initial question, verified we can

find a small neural network to achieve fairness for edge devices.

2) HeViFa-Fair can achieve the highest fairness: The HeViFa-

Fair model stands out as the most equitable among all competitors

in both the H.D. and NAS groups, boasting a PQD score of 0.943.

In comparison to the previous SOTA method, FaHaNa-Fair, HeViFa-

Fair demonstrates a remarkable improvement of 0.151 on the PQD

score. Even its smaller variant, HeViFa-Small, remains a formidable

contender against all other competitors.

3) Pareto frontier: Figure 9 further shows the comparison of

Pareto frontiers in terms of the accuracy-latency tradeoff built by

all models. In Figure 9 (a), the red points form the Pareto frontier of

HeViFa-Small. It is clear that HeViFa-Small dominates all other com-

petitors. Similarly in 9 (b), HeViFa-Small dominates all architectures

in fairness-latency tradeoff. These figures clearly show that HeViFa

can significantly push forward the Pareto frontiers in the accuracy

and model size tradeoff. All these results show the superiority of

HeViFa-Nets over the existing neural architectures in terms of trade-

off among latency, fairness, and accuracy.

D. Compatibility of HeViFa with Data Balancing Techiques

One typical approach for fairness improvement is to generate

more minority data [6]. In table IV, we show the proposed HeViFa

framework is compatible with the data balancing techniques. We

apply the same method in [6] to get 5× more minority data for

training. It is obvious that after data balancing, all networks except
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(a) Pareto frontiers of Accuracy vs. Latency (b) Pareto frontiers of PQD score vs. Latency

Fig. 9. Pareto frontiers of Accuracy vs. Latency and PQD score vs. Latency

TABLE IV
RESULTS AFTER DATA BALANCING ON MIX DATASET.

Model
Accuracy

Light Dark PQD Impr.

DeiT-Tiny 83.39% 73.45% 0.881 0.000
MobileNetV2 82.14% 66.86% 0.814 -0.080

ProxylessNAS(M) 81.53% 66.86% 0.820 0.199
MnasNet 0.5 78.82% 60.58% 0.769 0.345
MnasNet 1.0 80.20% 64.35% 0.802 0.162

FaHaNa-Small 82.02% 68.37% 0.834 0.076
HeViFa-Small 84.99% 79.74% 0.948 0.011
HeViFa-Large 85.94% 81.92% 0.953 0.010

MnasNet 1.0 can improve both accuracy and fairness; even for

MnasNet 1.0, it can achieve a 0.162 higher PQD score in fairness with

0.51% accuracy degradation. From the results in Table IV, HeViFa-

Large can also get benefits from data balancing to improve accuracy

by 0.74% while achieving 0.010 fairness improvement. What’s more,

HeViFa-Large is still the fairest model.

E. Ablation Studies

In the framework we proposed, we utilized the hybrid search

space of CNN and ViT as we observed hybrid models have better

unfairness mitigating ability as shown in Section III. To demonstrate

its advantages, we compare the performance with pure CNN and pure

ViT search spaces in Table V on F17K datasets. For a fair comparison,

we construct the pure CNN and pure ViT models in similar parameter

numbers with the hybrid model. Detailed search space is shown in

Figure 10. As shown in Table V, with similar parameter numbers, the

hybrid model HeViFa-Small has 0.136 and 0.042 higher PQD score

than pure CNN and pure ViT candidates.

MB-Block  x6 RepVGG  x6Conv3x3 Linear

DeiT  x4Conv3x3 Linear

(a) Architecture of pure CNN supernet.

(b) Architecture of pure ViT supernet.

Fig. 10. Architectures of supernet for ablation study

TABLE V
ABLATION STUDY ON THE MODEL ARCHITECTURE OF SEARCH SPACE.

Model
Parameter
number

Accuracy
PQD

Fairness
ComparisonLight Dark

Pure CNN 6.95M 84.73% 67.84% 0.801 baseline
Pure ViT 6.90M 83.26% 74.52% 0.895 +0.094

HeViFa-Small 6.93M 85.71% 80.85% 0.937 +0.136

TABLE VI
ABLATION STUDY ON LATENCY AND FAIRNESS CONSTRAINTS.

Constraint Accuracy
PQD Impr.

Latency
(FPS)

Impr.
Latency Fairness Light Dark

84.83% 75.24% 0.887 baseline 257.2 baseline
✓ 84.85% 75.09% 0.885 -0.002 342.5 +85.3

✓ 84.79% 79.62% 0.939 +0.052 271.7 +14.5
✓ ✓ 84.82% 79.51% 0.937 +0.050 345.9 +88.7

F. Insignts from HeViFa

Figure 2 provides the visualization of HeViFa-Small. An insightful

observation is that we applied pure CNN blocks to extract local

features in the while utilizing DeiT blocks at the end layers to extract

global features so as to better address the fairness issue. Such an

architecture can make a good tradeoff between hardware specifi-

cations and fairness requirements: (1) thanks to re-parameterization

technique and depthwise separable convolutions, the RepCNN block

could speed the inference without degrading the performance. and

(2) the end layers are sensitive to fairness thus ViTs are applied

to achieve higher fairness. The key observation is that employing a

homogeneous design with identical blocks fails to achieve a balance

between accuracy, fairness, and latency. However, the HeViFa model,

with its ability to flexibly select different types of blocks, overcomes

this limitation and successfully achieves the desired equilibrium.

G. Experiment Results and Analysis

We showed our search results in Table I. Compared with other

methods with similar resource constraints, our method reaches the

highest accuracy and PQD score on both datasets . HeViFa get 0.943

and 0.879 of PQD score, respectively, much lower than other NAS

methods e.g., HeViFa-Fair and ProxylessNAS(M) with the highest

FPS on all devices. Furthermore, when it comes to the cost of

searching, the weight entanglement technique has played a crucial

role in minimizing search expenses. As a result, we have achieved

the lowest search cost, requiring only 1.1 and 1.6 GPU days.

VI. CONCLUSIONS

In this work, we introduce HeViFa, an innovative hardware-

oriented NAS framework aimed at addressing the issue of unfair-

ness. It integrate fairness and hardware-aware latency in NAS to

design a CNN-ViT hybrid neural architecture for the first time. By

doing so, HeViFa generates a diverse set of neural architectures

that significantly improve the Pareto frontier in terms of accuracy,

fairness, and latency compared to existing architectures. Furthermore,

HeViFa seamlessly integrates with existing techniques for enhancing

fairness, making it compatible and complementary to current fairness

improvement methods. HeViFa also underwent extensive experiments

to assess its performance, achieving a frame rate of 173.1 FPS on

a Samsung S21 mobile phone and 345.9 FPS on an iPhone 13 Pro.

The accuracy and PQD (Perceptual Quality Difference) scores were

recorded at 82.17% and 0.937 respectively, while on the Mix and

Fitzpatrick17k datasets, it achieved scores of 80.13% and 0.876.

Notably, HeViFa demonstrated superior accuracy and fairness while

maintaining similar latency constraints across multiple edge devices.
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