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The number of non-negative integer matrices with

given row and column sums features in a variety

of problems in mathematics and statistics but no

closed-form expression for it is known, so we rely

on approximations. In this paper, we describe a new

such approximation, motivated by consideration of

the statistics of matrices with non-integer numbers

of columns. This estimate can be evaluated in time

linear in the size of the matrix and returns results of

accuracy as good as or better than existing linear-time

approximations across a wide range of settings. We

show that the estimate is asymptotically exact in the

regime of sparse tables, while empirically performing

at least as well as other linear-time estimates in the

regime of dense tables. We also use the new estimate

as the starting point for an improved numerical

method for either counting or sampling matrices with

given margins using sequential importance sampling.

Code implementing our methods is available.
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1. Introduction

Matrices with non-negative integer elements and prescribed row and column sums arise in a

range of statistical, physical, and mathematical contexts. For example, they appear in statistics

and information theory as contingency tables, whose elements count the number of times a state

or event A occurred, contingent on the occurrence of another state or event B.

An important but difficult problem is to compute the number of matrices for given values of

the row and column sums, i.e., the number Ω(r, c) of m× n non-negative integer matrices whose

rows sum to r= (r1, . . . , rm) and whose columns sum to c= (c1, . . . , cn). This number plays

a key role for instance in the calculation of mutual information measures for classification and

community detection [1] and in sequential importance sampling methods for integer matrices [2,

3, 4]. See Ref. [5] for a review.

No exact expression is known for Ω(r, c) for general r and c, and its numerical computation

is #P-hard [6], meaning it is improbable that an algorithm exists with run time polynomial

in m and n for general m,n. Workable exact algorithms do exist for small m,n [7] and for

cases with bounded row or column sums [8], but outside of these settings the only tractable

approach is approximation. In this paper we review approximation methods for this problem and

present a new, computationally efficient approximation that is simple to implement and compares

favorably with previous approaches in terms of both accuracy and running time.

Previous approximation methods for this problem fall into three broad classes, which we will

refer to as linear-time, maximum-entropy, and sampling-based methods. The majority fall into the first

category, the linear-time methods, which are characterized by their rapid O(m+ n) computation

time, although they typically achieve this efficiency at the expense of accuracy and scope. The

linear-time approaches include methods based on combinatoric arguments [9, 10] and moment-

matching arguments [11, 12], and methods tailored specifically to the sparse regime [13, 14] in

which most elements of the matrix are zero. The method we propose also falls into the linear-

time category and consistently performs near the top of this class across a wide array of test

cases. We show that it is asymptotically exact in the regime of sparse tables with bounded row

and column sums, a property shared by other approximations specifically geared towards this

regime. Unlike other sparse estimates, however, our new estimate also performs well in the dense

regime, where the typical table entry diverges while the table shape remains constant. Indeed, in

the dense regime the new estimate is asymptotically equal to the previous estimate of Diaconis

and Efron [11], which has seen use in practical applications and has been observed to work well

for dense cases [5].

The second class of methods are maximum-entropy methods, developed in this context

by Barvinok and Hartigan [15]. For large m and n these methods outperform the linear-time

methods in terms of accuracy outside of the sparse regime but are much slower, requiring the

numerical solution of a continuous convex optimization problem followed by evaluation of an

(m+ n− 1)× (m+ n− 1) matrix determinant, for a time complexity of about O((m+ n)3). The

basic method employs a Gaussian maximum-entropy approximation but the result can be further

refined using an “Edgeworth correction,” which requires an additional O(m2n2) computation

but substantially improves accuracy.

The third class of approximations are sampling-based methods, including Markov-chain

Monte Carlo (MCMC) methods [16] and sequential importance sampling (SIS) [2]. Given

sufficient running time these methods will converge to the true answer, although the time taken

can be prohibitive. SIS is typically better than MCMC for calculating Ω(r, c) in terms of both speed

and accuracy [2, 3] and we make use of the SIS method in this paper to establish benchmarks for

the evaluation of the other methods. As a bonus, the new linear-time approximation we propose

can also be used to improve the convergence of SIS, allowing us to apply the latter method to

substantially larger matrices than has previously been possible. SIS also has advantages over

other methods in certain parameter regimes. Specifically, it is known that Ω(r, c) is non-analytic

at certain phase transition points [17, 18] and this behavior cannot be reproduced by, for instance,
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the linear-time estimates (including our own), which are all smooth, but the SIS approach should

converge to the true answer regardless and so may be used even in the vicinity of such points.

In addition to the specific problem of counting integer matrices with given row and column

sums, a number of related problems have received attention. The problem of sampling such

matrices uniformly arises in a variety of contexts [2, 4, 11] and can be tackled efficiently by the

same modification of the SIS algorithm we propose in Section 5. Separately, the problems of both

counting and sampling matrices whose elements take the values 0 and 1 have seen interest [3].

Although these questions are not our main concern here, our methods can be extended to cover

these cases also (with some caveats) and we compare the results with a variety of competing

methods in Appendix A. Finally, there are certain special cases of the matrix counting problem,

such as cases where the row and column sums are uniform (so-called magic squares), for which

one can make progress beyond what is possible in the general case [19, 20]. We will not discuss

these cases here however: our focus in this paper is on the general case.

2. Summary of results

We present a number of new results in this paper. First, we derive a new and simple linear-time

approximation for the number of non-negative integer matrices with given row and column sums

r, c thus:

Ω(r, c)≃
(
N +mαc − 1

mαc − 1

)
−1

m∏

i=1

(
ri + αc − 1

αc − 1

) n∏

j=1

(
cj +m− 1

m− 1

)
, (2.1)

where

αc =
N2 −N + (N2 − c2)/m

c2 −N
, N =

∑

i

ri =
∑

j

cj , c2 =

n∑

j=1

c2j . (2.2)

(There are certain trivial cases where these expressions give invalid values for αc but these are

easily dealt with—see Appendix B. For optimal precision we also recommend choosing the rows

and columns such that m≤ n, interchanging r and c if necessary to achieve this.)

Second, we have conducted exhaustive tests of this estimate and five other previously

published linear-time estimates, comparing them with ground-truth results derived from

converged sequential importance sampling. Figure 1 summarizes the results of these tests. We

find that most of the differences in performance between estimates can be seen by considering

square m×m matrices of various sizes while varying the sum N of all entries. (Some results from

other tests, including tests on non-square matrices, are given in Appendix C, but tell essentially

the same story.) In our calculations we generate ten random test cases for each parameter

pair (N,m) with margins r and c drawn uniformly from the set of m-element positive integer

vectors that sum to N . We then perform a lengthy run of sequential importance sampling (SIS)

on each sampled test case to establish a ground-truth estimate of the number of matrices. Armed

with these SIS estimates, we apply each of the six linear-time estimators to the same test cases

and compute the error on each one. We report performance in terms of the fractional error in

logΩ(r, c), since the logarithm is simpler to deal with numerically and is also often the quantity

of most interest [1].

The first panel of Fig. 1, labeled “EC” (for “effective columns”—see Section 3(a)), shows the

results for our new estimator, Eq. (2.1). The running time for all of the linear-time estimators is

negligible, but as the figure shows their accuracy varies. In particular, we distinguish a sparse

regime where N ≪mn so that most matrix elements are zero (up and to the left in the plots)

and a dense regime where N ≫mn so that most matrix elements are nonzero (down and to the

right). Some estimates, such as those labeled BBK and GMK, perform well in the sparse regime

but poorly in the dense regime. Others, such as DE, do the reverse. The EC estimate of this paper,

however, is comparable to or better than the others in both the sparse and dense regimes, while

still being fast and simple to compute. In the dense regime the fractional error is around 10−2
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Figure 2. Estimated fractional error of sequential importance sampling estimates of logΩ(r, c) for three different variants

of the SIS approach, with a fixed amount of computer time (one hour) spent on each choice of parameter values. The

EC-based SIS, which serves as the benchmark for the results in Fig. 1, improves upon existing SIS methods by roughly

two orders of magnitude, as discussed in Section 5. Note that the color scale in this figure differs from that in Fig. 1.

Software implementations of the various estimates and SIS methods described in this paper

can be found at https://github.com/maxjerdee/contingency_count.

3. Linear-time estimates

Turning now to the details, in this section we discuss the linear-time methods for

estimating Ω(r, c). We first present our new estimate, which is based on the concept of “effective

columns.” We also describe three related approaches due to Gail and Mantel [12], Diaconis and

Efron [11], and Good and Crook [9, 10], and two somewhat different approaches tuned to the

sparse case and due to Békéssy, Békéssy, and Komlós [13] and Greenhill and McKay [14].

(a) A new estimate for matrix counts

In this section we derive the approximation for Ω(r, c) given in Eq. (2.1). Let A(c) be the set of all

non-negative m× n integer matrices X = (xij) with fixed column sums c but unconstrained row

sums:

A(c) =
{
{xij} ∈N

m×n
∣∣∣
∑

i

xij = cj , j = 1, . . . , n
}
. (3.1)

By standard arguments the number of ways to choose the entries of column j so that they sum

to cj is
( cj+m−1

m−1

)
and the columns are independent so the number of matrices in the set A(c) is

|A(c)|=
n∏

j=1

(
cj +m− 1

m− 1

)
. (3.2)

Now we further restrict to the subset of matrices A(r, c)⊆A(c) with both row and column sums

fixed:

A(r, c) =

{
{xij} ∈N

m×n
∣∣∣

m∑

i=1

xij = cj ,
n∑

j=1

xij = ri

}
. (3.3)
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Our quantity of interest is the size of this set Ω(r, c) = |A(r, c)|. Under a uniform distribution over

A(c), the conditional probability Pr(r|c) of observing a particular row sum r is

Pr(r|c) = |A(r, c)|
|A(c)| =

Ω(r, c)

|A(c)| . (3.4)

Since we have an exact expression for |A(c)| in Eq. (3.2), the problem of calculating Ω(r, c) =

|A(c)|Pr(r|c) is thus reduced to one of finding Pr(r|c). This is still a difficult problem and

requires making an approximation. Inspired by work of Gail and Mantel [12] we take a variational

approach and propose a family of candidate approximant distributions for Pr(r|c), then choose

the best member of this family using a moment-matching argument.

Motivated by Diaconis and Efron [11], our family of candidate distributions is based on the

form of the unconditional distribution on the row sums r without any constraint on the column

sums. By the same argument that led to Eq. (3.2), the number of matrices with row sums r is

|A(r)|=
m∏

i=1

(
ri + n− 1

n− 1

)
. (3.5)

At the same time the set A of all non-negative m× n integer matrices that sum to N has size

|A|=
(
N +mn− 1

mn− 1

)
, (3.6)

and hence, under a uniform distribution over A, the probability of observing row sum r is

Pr(r) =
|A(r)|
|A| =

(
N +mn− 1

mn− 1

)
−1

m∏

i=1

(
ri + n− 1

n− 1

)
. (3.7)

The key to our argument is to approximate Pr(r|c) by this unconditional distribution, but with

the number of columns n replaced with a free parameter αc, which we call the number of effective

columns:

Pr(r|c)≃Pr(r|αc) =

(
N +mαc − 1

mαc − 1

)
−1

m∏

i=1

(
ri + αc − 1

αc − 1

)
. (3.8)

The resulting distribution over r is the one that would be observed under the uniform distribution

over m× αc matrices whose elements sum to N .

Now we relax the constraint that αc be an integer, defining the obvious generalization of the

binomial coefficient
(n
k

)
=

Γ (n+ 1)

Γ (k + 1)Γ (n− k)
. (3.9)

We are merely using Eq. (3.8) as a trial distribution for our variational approximation, so the

physical interpretation of αc as an integer number of columns is not important. So long as αc > 0

the distribution is well-defined, normalized, and non-negative for every possible r.

In other contexts the distribution Eq. (3.8) is known as the (symmetric) Dirichlet-multinomial

distribution. When αc = 1 the possible row sums r are uniformly distributed among the possible

non-negative integer choices of ri that sum to N . As αc →∞ the distribution of r approaches

a multinomial distribution where r is formed by taking N samples from a uniform probability

vector (1/m, . . . , 1/m), the generalization of a symmetric binomial distribution. For 0<αc < 1

the distribution of r will favor more extreme values of the coordinates ri, analogous to the

behavior of the symmetric Dirichlet distribution.

Our approximation involves replacing the true distribution Pr(r|c) by Pr(r|αc), with the

value of αc chosen to make the approximation as good as possible in a certain sense. To do this

we use a moment-matching approach in which the value of αc is chosen such that Pr(r|αc) has

the same mean and covariances as the true distribution Pr(r|c). Such a value always exists and it

has a simple expression, as we now show.
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The expectation and covariances of the ri under Pr(r|αc) are straightforward to compute:

E(ri) =
N

m
, cov(ri, rk) = (N/m)

mαc +N

mαc + 1

(
δik −m−1). (3.10)

For Pr(r|c) the calculation is only a little more involved. In the uniform distribution over A(c)

each column j is independently uniformly distributed over the possible choices of matrix

elements xij that satisfy
∑m

i=1 xij = cj . The expectations and covariances of these column entries

alone are then

E(xij) =
cj
m

, cov(xij , xkj) =
cj(m+ cj)

m(m+ 1)
(δik −m−1). (3.11)

Since the row margins are the sums of these independent column entries, the expectations and

covariances add so that

E(ri) =

n∑

j=1

E(xij) =
N

m
, cov(ri, rk) =

n∑

j=1

cov(xij , xkj) =
Nm+ c2

m(m+ 1)
(δik −m−1), (3.12)

where we have introduced the shorthand c2 =
∑n

j=1 c
2
j .

Thus the expectations of Pr(r|αc) and Pr(r|c) already match and, equating the covariances

in Eqs. (3.10) and (3.12) and solving for αc, we get

αc =
N2 −N + (N2 − c2)/m

c2 −N
. (3.13)

Finally, we assemble Eqs. (3.2) and (3.8) into our “effective columns” estimate of Ω(r, c) thus:

ΩEC(r, c) = Pr(r|αc) |A(c)|

=

(
N +mαc − 1

mαc − 1

)
−1

m∏

i=1

(
ri + αc − 1

αc − 1

) n∏

j=1

(
cj +m− 1

m− 1

)
, (3.14)

where αc is given by Eq. (3.13).

Note that, although Ω(r, c) is trivially symmetric under the interchange of rows and columns,

our estimate of it is not. (The same is true of the DE and GM estimates also.) The symmetry is

broken when we choose to approximate Pr(r|c) and not Pr(c|r). In practice our estimate appears

to perform better for matrices with more columns than rows m<n, as can be seen in Fig. 5, so it

may improve performance to swap the definitions of r and c when m>n. This prescription also

has the corollary effect of rendering the estimate symmetric.

Although our derivation of the EC estimate does not make specific reference to the sparse limit,

it performs well in that regime. In fact, as we show in Appendix B, it gives an asymptotically

exact result in the sparse limit where N →∞ with bounded row and column sums. This feature

is not unprecedented, although among the estimates we consider it is shared by only the BBK and

GMK estimates. Unlike those two estimates, however, the EC estimate exhibits good performance

in the dense regime as well, where it is asymptotically equal to the DE estimate as also shown in

Appendix B.

(b) The estimate of Gail and Mantel

In the following sections we review some of the other approaches for estimating Ω(r, c), outlining

the motivation and derivations of the other linear-time approximations discussed in Section 2.

We start with an approach due to Gail and Mantel (GM) [12], who propose the following

approximation for Ω(r, c):

ΩGM(r, c) =

(
m− 1

2πmσ2

)(m−1)/2

m1/2e−Q/2
n∏

j=1

(
cj +m− 1

m− 1

)
, (3.15)
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where

σ2 =
(c2 +mN)(m− 1)

(m+ 1)m2
, Q=

m− 1

σ2m

(
r2 − N2

m

)
, r2 =

∑

i

r2i , c2 =
∑

j

c2j . (3.16)

The derivation of this estimate follows the same general logic as our own, with the true

distribution Pr(r|c) approximated by a family of simpler distributions that is fitted to the true

distribution with a moment-matching argument. The difference lies in the particular family

used: Gail and Mantel use a multinormal distribution, by contrast with the Dirichlet-multinomial

distribution in our derivation.

Numerical results for the approximation of Gail and Mantel were given in Fig. 1. The method

is typically outperformed by the other linear-time estimators, indicating that there is some art to

picking an appropriate family of distributions for the moment matching argument. We note that

in this case the multinormal distribution is not justified (as one might imagine) by the central

limit theorem, despite Pr(r|c) being a mixture of independent columns, because the probability

density is typically evaluated away from the expected value of r, E(r) = (N/m, . . . , N/m), in a

regime where local limit arguments do not apply.

(c) The estimate of Diaconis and Efron

A related approximation has been proposed by Diaconis and Efron (DE) [11]:

ΩDE(r, c) =
(
N +

mn

2

)(m−1)(n−1)
( m∏

i=1

r̄i

)Kc−1( n∏

j=1

c̄j

)m−1
Γ (mKc)

Γ (m)nΓ (Kc)m
, (3.17)

where

w=
N

N + 1
2mn

, r̄i =
1− w

m
+

wri
N

, c̄j =
1− w

n
+

wcj
N

,

Kc =
m+ 1

mc̄2
− 1

m
, c̄2 =

∑

j

c̄2j .
(3.18)

The derivation of this estimate uses a moment-matching argument, like the estimates of this

paper and of Gail and Mantel, Eqs. (2.1) and (3.15), but with some crucial differences. Instead of

considering the set A(r, c) of integer matrices with the required row and column sums, Diaconis

and Efron consider the space (polytope) P (r, c) of all m× n matrices of non-negative reals (not

necessarily integers):

P (r, c) =

{
{xij} ∈R

m×n
∣∣∣xij ≥ 0,

m∑

i=1

xij = cj ,
n∑

j=1

xij = ri

}
. (3.19)

The count Ω(r, c) of integer matrices can be thought of as the volume of the intersection of this

polytope with the lattice formed by the (unconstrained) set A of non-negative integer matrices

that sum to N :

Ω(r, c) = |A(r, c)|= |P (r, c) ∩A|. (3.20)

Diaconis and Efron use moment-matching not to estimate |A(r, c)| but instead to estimate

the volume of the polytope P (r, c), then compute the size of the intersection Eq. (3.20) from

it. Since the polytope is a continuous region, the distribution Pr(r|c) on it is also continuous

and is represented with a continuous approximant distribution Pr(r|Kc), chosen to be N times

the symmetric Dirichlet distribution Dir(Kc), with the Dirichlet parameter Kc chosen to match

the mean and covariances of the true distribution Pr(r|c) over the polytope. Armed with the

resulting approximation for the volume of the polytope, Ω(r, c) is then estimated as the number

of lattice points within it as in Eq. (3.20), calculated from the volume of the polytope times the

density of lattice points. Finally, an “edge-effects” correction is applied to better reflect the number

of lattice points contained.
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For dense matrices the performance of this estimate is similar to that of our own estimate—see

Fig. 1. Indeed, in the dense limit where N →∞ while the ratios of column and row sums are kept

fixed, we can show that the two estimates are asymptotically equivalent (Appendix B). For sparse

matrices, on the other hand, the approximation of the number of lattice points using the volume

of the continuous polytope fails and the DE estimate breaks down.

(d) The estimate of Good and Crook

Good and Crook (GC) [9] proposed the following estimate for ΩGC(r, c):

ΩGC(r, c) =

(
N +mn− 1

mn− 1

)
−1

m∏

i=1

(
ri + n− 1

n− 1

) n∏

j=1

(
cj +m− 1

m− 1

)
, (3.21)

which is equivalent to our own estimate if one does not apply moment matching but instead

simply assumes that the number of effective columns is equal to the number of actual columns:

αc = n. Under the circumstances, it seems likely that this estimate would not perform as well as

our effective columns estimate, as indeed can be seen in the numerical results of Fig. 1.

(e) Estimates for the sparse regime

The remaining two linear-time approximations presented in Fig. 1 are closely related and both

aimed at approximating Ω(r, c) in the sparse regime where N ≪mn and most matrix elements

are zero. In this regime Békéssy, Békéssy, and Komlós (BBK) [13] give the following approximation

(also proposed independently by O’Neil [21]):

ΩBBK(r, c) =
N !∏m

i=1 ri!
∏m

j=1 cj !
exp

[
2

N2

m∑

i=1

(
ri
2

) n∑

j=1

(
cj
2

)] [
1 + O

(
N−1)], (3.22)

where the error term describes the asymptotic growth of the error with N in the sparse limit

where rmax =max(r) and cmax =max(c) are held fixed as N →∞, so that m,n→∞. Greenhill

and McKay (GMK) [14] improved on this estimate with correction terms thus:

ΩGMK(r, c) =
N !∏m

i=1 ri!
∏n

j=1 cj !
exp

[
R2C2

2N2
+

R2C2

2N3
+

R3C3

3N3
− R2C2 (R2 + C2)

4N4

− R2
2C3 +R3C

2
2

2N4
+

R2
2C

2
2

2N5
+O

(
r3maxc

3
max

N2

)]
,

(3.23)

where

Rk =
m∑

i=1

[ri]k , Ck =
n∑

j=1

[cj ]k , (3.24)

and [x]k is the falling factorial

[x]k = x(x− 1) . . . (x− k + 1). (3.25)

Given the O
(
r3maxc

3
max/N

2) form of the error term in (3.23), this estimate is asymptotically correct

for logΩ(r, c) as n,m,N →∞ for sufficiently sparse matrices with rmaxcmax ∼ o(N2/3), and not

just in the regime of constant rmax and cmax where the BBK estimate converges. Note that if we

keep only the first term in the exponent of Eq. (3.23) we recover the BBK estimate, Eq. (3.22), so

the GMK estimate can be viewed as a correction to the BBK estimate better tailored to the sparse

limit.

The numerical performance of the BBK and GMK estimates is shown in Fig. 1. Both perform

well in the sparse limit, as one might expect, but are poor in denser regimes. In the sparse limit

with constant rmax and cmax, our EC estimate converges asymptotically to the BBK estimate and

hence also converges to the true Ω(r, c), as explained in Appendix B. But unlike the other sparse

estimates the EC estimate also performs well far from the sparse regime.
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4. Maximum-entropy estimates

Barvinok and Hartigan have developed maximum entropy techniques for approximating a

variety of counting problems, including two approximations for counts of contingency tables, a

simpler and faster Gaussian approximation and a more refined approximation that incorporates

a so-called Edgeworth correction [22].

(a) Gaussian maximum-entropy estimate

Barvinok and Hartigan [22] give a Gaussian approximation for Ω(r, c), which under quite general

conditions on r and c can be shown to return an asymptotically correct value of logΩ(r, c) as

N →∞. The approximation takes the form

ΩG(r, c) =
eg(Z)

(2π)(m+n−1)/2
√
detQ

. (4.1)

Here g(Z) is a scalar function of a matrix Z = (zij) defined thus:

g(Z) =
∑

ij

[
(zij + 1) log(zij + 1)− zij log zij

]
. (4.2)

The value of Z is chosen to maximize this function over the same polytope P (r, c) introduced in

Eq. (3.19), the space of all matrices with non-negative real entries (not necessarily integers) that

marginalize to r, c. Note that, since g(Z) is concave, there is a unique Z that maximizes it within

the polytope. In practice, this maximum is found numerically with one of the many standard

methods for convex optimization.

The Q in Eq. (4.1) is an (m+ n− 1)× (m+ n− 1) symmetric matrix Q= (qij) whose nonzero

elements are

qi,j+m = qj+m,i = z2ij + zij for i= 1 . . .m, j = 1 . . . n− 1,

qii = ri +

n∑

j=1

z2ij for i= 1 . . .m, (4.3)

qj+m,j+m = cj +

m∑

i=1

z2ij for j = 1 . . . n− 1.

The computation of the determinant of this matrix in Eq. (4.1) has time complexity roughly

O((m+ n)3) and hence the evaluation of the entire estimate takes at least this long, which makes

this method substantially more demanding for large matrices than the linear-time methods of

Section 3.

To see where the Gaussian estimate comes from, consider a probability distribution P (X|Z)

over unrestricted non-negative integer matrices X = (xij) given a matrix Z = (zij) of real

parameters. Each integer matrix element xij is independently drawn from a geometric

distribution with expectation zij , which means the full distribution is

P (X|Z) =
∏

ij

(
1

1 + zij

)(
zij

1 + zij

)xij

. (4.4)

The entropy of this probability distribution is equal to the function g(Z) defined in Eq. (4.2) and

the value of Z is chosen to maximize this entropy over the polytope Z ∈ P (r, c). This means that,

for this specific choice of Z, P (X|Z) depends on X through the values of its row and column

sums only, so that the distribution becomes uniform over X ∈ P (r, c), taking a constant value
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equal to

P (X|Z) = e−g(Z). (4.5)

Given that there are, by definition, Ω(r, c) values of X inside the polytope, the total probability

that X lies in the polytope, and hence that it has margins r and c, is given by P{X ∈ P (r, c)|Z}=
e−g(Z)Ω(r, c), and hence

Ω(r, c) = eg(Z)P{X ∈ P (r, c)|Z}. (4.6)

Thus, if we can calculate the probability that X has the correct margins under the distribution

Eq. (4.4) we can calculate Ω(r, c). To do this, we observe that the polytope P (r, c) is defined by a

set of linear constraints with the general form AX = b, where A is an (m+ n− 1)×mn matrix,

b is an (m+ n− 1)-vector, and X is now represented in “unrolled” form as an mn-element vector

rather than an m× n matrix. We then consider the (m+ n− 1)-dimensional random variable Y =

AX . This transformed variable satisfies Y =AX = b on P (r, c) and hence P{X ∈ P (r, c)|Z}=
P{Y = b|Z}.

Finally, since the entries of X are independent random variables, we expect the distribution of

Y to be asymptotically Gaussian by the local central limit theorem. This allows us to approximate

the distribution with a Gaussian, and, matching the covariances of this Gaussian with the true

covariances of Y , which are captured in the matrix Q of Eq. (4.3), we can estimate P{Y = b|Z}
and hence the value of Ω(r, c).

(b) Edgeworth correction

Building on the Gaussian approximation, Barvinok and Hartigan [15] have given a further

improved approximation for Ω(r, c) by employing a so-called Edgeworth correction. This takes

the form

ΩE(r, c) =
eg(Z)

(2π)(m+n−1)/2
√
detQ

exp
(
−µ

2
+ ν

)
, (4.7)

where µ and ν are defined below. Barvinok and Hartigan show that under some mild conditions

on the growth of the margins r and c, this gives an asymptotically correct estimate of Ω(r, c) as

N →∞.

To specify the values of µ and ν in Eq. (4.7) a few more definitions are needed. First, we define

a quadratic form q :Rm+n−1 →R by

q(x) = 1
2x

TQx, (4.8)

where Q is the matrix defined in Eq. (4.3). We also define two functions f, h :Rm+n−1 →R on the

variables (u1, . . . , um, t1, . . . , tn−1)∈R
m+n−1 thus (with tn = 0):

f(u, t) =
1

6

∑

1≤i≤m
1≤j≤n

zij
(
zij + 1

)(
2zij + 1

)(
ui + tj

)3
, (4.9)

h(u, t) =
1

24

∑

1≤i≤m
1≤j≤n

zij
(
zij + 1

)(
6z2ij + 6zij + 1

)(
ui + tj

)4
. (4.10)

The Edgeworth correction terms are then given by

µ=E
(
f2

)
, ν =E(h), (4.11)

where the expectations are taken over the Gaussian probability density on R
m+n−1 proportional

to e−q .

Barvinok and Hartigan note that, given the definition Eq. (4.8), Q−1 is the covariance matrix

of the ui and tj under the distribution e−q . This distribution e−q is symmetric under (ui, tj)→
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(−ui,−tj) so that E(ui) =E(tj) = 0 and hence

E(uitj) = (Q−1)i(j+m) . (4.12)

The values of µ and ν can then be evaluated using Wick contractions for correlators of Gaussian

random variables to express the desired expectations in terms of covariances given by Eq. (4.12).

Specifically, one uses

E
[
(ui + tj)

4]= 3
[
E(u2i ) + 2E(uitj) +E(t2j )

]2
(4.13)

and

E
[
(ui1 + tj1)

3(ui2 + tj2)
3]= 3

[
E(ui1ui2) +E(ui1 tj2) +E(ui2 tj1) +E(ti1 tj2)

]

×
[
E(ui1ui2) + 2

(
E(ui1 tj2) +E(ui2 tj1) +E(tj1 tj2)

)2

+ 3
(
E(u2i1) + 2E(ui1 tj1) +E(t2j1)

)(
E(u2i2) + 2E(ui2 tj2) +E(t2j2)

)]
. (4.14)

Note that evaluating µ requires a sum over all possible i1, i2 = 1 . . .m and j1, j2 = 1 . . . n− 1

so the complexity of the calculation is O(m2n2), making the minimum computational burden

higher than for just the Gaussian estimate. In practice, the running time of either of the maximum-

entropy estimates is not significant for small matrices: our implementations of both run in under

a second for m,n. 32. On the other hand, very large matrices of size m,n& 512 can take well

over an hour, and running time can also be an issue when one needs estimates for a large number

of smaller matrices. For cases where running time is a concern, Section (b) of Appendix C gives

our recommendations for various parameter values.

5. Sequential importance sampling

Sequential importance sampling (SIS) is a computational technique that in the present case can

be used either to sample from the set of non-negative integer matrices A(r, c) [2, 3] or to find the

size Ω(r, c) of the set. In this section, we review the standard SIS approach and show how it can

be improved by exploiting our new linear-time estimate. Advances in SIS for contingency tables

have been made in the past through the incorporation of faster and more accurate approximations

for Ω(r, c) [3, 4]. For example, Eisinger and Chen [4] used the GC and GMK estimates to optimize

SIS in the sparse and dense regimes respectively. Here we take a similar approach with our EC

estimate, but since the EC estimate performs well across all regimes from sparse to dense, it allows

us to perform sampling using the same approximation in all cases. Moreover, as shown in Fig. 2,

the EC estimate offers roughly a one-hundred-fold improvement in accuracy over the GC estimate

when used to estimate Ω(r, c), which results in a corresponding gain in efficiency for importance

sampling.

The main ingredient of importance sampling is a “trial distribution” q(X) over matrices X

which is nonzero if and only if X ∈A(r, c). If we can sample matrices from this distribution then

we have

Eq

[
1

q(X)

]
=

∑

X∈A(r,c)

q(X)
1

q(X)
= |A(r, c)|=Ω(r, c). (5.1)

Thus if we can draw N matrices X(1) . . . X(N) from q(X) we can estimate Ω(r, c) as

Ω̂(r, c) =
1

N

N∑

i=1

1

q(X(i))
, (5.2)

and the accompanying statistical error can be estimated in the conventional manner.

Alternatively, we can use the same approach to estimate an expectation under the uniform

distribution over all integer matrices with fixed margins: µ=Euni[f(X)]. We compute an
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estimator for this average as

µ̂=

∑N
i=1 f(Xi)/q(Xi)
∑N

i=1 1/q(Xi)
. (5.3)

For example, if we choose f(X) = 1 if the χ2 statistic of X is greater than some value χ2
0 and zero

otherwise, this expression estimates the p-value of the χ2-statistic for the uniform distribution

over contingency tables, which has been proposed by Diaconis and Efron as an alternative to

more traditional tests of independence [11].

In principle, these estimates converge regardless of the form of q(X), but they become more

efficient the closer the distribution is to being uniform over A(r, c), since the values of the sums

in Eqs. (5.2) and (5.3) are dominated by the states with the smallest q(X), which are unlikely

to be sampled when q(X) is highly nonuniform. The key to making the method work well

lies in finding a q(X) that is sufficiently close to the uniform distribution while still being

straightforward to work with. The latter condition can be difficult to satisfy. We can trivially

choose q(X) to be exactly uniform by setting its value to a constant, but in that case the constant is

q(X) = 1/Ω(r, c), so calculating the value of q(X) would be exactly as hard as calculating Ω(r, c)

in the first place.

SIS gets around these difficulties by sampling the matrix X one column at a time. (This is the

“sequential” part of sequential importance sampling.) The idea is to first sample values X1 of the

first column of X with probabilities as close as possible to the probability with which they appear

under the uniform distribution, which can be written as

p(X1) =
Ω(r′, c′)

Ω(r, c)
, (5.4)

where r
′ and c

′ denote the row and column sums of the matrix after the first column is removed.

After the first column is sampled we repeat the process and sample values of the second

column, then the third, and so forth until one has a sample of the entire matrix. If at each step the

exact probabilities p(Xi) in Eq. (5.4) are used, this process will sample the matrices X ∈A(r, c)

exactly uniformly, and indeed this is the approach taken by some methods [8], although these

approaches are computationally costly and moreover require us to know Ω(r, c) exactly and

hence are not suitable for calculating Ω(r, c) itself. For most purposes a better approach is to

approximate the exact distribution p(X1) of Eq. (5.4) with some other distribution q(X1) that is

easier to compute, at the expense of modestly nonuniform sampling. Despite the non-uniformity,

we still get a convergent estimate for Ω(r, c) using Eq. (5.2) as N →∞.

In choosing a value for q(X1), the various linear-time estimates for Ω(r, c) in Section 3 provide

an elegant route forward, and specifically, given its good performance on test cases, we propose

using our effective columns estimate ΩEC(r, c) of Eq. (2.1) to define a distribution over the column

X1 = (xi1) thus:

q(X1) =
ΩEC(r′, c′)

ΩEC(r, c)
∝

m∏

i=1

(
ri − xi1 + α

c
′ − 1

α
c
′ − 1

)
1∑

i
xi1=c110≤xi1≤ri . (5.5)

This expression combines our combinatorial estimate with hard constraints that impose the

correct sum of the generated column
∑

i xi1 = c1 and prevent any entry from surpassing the

value of the remaining row sums 0≤ xi1 ≤ ri, which would make it impossible to complete the

rest of the columns.

As described by Harrison and Miller [3], it is possible to sample the column X1 from a

distribution of the form (5.5) in time O(mc21). The full SIS method samples each of the n columns

in turn for a total time complexity of roughly O(N2m/n) per full sample. Performance can be

improved by a numerical factor (but not in overall complexity) by arranging the elements of c in

non-increasing order.
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(a) Results

The method described above performs well, as shown in Fig. 2. The leftmost panel, labeled “EC-

based SIS,” shows results for our method, while the other panels show two other methods for

comparison. “GC-based SIS,” considered by Eisinger and Chen [4], employs a similar approach

to ours but with a trial distribution based on the Good-Crook (GC) estimate [9], which appears

to have the second-best broad performance behind our EC estimate (see Fig. 1). We find that the

fractional error for the GC-based method is between 10 and 100 times larger than that for the

EC-based method.

The third panel in Fig. 2, labeled “Greedy SIS,” shows results from the method of Chen,

Diaconis, Holmes, and Liu [2]. In this method the entry x11 is directly sampled from the

distribution

Pr(x11 = k)∝min(r2, c1 − k) + max(0, c1 + r1 + r2 −N − k) + 1, (5.6)

and similarly for each remaining entry of X . This approach gives faster sampling than ours, at a

rough complexity of O(Nm) per full sample, but at the expense of greater non-uniformity in q(X).

The trade-off turns out not to be beneficial. Convergence is slowed considerably for all but the

smallest of matrix sizes and overall accuracy suffers, as shown in Fig. 2.

Based on these results, we have chosen the EC-based SIS technique for computing the ground-

truth estimates of Ω(r, c) employed in our work. We emphasize that this does not in any way

bias the outcome of our benchmarking comparisons in Fig. 1 in favor of the EC estimate. All SIS

methods, regardless of their choice of trial distribution, give convergent estimates; the choice of

an EC-based trial distribution merely improves the rate of convergence of those estimates.

6. Conclusions

In this paper we have studied the problem of estimating the number Ω(r, c) of non-negative

integer matrices with given row and column sums, which arises for example in statistical

and information theoretic calculations involving contingency tables. There is no known exact

expression for Ω(r, c), but a variety of methods for approximating it have been proposed in the

past. We have presented two new methods that improve upon these previous approaches. First,

we have proposed a closed-form approximation based on the concept of effective columns, which

can be evaluated in time linear in the number m+ n of rows plus columns of the matrix and

returns results of accuracy similar to or better than other linear-time estimates in the extensive

benchmark tests presented here. Second, the same effective columns approximation is also used

to derive a sequential importance sampling (SIS) algorithm for sampling such tables, which can be

used to make numerical estimates of Ω(r, c) with significantly faster convergence than previous

SIS methods, resulting in estimates about 100 times more accurate in comparable running times.

Acknowledgments

We thank Alexander Barvinok, Peter Bickel, Brendan McKay and Igor Pak for helpful comments.

This work was supported in part by the US National Science Foundation under grant DMS–

2005899 and by computational resources provided by the Advanced Research Computing

initiative at the University of Michigan. For code implementing the methods described here see

https://github.com/maxjerdee/contingency_count.





16

rs
p

a
.ro

ya
ls

o
c
ie

ty
p

u
b
lis

h
in

g
.o

rg
P

ro
c

R
S

o
c

A
0

0
0

0
0

0
0

..........................................................

margins r, c:

ΩEC
0 (r, c) =

∣∣∣∣

(
mα

(0)
c

N

)
−1

m∏

i=1

(
α
(0)
c

ri

) n∏

j=1

(
m

cj

)∣∣∣∣, (A 1)

where

α
(0)
c =

N2 −N − (N2 − c2)/m

c2 −N
. (A 2)

As we now explain, this estimate stands on less certain ground than our estimate of Ω(r, c), but

the resulting formula nonetheless appears to be quite accurate.

Let A0(c) be the set of 0-1 matrices that have column sums c. The number of such matrices

can be found by independently choosing one column at a time. For each column j there are cj
elements equal to 1 and the rest are 0, so there are

(m
cj

)
ways to distribute the 1s in the column.

Since the columns are independent we then have

|A0(c)|=
n∏

j=1

(
m

cj

)
. (A 3)

Given this number, Ω(r, c) can be estimated as before from a knowledge of the conditional

distribution Pr(r|c), and for this we again take inspiration from the unconditional distribution

of r,

Pr(r) =

(
mn

N

)
−1

m∏

i=1

(
n

ri

)
, (A 4)

replacing the number of columns n with an effective number α
(0)
c :

P̃ (r|α(0)
c ) =

(
mα

(0)
c

N

)
−1

m∏

i=1

(
α
(0)
c

ri

)
. (A 5)

Unlike the case of non-negative integer matrices, where we were left with a well-defined

distribution for any αc > 0, P̃ (r|α(0)
c ) is not quite a probability distribution over r. Away from

the poles, when α
(0)
c /∈

{
0, 1/m, . . . , (N − 1)/m

}
, Eq. (A 5) is properly normalized

∑

r|
∑

i
ri=N

P̃ (r|α(0)
c ) = 1, (A 6)

but it is no longer non-negative for all r: we can have P̃ (r|α(0)
c )< 0. In spite of this we press on

and evaluate the “expectations” and “co-variances” of the ri weighted by P̃ (r|α(0)
c ):

E(ri) =
N

m
, cov(ri, rk) =

N(mα
(0)
c −N)

m(mα
(0)
c − 1)

(
δik −m−1). (A 7)

The true probability density Pr(r|c) is again a mixture of independent columns with expectation

and covariances

E(ri) =
N

m
, cov(ri, rk) =

Nm− c2

m(m− 1)

(
δik −m−1). (A 8)

The choice of the parameter α
(0)
c such that the covariances of P̃ (r|α(0)

c ) and Pr(r|c) match is then

α
(0)
c =

N2 −N − (N2 − c2)/m

c2 −N
, (A 9)

and our estimate of Ω0(r, c) is given by P̃ (r|α(0)
c )|A0(c)|. In most cases, this expression can be

used directly, but on the occasional instances where P̃ (r|α(0)
c ) is negative the resulting estimate

can be negative as well. We remedy this issue in an ad-hoc way by taking the absolute value of the



17

rs
p

a
.ro

ya
ls

o
c
ie

ty
p

u
b
lis

h
in

g
.o

rg
P

ro
c

R
S

o
c

A
0

0
0

0
0

0
0

..........................................................

result, which yields the estimate Eq. (A 1). In spite of this uncontrolled step the estimate performs

reasonably well in the tests shown in Fig. 3.

(c) Other estimates

We also consider four other linear-time estimates of Ω0(r, c) drawn from the literature, several of

which are related to those for the case of general non-negative integer matrices. Good and Crook

(GC0) [10] give an estimate which can be understood as our effective columns estimate but with

the number of effective columns equal to the number of true columns:

ΩGC
0 (r, c) =

(
mn

N

)
−1

m∏

i=1

(
n

ri

) n∏

j=1

log

(
m

cj

)
. (A 10)

Békéssy, Békéssy, and Komlós (BBK0) [13] provide an estimate suited to the sparse regime:

ΩBBK
0 (r, c) =

N !∏m
i=1 ri!

∏m
j=1 cj !

exp

[
− 2

N2

m∑

i=1

(
ri
2

) n∑

j=1

(
cj
2

)] [
1 + O

(
N−1)], (A 11)

which is improved by Greenhill, McKay, and Wang (GMW0) thus [25]:

ΩGMW
0 (r, c) =

N !∏m
i=1 ri!

∏n
j=1 cj !

exp

[
−R2C2

2N2
− R2C2

2N3
+

R3C3

3N3
− R2C2 (R2 + C2)

4N4

− R2
2C3 +R3C

2
2

2N4
+

R2
2C

2
2

2N5
+O

(
r3maxc

3
max

N2

)]
.

(A 12)

Canfield, Greenhill, and McKay (CGM0) [26] provide an estimate for dense 0-1 matrices that can

be understood as a correction to the GC estimate:

ΩCGM
0 (r, c) =

(
mn

N

)
−1

m∏

i=1

(
n

ri

) n∏

j=1

(
m

cj

)
exp

[
−1

2

(
1− R

2Amn

)(
1− C

2Amn

)]
, (A 13)

where

R=
m∑

i=1

(
ri −

N

m

)2

, C =

n∑

j=1

(
cj −

N

n

)2

, λ=
N

mn
, A= 1

2λ(1− λ). (A 14)

Canfield et al. show that this is in fact asymptotically correct under certain conditions—loosely

when the matrix is relatively square and has density not too close to 0 or 1. Finally, Barvinok and

Hartigan [27] give maximum-entropy estimates in Gaussian and Edgeworth-corrected varieties

analogous to those of Section 4.

Figure 3 shows a quantitative comparison of the accuracy of each of these estimates, along

with our effective columns (EC0) estimate and numerical SIS results for a range of sizes of

square matrices and values of the sum N of all elements. Based on these results, it appears that

the EC0, CGM0 and GMW0 estimates all provide good accuracy in general, particularly in the

sparse regime, with EC0 and GMW0 exceeding the accuracy of SIS in some cases. The maximum-

entropy estimates perform poorly in the sparse regime, but better for denser matrices. When the

Edgeworth correction is included they provide the most accurate results in the dense regime,

although at the expense of greater computational effort.

B. Validity of the effective columns estimate

In this appendix, we demonstrate various properties of our effective columns (EC) estimate

as defined in Eq. (2.1). Specifically, we show exact behavior in the degenerate αc →∞ limit,

asymptotically correct behavior in the sparse N →∞ limit, and agreement with the DE

estimate [11] in the dense limit.
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(a) Degenerate αc

The value of the parameter αc in our estimate is given by Eq. (2.2) to be

αc =
N2 −N + (N2 − c2)/m

c2 −N
. (A 1)

At first sight this expression appears potentially problematic, since the denominator could

become zero or negative. In fact, it cannot be negative because

c2 −N =

n∑

j=1

c2j −
n∑

j=1

cj =

n∑

j=1

cj(cj − 1)≥ 0. (A 2)

The value could however be zero if cj is either zero or one for all j, and this would cause αc to

diverge. In practice we can ignore columns with cj = 0 since these have no effect on the number of

matrices Ω(r, c), so let us assume that all such columns have been removed. What then happens

if all remaining columns have cj = 1? In this case it turns out that the limit αc →∞ of the estimate

of Ω(r, c) does give the correct result, as we now show.

If all columns have cj = 1 then all elements in a column are zero except for a single 1. The

constraint on the row sums then demands that ri out of the n columns have their 1 in row i for

all i= 1 . . .m. The number of possible arrangements satisfying this requirement is

Ω(r, c= (1, . . . , 1)) =
n!∏m

i=1 ri!
. (A 3)

We now show that the αc →∞ limit of our estimate Eq. (2.1) for this situation gives this exact

result.

Recall that our EC estimate is given by

ΩEC(r, c) =

(
N +mαc − 1

mαc − 1

)
−1

m∏

i=1

(
ri + αc − 1

αc − 1

) n∏

j=1

(
cj +m− 1

m− 1

)
. (A 4)

Noting that when cj = 1 for all j we have N = n, we write

(
N +mαc − 1

mαc − 1

)
=

Γ (n+mαc)

Γ (mαc)Γ (n+ 1)
,

(
ri + αc − 1

αc − 1

)
=

Γ (ri + αc)

Γ (αc)Γ (ri + 1)
, (A 5)

and apply Stirling’s approximation in the form

Γ (z) =

√
2π

z

(z
e

)z [
1 + O(z−1)

]
, (A 6)

which in the limit of large αc gives
(
n+mαc − 1

mαc − 1

)
=

(mαc)
n

Γ (n+ 1)

[
1 + O(α−1

c )
]
, (A 7)

(
ri + αc − 1

αc − 1

)
=

αri
c

Γ (ri + 1)

[
1 + O(α−1

c )
]
. (A 8)

Then our estimate, Eq. (A 4), is

(
n+mαc − 1

mαc − 1

)
−1

m∏

i=1

(
ri + αc − 1

αc − 1

) n∏

j=1

(
1 +m− 1

m− 1

)

=

[
Γ (n+ 1)

(mαc)n

m∏

i=1

αri
c

Γ (ri + 1)

n∏

j=1

m

][
1 + O(α−1

c )
]
=

n!∏m
i=1 ri!

[
1 + O(α−1

c )
]
. (A 9)

So the αc →∞ limit indeed recovers the correct result.

This is a nice property of our estimate. In a practical implementation we can recognize the case

c= (1, . . . , 1) and either return the exact result, Eq. (A 3), or simply evaluate the usual estimate at
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a large value of αc. The latter prescription is also equivalent to writing

αc =
N2 −N + (N2 − c2)/m

c2 −N + ǫ
(A 10)

for ǫ small and positive.

(b) Effective columns estimate in the sparse limit

In this section, we show that in the sparse limit where N →∞ but the row and column sums are

bounded, the EC estimate is asymptotically exact:

ΩEC(r, c) =Ω(r, c)
[
1 + O

(
N−1)]. (A 11)

To demonstrate this, suppose that the row sums are bounded above by rmax and the column

sums by cmax. We then define the following quantities, equal to the fraction of row and column

sums that take on each possible value:

r̂k =
1

m

∣∣{i|ri = k}
∣∣, for k= 1 . . . rmax (A 12)

ĉl =
1

n

∣∣{j|rj = l}
∣∣, for l= 1 . . . cmax. (A 13)

We now observe the following expressions for various sums which appear in the estimates we

consider:

N =

m∑

i=1

ri =

rmax∑

k=1

mr̂kk=mr̂(1),

m∑

i=1

r2i =

rmax∑

k=1

mr̂kk
2 =mr̂(2), (A 14)

N =

n∑

j=1

cj =

cmax∑

l=1

nĉll= nĉ(1),

n∑

j=1

c2j =

cmax∑

l=1

nĉll
2 = nĉ(2), (A 15)

where r̂(1) and r̂(2) are the first and second moments of r, and similarly for c:

r̂(1) =

rmax∑

k=1

r̂kk, r̂(2) =

rmax∑

k=1

r̂kk
2, (A 16)

ĉ(1) =

cmax∑

l=1

ĉll, ĉ(2) =

cmax∑

l=1

ĉll
2. (A 17)

Since these moments are all bounded for constant rmax and cmax, m and n grow as O(N) in this

sparse limit.

Applying these new expressions, the BBK estimate [13] (equivalent to a truncated GMK

estimate [14]) is:

logΩBBK(r, c) = logN !−
m∑

i=1

ri!−
m∑

j=1

cj ! +
2

N2

m∑

i=1

(
ri
2

) n∑

j=1

(
cj
2

)
. (A 18)

The last term can be written as

2

N2

m∑

i=1

(
ri
2

) n∑

j=1

(
cj
2

)
=

1

2N2

m∑

i=1

(r2i − ri)
n∑

j=1

(c2j − cj)

=
1

2mnr̂(1)ĉ(1)

(
mr̂(2) −mr̂(1)

)(
nĉ(2) − nĉ(1)

)
=

1

2

(
r̂(2)

r̂(1)
− 1

)(
ĉ(2)

ĉ(1)
− 1

)
. (A 19)

From the sparse limit guarantee of this estimate, we have that the true logΩ(r, c) behaves in this

limit as

logΩ(r, c) = logN !−
m∑

i=1

ri!−
m∑

j=1

cj ! +
1

2

(
r̂(2)

r̂(1)
− 1

)(
ĉ(2)

ĉ(1)
− 1

)
+O

(
N−1). (A 20)
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We now demonstrate that the EC estimate has the same behavior in this limit, and hence that

it is asymptotically equal to the true value of logΩ(r, c). We start from the definition of the EC

estimate as

ΩEC(r, c) =

(
N +mαc − 1

mαc − 1

)
−1

m∏

i=1

(
ri + αc − 1

αc − 1

) n∏

j=1

(
cj +m− 1

m− 1

)
, (A 21)

where

αc =
N2 −N + (N2 − c2)/m

c2 −N
=

(nĉ(1))2 − nĉ(1) + [(nĉ(1))2 − nĉ(2)]/m

nĉ(2) − nĉ(1)

= nS +O(1), (A 22)

where

S =
(ĉ(1))2

ĉ(2) − ĉ(1)
. (A 23)

Thus αc grows asymptotically as N . The quantity S can be understood as the factor by which

the number of effective columns differs from the number of true columns n. The value of S

is positive and finite in general, since ĉ(1) > 0 and ĉ(2) ≥ ĉ(1), the only exception being when

ĉ1 = 1, i.e., when cj = 1 for all j so that ĉ(2) = ĉ(1). This, however, is precisely the degenerate

case considered in Section (a) of this appendix, where we showed that the exact correct result is

obtained in the αc →∞ limit.

Given that αc is of order N , all of the binomial factors in the EC estimate benefit from the

following expansion, derived by application of Stirling’s approximation with y≫ x:

log

(
x+ y

y

)
= log(x+ y)!− log y!− log x!

= (x+ y) log(x+ y)− (x+ y) + 1
2 log(2π(x+ y)) +

1

12(x+ y)

− y log y + y − 1
2 log(2πy)− 1

12y
− log x! + O((x+ y)−2) + O(y−2)

= (x+ y) [log y + log(1 + x/y)]− y log y + 1
2 log(1 + x/y)

− x− log x! + O(xy−2)

= x log y − log x! +
x(x+ 1)

2y
+O(x2/y2). (A 24)

Applying this approximation to the EC estimate, we have

logΩEC(r, c) = logN !−
m∑

i=1

ri!−
m∑

j=1

cj ! +

m∑

i=1

ri log(αc − 1) + 1
2

m∑

i=1

ri(ri + 1)

αc − 1

+
n∑

j=1

cj log(m− 1) + 1
2

n∑

j=1

cj(cj + 1)

m− 1

−N log(mαc − 1)− N(N + 1)

2(mαc − 1)
+ O(N−1)

= logN !−
m∑

i=1

ri!−
m∑

j=1

cj ! +N log
(αc − 1)(m− 1)

mαc − 1

+
n(ĉ(2) + ĉ(1))

2(m− 1)
+

m(r̂(2) + r̂(1))

2(αc − 1)
− N(N + 1)

2(mαc − 1)
+ O(N−1). (A 25)

Note that this implies that the sub-leading behavior of αc beyond order N is irrelevant for finding

logΩEC to order N−1, and hence that it is adequate to retain only the O(N) terms in Eq. (A 22).
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Now, applying our expression for the leading behavior, we have

logΩEC(r, c) = logN !−
m∑

i=1

ri!−
m∑

j=1

cj !−N
m+ nS

mnS

+
n(ĉ(2) + ĉ(1))

2m
+

m(r̂(2) + r̂(1))

2nS
− N2

2mnS
+O(N−1).

= logN !−
m∑

i=1

ri!−
m∑

j=1

cj !−
ĉ(1) + r̂(1)S

S

+
r̂(1)(ĉ(2) + ĉ(1))

2ĉ(1)
+

ĉ(1)(r̂(2) + r̂(1))

2r̂(1)S
− r̂(1)ĉ(1)

2S
+O(N−1).

= logN !−
m∑

i=1

ri!−
m∑

j=1

cj ! +
1

2

(
r̂(2)

r̂(1)
− 1

)(
ĉ(2)

ĉ(1)
− 1

)
+O(N−1). (A 26)

Comparing this with the limiting form of logΩEC(r, c) in Eq. (A 20), we see that we have

agreement in the limit:

logΩEC(r, c) = logΩ(r, c) + O(N−1). (A 27)

We also observe that this sparse-limit behavior is a result of the specific c-dependence of αc.

If we repeat the same analysis for the GC estimate of Eq. (3.21), which is equivalent to our EC

estimate but with αc = n, we find a constant error:

logΩGC(r, c) = logΩ(r, c) +
1

2

(
r̂(2)

r̂(1)
− 1− r̂(1)

)(
ĉ(2)

ĉ(1)
− 1− ĉ(1)

)
+O(N−1), (A 28)

and hence the GC estimate of logΩ(r, c) is not asymptotically equal to the true value.

(c) Effective columns estimate in the dense limit

In this section, we show that in the dense limit where the relative sizes of the row and column

sums are fixed as N →∞, our effective columns estimate asymptotically agrees with the estimate

of Diaconis and Efron (DE) [11]:

ΩEC(r, c) =ΩDE(r, c)
[
1 + O(N−1)

]
. (A 29)

Specifically, we define rescaled versions of the row and column sums thus:

r̃i =
ri
N

, c̃j =
cj
N

. (A 30)

If these are constant up to terms of order N−1 as N →∞ then Eq. (A 29) applies. This is a dense

limit since the dimensions m and n are fixed, so the density N/mn goes to infinity.

To demonstrate this result we first consider the DE estimate in the form:

logΩDE(r, c) = (m− 1)(n− 1) log
(
N + 1

2mn
)
+ (Kc − 1)

m∑

i=1

log r̄i

+ (m− 1)

n∑

j=1

log c̄j + logΓ (mKc)− n logΓ (m)−m logΓ (Kc), (A 31)

where

w=
N

N + 1
2mn

, r̄i =
1− w

m
+

wri
N

, c̄j =
1− w

n
+

wcj
N

,

Kc =
m+ 1

mc̄2
− 1

m
, c̄2 =

∑

j

c̄2j .
(A 32)
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Only the leading constant behavior of these quantities is needed to find logΩDE(r, c)

to O(N−1) in the dense limit we consider. We have:

w= 1 + O(N−1), r̄i = r̃i +O(N−1), c̄j = c̃j +O(N−1),

Kc = kc +O(N−1), kc =
m+ 1

m
∑

j c̃
2
j

− 1

m
,

(A 33)

where we have defined kc. Substituting into Eq. (A 31), this gives

logΩDE(r, c) = (m− 1)(n− 1) logN + (kc − 1)

m∑

i=1

log r̃i + (m− 1)

n∑

j=1

log c̃j

+ logΓ (mkc)− n logΓ (m)−m logΓ (kc) + O(N−1). (A 34)

Now we also compute the EC estimate in the same limit. First, we consider the parameter αc,

which we can write as

αc =
N − 1 +N

(
1−∑

j c̃
2
j

)
/m

N
∑

j c̃
2
j − 1

=
m+ 1

m
∑

j c̃
2
j

− 1

m
+O(N−1) = kc +O(N−1). (A 35)

Crucially, we observe that αc is constant in N up to terms of order N−1. Now expanding the

logarithms of binomials in the EC estimate using Eq. (A 24), we have:

logΩEC(r, c) =−(mαc − 1) logN +

m∑

i=1

[
(αc − 1) log(Nr̃i)− log(αc − 1)!

]

+ log(mαc − 1)! +
n∑

j=1

[
(m− 1) log(Nc̃j)− log(m− 1)

]
+O(N−1)

=
[
m(αc − 1) + n(m− 1)− (mαc − 1)

]
logN + (αc − 1)

m∑

i=1

log r̃i

+ (m− 1)

n∑

j=1

log c̃j + logΓ (mαc)− n logΓ (m)−m logΓ (αc) + O(N−1)

= (m− 1)(n− 1) logN + (kc − 1)
m∑

i=1

log r̃i + (m− 1)
n∑

j=1

log c̃j

+ logΓ (mkc)− n logΓ (m)−m logΓ (kc) + O(N−1). (A 36)

Comparing with Eq. (A 34), we see that this agrees with the dense limit of the DE estimate and

hence the EC and DE estimates are asymptotically equal in this limit. This agreement does not

come as a surprise, given that the Dirichlet-multinomial distribution upon which the EC estimate

is based is, in the dense limit, the same as the Dirichlet distribution that the DE estimate uses.

As with our earlier result for the sparse limit, the equivalence of the effective columns and DE

estimates is fundamentally an effect of the c-dependence of αc. If αc = n as in the GC estimate,

then there is no such equivalence and there is again a constant error between the estimates.

C. Numerical calculations

In this appendix we give some technical details of the numerical tests reported in Section 2.

(a) Generation of test cases

The process by which the test values of r, c are sampled for benchmarking can impact results

like those in Fig. 1. In this section, we describe the scheme we use, explore the impact of using a

different scheme, and examine the effect of changing the shape m,n of the matrix while keeping
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