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1. Introduction

Matrices with non-negative integer elements and prescribed row and column sums arise in a
range of statistical, physical, and mathematical contexts. For example, they appear in statistics
and information theory as contingency tables, whose elements count the number of times a state
or event A occurred, contingent on the occurrence of another state or event B.

An important but difficult problem is to compute the number of matrices for given values of
the row and column sums, i.e., the number 2(r, ¢) of m X n non-negative integer matrices whose
rows sum to r = (r1,...,7m) and whose columns sum to ¢ =(ci,...,cn). This number plays
a key role for instance in the calculation of mutual information measures for classification and
community detection [1] and in sequential importance sampling methods for integer matrices [2,
3, 4]. See Ref. [5] for a review.

No exact expression is known for {2(r, c) for general r and ¢, and its numerical computation
is #P-hard [6], meaning it is improbable that an algorithm exists with run time polynomial
in m and n for general m,n. Workable exact algorithms do exist for small m,n [7] and for
cases with bounded row or column sums [8], but outside of these settings the only tractable
approach is approximation. In this paper we review approximation methods for this problem and
present a new, computationally efficient approximation that is simple to implement and compares
favorably with previous approaches in terms of both accuracy and running time.

Previous approximation methods for this problem fall into three broad classes, which we will
refer to as linear-time, maximum-entropy, and sampling-based methods. The majority fall into the first
category, the linear-time methods, which are characterized by their rapid O(m + n) computation
time, although they typically achieve this efficiency at the expense of accuracy and scope. The
linear-time approaches include methods based on combinatoric arguments [9, 10] and moment-
matching arguments [11, 12], and methods tailored specifically to the sparse regime [13, 14] in
which most elements of the matrix are zero. The method we propose also falls into the linear-
time category and consistently performs near the top of this class across a wide array of test
cases. We show that it is asymptotically exact in the regime of sparse tables with bounded row
and column sums, a property shared by other approximations specifically geared towards this
regime. Unlike other sparse estimates, however, our new estimate also performs well in the dense
regime, where the typical table entry diverges while the table shape remains constant. Indeed, in
the dense regime the new estimate is asymptotically equal to the previous estimate of Diaconis
and Efron [11], which has seen use in practical applications and has been observed to work well
for dense cases [5].

The second class of methods are maximum-entropy methods, developed in this context
by Barvinok and Hartigan [15]. For large m and n these methods outperform the linear-time
methods in terms of accuracy outside of the sparse regime but are much slower, requiring the
numerical solution of a continuous convex optimization problem followed by evaluation of an
(m +n — 1) x (m 4+ n — 1) matrix determinant, for a time complexity of about O((m + n)?). The
basic method employs a Gaussian maximum-entropy approximation but the result can be further
refined using an “Edgeworth correction,” which requires an additional O(m?n?) computation
but substantially improves accuracy.

The third class of approximations are sampling-based methods, including Markov-chain
Monte Carlo (MCMC) methods [16] and sequential importance sampling (SIS) [2]. Given
sufficient running time these methods will converge to the true answer, although the time taken
can be prohibitive. SIS is typically better than MCMC for calculating {2(r, ¢) in terms of both speed
and accuracy [2, 3] and we make use of the SIS method in this paper to establish benchmarks for
the evaluation of the other methods. As a bonus, the new linear-time approximation we propose
can also be used to improve the convergence of SIS, allowing us to apply the latter method to
substantially larger matrices than has previously been possible. SIS also has advantages over
other methods in certain parameter regimes. Specifically, it is known that £2(r, ¢) is non-analytic
at certain phase transition points [17, 18] and this behavior cannot be reproduced by, for instance,
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the linear-time estimates (including our own), which are all smooth, but the SIS approach should
converge to the true answer regardless and so may be used even in the vicinity of such points.

In addition to the specific problem of counting integer matrices with given row and column
sums, a number of related problems have received attention. The problem of sampling such
matrices uniformly arises in a variety of contexts [2, 4, 11] and can be tackled efficiently by the
same modification of the SIS algorithm we propose in Section 5. Separately, the problems of both
counting and sampling matrices whose elements take the values 0 and 1 have seen interest [3].
Although these questions are not our main concern here, our methods can be extended to cover
these cases also (with some caveats) and we compare the results with a variety of competing
methods in Appendix A. Finally, there are certain special cases of the matrix counting problem,
such as cases where the row and column sums are uniform (so-called magic squares), for which
one can make progress beyond what is possible in the general case [19, 20]. We will not discuss
these cases here however: our focus in this paper is on the general case.

2. Summary of results

We present a number of new results in this paper. First, we derive a new and simple linear-time
approximation for the number of non-negative integer matrices with given row and column sums

r, ¢ thus:
Or,c)~ (N—!—mac —1>_1ﬁ(ri+ac—1> ﬁ(cj- —&—m—l)’ @.1)
moe — 1 pale] oac — 1 Jale m—1
where
n
ac:NQ_N;(_N;_C2)/m7 N:z:ri:z:cj7 02222105. (2.2)
i J Jj=

(There are certain trivial cases where these expressions give invalid values for ac but these are
easily dealt with—see Appendix B. For optimal precision we also recommend choosing the rows
and columns such that m < n, interchanging r and c if necessary to achieve this.)

Second, we have conducted exhaustive tests of this estimate and five other previously
published linear-time estimates, comparing them with ground-truth results derived from
converged sequential importance sampling. Figure 1 summarizes the results of these tests. We
find that most of the differences in performance between estimates can be seen by considering
square m x m matrices of various sizes while varying the sum NV of all entries. (Some results from
other tests, including tests on non-square matrices, are given in Appendix C, but tell essentially
the same story.) In our calculations we generate ten random test cases for each parameter
pair (N, m) with margins r and ¢ drawn uniformly from the set of m-element positive integer
vectors that sum to N. We then perform a lengthy run of sequential importance sampling (SIS)
on each sampled test case to establish a ground-truth estimate of the number of matrices. Armed
with these SIS estimates, we apply each of the six linear-time estimators to the same test cases
and compute the error on each one. We report performance in terms of the fractional error in
log £2(r, c), since the logarithm is simpler to deal with numerically and is also often the quantity
of most interest [1].

The first panel of Fig. 1, labeled “EC” (for “effective columns”—see Section 3(a)), shows the
results for our new estimator, Eq. (2.1). The running time for all of the linear-time estimators is
negligible, but as the figure shows their accuracy varies. In particular, we distinguish a sparse
regime where N < mn so that most matrix elements are zero (up and to the left in the plots)
and a dense regime where N >> mn so that most matrix elements are nonzero (down and to the
right). Some estimates, such as those labeled BBK and GMK, perform well in the sparse regime
but poorly in the dense regime. Others, such as DE, do the reverse. The EC estimate of this paper,
however, is comparable to or better than the others in both the sparse and dense regimes, while
still being fast and simple to compute. In the dense regime the fractional error is around 10~2
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Figure 1. Fractional error in various estimates of log 2(r, c) for square m x m matrices with total sum N, relative to
ground-truth results computed by sequential importance sampling (see Section 5). Each square represents an average
over ten sets of margins r, ¢ drawn uniformly at random. Asterisks denote data points for which the error is within five
times the estimated error from the sequential importance sampling, and so the true error may be smaller in these cases.
White regions indicate invalid parameter combinations where m > N so that margins r, c can not be generated without
zeros. Gray regions indicate parameter values for which estimates could not be computed in an hour of run time or less.
See Appendix C for further details of the benchmarking process.

or 1073, becoming as good as 10~ in the sparse regime. These numerical results agree with
our analytic findings: in the sparse regime our EC estimate is equal to the BBK estimate and
asymptotically exact, as shown in Appendix B. In the dense regime, our EC estimate is equal to
the DE estimate and matches its error, as also shown in Appendix B. The estimate denoted GC
also gives acceptable performance in both sparse and dense regimes, but performs roughly an
order of magnitude worse than the EC estimate in our tests.

We have also performed tests using the two maximum-entropy estimates of [15] for a
portion of the same test cases and the results are also shown in Fig. 1. As the figure shows,
these estimates generally outperform the linear-time estimates, including our own, outside of
the sparse regime, but they do so at the expense of much greater computational effort. As
mentioned in the introduction these estimates have time complexities of O((m + n)3) for the
Gaussian approximation and O(m?n?) for the Edgeworth version. For a typical case with m = 128
and N = 3200, our implementations of the linear-time estimates run in under 2ms each (on
commodity hardware, circa 2022), the Gaussian maximum-entropy method takes 3 seconds, and
the Edgeworth-corrected version takes 22 seconds. For our largest test cases with m =512 the
calculation of the Edgeworth correction becomes so demanding as to be impractical, so results for
these cases are omitted from Fig. 1.

Apart from their substantial computational demands, the maximum-entropy methods work
very well in the regime of intermediate-to-high density and indeed do so well in this region that
their accuracy becomes comparable to the accuracy of the sequential importance sampling that
we use to compute the ground truth. The SIS calculation, like all sampling methods, displays
some statistical error, as shown in Fig. 2. Although this error is usually negligible, it is a limiting
factor for evaluating the maximum-entropy estimates in some cases. These cases are denoted by
asterisks in Fig. 1.
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Figure 2. Estimated fractional error of sequential importance sampling estimates of log £2(r, c) for three different variants
of the SIS approach, with a fixed amount of computer time (one hour) spent on each choice of parameter values. The
EC-based SIS, which serves as the benchmark for the results in Fig. 1, improves upon existing SIS methods by roughly
two orders of magnitude, as discussed in Section 5. Note that the color scale in this figure differs from that in Fig. 1.

Software implementations of the various estimates and SIS methods described in this paper
can be found at https://github.com/maxjerdee/contingency_count.

3. Linear-time estimates

Turning now to the details, in this section we discuss the linear-time methods for
estimating (2(r, c). We first present our new estimate, which is based on the concept of “effective
columns.” We also describe three related approaches due to Gail and Mantel [12], Diaconis and
Efron [11], and Good and Crook [9, 10], and two somewhat different approaches tuned to the
sparse case and due to Békéssy, Békéssy, and Komlés [13] and Greenhill and McKay [14].

(a) A new estimate for matrix counts

In this section we derive the approximation for {2(r, c¢) given in Eq. (2.1). Let A(c) be the set of all
non-negative m X n integer matrices X = (z;;) with fixed column sums c but unconstrained row
sums:

A(C):{{xij}emen‘inj:Cj,j:].,...,n}. 3.1)

By standard arguments the number of ways to choose the entries of column j so that they sum

tocj is (CJ;LTTI_ 1) and the columns are independent so the number of matrices in the set A(c) is

A(C)I=]ljl<c]mT1 ) 3.2)

Now we further restrict to the subset of matrices A(r, c) C A(c) with both row and column sums
fixed:

A(r,c):{{xij}Gmen

m n
Z:Eij :ijzmij:”}- (33)
i=1 j=1
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Our quantity of interest is the size of this set 2(r, ¢) = | A(r, ¢)|. Under a uniform distribution over
A(c), the conditional probability Pr(r|c) of observing a particular row sum r is

_JAe) _ 2(r¢)
Al ~ Tl

Pr(r|c) (3.4)
Since we have an exact expression for |A(c)| in Eq. (3.2), the problem of calculating 2(r,c) =
|A(c)| Pr(r|c) is thus reduced to one of finding Pr(r|c). This is still a difficult problem and
requires making an approximation. Inspired by work of Gail and Mantel [12] we take a variational
approach and propose a family of candidate approximant distributions for Pr(r|c), then choose
the best member of this family using a moment-matching argument.

Motivated by Diaconis and Efron [11], our family of candidate distributions is based on the
form of the unconditional distribution on the row sums r without any constraint on the column
sums. By the same argument that led to Eq. (3.2), the number of matrices with row sums r is

A(r) :H(Ti:’_ll_l). (35)
=1

At the same time the set A of all non-negative m x n integer matrices that sum to IV has size

N+mn-—1
1= ( ) (36)
mn — 1

and hence, under a uniform distribution over A, the probability of observing row sum r is

Pr(r) = "“‘ﬁl‘?' - (N;:‘fl‘l)*l ﬁ(’“i:’jl‘l). 67)

i=1

The key to our argument is to approximate Pr(r|c) by this unconditional distribution, but with
the number of columns n replaced with a free parameter a.c, which we call the number of effective
columns:

N +mac—1\_q s ri +aec—1
P ~P = . 3.8
r(rle) =Pr(rfae) = (1 7 )] 69
The resulting distribution over r is the one that would be observed under the uniform distribution
over m X ac matrices whose elements sum to V.

Now we relax the constraint that ac be an integer, defining the obvious generalization of the

binomial coefficient
ny I'(n+1)
(k) C I(k+1)I(n—k) (39)

We are merely using Eq. (3.8) as a trial distribution for our variational approximation, so the
physical interpretation of ac as an integer number of columns is not important. So long as a.c > 0
the distribution is well-defined, normalized, and non-negative for every possible r.

In other contexts the distribution Eq. (3.8) is known as the (symmetric) Dirichlet-multinomial
distribution. When ac =1 the possible row sums r are uniformly distributed among the possible
non-negative integer choices of r; that sum to N. As ac — oo the distribution of r approaches
a multinomial distribution where r is formed by taking N samples from a uniform probability
vector (1/m,...,1/m), the generalization of a symmetric binomial distribution. For 0 < ac <1
the distribution of r will favor more extreme values of the coordinates r;, analogous to the
behavior of the symmetric Dirichlet distribution.

Our approximation involves replacing the true distribution Pr(r|c) by Pr(r|ac), with the
value of ac chosen to make the approximation as good as possible in a certain sense. To do this
we use a moment-matching approach in which the value of ac is chosen such that Pr(r|ac) has
the same mean and covariances as the true distribution Pr(r|c). Such a value always exists and it
has a simple expression, as we now show.
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The expectation and covariances of the r; under Pr(r|ac) are straightforward to compute:

moe + N

B(r)=pn  covlrsm) = (V/m) et

p—m ). (3.10)
For Pr(r|c) the calculation is only a little more involved. In the uniform distribution over A(c)
each column j is independently uniformly distributed over the possible choices of matrix
elements z;; that satisfy > ; z;; = ¢;. The expectations and covariances of these column entries
alone are then
o _cj(m+cy) 1
E(z;;) = poog cov(zij, Tp;) = m((sik -m ). (3.11)
Since the row margins are the sums of these independent column entries, the expectations and
covariances add so that

n
Nm—l—c _
Z (w45) o cov (ri, 1) Zcov Tij, Thj) (m+1)(6 —m 1)7 (3.12)

where we have introduced the shorthand ¢? = E?Zl c?.
Thus the expectations of Pr(r|ac) and Pr(r|c) already match and, equating the covariances
in Egs. (3.10) and (3.12) and solving for ac, we get

_ N? - N+ (N?—c*)/m
B c2— N ’

Q¢

(3.13)

Finally, we assemble Egs. (3.2) and (3.8) into our “effective columns” estimate of £2(r, c) thus:

Q5 (r, ¢) = Pr(r|ae) |A(c)|

_ [ N+mac—1 1ﬁ 7"1—|—ac—1 -
h mac — 1 iy

i=1 i

<Cj—|—m—1>7 (3.14)
m—1

1
where ac is given by Eq. (3.13).

Note that, although (2(r, c) is trivially symmetric under the interchange of rows and columns,
our estimate of it is not. (The same is true of the DE and GM estimates also.) The symmetry is
broken when we choose to approximate Pr(r|c) and not Pr(c|r). In practice our estimate appears
to perform better for matrices with more columns than rows m < n, as can be seen in Fig. 5, so it
may improve performance to swap the definitions of r and ¢ when m > n. This prescription also
has the corollary effect of rendering the estimate symmetric.

Although our derivation of the EC estimate does not make specific reference to the sparse limit,
it performs well in that regime. In fact, as we show in Appendix B, it gives an asymptotically
exact result in the sparse limit where N — oo with bounded row and column sums. This feature
is not unprecedented, although among the estimates we consider it is shared by only the BBK and
GMK estimates. Unlike those two estimates, however, the EC estimate exhibits good performance
in the dense regime as well, where it is asymptotically equal to the DE estimate as also shown in
Appendix B.

(b) The estimate of Gail and Mantel

In the following sections we review some of the other approaches for estimating {2(r, ¢), outlining
the motivation and derivations of the other linear-time approximations discussed in Section 2.
We start with an approach due to Gail and Mantel (GM) [12], who propose the following
approximation for £2(r, c):

.QGM(r,c) _ ( m—1 )(ml)/ 1/2,-Q/2 H (c] +m— >’ (3.15)

2mmo?

H
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where

,2_ (@ EmN)m 1) Q:m—l(g_Nj)’ 2= 2=Y& (316

(m + 1)m2 a2m m ‘
J

The derivation of this estimate follows the same general logic as our own, with the true
distribution Pr(r|c) approximated by a family of simpler distributions that is fitted to the true
distribution with a moment-matching argument. The difference lies in the particular family
used: Gail and Mantel use a multinormal distribution, by contrast with the Dirichlet-multinomial
distribution in our derivation.

Numerical results for the approximation of Gail and Mantel were given in Fig. 1. The method
is typically outperformed by the other linear-time estimators, indicating that there is some art to
picking an appropriate family of distributions for the moment matching argument. We note that
in this case the multinormal distribution is not justified (as one might imagine) by the central
limit theorem, despite Pr(r|c) being a mixture of independent columns, because the probability
density is typically evaluated away from the expected value of r, E(r) = (N/m,...,N/m), in a
regime where local limit arguments do not apply.

(c) The estimate of Diaconis and Efron
A related approximation has been proposed by Diaconis and Efron (DE) [11]:

DE B mny (m=1)(n—1) (% \Ke=l /o Nm=1 oy

where

w— N 7:‘_1—w wr; E‘_l—w we;
_4N+%mn7 1 T m N7 ]_ n N’
. Cm41 1 o ., (3.18)
e T C =2
J

The derivation of this estimate uses a moment-matching argument, like the estimates of this
paper and of Gail and Mantel, Egs. (2.1) and (3.15), but with some crucial differences. Instead of
considering the set A(r, c) of integer matrices with the required row and column sums, Diaconis
and Efron consider the space (polytope) P(r,c) of all m x n matrices of non-negative reals (not
necessarily integers):

m n
P(r,c) = {{l'ij} € Rmxn‘xij >0, wij=cj, Y wij :Tz}- (3.19)
i=1 j=1

The count £2(r, c) of integer matrices can be thought of as the volume of the intersection of this
polytope with the lattice formed by the (unconstrained) set A of non-negative integer matrices
that sum to V:

2(r,c)=]A(r,c)|=|P(r,c) N Al. (3.20)

Diaconis and Efron use moment-matching not to estimate |A(r, c)| but instead to estimate
the volume of the polytope P(r,c), then compute the size of the intersection Eq. (3.20) from
it. Since the polytope is a continuous region, the distribution Pr(r|c) on it is also continuous
and is represented with a continuous approximant distribution Pr(r|K¢), chosen to be N times
the symmetric Dirichlet distribution Dir(Kc), with the Dirichlet parameter K¢ chosen to match
the mean and covariances of the true distribution Pr(r|c) over the polytope. Armed with the
resulting approximation for the volume of the polytope, £2(r, c) is then estimated as the number
of lattice points within it as in Eq. (3.20), calculated from the volume of the polytope times the
density of lattice points. Finally, an “edge-effects” correction is applied to better reflect the number
of lattice points contained.
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For dense matrices the performance of this estimate is similar to that of our own estimate—see
Fig. 1. Indeed, in the dense limit where N — oo while the ratios of column and row sums are kept
fixed, we can show that the two estimates are asymptotically equivalent (Appendix B). For sparse
matrices, on the other hand, the approximation of the number of lattice points using the volume
of the continuous polytope fails and the DE estimate breaks down.

(d) The estimate of Good and Crook
Good and Crook (GC) [9] proposed the following estimate for QGC(r, c):

GC N+mn-—1 ,1m ri+n—1 L ci+m—1
0 (r,C)=< i ) H(anl >H(3m71 ) (3.21)
=1 Jj=1
which is equivalent to our own estimate if one does not apply moment matching but instead
simply assumes that the number of effective columns is equal to the number of actual columns:
ac =n. Under the circumstances, it seems likely that this estimate would not perform as well as
our effective columns estimate, as indeed can be seen in the numerical results of Fig. 1.

(e) Estimates for the sparse regime

The remaining two linear-time approximations presented in Fig. 1 are closely related and both
aimed at approximating {2(r, c) in the sparse regime where N < mn and most matrix elements
are zero. In this regime Békéssy, Békéssy, and Komlé6s (BBK) [13] give the following approximation
(also proposed independently by O’Neil [21]):

P )= o {i m<”) S (cf)] 1+0(NY], 3.22
e e e 2 (2) 2 (2| el e

where the error term describes the asymptotic growth of the error with N in the sparse limit
where rmax = max(r) and cmax = max(c) are held fixed as N — oo, so that m,n — co. Greenhill
and McKay (GMK) [14] improved on this estimate with correction terms thus:

N! Ry C: RyC! R3C R2C5 (R2 + C)
CGMK _ 202 2C2 3C3  RaCh
(. 0) = T el P an2 T ans T 3ns ANA
=1 Jj=1%
2 2 2,2 3 3 (3.23)
_ R3C3 + R3Cy R3C5 0 TmaxCmax
2N4 2N5 N2 ’
where
m n
Rp=>[rile,  Ci=> lejlk, (3.24)
i=1 j=1
and [z], is the falling factorial
[zlg=z(x—1)...(z —k+1). (3.25)

Given the O (rl?;‘axcﬁlax /N 2) form of the error term in (3.23), this estimate is asymptotically correct
for log 2(r, ¢) as n,m, N — oo for sufficiently sparse matrices with rmaxcmax ~ 0(IN 2/3), and not
just in the regime of constant rmax and cmax where the BBK estimate converges. Note that if we
keep only the first term in the exponent of Eq. (3.23) we recover the BBK estimate, Eq. (3.22), so
the GMK estimate can be viewed as a correction to the BBK estimate better tailored to the sparse
limit.

The numerical performance of the BBK and GMK estimates is shown in Fig. 1. Both perform
well in the sparse limit, as one might expect, but are poor in denser regimes. In the sparse limit
with constant rmax and cmax, our EC estimate converges asymptotically to the BBK estimate and
hence also converges to the true {2(r, c), as explained in Appendix B. But unlike the other sparse
estimates the EC estimate also performs well far from the sparse regime.
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4. Maximum-entropy estimates

Barvinok and Hartigan have developed maximum entropy techniques for approximating a
variety of counting problems, including two approximations for counts of contingency tables, a
simpler and faster Gaussian approximation and a more refined approximation that incorporates
a so-called Edgeworth correction [22].

(a) Gaussian maximum-entropy estimate

Barvinok and Hartigan [22] give a Gaussian approximation for £2(r, ¢c), which under quite general
conditions on r and ¢ can be shown to return an asymptotically correct value of log £2(r, c) as
N — oco. The approximation takes the form

e e9(%) i1
(r,c)= (QW)(m+n—1)/2\/m' @1

Here g(Z) is a scalar function of a matrix Z = (z;;) defined thus:
9(2) = Z [(Z” + 1) log(zij + 1) — 2 log zij] . “4.2)

ij

The value of Z is chosen to maximize this function over the same polytope P(r, ¢) introduced in
Eq. (3.19), the space of all matrices with non-negative real entries (not necessarily integers) that
marginalize to r, c. Note that, since g(Z) is concave, there is a unique Z that maximizes it within
the polytope. In practice, this maximum is found numerically with one of the many standard
methods for convex optimization.

The Q in Eq. (4.1)isan (m +n — 1) x (m + n — 1) symmetric matrix Q = (g;;) whose nonzero
elements are

2 ; .
Qi j+m = Qj+m,i = Zij t Zij fori=1...m,j=1...n—1,
n
qii:ri—i—z,zgj fori=1...m, (4.3)
i=1

m
2 .
Qj+m,j+m:Cj+ZZij forj=1...n—1.

i=1

The computation of the determinant of this matrix in Eq. (4.1) has time complexity roughly
O((m + n)?) and hence the evaluation of the entire estimate takes at least this long, which makes
this method substantially more demanding for large matrices than the linear-time methods of
Section 3.

To see where the Gaussian estimate comes from, consider a probability distribution P(X|Z)
over unrestricted non-negative integer matrices X = (z;;) given a matrix Z = (z;;) of real
parameters. Each integer matrix element x;; is independently drawn from a geometric
distribution with expectation z;;, which means the full distribution is

1 Ziq Tij
Px|z)=]] (HZU) <1+J2ij> : (4.4)

The entropy of this probability distribution is equal to the function g(Z) defined in Eq. (4.2) and
the value of Z is chosen to maximize this entropy over the polytope Z € P(r, c). This means that,
for this specific choice of Z, P(X|Z) depends on X through the values of its row and column
sums only, so that the distribution becomes uniform over X € P(r,c), taking a constant value
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equal to
P(X|Z) =99, (4.5)

Given that there are, by definition, {2(r, c) values of X inside the polytope, the total probability
that X lies in the polytope, and hence that it has margins r and c, is given by P{X € P(r,c)|Z} =
e 9@ 0(r, c), and hence

Qr,c) =D P{X € P(x,c)|Z}. (4.6)

Thus, if we can calculate the probability that X has the correct margins under the distribution
Eq. (4.4) we can calculate £2(r, c). To do this, we observe that the polytope P(r, c) is defined by a
set of linear constraints with the general form AX =b, where A is an (m +n — 1) x mn matrix,
bisan (m + n — 1)-vector, and X is now represented in “unrolled” form as an mn-element vector
rather than an m x n matrix. We then consider the (m + n — 1)-dimensional random variable Y =
AX. This transformed variable satisfies Y = AX =b on P(r,c) and hence P{X € P(r,c)|Z} =
P{Y =b|Z}.

Finally, since the entries of X are independent random variables, we expect the distribution of
Y to be asymptotically Gaussian by the local central limit theorem. This allows us to approximate
the distribution with a Gaussian, and, matching the covariances of this Gaussian with the true
covariances of Y, which are captured in the matrix @ of Eq. (4.3), we can estimate P{Y =b|Z}
and hence the value of 2(r, c).

(b) Edgeworth correction

Building on the Gaussian approximation, Barvinok and Hartigan [15] have given a further
improved approximation for £2(r, c) by employing a so-called Edgeworth correction. This takes
the form

e9(%2)

@2m)mtn-D/2 JGei Q¥

where p and v are defined below. Barvinok and Hartigan show that under some mild conditions
on the growth of the margins r and c, this gives an asymptotically correct estimate of {2(r, c) as
N — .

2F(r,c)=

(—% n y) , 4.7)

To specify the values of iz and v in Eq. (4.7) a few more definitions are needed. First, we define
a quadratic form ¢ : R™*"~! 5 R by

q(z) = 32" Qu, 4.8)
where @ is the matrix defined in Eq. (4.3). We also define two functions f, h : R™t"~1 _, R on the
variables (u1,...,Um,t1,...,tn—1) € R™T 1 thus (with ¢, = 0):

1 3
f(u, t) = 8 Z Zij (Z” + 1) (2Zij + 1) (ui + tj) s (4.9)
1<i<m
1<j<n
1 4
h(u,t) = 2 Z Zij (Zij + 1) (GZ?J‘ + 625 + 1) (u, + tj) . (4.10)
1<i<m
1%5<n

The Edgeworth correction terms are then given by

p=E(f*), v=E), (4.11)

where the expectations are taken over the Gaussian probability density on R™ "~ ! proportional
toe™ 7.

Barvinok and Hartigan note that, given the definition Eq. (4.8), Q! is the covariance matrix
of the u; and t; under the distribution e™?. This distribution e~ is symmetric under (u;,t;) —
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(—u;, —t;) so that E(u;) = E(t;) = 0 and hence
E(uit;) = (Q it +m) - (412)

The values of ;1 and v can then be evaluated using Wick contractions for correlators of Gaussian
random variables to express the desired expectations in terms of covariances given by Eq. (4.12).
Specifically, one uses

E[(ui +t;)*] = 3[E(u?) + 2E(uit;) + E(t?)]” (4.13)
and

E[(“h + tj1)3(ui2 + tj2)3] = S[E(uil ui2) + E(ui1tj2) + E(uiz tjl) + E(tiltj2)]
X [E(uhuiz) + 2(E(ui1tj2) + E(ui2tj1) + E(tjl tjz))2
+3(E(uf,) + 2E(uj, t;,) + E(15)) (E(ui,) + 2E(uiyty,) + E(15,))].  (4.14)

Note that evaluating ;1 requires a sum over all possible i1,i2 =1...m and ji,jo=1...n—1
so the complexity of the calculation is O(m?n?), making the minimum computational burden
higher than for just the Gaussian estimate. In practice, the running time of either of the maximum-
entropy estimates is not significant for small matrices: our implementations of both run in under
a second for m,n < 32. On the other hand, very large matrices of size m,n 2 512 can take well
over an hour, and running time can also be an issue when one needs estimates for a large number
of smaller matrices. For cases where running time is a concern, Section (b) of Appendix C gives
our recommendations for various parameter values.

5. Sequential importance sampling

Sequential importance sampling (SIS) is a computational technique that in the present case can
be used either to sample from the set of non-negative integer matrices A(r, c) [2, 3] or to find the
size £2(r, c) of the set. In this section, we review the standard SIS approach and show how it can
be improved by exploiting our new linear-time estimate. Advances in SIS for contingency tables
have been made in the past through the incorporation of faster and more accurate approximations
for £2(r, c) [3, 4]. For example, Eisinger and Chen [4] used the GC and GMK estimates to optimize
SIS in the sparse and dense regimes respectively. Here we take a similar approach with our EC
estimate, but since the EC estimate performs well across all regimes from sparse to dense, it allows
us to perform sampling using the same approximation in all cases. Moreover, as shown in Fig. 2,
the EC estimate offers roughly a one-hundred-fold improvement in accuracy over the GC estimate
when used to estimate {2(r, ¢), which results in a corresponding gain in efficiency for importance
sampling.

The main ingredient of importance sampling is a “trial distribution” ¢(X) over matrices X
which is nonzero if and only if X € A(r, ¢). If we can sample matrices from this distribution then
we have

1
E, {m} = Y ()L = A, 0) = 2(r,0). (5.1)

X€A(r,c)

Thus if we can draw N matrices XV ... XV from ¢(X) we can estimate {2(r, c) as

1 oh 1
2(r,c)=— ~—, (52)
and the accompanying statistical error can be estimated in the conventional manner.
Alternatively, we can use the same approach to estimate an expectation under the uniform
distribution over all integer matrices with fixed margins: p=Ey,;[f(X)]. We compute an
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estimator for this average as

SN (X)) /a(X))
SN 1/q(X)

For example, if we choose f(X) = 1 if the x? statistic of X is greater than some value x3 and zero
otherwise, this expression estimates the p-value of the y2-statistic for the uniform distribution
over contingency tables, which has been proposed by Diaconis and Efron as an alternative to
more traditional tests of independence [11].

In principle, these estimates converge regardless of the form of ¢(X), but they become more
efficient the closer the distribution is to being uniform over A(r, c), since the values of the sums
in Egs. (5.2) and (5.3) are dominated by the states with the smallest ¢(X), which are unlikely
to be sampled when ¢(X) is highly nonuniform. The key to making the method work well

= , (5.3)

lies in finding a ¢(X) that is sufficiently close to the uniform distribution while still being
straightforward to work with. The latter condition can be difficult to satisfy. We can trivially
choose ¢(X) to be exactly uniform by setting its value to a constant, but in that case the constant is
q(X)=1/£2(r, c), so calculating the value of ¢(X) would be exactly as hard as calculating {2(r, c)
in the first place.

SIS gets around these difficulties by sampling the matrix X one column at a time. (This is the
“sequential” part of sequential importance sampling.) The idea is to first sample values X of the
first column of X with probabilities as close as possible to the probability with which they appear
under the uniform distribution, which can be written as

2(r',c)

p(X1) = Qr,c)

(5.4)
where r’ and ¢’ denote the row and column sums of the matrix after the first column is removed.

After the first column is sampled we repeat the process and sample values of the second
column, then the third, and so forth until one has a sample of the entire matrix. If at each step the
exact probabilities p(X;) in Eq. (5.4) are used, this process will sample the matrices X € A(r, c)
exactly uniformly, and indeed this is the approach taken by some methods [8], although these
approaches are computationally costly and moreover require us to know 2(r,c) exactly and
hence are not suitable for calculating {2(r, c) itself. For most purposes a better approach is to
approximate the exact distribution p(X1) of Eq. (5.4) with some other distribution ¢(X) that is
easier to compute, at the expense of modestly nonuniform sampling. Despite the non-uniformity,
we still get a convergent estimate for (2(r, c¢) using Eq. (5.2) as N — oc.

In choosing a value for ¢(X), the various linear-time estimates for {2(r, ¢) in Section 3 provide
an elegant route forward, and specifically, given its good performance on test cases, we propose
using our effective columns estimate Q2FC(r, c) of Eq. (2.1) to define a distribution over the column
X1 = (z;1) thus:

QEC(r/,c/) (v — w41 + aer — 1
q(X1) = m X 11_[1( e — 1 )121. zi1=c1 L0<z;1 <r; - (5.5)

This expression combines our combinatorial estimate with hard constraints that impose the
correct sum of the generated column ), ;1 =c1 and prevent any entry from surpassing the
value of the remaining row sums 0 < z;; <r;, which would make it impossible to complete the
rest of the columns.

As described by Harrison and Miller [3], it is possible to sample the column X; from a
distribution of the form (5.5) in time O(mc?). The full SIS method samples each of the n columns
in turn for a total time complexity of roughly O(N?m/n) per full sample. Performance can be
improved by a numerical factor (but not in overall complexity) by arranging the elements of ¢ in
non-increasing order.
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(a) Results

The method described above performs well, as shown in Fig. 2. The leftmost panel, labeled “EC-
based SIS,” shows results for our method, while the other panels show two other methods for
comparison. “GC-based SIS,” considered by Eisinger and Chen [4], employs a similar approach
to ours but with a trial distribution based on the Good-Crook (GC) estimate [9], which appears
to have the second-best broad performance behind our EC estimate (see Fig. 1). We find that the
fractional error for the GC-based method is between 10 and 100 times larger than that for the
EC-based method.

The third panel in Fig. 2, labeled “Greedy SIS,” shows results from the method of Chen,
Diaconis, Holmes, and Liu [2]. In this method the entry z1; is directly sampled from the
distribution

Pr(z11 = k) cxmin(rz,c; — k) + max(0,¢c; + 71 + 172 — N — k) + 1, (5.6)

and similarly for each remaining entry of X. This approach gives faster sampling than ours, at a
rough complexity of O(Nm) per full sample, but at the expense of greater non-uniformity in ¢(X).
The trade-off turns out not to be beneficial. Convergence is slowed considerably for all but the
smallest of matrix sizes and overall accuracy suffers, as shown in Fig. 2.

Based on these results, we have chosen the EC-based SIS technique for computing the ground-
truth estimates of (2(r, c) employed in our work. We emphasize that this does not in any way
bias the outcome of our benchmarking comparisons in Fig. 1 in favor of the EC estimate. All SIS
methods, regardless of their choice of trial distribution, give convergent estimates; the choice of
an EC-based trial distribution merely improves the rate of convergence of those estimates.

6. Conclusions

In this paper we have studied the problem of estimating the number {2(r, c) of non-negative
integer matrices with given row and column sums, which arises for example in statistical
and information theoretic calculations involving contingency tables. There is no known exact
expression for £2(r, c), but a variety of methods for approximating it have been proposed in the
past. We have presented two new methods that improve upon these previous approaches. First,
we have proposed a closed-form approximation based on the concept of effective columns, which
can be evaluated in time linear in the number m 4 n of rows plus columns of the matrix and
returns results of accuracy similar to or better than other linear-time estimates in the extensive
benchmark tests presented here. Second, the same effective columns approximation is also used
to derive a sequential importance sampling (SIS) algorithm for sampling such tables, which can be
used to make numerical estimates of {2(r, c) with significantly faster convergence than previous
SIS methods, resulting in estimates about 100 times more accurate in comparable running times.
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Figure 3. Fractional error of various estimates of log £2o(r,c) for square m x m matrices that sum to N. For
compactness the estimated errors of the SIS method used for benchmarking are also plotted under the linear-time
category. As in Fig. 1, white regions denote impossible parameter combinations, while gray regions indicate estimates
that cannot be completed in an hour of run time on our hardware.

Appendices

A. Counting 0-1 matrices

A parallel problem to that of counting non-negative integer matrices is that of counting matrices
whose elements take only the values zero and one, with row and columns sums once again fixed
at given values r and c. This problem is important in its own right and has been the subject
of considerable work. The methods of this paper can be applied to the case of 0-1 matrices,
but we do not emphasize this approach because in practice it does not improve upon existing
methods. Nonetheless, for the sake of completeness, we describe the approach in this appendix
and compare its performance with other available estimates.

(a) Summary of results

Let £2y(r,c) be the number of 0-1 matrices with margins r,c. Figure 3 summarizes the
performance of various estimates of log £2o(r, c) for square m x m matrices that sum to N. In
the linear-time category we consider five estimates. The first, an analogue for the 0-1 case of our
effective columns estimate, performs fairly well, but it does not reliably outperform the other
linear-time estimates, and in general all the linear-time methods struggle with dense matrices.

To generate Fig. 3, for each combination of parameters (N,m), ten margin pairs r,c
were drawn uniformly from the set of all values that correspond to at least one 0-1 matrix
(i.e., uniformly over values satisfying the Gale-Ryser condition [23, 24]). The ground truth is
computed using sequential importance sampling as described in Section 5 with a trial distribution
based on the CGMO estimate as in [3]. The resulting estimated errors on the sequential importance
sampling are also shown in Fig. 3.

(b) Effective columns estimate

Motivated by the same “effective columns” reasoning we used for our estimate of the number
of contingency tables, we propose the following estimate for the number of 0-1 matrices with
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margins r, c:

N JON s

() 1) o
i\ T\

o® N = . (A2)

where

As we now explain, this estimate stands on less certain ground than our estimate of £2(r, c), but
the resulting formula nonetheless appears to be quite accurate.

Let Ag(c) be the set of 0-1 matrices that have column sums c. The number of such matrices
can be found by independently choosing one column at a time. For each column j there are c;
elements equal to 1 and the rest are 0, so there are (Z;) ways to distribute the 1s in the column.
Since the columns are independent we then have

Ao(¢)|‘ﬁ<$)- (A3)

j=1

Given this number, £2(r,c) can be estimated as before from a knowledge of the conditional
distribution Pr(r|c), and for this we again take inspiration from the unconditional distribution
ofr,

Pr(r)—(%">—1ﬁ<2), (A4)

replacing the number of columns n with an effective number a((:o):

Pr|a?) = may” ‘1ﬁ o’ (A5)
¢/ N i\ T ’

Unlike the case of non-negative integer matrices, where we were left with a well-defined
distribution for any ac >0, P (r\a(co)) is not quite a probability distribution over r. Away from
the poles, when o) ¢ {0,1/m,...,(N —1)/m}, Eq. (A 5) is properly normalized

S Pl =1, (A6)

r| Y, ri=N

but it is no longer non-negative for all r: we can have ﬁ(r|a.(30)) < 0. In spite of this we press on

and evaluate the “expectations” and “co-variances” of the r; weighted by P(r|a<(:0) )
N(ma — N -
Br)= N, ecovrm) = e N oy, (A7)
m m(mae”’ — 1)

The true probability density Pr(r|c) is again a mixture of independent columns with expectation
and covariances

)
E(r;) = %, cov(r;,rg) = % (5ik - m_l). (A8)

(0) 0)

The choice of the parameter o’ such that the covariances of P(r\ag ) and Pr(r|c) match is then

© _N?—N—(N?—c*)/m
ac - 82 7N b (Ag)

and our estimate of 2y(r, c) is given by P(r\a((:o))|A0(c)|. In most cases, this expression can be

used directly, but on the occasional instances where P (r|a.(:0)) is negative the resulting estimate
can be negative as well. We remedy this issue in an ad-hoc way by taking the absolute value of the

10000000 V 908 4 0014 Bi0-BuiysiandAisioosieoreds:



result, which yields the estimate Eq. (A 1). In spite of this uncontrolled step the estimate performs
reasonably well in the tests shown in Fig. 3.

(c) Other estimates

We also consider four other linear-time estimates of {2y(r, ¢) drawn from the literature, several of
which are related to those for the case of general non-negative integer matrices. Good and Crook
(GC0) [10] give an estimate which can be understood as our effective columns estimate but with
the number of effective columns equal to the number of true columns:

Qgc(r,c):<”§")—1ﬁ(ﬁ) ﬁlog(?j). (A 10)

i=1 "7 j=1

Békéssy, Békéssy, and Komlés (BBKO) [13] provide an estimate suited to the sparse regime:
B )= N exp[—l i(T)i(cﬂ)} [1+0(N"h)] (A11)
H;’;l Ti!H;‘nzl Cj! N2 = 2 = 2

which is improved by Greenhill, McKay, and Wang (GMWO) thus [25]:

GMW N! RaCs  RoCy | R3C3  RaCh (R2+ (o)
1) - _ _ _
0 (re) [Tt Ty cj!eXp[ 2N2 ~ 2N3 | 3N3 4N4

2 2 22 (A 12)
_ R5C3 + R3Cy R5C5 0 <T§nax6§x1ax ):|

2N4 2N5 N2

Canfield, Greenhill, and McKay (CGMO) [26] provide an estimate for dense 0-1 matrices that can
be understood as a correction to the GC estimate:

e (7 EL () o4 te) 6 26)]- o

j=1

where
m 2 n 2
N N N
R:E 1j(r,»—m> , C= 1((;]»—) , A=—, A=ZA1-)). (A14)
1=

Canfield ef al. show that this is in fact asymptotically correct under certain conditions—loosely
when the matrix is relatively square and has density not too close to 0 or 1. Finally, Barvinok and
Hartigan [27] give maximum-entropy estimates in Gaussian and Edgeworth-corrected varieties
analogous to those of Section 4.

Figure 3 shows a quantitative comparison of the accuracy of each of these estimates, along
with our effective columns (ECO) estimate and numerical SIS results for a range of sizes of
square matrices and values of the sum N of all elements. Based on these results, it appears that
the ECO, CGMO0 and GMWO0 estimates all provide good accuracy in general, particularly in the
sparse regime, with ECO and GMWO0 exceeding the accuracy of SIS in some cases. The maximum-
entropy estimates perform poorly in the sparse regime, but better for denser matrices. When the
Edgeworth correction is included they provide the most accurate results in the dense regime,
although at the expense of greater computational effort.

B. Validity of the effective columns estimate

In this appendix, we demonstrate various properties of our effective columns (EC) estimate
as defined in Eq. (2.1). Specifically, we show exact behavior in the degenerate ac — co limit,
asymptotically correct behavior in the sparse N — oo limit, and agreement with the DE
estimate [11] in the dense limit.
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(a) Degenerate o,
The value of the parameter ac in our estimate is given by Eq. (2.2) to be

N2 N+ (N?—c*)/m
B c2— N ’

Q¢

(A1)

At first sight this expression appears potentially problematic, since the denominator could
become zero or negative. In fact, it cannot be negative because

n n n
cQ—N:Zc?—chZch(cj—1)20. (A2)
=1 j=1 j=1

The value could however be zero if c; is either zero or one for all j, and this would cause ac to
diverge. In practice we can ignore columns with c; = 0 since these have no effect on the number of
matrices {2(r, c), so let us assume that all such columns have been removed. What then happens
if all remaining columns have ¢; = 1? In this case it turns out that the limit ac — oo of the estimate
of 2(r, c) does give the correct result, as we now show.

If all columns have c; =1 then all elements in a column are zero except for a single 1. The
constraint on the row sums then demands that r; out of the n columns have their 1 in row i for
alli=1...m. The number of possible arrangements satisfying this requirement is

n!
[LZyrad
We now show that the ac — oo limit of our estimate Eq. (2.1) for this situation gives this exact

result.
Recall that our EC estimate is given by

QEC(r,c): (N;;OTZQ_Cl_l)_l H(Til—ca_cl—l) H(Cj+m_l>' (A4)

i=1 j=1

2(r,c=(1,...,1))= (A3)

Noting that when ¢; =1 for all j we have N =n, we write

<N+mac71)zpf(n+mac) (ri+ac—1>:F(F(m+ac)

mac — 1 (mae)(n+1)’ ac—1 ac)l(r; +1)’ (49

and apply Stirling’s approximation in the form

r(z):@(g)z [1+0(:"h)], (A6)

which in the limit of large ac gives

n+mac—1Y\  (mae)” 1

(") = sy 1+ 0t ) (A7
7 c_]- 2‘ —

(’“ ;Fca_l ):ﬁ[l+0(acl)]. (A8)

Then our estimate, Eq. (A 4), is

(nlzaill) ﬁ(m—f—ac—l) ﬁ(1+m—1)

N Hv(:af;)

H ] [1+0(ag )]:H#[Ho(ac ). (A9)

% 1”

So the ac — oo limit indeed recovers the correct result.
This is a nice property of our estimate. In a practical implementation we can recognize the case
c=(1,...,1) and either return the exact result, Eq. (A 3), or simply evaluate the usual estimate at
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a large value of ac. The latter prescription is also equivalent to writing

N%2 - N+ (N?=cH)/m
2 —N+e¢

Oc =

(A 10)

for e small and positive.

(b) Effective columns estimate in the sparse limit

In this section, we show that in the sparse limit where N — co but the row and column sums are
bounded, the EC estimate is asymptotically exact:

5 (r,¢) = Q(r,c) 1+ O(N )] (A 11)

To demonstrate this, suppose that the row sums are bounded above by rmax and the column
sums by cmax. We then define the following quantities, equal to the fraction of row and column
sums that take on each possible value:

f‘k:%|{l|’r‘z:k}|7 fOrk'Zl...Tmax (Alz)

D
cl:ﬁH]'rj:lH’ forl=1...cmax. (A 13)

We now observe the following expressions for various sums which appear in the estimates we
consider:

m T’max m T'max
N=N"ri=> migk=miV, 3" 0P =" migk? = mi?, (A 14)
=1 k=1 =1 k=1
n Cmax n Cmax
NZZCj:Znéll:né(l), Zc?:ZnéllQZné(Q), (A 15)
j=1 =1 j=1 =1

where #(1) and #(?) are the first and second moments of r, and similarly for c:

Tmax T'max

’f'(l) = Z 7A‘kk7 72(2) = Z f'kkz, (A 16)
k=1 k=1

A(l) B %( . A(Q) B Cmax 2

dV=>"gl, ="l (A 17)
=1 =1

Since these moments are all bounded for constant rmax and ¢max, m and n grow as O(N) in this
sparse limit.

Applying these new expressions, the BBK estimate [13] (equivalent to a truncated GMK
estimate [14]) is:

m m m n
BBK _ ‘ 4 2 T cj
log 2 (r7c)710gN!_ZTZ!_ZCJH_W,Z(Q),Z(Q)' (A 18)
=1 j=1 =1 j=1
The last term can be written as

132§<2) Z(;) :2]1VQ§<T$ —rié(c? ~ )

=1

! 2(2) (DY (a2 a1y L ﬁ, &7
(m# mit) (né né )f2 e 1 ey 1). (A19)

" 2mnrDe)

From the sparse limit guarantee of this estimate, we have that the true log £2(r, c) behaves in this
limit as

m m 1/+3 &2 1

log 2(r,c) =log N! — E ril — E cj!+§<m—l) (W—l)-i—O(N ) (A 20)
‘ ‘ 7 é
i=1 j=1
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We now demonstrate that the EC estimate has the same behavior in this limit, and hence that
it is asymptotically equal to the true value of log 2(r, c¢). We start from the definition of the EC
estimate as

N +moe — 1 _1m ri +oc—1 n ci+m—1
QEC _ c % J
(v c) ( mae — 1 ) H< ac—1 )H m—-1 ) (A2D)

i=1 j=1

where
N2-N+(N?=A)/m  (neM)2 —ne® 4 [(neM)2 — ne@)/m
e = 2-N - né? — ne

—=nS +0(1), (A22)

where
~(1)\2
5= % (A 23)

Thus ac grows asymptotically as N. The quantity S can be understood as the factor by which
the number of effective columns differs from the number of true columns n. The value of S
is positive and finite in general, since ¢ >0 and & > &M, the only exception being when
¢1 =1, ie, when ¢; =1 for all j so that e@ =), This, however, is precisely the degenerate
case considered in Section (a) of this appendix, where we showed that the exact correct result is
obtained in the ac — oo limit.

Given that ac is of order N, all of the binomial factors in the EC estimate benefit from the
following expansion, derived by application of Stirling’s approximation with y > a:

10g($ ;_ y) =log(z + y)! — log y! — log x!

= (z+y)log(z +y) — (z+y) + 3 log2n(z +y)) + 2ty

1 _ _
—ylogy +vy— %log(27ry) T logz! + O((x + y) 2) +O(y 2)

= (z +y) [logy +log(1 + z/y)] — ylogy + 5 log(1 + z/y)
—x —loga! + O(acyiz)
z(x +1)
2y

=zlogy — logx! + + 0z /y?). (A24)

Applying this approximation to the EC estimate, we have

; m—1
j=1
N(N +1 _
— Nlog(mae — 1) — 2(77(1ac7 1)) + O(N 1)

(ac =1)(m —1)

m m
=log N! — = J+ N1
8 -2;” z;c]+ o maoe — 1
1= J=

n(@® +e®)  m@E® 470y NN +1)
2(m —1) 2(aec —1) 2(mac — 1)

+O(Nh. (A 25)

Note that this implies that the sub-leading behavior of ac beyond order N is irrelevant for finding
log £25€ to order N1, and hence that it is adequate to retain only the O(N) terms in Eq. (A 22).
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Now, applying our expression for the leading behavior, we have

m+nS
mnS

m m
logQEC(r,c) =log N! — Zm! — ch! - N
i=1 =1

N n(E® 1My @ 40 N2

1
2m + 2nS "~ 2mnS +ONT).
m m A1) 4 (1)
&+ S
=log N! *Z’"i! — ch! -5
=1 Jj=1
f«(l)(é@) + @(1)) @(U(,ﬁ(?) + f«(l)) A1) (1)

1
520D 57 g 55 TOW ).

™ m 1/+2 22 1
= Jj=

Comparing this with the limiting form of log 2FC(r,c) in Eq. (A 20), we see that we have
agreement in the limit:

(A 26)

log 25C(r, ¢) =log 2(r,c) + O(NY). (A27)

We also observe that this sparse-limit behavior is a result of the specific c-dependence of ac.
If we repeat the same analysis for the GC estimate of Eq. (3.21), which is equivalent to our EC
estimate but with ac = n, we find a constant error:

7(2) 5(2)
log QGC(r,c) =log 2(r,c) + %(T— -1- f(l)) <c— -1- é(l)) +O(Nh,

ey 20 (A28)

and hence the GC estimate of log {2(r, ¢) is not asymptotically equal to the true value.

(c) Effective columns estimate in the dense limit

In this section, we show that in the dense limit where the relative sizes of the row and column
sums are fixed as N — oo, our effective columns estimate asymptotically agrees with the estimate
of Diaconis and Efron (DE) [11]:

¥ (r,0) = QP (r,c) 1+ O(NTH)]. (A29)
Specifically, we define rescaled versions of the row and column sums thus:
o . c
Ti:le CJ:NJ (A3O)

If these are constant up to terms of order N ~las N = oo then Eq. (A 29) applies. This is a dense
limit since the dimensions m and n are fixed, so the density IN/mn goes to infinity.
To demonstrate this result we first consider the DE estimate in the form:

m
log QDE(r,c) =(m—1)(n—1)log(N + %mn) +(Kc—1) Zlogﬂ
i=1

n
+(m—1) Zlogéj +log I'(mKc) — nlog I'(m) —mlog I'(Ke), (A31)
j=1
where

1—w  wey

(A 32)

10000000 V 208 4 0014 Buo-BuysiandAieiosieforeds: H



Only the leading constant behavior of these quantities is needed to find log 2PE(r, c)
to O(N 1) in the dense limit we consider. We have:
w=1+0ONY, Fm=f+0OWN", &=¢&+0ON",
m+1 1 (A33)

Ke=Fk Nt fo—_mrt 1
c c+O( ), C ijE? m,

where we have defined kc. Substituting into Eq. (A 31), this gives
m n
log QDE(r, c)=(m—1)(n—1)log N + (k¢ — 1) Zlogﬁ +(m—-1) Z log é;
i=1 j=1

+log I'(mke) — nlog I'(m) — mlog I'(ke) + O(N™1). (A 34)

Now we also compute the EC estimate in the same limit. First, we consider the parameter .,
which we can write as
N—-14+N(1-=5.8)/m 1 1 B B
256 - my;¢ m
Crucially, we observe that ac is constant in N up to terms of order N~!. Now expanding the
logarithms of binomials in the EC estimate using Eq. (A 24), we have:

Qc —

log QEC(r, c)=—(mac—1)log N + Z[(O[c — 1) log(N7;) — log(ae — 1)!]
i=1

+ log(mae — 1) + Z [(m —1)log(NE;) — log(m — 1)] + oN"1
j=1

= [m(ae — 1) + n(m — 1) — (mac — 1)] log N + (ae — 1) Zlogfi
i=1

n
+(m—-1) Zlogéj + log I'(mac) —nlog I'(m) — mlog I'(ae) + O(Nfl)
=1

m n
=(m—-1)(n—1)logN + (ke — I)ZIOgﬂ +(m—-1) Zlogéj
i=1 =1

+log I'(mke) — nlog I'(m) — mlog I'(ke) + O(N 1. (A 36)

Comparing with Eq. (A 34), we see that this agrees with the dense limit of the DE estimate and
hence the EC and DE estimates are asymptotically equal in this limit. This agreement does not
come as a surprise, given that the Dirichlet-multinomial distribution upon which the EC estimate
is based is, in the dense limit, the same as the Dirichlet distribution that the DE estimate uses.

As with our earlier result for the sparse limit, the equivalence of the effective columns and DE
estimates is fundamentally an effect of the c-dependence of ac. If ac =n as in the GC estimate,
then there is no such equivalence and there is again a constant error between the estimates.

C. Numerical calculations

In this appendix we give some technical details of the numerical tests reported in Section 2.

(a) Generation of test cases

The process by which the test values of r, c are sampled for benchmarking can impact results
like those in Fig. 1. In this section, we describe the scheme we use, explore the impact of using a
different scheme, and examine the effect of changing the shape m, n of the matrix while keeping
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Figure 4. Fractional error of various estimates of log £2(r, ¢). As in Fig. 1 the results are for square m x m matrices of
total sum N. Unlike Fig. 1, however, the values of r, c are the observed margins of uniformly sampled matrices, rather
than being uniformly sampled themselves.

the sum N of all elements fixed. In all cases we find that our estimate for £2(r, c) appears to
outperform other linear-time methods.

In generating the test cases we sample uniformly over possible margins r and c that have
the required sizes m,n and sum to a given N. We also require that all r;, c; be nonzero, since
cases with zeros can be trivially simplified by removing the zeros. Thus, for example, r is drawn
uniformly from the set of all m-element vectors with strictly positive integer entries that sum
to V.

There are other possible approaches, however. One could sample the margins by first
generating a matrix, sampled uniformly from the set of non-negative integer m x n matrices that
sum to IV, and then take the row and column sums of this matrix to form r and c. In effect, this
process samples the margins r and ¢ weighted by the number of possible matrices £2(r, c) with
those margins. In practice this yields more uniform margins, particularly for larger and denser
matrices, because there are larger numbers of matrices with relatively uniform margins than with
non-uniform ones.

Making the margins more uniform typically improves the accuracy of estimates for £2(r, c), as
shown in Fig. 4. Comparing to Fig. 1 we see that all of the estimates generally perform better for
the more uniform margins. Our EC estimate, however, still stands out as performing particularly
well and moreover is now competitive with the SIS benchmark and with the maximum-entropy
methods for large N and m. In fact, when the margins are completely uniform our EC estimate
(with m <n) appears numerically to always give results within the bounds conjectured by
Canfield and McKay [19]. Collectively these observations suggest that the more uniform margins
comprise the “easy cases” for approximating {2(r,c) and the more heterogeneous margins of
Fig. 1 provide a more stringent test.

In Fig. 1 we also consider only square m x m matrices, since performance seems to be driven
primarily by the value of NV and the product of the dimensions mn. Figure 5 offers some evidence
for this claim. In this figure we show the results of tests in which m and n are varied while
keeping N fixed at a value of 1600, and we see that most of the performance is indeed explained
by the combination mn—constant mn in this figure corresponds to diagonal lines from top-
left to bottom-right. These patterns are also observed for other choices of NN, although there
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Figure 5. Fractional error of various estimates of log £2(r, ¢). In these tests the totals of all matrices are fixed at N =
1600 while the numbers of rows and columns are varied. Each data point is averaged over ten sets of margins r, ¢ drawn
uniformly at random. We observe that the performance of the linear-time estimates depends chiefly on the product mn,
while the maximum-entropy estimates are best when m ~ n and poorer for highly oblong matrices.

are some deviations. The maximum-entropy estimates seem to have difficulty when m and n
are very different, and some of the linear-time estimates (EC, GM, and DE) also show some
mild asymmetry. By definition, the true {2(r, ¢) is symmetric under the interchange of r and c,
but asymmetries arise in the approximations. Based on the numerical evidence, we find that
the EC estimate generally performs better for m <n, so if this is not the case we recommend
interchanging the rows and columns before applying the estimate.

(b) Benchmarking

Benchmarking of our estimates requires us to compute accurate ground-truth values of £2(r, c)
for comparison. In this section we describe various methods for doing this, and in particular
address the following question: if you have one hour of computation time (on standard hardware
circa 2022) to get the highest quality estimate of £2(r, c), what method should you use? Under
these conditions, linear-time estimates never give the best answer (although in applications where
speed is important, such as when estimating (2(r, c¢) for a large number of small matrices, linear-
time methods may be the best).

Figure 6 summarizes our results for the best method to use as a function of m and N. In
certain regimes exact solutions are available. Barvinok’s algorithm for counting integer points in
convex polytopes [7, 28] can be applied to give an exact algorithm with running time polynomial
in N, which we implement using the count function from the 1attE software package [29]. This
allows very large values of N to be probed, but the complexity grows quickly in m so this method
is limited to m < 6 on current hardware.

In sparse situations with bounded margins r and ¢ we can compute £2(r, c) exactly using
recursion-based methods. Harrison and Miller [8] have given an implementation of this approach
which exploits repeated entries in the margins to improve running time. While not shown in
Fig. 6, this method can also be used for most cases where N < 100.

For all other cases, we use approximate ground-truth estimates of {2(r,c) computed using
sequential importance sampling (SIS), and among the various SIS methods the EC-based method
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Figure 6. Schematic showing which methods give the best accuracy for estimating £2(r, ¢) in one hour of computer run
time or less. The exact methods shown are Barvinok’s polytope algorithm [7, 29] and the recursion-based approach of
Harrison and Miller [8]. Where these are not applicable the Edgeworth-corrected maximum-entropy estimate is the winner
for many large- N cases, while the EC-based sequential importance sampling approach of this paper is the method of
choice for all the others. The empty region at the top left represents invalid parameter choices for which there are no
matrices with the given margins. This diagram also represents the choice of method used to validate the SIS results in
Fig. 2.

of this paper (Section 5) performs the best as shown in Fig. 2. In principle, the Edgeworth-
corrected maximum-entropy method of Barvinok and Hartigan [15] (Section 4(b)) outperforms
SIS in certain regimes as can be seen in Fig. 1, but this is not useful for our benchmarking since this
is one of the approximations we are trying to evaluate. In a more general setting, however, where
one simply wanted to make the best estimate of £2(r, c) in the time allotted, the maximum-entropy
method could be useful.
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