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Abstract 

We develop a machine learning framework for predicting the density, viscosity, and heat capacity 
of a family of anion-functionalized ionic liquids for CO2 capture, specifically those with 
tetraalkylphosphonium cations and aprotic N-heterocyclic anions (AHAs). We screen several 
feature sets using group contribution-based (GC) descriptors and descriptors extracted from 
COSMO-RS sigma profiles (SP) to build Support Vector Regression (SVR) and Gradient-Boosted 
Regression (GBR) machine learning models. Viscosities and densities were modeled based on data 
sets containing nearly 60 ILs each. The best fit for viscosity used GC-based descriptors and the 
SVR model, achieving a test set %AARD of 12.5% and R2 of 0.989. Density was modeled using 
these same descriptors with the SVR model framework and was fitted with a test set %AARD of 
1.0%. Heat capacity was fit as a function of molar volume and temperature, a general trend 
observed for all ILs in a family. Heat capacity predictions could then be made using the density 
SVR model with a test set accuracy of 3.0 %AARD. With these results, we have developed 
predictive models which can potentially be used in the design of new advanced ionic liquids for 
carbon capture. 

I.  Introduction 

As the societies of the world develop mitigation strategies for rising atmospheric CO2 
concentrations while concurrently addressing rising energy demand, efficient carbon capture 
technologies will likely be necessary to reduce emissions from existing fossil fuel-based power 
generation. Aqueous amines are the currently preferred technology for post-combustion carbon 
capture [1], but they suffer from poor regeneration thermodynamics related to their strong enthalpy 
of reaction with CO2, as well as water evaporation [2]. 

Ionic liquids with aprotic N-heterocyclic anions (AHA ILs) have been proposed [3,4] as an 
alternative solvent for CO2 capture due to their favorable properties, such as negligible volatility, 
high thermal stability [5], and high tunability, especially with regard to their CO2 binding energy 
[6]. The anion of the AHA IL is comprised of a cyclic secondary amine which reacts reversibly in 
an equimolar ratio with CO2 at ambient pressure or below [6–8]. This is an advantage over 
physically absorbing ionic liquids which require high pressures to achieve moderate loading of 
CO2 in the IL [9,10]. Additionally, there is no significant viscosity increase upon complexation 
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with CO2 in the case of AHA ILs (as opposed to many other amine functionalized ionic liquids 
which experience large viscosity increases due to formation of hydrogen-bonding networks [9]). 
In addition to viscosity, density is also very weakly dependent on CO2 loading, as was 
demonstrated, e.g., by the measurements of Makino et al. [11], who reported that at CO2 pressures 
up to 0.7 bar the volume expansion of the AHA IL tributyl(octyl)phosphonium benzotriazolide is 
less than 1%.  

Sensitivity and optimization studies on the properties of AHA ILs for post-combustion 
carbon capture were conducted by Seo et al. [12] and Hong et al. [4]. In each of these works, 
optimal values of AHA IL properties are proposed. However, in the absence of a model to map 
chemical structures to chemical properties, this approach has limitations because it is difficult to 
predict the tradeoff between different material properties.  Moreover, a set of optimal physical 
properties may not correspond to any actual IL and therefore serve merely as a guideline for IL 
selection or de novo design. In this work, we aim to map the relevant thermophysical properties—
particularly density, viscosity, and heat capacity—of AHA ILs to ab initio and structural predictors 
using machine learning models. Given the documented insensitivity of AHA IL density and 
viscosity to CO2 loading, the predicted properties may be considered applicable to both CO2 rich 
and lean process conditions and therefore be relevant to future process modeling studies.  

Machine learning models and quantitative structure property relationship (QSPR) methods 
have been used in a variety of works for the prediction of IL properties. In particular, researchers 
have found that density as a function of temperature can be modeled well, often reporting errors 
of less than 2% AARD, using a variety of descriptors (e.g., group contribution [13–17]) and models 
(e.g.,  SVR [15,18], artificial neural networks (ANNs) [15,19], decision tree based methods [19–
21], and multiple linear regression (MLR) [15,17,19,21–26]). Some models include other 
parameters such as pressure [13–15,22,24] and water content [15,21] as input variables. On the 
other hand, predicting viscosity is more challenging, often requiring authors to reduce the IL space 
to a fixed class of cations or anions [18,27–33] or to implement GC type descriptors to differentiate 
between IL families [17,34–39] to achieve accuracies better than 20% AARD. Models for IL heat 
capacity have found sufficient accuracy with MLR and other parametric regression approaches 
[17,40–45]. Decision-tree based methods [20] and ANNs [42] have also been investigated to this 
end. Nonetheless, these efforts have either focused on limited classes of ILs or exclusively used 
the NIST ILThermo database,[46,47] both of which do not include sufficient data to model ILs 
that chemically react with CO2.   

We investigate the efficacy of support vector machine regression (SVR) and gradient-
boosted regression (GBR) for modeling and predicting thermophysical properties of AHA ILs. 
SVR has been used in a number of studies involving IL property prediction [42,48–50], including 
our prior work on dialkylimidazolium ILs [18]. GBR and similar tree-based methods have also 
been used in several studies on ILs. For example, Dhakal and Shah use extreme gradient boosting 
(XGBoost) to predict IL ionic conductivity [51] and Venkatraman et al. [52] found that tree-based 
methods offered slight advantages over SVR and k-nearest neighbor approaches in predicting ionic 
liquid melting points. 
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Descriptors and molecular representations which contain relevant information are key to 
accurate chemical and thermophysical property prediction. In a review on QSPR methods for 
material property prediction, Le et al. [53] assign chemical descriptors to five categories: 
constitutional, topological, physicochemical, structural, and quantum-chemical. Additionally, 
Philippi et al. [54] suggest that inputs to machine learning models must consider the factors which 
distinguish ionic liquid viscosities from those of molecular liquids: charge networks and 
coulombic compaction. One quantum-chemical descriptor set investigated in this work is based on 
the COSMO-RS sigma profile. COSMO-RS is a thermodynamic model [55,56] which uses surface 
screening charge distributions calculated with quantum chemical methods for individual species 
to model the thermodynamic behavior of mixtures. The surface screening charge representation 
used by COSMO-RS, called the sigma profile, is a histogram of surface screening charge density 
[57]. In this sense, it is a two-dimensional descriptor which contains by design information that 
describes the thermodynamic interactions of species in solution. However, this information can 
also be used to describe thermophysical properties; for example, we have used descriptors based 
on COSMO-RS sigma profiles to predict the density, viscosity, and ionic conductivity of 
imidazolium based ionic liquids [18]. Sigma profiles and other surface charge- and screening 
charge-based methods have also been used to predict other IL properties, such as infinite dilution 
activity coefficients [48], heat capacity [42], viscosity [31,58] and toxicity [59]. From the 
perspective of process optimization and molecular design, sigma-profile-based descriptors have 
the advantage that they are continuous variables that can be used in an optimization problem.  
However, it is non-trivial to map a set of sigma-profile values back to a physically realizable IL 
structure. 

Group contribution-based (GC) descriptors are constitutional descriptors and have also 
been used to predict several of the IL properties of interest to this study. For example, Gharagheizi 
et al. [60] used GC descriptors with a multiple linear regression model to estimate the viscosity of 
a large general set of ILs. This type of descriptor has also been used to predict melting point [61,62] 
and CO2 solubility [63]. GC descriptors are attractive because they correspond intuitively to 
structures; however, for the purpose of design optimization they may be less desirable because 
they are discrete (rather than continuous) variables. 

II. Methods 

In this section we discuss how we assembled and processed the thermophysical property 
data, how we generated the group contribution and COSMO-RS features, the regression and 
evaluation process, and how we dealt with the heat capacity, since it depends on the density. 

II. A. Data Acquisition and Processing 

Data for viscosity, density, and heat capacity of ionic liquids with tetraalkylphosphonium 
cations and AHA anions were obtained from the literature [5–9,11,64–74]. All 
tetraalkylphosphonium cations contain n-alkane and/or ether groups of varying lengths. All cation 
and anion core groups and functional groups that were included in the data set are summarized in 
Table 1. 
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Table 1: Cation and anion core and functional groups involved in this study. 

Cation Core 

P+R4

R3

R2

R1

 
Cation Groups 

R  R
O

R'  
Alkane Ether 

Anion Cores 

N
-

R 2

R
3

R4

R
5

 

N
-

N

R
3

R4

R
5

 

N
-

N R 2R4

R
5

 

Pyrrolide (Pyr) Pyrazolide (Pyra) Imidazolide (Im) 

N
-

N
NR4

R
5

 

N
-

NN

R
3

R
5

 

N
-

N
N

N

R
5

 

1, 2, 3-triazolide (3-Triz) 1, 2, 4-triazolide (4-Triz) Tetrazolide (Tetz) 
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N
-

N
R 2
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4

R5

R6
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N
-

N
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4

R5

R6
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7

 
Benzimidazolide (BnIm) Indazolide (Inda) 

N
-

R 2

R
3R

4

R5

R6

R
7

 
Indolide (Indo) 
Anion Groups 

CH3  CF3  N+
O

O
-
 

Methyl (CH3) Trifluoromethyl (CF3) Nitro (NO2) 
Cl  Br  CN  

Chloro (Cl) Bromo (Br) Cyano (CN) 
 

The viscosity data set consists of ILs containing 15 unique cations, 26 unique anions and a 
total of 59 unique combinations. Low temperature data (below 290 K) were excluded because 
measuring such data is typically less reliable; there is increased risk of water condensation at these 
temperatures and experimental uncertainties may be higher at extremely high viscosities.  
Therefore, only data between 290 K and 373 K were included. The distribution of the 527 viscosity 
observations in this set is shown in Figure 1 and the data are given in Table S1.A of the 
Supporting Data spreadsheet. The density data set has 58 unique ILs consisting of 13 unique 
cations and 25 unique anions. The temperature ranges from 293 K to 363 K. The distribution of 
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the 549 density observations also appears in Figure 1 and the data are provided in Table S2 of the 
Supporting Data spreadsheet. The available heat capacity data were constrained to ILs with 
melting points below 283 K. There were significantly fewer Cp data available for AHA ILs than 
for viscosities and densities. In fact, there are just 15 unique ILs made from 12 anions and 3 cations 
in the heat capacity data set. Nonetheless, heat capacity is an important thermophysical property 
for CO2 capture solvents since the absorption and regeneration processes generally involve a 
temperature swing.  The 37 heat capacity observations are shown on the right most plot on Figure 
1 and the data are given in Table S3 of the Supporting Data spreadsheet.   

 
Figure 1. Histograms of literature experimental data for the properties of interest [5–8,64–70]. 
The natural logarithm of viscosity (left) is shown in addition to the viscosity values on the 
secondary abscissa. Density (middle) and heat capacity (right) are plotted on linear scales. 

 We hypothesized that only AHA-based ionic liquids would be relevant to prediction of 
AHA IL properties due to the highly polar and chemically basic nature of the AHA anions. 
Nonetheless, we also compiled additional phosphonium IL viscosity data from the ILThermo 
database [46,47] as well as from the literature [75–78] to fit to a larger dataset and validate this 
hypothesis. In total, the non-AHA viscosity dataset consists of an additional 55 ILs, 937 viscosity 
observations, and 45 unique anions.  These data are given in Table S1.B of the Supporting Data 
spreadsheet. 

II. B.  Group Contribution Feature Generation 

 The functional groups employed in developing the corresponding group contribution (GC) 
descriptors are shown in Table 2. There are six anion core groups corresponding to all the 
monocyclic AHA anions and a bicyclic descriptor to allow for bicyclic anions. For instance, an 
indazolide anion has one pyrazolide core and one bicyclic functional group. All cations have a 
phosphonium core and terminal -CH3 groups so the features on the cation are the number of interior 
-CH2- and -O- groups. Group contribution representations for all ions in this study are available in 
the Supporting Data spreadsheet, Table S4. 



7 
 

Table 2. GC descriptors for cations and anions used in this work with triethyl(octyl)phosphonium 
4-bromoindazolide as an example. 

Example IL 

P+

N
-

N

Br

 
Cation Groups 

Group No. in Example IL 
Alkyl [-CH2-] 10 

Ether [-O-] 0 
Anion Cores 

Pyrrolide [Pyr]  0 
Pyrazolide [Pyra] 1 
Imidazolide [Im] 0 

1, 2, 3-triazolide [3-Triz] 0 
1, 2, 4-triazolide [4-Triz] 0 

Tetrazolide [Tetz] 0 
Anion Groups 

Bicyclic 1 
Methyl [-CH3] 0 

Trifluoromethyl [-CF3] 0 
Cyano [-CN] 0 
Nitro [-NO2] 0 
Chloro [-Cl] 0 
Bromo [-Br] 1 

 

II. C.  COSMO-RS Feature Generation 

All COSMO-RS based descriptors used in this work are developed from each ion’s sigma 
profile. Sigma profiles were generated using a method similar to that used by Nordness et al. [18] 
where the geometry of the ions is optimized individually in the gas phase using Gaussian 16 [79] 
with the BVP86 method, triple-ζ valence potential (TZVP) basis set, and the DGA1 density fitting 
set. After geometry optimization, a frequency calculation is performed to confirm an optimal 
geometry is attained (i.e. not a transition state). A conductor-like polarizable continuum model 
calculation was performed with the same method, basis set, and fitting set, using Gaussian’s 
COSMO-RS calculation option and a *.cosmo file is obtained. A sample Gaussian input *.com 
file for 1, 2, 4,-triazolide is given in Section 1.1 of the Supplementary Materials document. The 
individual ion sigma profiles were then calculated from each *.cosmo file using COSMOthermX19 
[80–82] and the BP_TZVP_19 parameterization. Before further calculations were performed, the 
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cation and anion sigma profiles for each species of interest were additively combined to obtain a 
sigma profile for the IL; this is referred to as the meta-file approach in the literature [83]. The 
cation and anion sigma profiles are available in Tables S5.A and S5.B of the Supporting Data 
spreadsheet. 

The sigma profile generated by the COSMOtherm software was binned in equal size bins 
separated by 0.001 e/Å2, where ‘e’ represents the elementary charge, along the screening charge 
axis. Following the work of Palomar et al. [84] we further discretized the sigma profile into larger 
bins to reduce the dimensionality of the descriptors. Since Nordness et al. [18] and others chose 
the number of equal sized bins somewhat arbitrarily, we screened multiple bin sizes. We focused 
on the nonzero sigma region of the sigma profile for ILs in this study between [-0.02 e/Å2, 0.03 
e/Å2] and discretized this range into 9, 15, and 19 equal size bins, with the first and last bin being 
for overflow (referred to as SP9, SP15, and SP19, respectively). The boundaries of the bins are 
summarized in Figure 2, using triethyl(octyl)phosphonium 4-triazolide as an example. In addition, 
we performed regression with all 51 bins from the COSMOtherm output, having 0.001 e/Å2 width 
each (SP51). These feature sets are available for all AHA ionic liquids in the viscosity set in Tables 
S6-S9 of the Supporting Data spreadsheet. Table S6.B contains the SP9 feature set for the larger 
dataset including AHA and non-AHA phosphonium ILs (SP9+NA). 

 
Figure 2: Sigma-profile bin sets for triethyl(octyl)phosphonium 4-triazolide. e is the elementary 
charge (1.6×10-19 coulomb) and Å is angstrom (1×10-10 meter); these are the standard COSMO-RS 
units.  

When performing analysis with the SP9, SP15, SP19, and SP51 feature sets, it became 
apparent that many of the bins exhibited significant multicollinearity, i.e. the bin heights were 
correlated with each other; this was especially true for adjacent bins. To remediate this problem, 
additional feature sets were prepared in which one bin of any pair of bins with a correlation, 𝑅𝑅 >
0.9, was dropped based on which bin had the lower standardized residual in a multilinear 
regression model with all other bins included. These new feature sets are referred to as CovX-SP9, 
CovX-SP15, and CovX-SP19. It was also hypothesized that the reason some bins were collinear 
was because they were canonically part of the same feature of the sigma profile. To further analyze 
this, we prepared a feature set from all SP51 where bins with correlation, 𝑅𝑅 > 0.9, were iteratively 
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combined. The resulting feature set, SP-Cov, and the ultimate bin boundaries are discussed in 
section III. B. The covariance adjusted feature sets (CovX-SP9, CovX-SP15, and CovX-SP19) and 
the SP-Cov set are available in Tables S10-13 of the Supplementary Data spreadsheet for 
modeling of the AHA IL viscosity data set. 

In addition to the sigma-profile-based feature sets, we also calculated COSMO-RS 
interaction energies as a feature set, which was the method used by Koi et al. [50]. However, these 
features performed poorly when applied to both a linear regression model and an SVR model, so 
they are not discussed further. We note that a key difference between the ionic liquids in the study 
by Koi et al. and our work are the anion moieties. In particular, the AHA anions have much greater 
charge polarization. 

II. D. Regression and Evaluation  

The density and viscosity data sets were randomly split into 5-folds of roughly equal size 
to test the predictive capability of each model that is developed through cross-validation. This is a 
procedure in which a portion of data, or a fold, is held out from the training set and the performance 
of the model at predicting that particular fold is tested. The folds are created such that no 
observations of one IL appears in another fold, similar to the work of Nordness et al.[18] and 
Baskin et al. [19]. This is done because, as observed by Faundez et al. [85], the predictive ability 
of machine learning models cannot be accurately quantified by the model’s performance on species 
which appear in the training set. Rather they must predict properties for chemical species which 
are not included in the development of the model. However, since ILs may be considered a simple 
mixture of cation and anion species, models which perform more strict segregation by not only IL 
species but also by ion species, as demonstrated by the works of Makarov et al. [86,87], have even 
better predictive power than those without. With such a limited dataset containing a large variety 
of ion species, we do not adhere to the stricter approach of Makarov et al. and therefore 
acknowledge this limitation that our model will perform best for the 390 combinations of 15 
cations and 26 anions in the viscosity set and the 325 combinations of 13 cations and 25 anions in 
the density set. Therefore, predictions for ILs outside of the support of the unique cations and 
anions present in the model are extrapolations and must be viewed critically until their properties 
are experimentally verified. 

The ILs contained in the 5-folds for both the density and viscosity sets are available in the 
Supporting Data spreadsheet, Tables S14-15. Additionally, a set of representative ILs, shown in 
Table 2, is held out from training for use as a test set and the final model developed is based on 
best performance for this set. These ILs were selected because they include 4 of the 6 anion base 
groups, 5 of the 7 anion functional groups, have various cation sizes, and include oxygenated 
cations. Comparatively, the training set has the full support of anion base groups and functional 
groups and a similar range of cation sizes. In the case of the larger dataset containing AHAs and 
non-AHAs, the validation sets (5-fold and test) were made to only contain AHAs because the goal 
of this work was to predict the properties of tetraalkylphosphonium AHAs. For simplicity, the 
AHA/non-AHA combined model uses the same 5-folds and test set as the AHA only models. 

Table 2. Test set ILs for density and viscosity. 
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P+ O
O N

NN
 

triethyl((2-methoxyethoxy)methyl)phosphonium 4-triazolide 

P+

N
-

N  
triethyl(dodecyl)phosphonium 2-cyanopyrrolide 

P+
N

- N F
F

F
 

triethyl(butyl)phosphonium 3-trifluoromethylpyrazolide 

P+
N

N

Br

 
triethyl(octyl)phosphonium 4-bromoimidazolide 

P+
N

N

Br  
triethyl(octyl)phosphonium 5-bromoindazolide 

P+

N
-

N

N+

O

-
O

 
triethyl(nonyl)phosphonium 4-nitropyrazolide 
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P+

N
-

N  
tributyl(dodecyl)phosphonium benzimidazolide 

P+

N
-

NBr  
trihexyl(tetradecyl)phosphonium 6-bromo-benzimidazolide 

 

 Both machine learning methods, SVR and GBR, employ functions from the Scikit-learn 
package [88] in Python. We also considered artificial neural network (ANN) and Gaussian process 
regression (GPR) models but they did not perform well in initial work so they were not pursued 
further.  The SVR method employed uses the radial basis function (RBF) kernel as it has lower 
bias and is better able to represent nonlinearity than other common kernels. Often transformations 
of the dependent and/or independent variables in a regression problem can be helpful for fitting. 
For the density data set, mean centering and standard scaling of neither the dependent nor 
independent variable transformations appeared to produce significant differences in accuracy of 
the resulting fit so these values are used as is. In the case of viscosity, the best results were observed 
when the independent variables are not transformed but a natural logarithm transform is used for 
viscosity; i.e., the fitted property is, 

𝜂𝜂′ = ln (𝜂𝜂 [Pa ⋅ s]) 

( 1 ) 

where 𝜂𝜂′ is the natural logarithm of viscosity which is predicted and 𝜂𝜂 is the dynamic viscosity in 
Pascal seconds. The SVR and GBR models perform differently based on the values of 
hyperparameters which are assigned to them. A grid search is used to find near optimal 
hyperparameters for each descriptor set, model, and assessment method (test or 5-fold) used. 
Transforming viscosity by dividing by density and molecular weight and then taking the logarithm 
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is done in the Orrick-Erbar type approach adopted by Gardas and Coutinho [89] for ionic liquid 
viscosity. That is, fitting the property, 

𝜂𝜂⋆ = ln �
𝜂𝜂

𝜌𝜌 ∗ 𝑀𝑀𝑀𝑀
� 

( 2 ) 

where 𝜂𝜂⋆ is the predicted viscosity variable, 𝜂𝜂 is the viscosity in Pascal seconds, 𝜌𝜌 is the density 
in kilograms per cubic meter, and 𝑀𝑀𝑀𝑀 is the molecular weight in grams per mole. We implemented 
this equation in our GC/GBR model but saw negligible improvement and therefore opted to fit 𝜂𝜂′ 
from Equation 1 only in this study. 

 Each fit is evaluated using percentage average absolute relative deviation (%AARD) and 
coefficient of determination (R2). The %AARD is calculated as, 

%𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
1
𝑁𝑁
��

𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖
𝑦𝑦𝑖𝑖

� ∗ 100%
𝑁𝑁

𝑖𝑖

 

( 3 ) 

For 𝑁𝑁 observations of the dependent variable 𝑦𝑦 where 𝑦𝑦�𝑖𝑖 is the model’s estimate of the 𝑖𝑖𝑡𝑡ℎ 
observation of 𝑦𝑦. The 𝑅𝑅2 is calculated as, 

𝑅𝑅2 =
𝑆𝑆𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

 , 𝑆𝑆𝑆𝑆𝑆𝑆 = �(𝑦𝑦�𝑖𝑖 − 𝑦𝑦�)2
𝑁𝑁

𝑖𝑖

 , 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = �(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2
𝑁𝑁

𝑖𝑖

 

where 𝑆𝑆𝑆𝑆𝑆𝑆 is the regression sum of squares or the square variation of the estimates around the 
mean of the dependent variable observations, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is the total sum of squares or the square 
variation of the data around the mean, 𝑦𝑦�𝑖𝑖 is the model’s estimate of the 𝑖𝑖𝑡𝑡ℎ observation of 𝑦𝑦, and 𝑦𝑦� 
is the arithmetic mean of 𝑦𝑦 observations in the data set. A sample script which performs the model 
fitting and analysis for the density and viscosity sets is available in Sections 2.1 and 2.2 of the 
Supplementary Materials document. 

II. E. Heat Capacity Fitting  

 In order to fit the constant pressure heat capacity of these ILs, we first consider an 
observation made by Strechan et al. [90] and Gardas and Coutinho [40], that heat capacity on a 
volumetric basis at room temperature, i.e., the heat capacity in energy per temperature unit per 
volume, is roughly constant for most ILs. This quantity has been referred to as the volumic heat 
capacity [91].  We use the later observation by Paulechka et al. [91] that this relationship, when 
expanded to be a linear function of temperature, gives a good approximation of volumic heat 
capacity in a moderate temperature range: 
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𝐶𝐶𝑝𝑝
𝜌𝜌𝐿𝐿−1 ∙ 𝑀𝑀𝑀𝑀

≈ 𝑘𝑘1 + 𝑘𝑘2 ∙ 𝑇𝑇 

( 4 ) 

where 𝐶𝐶𝑝𝑝 is the molar heat capacity in J/mol K-1, 𝜌𝜌𝐿𝐿 is liquid density in g/cm3, 𝑀𝑀𝑀𝑀 is molecular 
weight in g/mol, 𝑇𝑇 is temperature in Kelvin, and 𝑘𝑘1 and 𝑘𝑘2 are fitted parameters that are appropriate 
for an entire set of ILs.  Once 𝑘𝑘1 and 𝑘𝑘2 have been evaluated for a few ILs in the family, the heat 
capacity (𝐶𝐶𝑝𝑝) of all the other AHA ILs can be predicted as a function of temperature using the 
density from the ML model and the molecular weight, which is known from the structure. This 
routine is shown graphically in Scheme 1. 

 
Scheme 1: Flow chart representation of heat capacity fitting. 𝜌𝜌 is IL density, 𝑀𝑀𝑀𝑀 is molecular 
weight, 𝑉𝑉 is IL molar volume, 𝑇𝑇 is temperature in Kelvin, and 𝑘𝑘1 and 𝑘𝑘2 are constants from Eq. 
4. 

Since there was a limited amount of liquid heat capacity data, prediction is assessed based 
on only 4 ILs from the 17 IL set. The 4 ILs held in the test set are tetraoctylphosphonium 
benzimidazolide, trihexyl(tetradecyl)phosphonium pyrazolide, tributyl(dodecyl)phosphonium 
benzimidazolide, and tributyl(dodecyl)phosphonium 3-cyanopyrrolide. These 4 ILs represent 3 of 
the 4 unique cations, and 3 of the 13 unique anions in the set, and contain both bicyclic and 
monocyclic anions. A sample script which fits and evaluates this model is available in Section 2.3 
of the Supplementary Materials document. 
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III. Results and Discussion 

Below we discuss the results for modeling of viscosity, density and heat capacity of AHA 
ILs.  Since viscosity is the most challenging property to model, we discuss it first, comparing the 
various group contribution (GC) and sigma-profile (SP) descriptors that we explored.  There is a 
separate section on our attempts to eliminate correlation between adjacent sigma-profile bins in 
the modeling of viscosity. 

III. A. Viscosity 

 The decision of which feature set to use for the final model was made based upon the 
features that are best able to predict viscosity, because IL density was fit to similar accuracy with 
most of the feature sets that were considered. We evaluated performance of each of the GBR and 
SVR models with each feature set using both the test set and 5-fold cross validation. The SVR 
model constructed using the GC descriptor set had both the best %AARD and R2 for the test set 
and the best average %AARD for the 5-fold cross validation. The performance at predicting the 
viscosities of the test set ILs for the SVR and GBR models using the GC, all four sigma-profile 
(SP51, SP9, SP15 and SP19) based descriptor sets, and the augmented dataset using SP9 and 
additional non-AHA data (SP9+NA) is shown in Figure 3 and Table 3, and the performance for 
the aforementioned models at predicting the viscosities of the 5-fold set ILs is also given in Table 
3. 

 
Figure 3. Bar graph comparing test set performance of SVR and GBR viscosity models based on 
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GC and SP. The performance metrics shown are %AARD (red and blue bars with left axis) and 
1 − 𝑅𝑅2 (green and violet bars on right axis). 

Table 3. Performance summary for the GC/SP-based SVR/GBR viscosity models. 
 

Test 5-fold CV Average  
GBR SVR GBR SVR 

Feature 
Set 

%AAR
D 

R2 %AAR
D 

R2 %AAR
D 

R2 %AAR
D 

R2 

GC 17.2 0.873 12.7 0.988 22.1 0.844 21.6 0.810 
SP51 27.5 0.727 34.8 0.275 33.5 0.673 45.4 0.432 
SP9 20.6 0.855 49.8 0.164 26.8 0.780 51.7 0.388 
SP9+NA 31.0 0.845 35.4 0.700 47.8 0.19 53.7 0.320 
SP15 25.7 0.706 45.8 0.184 31.2 0.724 48.9 0.376 
SP19 25.1 0.767 40.4 0.220 30.4 0.655 47.6 0.397 

 

 Both the GC SVR and GC GBR models had superior performance to all SP-based models. 
The GBR model worked best for the sigma-profile-based sets. Additionally, within the set of GBR 
models the number of sigma-profile bins did not appear to have a definite trend, but for the SVR 
set more sigma-profile bins improved model performance. This is a reasonable result as decision 
tree-based models are often considered to be robust to overfitting of high dimensional data. The 
larger SP9+NA dataset containing non-AHA phosphonium ILs performed more poorly when used 
with a GBR model than the SP9, and showed only slight improvement over the SP9 SVR model, 
but still with a poor fit. Therefore, we only consider models constructed with the AHA only 
datasets herein. Ultimately, the GC SVR model was selected due to its superior performance in 
both testing and cross-validation and a parity plot of these models for the test set and the 5-fold 
CV set are shown in Figure 4. 
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Figure 4. Parity plots for GC SVR viscosity model for test set ILs and 5-fold cross validation 

sets. Gray shaded region is ±10% of the reported viscosity. 

 The test set performance is significantly better than the 5-fold cross validation set. We 
believe this to be a result of how we chose the test set. The test set contains ILs whose cations and 
anions appear in multiple different pairings in the support. The 5-fold cross validation set was 
randomly selected, however, and as a result the poorest performing ILs either have few or no 
similar ILs in the support or are the product of a broken trend such as the increase in viscosity that 
occurs when exchanging the smaller [P2228]+ cation with the [P66614]+ cation in the case of 
[6BrBnIm]-. 

III. B. Sigma Profile Covariance 

 In the modeling of viscosity with sigma-profile descriptors, we observed that several 
adjacent sigma-profile bins were significantly correlated across the data set. In an effort to improve 
the SP-based models, we attempted to remove the redundant information by removing bins which 
were highly correlated with another bin by the procedure described in Section II. C. Additionally, 
it was hypothesized that high correlation between adjacent bins may suggest that the bins represent 
the same canonical feature. To investigate, we developed another SP-based feature set referred to 
as SP-Cov with bins of varying sizes, the boundaries of which are constructed according to the 
procedure described in Section II. C. The resulting bin boundaries are shown graphically in 
Figure 5, using triethyl(octyl)phosphonium 4-triazolide as an example. The performance of 
models for viscosity constructed using these covariance remediation methods is compared to those 
models without covariance remediation in Figure 6 and Table 4. 



17 
 

 
Figure 5. Sigma profile for triethyl(octyl)phosphonium 4-triazolide (black curve) with SP-Cov 
bins. Bin S1 bisects bin S0, as it contains additional variance uncorrelated to either side of S0. 

 
Figure 6. Bar graph comparing performance of models with and without highly covariate features 
removed or reconstructed. Performance metrics are %AARD (red and blue bars with left axis) and 
1 − 𝑅𝑅2 (green and violet bars on right axis) for the test set. 

Table 4. Performance summary/comparison for covariance-based feature sets. 
 

Test 5-fold CV Average  
GBR SVR GBR SVR 

Feature 
Set 

%AARD R2 %AARD R2 %AARD R2 %AARD R2 
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SP51 27.5 0.727 34.8 0.275 33.5 0.673 45.4 0.432 
SP-Cov 27.6 0.710 58.8 0.131 34.0 0.655 54.0 0.308 
SP9 31.8 0.773 39.2 0.757 29.7 0.709 44.6 0.504 
CovX-
SP9 

20.6 0.855 49.8 0.164 26.8 0.780 51.7 0.388 

SP15 23.9 0.845 61.2 0.097 28.8 0.783 60.6 0.291 
CovX-
SP15 

25.7 0.706 45.8 0.184 31.2 0.724 48.9 0.376 

SP19 24.9 0.780 42.3 0.219 29.1 0.755 47.4 0.413 
CovX-
SP19 

25.1 0.767 40.4 0.220 30.4 0.655 47.6 0.397 

 

 Reducing the number of bins from the SP51 case to the SP-Cov case does appear to provide 
a benefit in significantly increasing the R2 for both the SVR and GBR models but has a slightly 
negative effect on the %AARD. Since R2 as a performance metric preferentially penalizes poor 
estimates away from the mean and %AARD preferentially penalizes poor estimates near the origin 
this may suggest that the SP-Cov model is improving the performance of the model at high 
viscosity values at the cost of low viscosity accuracy. A similar trend appears between the SP19 
and CovX-SP19 feature sets as well as the SP9 and CovX-SP9 sets. Overall, the GBR models still 
performed much better than the SVR models for all SP-based feature sets. We conclude that while 
removing some covariant features using the methodologies described did increase the R2 in most 
cases, the ultimate performance of the SP models was still dwarfed by that of the GC-based model 
for this narrowly defined data set of phosphonium AHA ILs. 

 Finally, to rationalize the results of the SP-Cov models we compare the SP-Cov features to 
the GC features by analyzing the correlation between these two sets of features. A heat map of this 
analysis is shown in Figure 7. Notably, in the case of the cation features, S1 is highly correlated 
with presence of ether groups and S0, S3, and S4 are correlated with the length of the alkyl chains 
on the phosphonium. For the anion base groups, the pyrrolide (Pyr) group and bicyclic core are 
described with S17-S19 and S10/S15, respectively. The other core groups are not clearly correlated 
to any single SP-Cov bin. Additionally, while many of the anion functional groups are correlated 
with the SP-Cov bins, the methyl group and chloro groups are not. In other words, there doesn’t 
appear to be a distinghishable and characteristic change in the sigma profiles in this dataset for 
functionalization with methyl and chloride groups and for base groups other than pyrrolide. In this 
sense, while much of the information about which functional groups are present is directly 
translated to the SP-Cov feature set, there is a significant amount of information which is 
represented in the GC set but not the SP-Cov set, providing a possible explanation for why the two 
perform so differently. Given that GC features cannot be reproduced by the SP-Cov set we 
hypothesize that either there is some information in GC that is absent in the sigma profile, such as 
structural insights, or there is insufficient precision in the sigma profile and/or variety in the sigma-
profile dataset for the GC features to be deconvoluted.  



19 
 

 
Figure 7. Heat map of correlation, R, between SP-Cov bins and GC groups for ILs studied in this 
work. CH2 and O are cation groups and all others are anion groups. 

III. C. Density 

 Since the GC feature set was the superior set for predicting viscosity, the same feature set 
is used for density with the goal of creating a set of model with one set of inputs. Models using the 
SVR and GBR methods were developed and performed similarly in both the test set case and the 
5-fold cross validation case, having %AARD of around 1% each and R2 of 0.961 and 0.968, 
respectively. For the purpose of consistency with the viscosity model, the GC/SVR model is 
ultimately selected and the results of that fit are shown in Figure 8.  
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Figure 8. Parity plot of GC/SVR density model for test set and 5-fold cross validation sets. Gray 
shaded region is ±2% of the measured density. Both the test set and the 5-fold CV set have 
%AARD of 1.0%. 

While the test set data are very well reproduced by the model, there are two ILs in Fold 2 
of the 5-fold CV set for which the model predictions versus reported values have a negative slope; 
i.e., the model predicts that the density increases with increasing temperature. These two species 
were identified as [P4444][BnIm] which has a melting temperature of 71 °C [64] and [P4444][Im] 
which is generally a solid at room temperature but may liquify upon mechanical disturbance [69]. 
Therefore, it is hypothesized that the error in the trend predicted by the model could be due to these 
ILs, and the other [P4444] based ILs in the data set, being near a phase transition at the measurement 
temperatures. Additionally, as a result of being solids at room temperature, the measured 
temperatures in the data available for each of these ILs are among the highest present in the data 
set, ranging from 353-363 K and 333-363 K for [P4444][BnIm] and [P4444][Im], respectively. It is 
also possible that the model performance could be hindered at these higher temperatures. Similarly, 
[P4444][6BrBnIm] which is an IL present in Fold 1 with reported densities between 1100 and 1150 
kg/m3, is also very poorly described by the model and has a melting temperature of 69 °C [64]. 

III. D. Heat Capacity 

 To fit and predict the heat capacity data, first we fit the volumic heat capacity data for the 
13 training ILs to Eq. 4 This resulted in a reasonably good fit having a %AARD of 2.9%. The 
resulting model is given below and plotted in Figure 9: 

𝐶𝐶𝑝𝑝�

𝜌𝜌𝐿𝐿−1 ∙ 𝑀𝑀𝑀𝑀
�

J
cm3 ∙ K

� ≈ 1.181 + 2.01 ∙ 10−3(𝑇𝑇 [K]) 

( 5 ) 
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Where 𝐶𝐶𝑝𝑝� is the model predicted heat capacity, with the hat indicating it is a regression model 
estimate. The temperature dependence term of 2.01 ∙ 10−3 J

cm3∙K2
 is more than twice as large as 

that of 8.33 ∙ 10−4 J
cm3∙K2

 reported by Paulechka et al. [91] who, however, considered no 
phosphonium cations and the anions considered were less basic (in terms of the ability to accept a 
proton) than those investigated here. In Figure 9, the gray shaded region on either side of the 
dashed line fit represents ±5% of the predicted volumic heat capacity. Also shown in the graph as 
a red dotted line is the fit from Paulechka et al. [91], along with red shaded ±5% values on either 
side of that line.   

 
Figure 9. Fitted line of volumic heat capacity versus temperature of 13 AHA ILs. Gray shaded 
region is ±5% of the line.  The red dotted line and ±5% is the fit by Paulechka et al. [91] for a 
different set of ILs. 

With this relationship established between the volumic heat capacity and temperature, a GC/SVR 
density model was trained on all of the data besides the four test set ILs and was used to predict 
the densities of these ILs at the temperature of each heat capacity observation. Using these 
densities, the volumic heat capacity estimated with Eq. 5, and the molecular weights of each IL, 
the molar heat capacity was predicted and has a %AARD of 3.0% relative to the experimental 
data. The results of this prediction are shown in a parity plot in Figure 10. 
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Figure 10. Parity plot of heat capacity model. Gray shaded region is ±5%. 

IV. Conclusions and Recommendations 

 We have expanded upon the framework developed by Nordness et al. [18] to predict the 
viscosity, density, and heat capacity of phosphonium AHA ionic liquids.  This is an important 
class of ILs that can reversibly react with CO2 and have potential for CO2 capture applications. 
Several bin sizes for feature extraction from COSMO-RS sigma profiles were considered as was 
covariance between the extracted features and its impacts on regression. We screened through 
multiple SVR and GBR models and analyzed both group contribution (GC) and several COSMO-
RS sigma-profile-based descriptor sets and determined that SVR models with GC-based 
descriptors offered the best predictions for this data set.  The ultimate goal is incorporation of these 
models into a combined chemical process and material design framework to aid in the discovery 
of even better AHA ILs for CO2 capture.  
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