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Abstract

We develop a machine learning framework for predicting the density, viscosity, and heat capacity
of a family of anion-functionalized ionic liquids for CO: capture, specifically those with
tetraalkylphosphonium cations and aprotic N-heterocyclic anions (AHAs). We screen several
feature sets using group contribution-based (GC) descriptors and descriptors extracted from
COSMO-RS sigma profiles (SP) to build Support Vector Regression (SVR) and Gradient-Boosted
Regression (GBR) machine learning models. Viscosities and densities were modeled based on data
sets containing nearly 60 ILs each. The best fit for viscosity used GC-based descriptors and the
SVR model, achieving a test set %AARD of 12.5% and R? of 0.989. Density was modeled using
these same descriptors with the SVR model framework and was fitted with a test set %AARD of
1.0%. Heat capacity was fit as a function of molar volume and temperature, a general trend
observed for all ILs in a family. Heat capacity predictions could then be made using the density
SVR model with a test set accuracy of 3.0 %AARD. With these results, we have developed
predictive models which can potentially be used in the design of new advanced ionic liquids for
carbon capture.

1. Introduction

As the societies of the world develop mitigation strategies for rising atmospheric CO»
concentrations while concurrently addressing rising energy demand, efficient carbon capture
technologies will likely be necessary to reduce emissions from existing fossil fuel-based power
generation. Aqueous amines are the currently preferred technology for post-combustion carbon
capture [1], but they suffer from poor regeneration thermodynamics related to their strong enthalpy
of reaction with CO,, as well as water evaporation [2].

Ionic liquids with aprotic N-heterocyclic anions (AHA ILs) have been proposed [3,4] as an
alternative solvent for CO; capture due to their favorable properties, such as negligible volatility,
high thermal stability [5], and high tunability, especially with regard to their CO2 binding energy
[6]. The anion of the AHA IL is comprised of a cyclic secondary amine which reacts reversibly in
an equimolar ratio with CO> at ambient pressure or below [6—8]. This is an advantage over
physically absorbing ionic liquids which require high pressures to achieve moderate loading of
CO2 in the IL [9,10]. Additionally, there is no significant viscosity increase upon complexation



with COz in the case of AHA ILs (as opposed to many other amine functionalized ionic liquids
which experience large viscosity increases due to formation of hydrogen-bonding networks [9]).
In addition to viscosity, density is also very weakly dependent on CO:> loading, as was
demonstrated, e.g., by the measurements of Makino et al. [11], who reported that at CO, pressures
up to 0.7 bar the volume expansion of the AHA IL tributyl(octyl)phosphonium benzotriazolide is
less than 1%.

Sensitivity and optimization studies on the properties of AHA ILs for post-combustion
carbon capture were conducted by Seo et al. [12] and Hong et al. [4]. In each of these works,
optimal values of AHA IL properties are proposed. However, in the absence of a model to map
chemical structures to chemical properties, this approach has limitations because it is difficult to
predict the tradeoff between different material properties. Moreover, a set of optimal physical
properties may not correspond to any actual IL and therefore serve merely as a guideline for IL
selection or de novo design. In this work, we aim to map the relevant thermophysical properties—
particularly density, viscosity, and heat capacity—of AHA ILs to ab initio and structural predictors
using machine learning models. Given the documented insensitivity of AHA IL density and
viscosity to CO> loading, the predicted properties may be considered applicable to both CO; rich
and lean process conditions and therefore be relevant to future process modeling studies.

Machine learning models and quantitative structure property relationship (QSPR) methods
have been used in a variety of works for the prediction of IL properties. In particular, researchers
have found that density as a function of temperature can be modeled well, often reporting errors
of less than 2% A ARD, using a variety of descriptors (e.g., group contribution [13—17]) and models
(e.g., SVR [15,18], artificial neural networks (ANNs) [15,19], decision tree based methods [19—
21], and multiple linear regression (MLR) [15,17,19,21-26]). Some models include other
parameters such as pressure [13—15,22,24] and water content [15,21] as input variables. On the
other hand, predicting viscosity is more challenging, often requiring authors to reduce the IL space
to a fixed class of cations or anions [18,27-33] or to implement GC type descriptors to differentiate
between IL families [17,34-39] to achieve accuracies better than 20% AARD. Models for IL heat
capacity have found sufficient accuracy with MLR and other parametric regression approaches
[17,40—45]. Decision-tree based methods [20] and ANNs [42] have also been investigated to this
end. Nonetheless, these efforts have either focused on limited classes of ILs or exclusively used
the NIST ILThermo database,[46,47] both of which do not include sufficient data to model ILs
that chemically react with CO,.

We investigate the efficacy of support vector machine regression (SVR) and gradient-
boosted regression (GBR) for modeling and predicting thermophysical properties of AHA ILs.
SVR has been used in a number of studies involving IL property prediction [42,48—50], including
our prior work on dialkylimidazolium ILs [18]. GBR and similar tree-based methods have also
been used in several studies on ILs. For example, Dhakal and Shah use extreme gradient boosting
(XGBoost) to predict IL ionic conductivity [51] and Venkatraman et al. [52] found that tree-based
methods offered slight advantages over SVR and k-nearest neighbor approaches in predicting ionic
liquid melting points.



Descriptors and molecular representations which contain relevant information are key to
accurate chemical and thermophysical property prediction. In a review on QSPR methods for
material property prediction, Le et al. [53] assign chemical descriptors to five categories:
constitutional, topological, physicochemical, structural, and quantum-chemical. Additionally,
Philippi et al. [54] suggest that inputs to machine learning models must consider the factors which
distinguish ionic liquid viscosities from those of molecular liquids: charge networks and
coulombic compaction. One quantum-chemical descriptor set investigated in this work is based on
the COSMO-RS sigma profile. COSMO-RS is a thermodynamic model [55,56] which uses surface
screening charge distributions calculated with quantum chemical methods for individual species
to model the thermodynamic behavior of mixtures. The surface screening charge representation
used by COSMO-RS, called the sigma profile, is a histogram of surface screening charge density
[57]. In this sense, it is a two-dimensional descriptor which contains by design information that
describes the thermodynamic interactions of species in solution. However, this information can
also be used to describe thermophysical properties; for example, we have used descriptors based
on COSMO-RS sigma profiles to predict the density, viscosity, and ionic conductivity of
imidazolium based ionic liquids [18]. Sigma profiles and other surface charge- and screening
charge-based methods have also been used to predict other IL properties, such as infinite dilution
activity coefficients [48], heat capacity [42], viscosity [31,58] and toxicity [59]. From the
perspective of process optimization and molecular design, sigma-profile-based descriptors have
the advantage that they are continuous variables that can be used in an optimization problem.
However, it is non-trivial to map a set of sigma-profile values back to a physically realizable IL
structure.

Group contribution-based (GC) descriptors are constitutional descriptors and have also
been used to predict several of the IL properties of interest to this study. For example, Gharagheizi
et al. [60] used GC descriptors with a multiple linear regression model to estimate the viscosity of
a large general set of ILs. This type of descriptor has also been used to predict melting point [61,62]
and CO> solubility [63]. GC descriptors are attractive because they correspond intuitively to
structures; however, for the purpose of design optimization they may be less desirable because
they are discrete (rather than continuous) variables.

II. Methods

In this section we discuss how we assembled and processed the thermophysical property
data, how we generated the group contribution and COSMO-RS features, the regression and
evaluation process, and how we dealt with the heat capacity, since it depends on the density.

II. A. Data Acquisition and Processing

Data for viscosity, density, and heat capacity of ionic liquids with tetraalkylphosphonium
cations and AHA anions were obtained from the literature [5-9,11,64-74]. All
tetraalkylphosphonium cations contain n-alkane and/or ether groups of varying lengths. All cation
and anion core groups and functional groups that were included in the data set are summarized in
Table 1.



Table 1: Cation and anion core and functional groups involved in this study.
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The viscosity data set consists of ILs containing 15 unique cations, 26 unique anions and a
total of 59 unique combinations. Low temperature data (below 290 K) were excluded because
measuring such data is typically less reliable; there is increased risk of water condensation at these
temperatures and experimental uncertainties may be higher at extremely high viscosities.
Therefore, only data between 290 K and 373 K were included. The distribution of the 527 viscosity
observations in this set is shown in Figure 1 and the data are given in Table S1.A of the
Supporting Data spreadsheet. The density data set has 58 unique ILs consisting of 13 unique
cations and 25 unique anions. The temperature ranges from 293 K to 363 K. The distribution of



the 549 density observations also appears in Figure 1 and the data are provided in Table S2 of the
Supporting Data spreadsheet. The available heat capacity data were constrained to ILs with
melting points below 283 K. There were significantly fewer C, data available for AHA ILs than
for viscosities and densities. In fact, there are just 15 unique ILs made from 12 anions and 3 cations
in the heat capacity data set. Nonetheless, heat capacity is an important thermophysical property
for CO» capture solvents since the absorption and regeneration processes generally involve a
temperature swing. The 37 heat capacity observations are shown on the right most plot on Figure
1 and the data are given in Table S3 of the Supporting Data spreadsheet.
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Figure 1. Histograms of literature experimental data for the properties of interest [5—8,64—70].
The natural logarithm of viscosity (left) is shown in addition to the viscosity values on the
secondary abscissa. Density (middle) and heat capacity (right) are plotted on linear scales.

We hypothesized that only AHA-based ionic liquids would be relevant to prediction of
AHA IL properties due to the highly polar and chemically basic nature of the AHA anions.
Nonetheless, we also compiled additional phosphonium IL viscosity data from the ILThermo
database [46,47] as well as from the literature [75-78] to fit to a larger dataset and validate this
hypothesis. In total, the non-AHA viscosity dataset consists of an additional 55 ILs, 937 viscosity
observations, and 45 unique anions. These data are given in Table S1.B of the Supporting Data
spreadsheet.

II. B. Group Contribution Feature Generation

The functional groups employed in developing the corresponding group contribution (GC)
descriptors are shown in Table 2. There are six anion core groups corresponding to all the
monocyclic AHA anions and a bicyclic descriptor to allow for bicyclic anions. For instance, an
indazolide anion has one pyrazolide core and one bicyclic functional group. All cations have a
phosphonium core and terminal -CH3 groups so the features on the cation are the number of interior
-CHz- and -O- groups. Group contribution representations for all ions in this study are available in
the Supporting Data spreadsheet, Table S4.



Table 2. GC descriptors for cations and anions used in this work with triethyl(octyl)phosphonium
4-bromoindazolide as an example.

Example IL
b +/\/\/\/\ Br
SN

/
Cation Groups

Group No. in Example IL
Alkyl [-CH-] 10
Ether [-O-] 0
Anion Cores

Pyrrolide [Pyr]
Pyrazolide [Pyra]
Imidazolide [Im]

1, 2, 3-triazolide [3-Triz]
1, 2, 4-triazolide [4-Triz]
Tetrazolide [Tetz]

(=) lel el fa) L} fan)

Anion Groups

Bicyclic
Methyl [-CH3]
Trifluoromethyl [-CF3]
Cyano [-CN]
Nitro [-NO-]
Chloro [-CI]
Bromo [-Br]

— oI (oo |IO|—

II. C. COSMO-RS Feature Generation

All COSMO-RS based descriptors used in this work are developed from each ion’s sigma
profile. Sigma profiles were generated using a method similar to that used by Nordness et al. [18]
where the geometry of the ions is optimized individually in the gas phase using Gaussian 16 [79]
with the BVP86 method, triple-C valence potential (TZVP) basis set, and the DGA1 density fitting
set. After geometry optimization, a frequency calculation is performed to confirm an optimal
geometry is attained (i.e. not a transition state). A conductor-like polarizable continuum model
calculation was performed with the same method, basis set, and fitting set, using Gaussian’s
COSMO-RS calculation option and a *.cosmo file is obtained. A sample Gaussian input *.com
file for 1, 2, 4,-triazolide is given in Section 1.1 of the Supplementary Materials document. The
individual ion sigma profiles were then calculated from each *.cosmo file using COSMOthermX19
[80—82] and the BP_TZVP 19 parameterization. Before further calculations were performed, the



cation and anion sigma profiles for each species of interest were additively combined to obtain a
sigma profile for the IL; this is referred to as the meta-file approach in the literature [83]. The
cation and anion sigma profiles are available in Tables S5.A and S5.B of the Supporting Data
spreadsheet.

The sigma profile generated by the COSMOtherm software was binned in equal size bins
separated by 0.001 e/A% where ‘e’ represents the elementary charge, along the screening charge
axis. Following the work of Palomar et al. [84] we further discretized the sigma profile into larger
bins to reduce the dimensionality of the descriptors. Since Nordness et al. [18] and others chose
the number of equal sized bins somewhat arbitrarily, we screened multiple bin sizes. We focused
on the nonzero sigma region of the sigma profile for ILs in this study between [-0.02 e/A2, 0.03
e/A?] and discretized this range into 9, 15, and 19 equal size bins, with the first and last bin being
for overflow (referred to as SP9, SP15, and SP19, respectively). The boundaries of the bins are
summarized in Figure 2, using triethyl(octyl)phosphonium 4-triazolide as an example. In addition,
we performed regression with all 51 bins from the COSMOtherm output, having 0.001 e/A? width
each (SP51). These feature sets are available for all AHA ionic liquids in the viscosity set in Tables
S6-S9 of the Supporting Data spreadsheet. Table S6.B contains the SP9 feature set for the larger
dataset including AHA and non-AHA phosphonium ILs (SP9+NA).
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Figure 2: Sigma-profile bin sets for triethyl(octyl)phosphonium 4-triazolide. e is the elementary
charge (1.6x10"'? coulomb) and A is angstrom (1x10°'° meter); these are the standard COSMO-RS
units.

When performing analysis with the SP9, SP15, SP19, and SP51 feature sets, it became
apparent that many of the bins exhibited significant multicollinearity, i.e. the bin heights were
correlated with each other; this was especially true for adjacent bins. To remediate this problem,
additional feature sets were prepared in which one bin of any pair of bins with a correlation, R >
0.9, was dropped based on which bin had the lower standardized residual in a multilinear
regression model with all other bins included. These new feature sets are referred to as CovX-SP9,
CovX-SP15, and CovX-SP19. It was also hypothesized that the reason some bins were collinear
was because they were canonically part of the same feature of the sigma profile. To further analyze
this, we prepared a feature set from all SP51 where bins with correlation, R > 0.9, were iteratively
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combined. The resulting feature set, SP-Cov, and the ultimate bin boundaries are discussed in
section III. B. The covariance adjusted feature sets (CovX-SP9, CovX-SP15, and CovX-SP19) and
the SP-Cov set are available in Tables S10-13 of the Supplementary Data spreadsheet for
modeling of the AHA IL viscosity data set.

In addition to the sigma-profile-based feature sets, we also calculated COSMO-RS
interaction energies as a feature set, which was the method used by Koi et al. [50]. However, these
features performed poorly when applied to both a linear regression model and an SVR model, so
they are not discussed further. We note that a key difference between the ionic liquids in the study
by Koi et al. and our work are the anion moieties. In particular, the AHA anions have much greater
charge polarization.

II. D. Regression and Evaluation

The density and viscosity data sets were randomly split into 5-folds of roughly equal size
to test the predictive capability of each model that is developed through cross-validation. This is a
procedure in which a portion of data, or a fold, is held out from the training set and the performance
of the model at predicting that particular fold is tested. The folds are created such that no
observations of one IL appears in another fold, similar to the work of Nordness et al.[18] and
Baskin et al. [19]. This is done because, as observed by Faundez et al. [85], the predictive ability
of machine learning models cannot be accurately quantified by the model’s performance on species
which appear in the training set. Rather they must predict properties for chemical species which
are not included in the development of the model. However, since ILs may be considered a simple
mixture of cation and anion species, models which perform more strict segregation by not only IL
species but also by ion species, as demonstrated by the works of Makarov et al. [86,87], have even
better predictive power than those without. With such a limited dataset containing a large variety
of ion species, we do not adhere to the stricter approach of Makarov et al. and therefore
acknowledge this limitation that our model will perform best for the 390 combinations of 15
cations and 26 anions in the viscosity set and the 325 combinations of 13 cations and 25 anions in
the density set. Therefore, predictions for ILs outside of the support of the unique cations and
anions present in the model are extrapolations and must be viewed critically until their properties
are experimentally verified.

The ILs contained in the 5-folds for both the density and viscosity sets are available in the
Supporting Data spreadsheet, Tables S14-15. Additionally, a set of representative ILs, shown in
Table 2, is held out from training for use as a test set and the final model developed is based on
best performance for this set. These ILs were selected because they include 4 of the 6 anion base
groups, 5 of the 7 anion functional groups, have various cation sizes, and include oxygenated
cations. Comparatively, the training set has the full support of anion base groups and functional
groups and a similar range of cation sizes. In the case of the larger dataset containing AHAs and
non-AHAs, the validation sets (5-fold and test) were made to only contain AHAs because the goal
of this work was to predict the properties of tetraalkylphosphonium AHAs. For simplicity, the
AHA/mon-AHA combined model uses the same 5-folds and test set as the AHA only models.

Table 2. Test set ILs for density and viscosity.
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Both machine learning methods, SVR and GBR, employ functions from the Scikit-learn
package [88] in Python. We also considered artificial neural network (ANN) and Gaussian process
regression (GPR) models but they did not perform well in initial work so they were not pursued
further. The SVR method employed uses the radial basis function (RBF) kernel as it has lower
bias and is better able to represent nonlinearity than other common kernels. Often transformations
of the dependent and/or independent variables in a regression problem can be helpful for fitting.
For the density data set, mean centering and standard scaling of neither the dependent nor
independent variable transformations appeared to produce significant differences in accuracy of
the resulting fit so these values are used as is. In the case of viscosity, the best results were observed
when the independent variables are not transformed but a natural logarithm transform is used for
viscosity; i.e., the fitted property is,

n' =In(n [Pa-s])
(1)

where 1’ is the natural logarithm of viscosity which is predicted and 1 is the dynamic viscosity in
Pascal seconds. The SVR and GBR models perform differently based on the values of
hyperparameters which are assigned to them. A grid search is used to find near optimal
hyperparameters for each descriptor set, model, and assessment method (test or 5-fold) used.
Transforming viscosity by dividing by density and molecular weight and then taking the logarithm
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is done in the Orrick-Erbar type approach adopted by Gardas and Coutinho [89] for ionic liquid
viscosity. That is, fitting the property,

=it
p * MW

(2)

where n* is the predicted viscosity variable, 7 is the viscosity in Pascal seconds, p is the density
in kilograms per cubic meter, and MW is the molecular weight in grams per mole. We implemented
this equation in our GC/GBR model but saw negligible improvement and therefore opted to fit n’
from Equation 1 only in this study.

Each fit is evaluated using percentage average absolute relative deviation (%AARD) and
coefficient of determination (R?). The %AARD is calculated as,

N
1 5 — v,
%AARDz—E |y‘ yl|*100%
Nl. Vi

(3)

For N observations of the dependent variable y where J; is the model’s estimate of the i*"
observation of y. The R? is calculated as,

_ SSR
- SSTO’

2

N N
SSR=) (=97,  SSTO=) -V
i i

where SSR is the regression sum of squares or the square variation of the estimates around the
mean of the dependent variable observations, SSTO is the total sum of squares or the square
variation of the data around the mean, J; is the model’s estimate of the i** observation of y, and y
is the arithmetic mean of y observations in the data set. A sample script which performs the model
fitting and analysis for the density and viscosity sets is available in Sections 2.1 and 2.2 of the
Supplementary Materials document.

II. E. Heat Capacity Fitting

In order to fit the constant pressure heat capacity of these ILs, we first consider an
observation made by Strechan et al. [90] and Gardas and Coutinho [40], that heat capacity on a
volumetric basis at room temperature, i.e., the heat capacity in energy per temperature unit per
volume, is roughly constant for most ILs. This quantity has been referred to as the volumic heat
capacity [91]. We use the later observation by Paulechka et al. [91] that this relationship, when
expanded to be a linear function of temperature, gives a good approximation of volumic heat
capacity in a moderate temperature range:
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(4)

where C, is the molar heat capacity in J/mol K!, p, is liquid density in g/cm®, MW is molecular

weight in g/mol, T is temperature in Kelvin, and k; and k, are fitted parameters that are appropriate
for an entire set of ILs. Once k; and k, have been evaluated for a few ILs in the family, the heat
capacity (Cp) of all the other AHA ILs can be predicted as a function of temperature using the

density from the ML model and the molecular weight, which is known from the structure. This
routine is shown graphically in Scheme 1.

pis

SVR

Y
C, =V(ky +k,T)

Scheme 1: Flow chart representation of heat capacity fitting. p is IL density, MW is molecular
weight, V is IL molar volume, T is temperature in Kelvin, and k; and k, are constants from Eq.
4.

Since there was a limited amount of liquid heat capacity data, prediction is assessed based
on only 4 ILs from the 17 IL set. The 4 ILs held in the test set are tetraoctylphosphonium
benzimidazolide, trihexyl(tetradecyl)phosphonium pyrazolide, tributyl(dodecyl)phosphonium
benzimidazolide, and tributyl(dodecyl)phosphonium 3-cyanopyrrolide. These 4 ILs represent 3 of
the 4 unique cations, and 3 of the 13 unique anions in the set, and contain both bicyclic and
monocyclic anions. A sample script which fits and evaluates this model is available in Section 2.3
of the Supplementary Materials document.
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I11. Results and Discussion

Below we discuss the results for modeling of viscosity, density and heat capacity of AHA
ILs. Since viscosity is the most challenging property to model, we discuss it first, comparing the
various group contribution (GC) and sigma-profile (SP) descriptors that we explored. There is a
separate section on our attempts to eliminate correlation between adjacent sigma-profile bins in
the modeling of viscosity.

ITI. A. Viscosity

The decision of which feature set to use for the final model was made based upon the
features that are best able to predict viscosity, because IL density was fit to similar accuracy with
most of the feature sets that were considered. We evaluated performance of each of the GBR and
SVR models with each feature set using both the test set and 5-fold cross validation. The SVR
model constructed using the GC descriptor set had both the best %AARD and R? for the test set
and the best average %AARD for the 5-fold cross validation. The performance at predicting the
viscosities of the test set ILs for the SVR and GBR models using the GC, all four sigma-profile
(SP51, SP9, SP15 and SP19) based descriptor sets, and the augmented dataset using SP9 and
additional non-AHA data (SP9+NA) is shown in Figure 3 and Table 3, and the performance for
the aforementioned models at predicting the viscosities of the 5-fold set ILs is also given in Table
3.
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Figure 3. Bar graph comparing test set performance of SVR and GBR viscosity models based on
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GC and SP. The performance metrics shown are %AARD (red and blue bars with left axis) and
1 — R? (green and violet bars on right axis).

Table 3. Performance summary for the GC/SP-based SVR/GBR viscosity models.

Test 5-fold CV Average
GBR SVR GBR SVR

Feature %AAR R? %AAR R? %AAR R? %AAR R?
Set D D D D

GC 17.2 0.873 12.7 0.988 22.1 0.844 21.6 0.810
SP51 27.5 0.727 34.8 0.275 33.5 0.673 45.4 0.432
SP9 20.6 0.855 49.8 0.164 26.8 0.780 51.7 0.388
SP9+NA | 31.0 0.845 354 0.700 47.8 0.19 53.7 0.320
SP15 25.7 0.706 45.8 0.184 31.2 0.724 48.9 0.376
SP19 25.1 0.767 40.4 0.220 30.4 0.655 47.6 0.397

Both the GC SVR and GC GBR models had superior performance to all SP-based models.
The GBR model worked best for the sigma-profile-based sets. Additionally, within the set of GBR
models the number of sigma-profile bins did not appear to have a definite trend, but for the SVR
set more sigma-profile bins improved model performance. This is a reasonable result as decision
tree-based models are often considered to be robust to overfitting of high dimensional data. The
larger SP9+NA dataset containing non-AHA phosphonium ILs performed more poorly when used
with a GBR model than the SP9, and showed only slight improvement over the SP9 SVR model,
but still with a poor fit. Therefore, we only consider models constructed with the AHA only
datasets herein. Ultimately, the GC SVR model was selected due to its superior performance in
both testing and cross-validation and a parity plot of these models for the test set and the 5-fold
CV set are shown in Figure 4.
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Figure 4. Parity plots for GC SVR viscosity model for test set ILs and 5-fold cross validation
sets. Gray shaded region is £10% of the reported viscosity.

The test set performance is significantly better than the 5-fold cross validation set. We
believe this to be a result of how we chose the test set. The test set contains ILs whose cations and
anions appear in multiple different pairings in the support. The 5-fold cross validation set was
randomly selected, however, and as a result the poorest performing ILs either have few or no
similar ILs in the support or are the product of a broken trend such as the increase in viscosity that
occurs when exchanging the smaller [P223]" cation with the [Pessi4]” cation in the case of

[6BrBnlm]-.

II1. B. Sigma Profile Covariance

In the modeling of viscosity with sigma-profile descriptors, we observed that several
adjacent sigma-profile bins were significantly correlated across the data set. In an effort to improve
the SP-based models, we attempted to remove the redundant information by removing bins which
were highly correlated with another bin by the procedure described in Section I1. C. Additionally,
it was hypothesized that high correlation between adjacent bins may suggest that the bins represent
the same canonical feature. To investigate, we developed another SP-based feature set referred to
as SP-Cov with bins of varying sizes, the boundaries of which are constructed according to the
procedure described in Section II. C. The resulting bin boundaries are shown graphically in
Figure 5, using triethyl(octyl)phosphonium 4-triazolide as an example. The performance of
models for viscosity constructed using these covariance remediation methods is compared to those

models without covariance remediation in Figure 6 and Table 4.
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Table 4. Performance summary/comparison for covariance-based feature sets.

Test 5-fold CV Average
GBR SVR GBR SVR
Feature | %AARD | R?> | %AARD | R?> | %AARD| R?> | %AARD| R?
Set
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SP51 27.5 0.727 | 34.8 0.275 |33.5 0.673 | 454 0.432
SP-Cov | 27.6 0.710 | 58.8 0.131 | 34.0 0.655 | 54.0 0.308
SP9 31.8 0.773 |39.2 0.757 | 29.7 0.709 | 44.6 0.504
CovX- |20.6 0.855 |49.8 0.164 |26.8 0.780 | 51.7 0.388
SP9

SP15 23.9 0.845 | 61.2 0.097 | 28.8 0.783 | 60.6 0.291
CovX- | 25.7 0.706 |45.8 0.184 | 31.2 0.724 | 48.9 0.376
SP15

SP19 24.9 0.780 | 42.3 0.219 |29.1 0.755 | 474 0.413
CovX- |25.1 0.767 | 40.4 0.220 |30.4 0.655 | 47.6 0.397
SP19

Reducing the number of bins from the SP51 case to the SP-Cov case does appear to provide
a benefit in significantly increasing the R? for both the SVR and GBR models but has a slightly
negative effect on the %AARD. Since R? as a performance metric preferentially penalizes poor
estimates away from the mean and %A ARD preferentially penalizes poor estimates near the origin
this may suggest that the SP-Cov model is improving the performance of the model at high
viscosity values at the cost of low viscosity accuracy. A similar trend appears between the SP19
and CovX-SP19 feature sets as well as the SP9 and CovX-SP9 sets. Overall, the GBR models still
performed much better than the SVR models for all SP-based feature sets. We conclude that while
removing some covariant features using the methodologies described did increase the R? in most
cases, the ultimate performance of the SP models was still dwarfed by that of the GC-based model
for this narrowly defined data set of phosphonium AHA ILs.

Finally, to rationalize the results of the SP-Cov models we compare the SP-Cov features to
the GC features by analyzing the correlation between these two sets of features. A heat map of this
analysis is shown in Figure 7. Notably, in the case of the cation features, S1 is highly correlated
with presence of ether groups and SO, S3, and S4 are correlated with the length of the alkyl chains
on the phosphonium. For the anion base groups, the pyrrolide (Pyr) group and bicyclic core are
described with S17-S19 and S10/S15, respectively. The other core groups are not clearly correlated
to any single SP-Cov bin. Additionally, while many of the anion functional groups are correlated
with the SP-Cov bins, the methyl group and chloro groups are not. In other words, there doesn’t
appear to be a distinghishable and characteristic change in the sigma profiles in this dataset for
functionalization with methyl and chloride groups and for base groups other than pyrrolide. In this
sense, while much of the information about which functional groups are present is directly
translated to the SP-Cov feature set, there is a significant amount of information which is
represented in the GC set but not the SP-Cov set, providing a possible explanation for why the two
perform so differently. Given that GC features cannot be reproduced by the SP-Cov set we
hypothesize that either there is some information in GC that is absent in the sigma profile, such as
structural insights, or there is insufficient precision in the sigma profile and/or variety in the sigma-
profile dataset for the GC features to be deconvoluted.
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I1I. C. Density

Since the GC feature set was the superior set for predicting viscosity, the same feature set
is used for density with the goal of creating a set of model with one set of inputs. Models using the
SVR and GBR methods were developed and performed similarly in both the test set case and the
5-fold cross validation case, having %AARD of around 1% each and R? of 0.961 and 0.968,
respectively. For the purpose of consistency with the viscosity model, the GC/SVR model is
ultimately selected and the results of that fit are shown in Figure 8.
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Figure 8. Parity plot of GC/SVR density model for test set and 5-fold cross validation sets. Gray
shaded region is +£2% of the measured density. Both the test set and the 5-fold CV set have
%AARD of 1.0%.

While the test set data are very well reproduced by the model, there are two ILs in Fold 2
of the 5-fold CV set for which the model predictions versus reported values have a negative slope;
i.e., the model predicts that the density increases with increasing temperature. These two species
were identified as [Pa4444][Bnlm] which has a melting temperature of 71 °C [64] and [P4444][Im]
which is generally a solid at room temperature but may liquify upon mechanical disturbance [69].
Therefore, it is hypothesized that the error in the trend predicted by the model could be due to these
ILs, and the other [P4444] based ILs in the data set, being near a phase transition at the measurement
temperatures. Additionally, as a result of being solids at room temperature, the measured
temperatures in the data available for each of these ILs are among the highest present in the data
set, ranging from 353-363 K and 333-363 K for [P4444][Bnlm] and [Ps444][Im], respectively. It is
also possible that the model performance could be hindered at these higher temperatures. Similarly,
[P4444][6BrBnlm] which is an IL present in Fold 1 with reported densities between 1100 and 1150
kg/m?, is also very poorly described by the model and has a melting temperature of 69 °C [64].

II1. D. Heat Capacity

To fit and predict the heat capacity data, first we fit the volumic heat capacity data for the
13 training ILs to Eq. 4 This resulted in a reasonably good fit having a %AARD of 2.9%. The
resulting model is given below and plotted in Figure 9:

Gy J
~ 1.181+2.01-1073(T [K
pt- MW [cm3-K] (TIKD

(5)

20



Where Z’; is the model predicted heat capacity, with the hat indicating it is a regression model

estimate. The temperature dependence term of 2.01- 1073

that of 8.33-107* ——
cm>-K

phosphonium cations and the anions considered were less basic (in terms of the ability to accept a
proton) than those investigated here. In Figure 9, the gray shaded region on either side of the
dashed line fit represents +5% of the predicted volumic heat capacity. Also shown in the graph as
a red dotted line is the fit from Paulechka et al. [91], along with red shaded £5% values on either
side of that line.

p—yT is more than twice as large as

reported by Paulechka et al. [91] who, however, considered no
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Figure 9. Fitted line of volumic heat capacity versus temperature of 13 AHA ILs. Gray shaded

region is 5% of the line. The red dotted line and £5% is the fit by Paulechka et al. [91] for a
different set of ILs.

With this relationship established between the volumic heat capacity and temperature, a GC/SVR
density model was trained on all of the data besides the four test set ILs and was used to predict
the densities of these ILs at the temperature of each heat capacity observation. Using these
densities, the volumic heat capacity estimated with Eq. 5, and the molecular weights of each IL,
the molar heat capacity was predicted and has a %AARD of 3.0% relative to the experimental
data. The results of this prediction are shown in a parity plot in Figure 10.
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IVv. Conclusions and Recommendations

We have expanded upon the framework developed by Nordness et al. [18] to predict the
viscosity, density, and heat capacity of phosphonium AHA ionic liquids. This is an important
class of ILs that can reversibly react with CO; and have potential for CO» capture applications.
Several bin sizes for feature extraction from COSMO-RS sigma profiles were considered as was
covariance between the extracted features and its impacts on regression. We screened through
multiple SVR and GBR models and analyzed both group contribution (GC) and several COSMO-
RS sigma-profile-based descriptor sets and determined that SVR models with GC-based
descriptors offered the best predictions for this data set. The ultimate goal is incorporation of these
models into a combined chemical process and material design framework to aid in the discovery
of even better AHA ILs for CO» capture.
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Appendix A. Supplementary Material

1) Supplementary Materials document containing sample DFT command file for generating
sigma profiles and code snippets of sample codes for density, viscosity and heat capacity
fitting

2) SI Zip file containing

a. Supplementary Data Spreadsheet — all sigma profiles, gc parametrizations and data
used in this work

b. Python files of sample code

c. Binary file with cross validation folds needed to run sample code (“ViscFolds.pkl”
and “DensFolds.pkl™)
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