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ABSTRACT: Peptides that bind to inorganic materials can be
used to functionalize surfaces, control crystallization, or assist in
interfacial self-assembly. In the past, inorganic-binding peptides
have been found predominantly through peptide library screening.
While this method has successfully identified peptides that bind to
a variety of materials, an alternative design approach that can
intelligently search for peptides and provide physical insight for
peptide affinity would be desirable. In this work, we develop a
computational, physics-based approach to design inorganic-binding peptides, focusing on peptides that bind to the common plastics
polyethylene, polypropylene, polystyrene, and poly(ethylene terephthalate). The PepBD algorithm, a Monte Carlo method that
samples peptide sequence and conformational space, was modified to include simulated annealing, relax hydration constraints, and
an ensemble of conformations to initiate design. These modifications led to the discovery of peptides with significantly better scores
compared to those obtained using the original PepBD. PepBD scores were found to improve with increasing van der Waals
interactions, although strengthening the intermolecular van der Waals interactions comes at the cost of introducing unfavorable
electrostatic interactions. The best designs are enriched in amino acids with bulky side chains and possess hydrophobic and
hydrophilic patches whose location depends on the adsorbed conformation. Future work will evaluate the top peptide designs in
molecular dynamics simulations and experiment, enabling their application in microplastic pollution remediation and plastic-based
biosensors.

■ INTRODUCTION

Discovering peptides that bind to inorganic materials is useful
for developing new biotechnological tools like biosensors,1

biological solar cells,2 or bio-based mineralization processes.3

Peptides that bind to a variety of inorganic materials including
gold,4 silica,5 and graphene6 have been found in previous work
by others. The peptides were discovered primarily by using
library screening, an experimental method that randomly
samples a large number of peptides, often 109 or 1011 unique
sequences, to search for those with affinity for a target
material.7 While library screening has had success in finding
inorganic-binding peptides, it has some downsides, including
the need for substantial human labor, potential bias in the
identified peptides due to experimental design,8 and the
requirement that downstream experiments be conducted to
quantitatively measure peptide affinity.9 An alternative method
of discovering inorganic-binding peptides that circumvents
these issues is desirable.

Computational design is a promising approach for
discovering peptides that bind to inorganic materials. The
advantages of computational design include a systematic
exploration of peptide sequences via design rules and
intelligent sampling schemes, minimal human labor, and
lower cost due to the reduction in experimental testing.
Computational design can also provide insight into the
physical basis of a peptide’s affinity for an inorganic material.
Such insight opens the door for iterative design as the

computational model is improved to match experimental
results or incorporate insights from previous designs. Under-
standing the physical basis for peptide affinity can also improve
our ability to predict how peptide binding is affected by
environmental conditions or surface properties, such as pH or
surface oxidation. This would open the door to designing
peptides that bind specifically to certain materials or whose
affinity can be modulated by changing the environmental
conditions.

A few computational methods exist for designing inorganic-
binding peptides or for predicting the affinity of peptides to an
inorganic material, which we now review. Rosetta Surface
Design by Masica et al.10 searches for inorganic-binding
peptides via Monte Carlo sampling of sequence and conforma-
tional space and scores peptides with the Rosetta energy
function. The method was used to design hydroxyapatite-
binding peptides that are essential in bone formation. Another
approach was developed by Schwaminger et al.11 to design
peptides that bind to ionic magnetic nanoparticles. Their
procedure used experimental measurements of peptide
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adsorption free energy via fluorescence spectroscopy and
computational measurements via Monte Carlo simulations to
generate the next round of peptides for testing. Such an
iterative procedure can also form the basis for Bayesian
optimization, as was done by Hughes et al., who used library
screening data to tune peptide selectivity for gold or silver.12

Other inorganic-binding peptides have been designed on an ad
hoc basis by choosing a secondary structural element, e.g., an α

helix, that matches the lattice dimensions of a crystalline
inorganic surface and then crafting a polypeptide sequence that
folds into the chosen secondary structure. This approach was
used by DeOliveira et al. to design a peptide that binds to
calcite surfaces13 and by Pyles et al. to design a protein that
self-assembles on mica surfaces.14 While the simplicity of this
approach is appealing, it applies only to inorganic crystalline
surfaces with a targetable pattern. Finally, machine learning
models have been developed to predict whether a peptide will
bind to an inorganic material. Especially relevant to this work is
PS-Binder,15,16 a support vector machine that predicts if a
peptide will bind to polystyrene. While PS-Binder provides
rapid predictions of whether a peptide will bind to polystyrene,
it does not provide quantitative predictions of the peptide
affinity.

Our aim is to develop an improved method of computa-
tionally designing inorganic-binding peptides, and we chose
plastics as the target inorganic material. Plastics were selected
because plastic-binding peptides could be a useful tool for
addressing micro- and nanoplastic (MNP) pollution. MNPs
are a concern as millions of tons contaminate the oceans,17

they are challenging to capture and detect, and they pose
environmental and health concerns.18 Plastic-binding peptides
could mitigate the risks of MNPs by helping capture, detect,
and degrade microplastic waste, as suggested by previous
studies.19,20 The large specific surface area of MNPs makes
peptide-based remediation apt, as MNPs expose a large area
for interaction with peptides. Plastic-binding peptides also have
many other possible applications outside of MNP remediation,
such as antimicrobial surfaces and plastic-based biosensors.

This article describes and evaluates a new computational
method that designs solid-binding peptides. The Peptide
Binder Design (PepBD) algorithm, previously developed in
our group to design peptides that bind to proteins,21−24 was
modified to design peptides that bind to four of the most
commonly used plastics: polyethylene, polystyrene, polypro-
pylene, and PET. Three major modifications were made to
PepBD to achieve this design goal. First, we used an ensemble
of different adsorbed conformations of a peptide on a plastic
surface as starting points for design, which improved the
sampling of the conformational space available to peptides.
Second, we added simulated annealing to increase the
sampling of the conformational and sequence space local to
each starting peptide conformation. Third, we relaxed the
hydration constraints that govern the allowed peptide
sequences, further increasing the sampling of sequence space.

Highlights of our results include the following. We show that
adding simulated annealing combined with multiple starting
conformations and relaxed hydration constraints to the PepBD
algorithm leads to the discovery of peptides with scores
significantly better than those of the designs using unmodified
PepBD. Analysis of the top peptides reveals that good scores
are accompanied by van der Waals interactions that strongly
promote adsorption and electrostatic interactions that weakly
disfavor adsorption. The best peptide designs for the four

plastics are enriched in amino acids with bulky side chains like
tryptophan and arginine, and the frequency of each amino acid
in the top designs is positively correlated to the amino acid
mass. We also find patches of hydrophobic and hydrophilic
amino acids whose locations depend on the peptide. Overall,
our work is a promising step in the underexplored area of
computational design of inorganic-binding peptides.

■ METHODS

Overview of Original PepBD Method. The original
Peptide Binder Design (PepBD) method is a Monte Carlo
algorithm that searches the sequence and conformational space
of peptides over thousands of steps to find candidates that bind
strongly to a receptor. The best peptide designs are identified
by the score function shown in eq 1, where a more negative
score corresponds to a stronger binding affinity. A simplified
flowchart of the design algorithm is shown in Figure S1. A
detailed description of the method can be found in previous
papers.21−24

The PepBD algorithm can be broken down into five steps.
Step one is to obtain a starting structure in which the peptide is
bound to the receptor. This step uses a reference peptide
known to have affinity for the receptor and is performed
outside of PepBD using methods such as docking. The
structure of the receptor is fixed throughout the entire design
process. Step two is to propose a random change to either the
peptide’s sequence or conformation. A sequence change
consists of either a point mutation or swapping two amino
acids in the peptide. Point mutations must satisfy hydration
constraints specified by the user; the hydration properties of
amino acids are defined in Table 1. A conformational change

consists of displacing a contiguous section of the peptide
backbone using the concerted rotation algorithm.25 Step three
is to repack the side chains using the Lovell rotamer library26

and the Broyden−Fletcher−Goldfarb−Shanno (BFGS) algo-
rithm27 to minimize the energy of the peptide−receptor
complex. Step four is to score peptides using the peptide−

receptor binding energy calculated via molecular mechanics
with generalized Born and surface area solvation (MM/
GBSA)28

= = + + +E E E E Gscore MM/GBSA int ele vdW GB

(1)

where ΔEint is the change in internal energy from bond, bond
angle, and dihedral angle terms, ΔEele is the change in
Coulombic energy, ΔEvdW is the change in the van der Waals
energy, and ΔGGB is the polar solvation free energy calculated
by the generalized Born (GB) model. The deltas are the
energies for the peptide−receptor complex minus the peptide
and receptor energies in the same conformation but without

Table 1. Amino Acid Categorizations Used by PepBDa

category amino acids

hydrophobic Leu, Ile, Met, Phe, Trp, Tyr, Val

hydrophilic Asn, Gln, His, Ser, Thr

anionic Asp, Glu

cationic Arg, Lys

other Ala, Cys, Pro

glycine Gly
aClassifications are for pH of 7. Cysteine and proline were excluded
from all designs in this paper.
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intermolecular interactions. The peptide parameters used to
calculate these energies were taken from the Amber ff14SB
force field.29 The parameters used to describe plastic
interactions will be discussed in the section Parametrization
of the Plastics. We also note that the nonpolar solvation free
energy, ΔGSA, that is typically included in the MM/GBSA
method is excluded in the PepBD score function as past
designs show that this energy changes negligibly between
peptide mutations (a discussion on this point is provided in the
conclusion). Finally, step five is to accept or reject the peptide
modification using the Metropolis criterion

=P
kT

min 1, exp
(score score )

acc
new old

i

k

jjjjj

i

k

jjjj

y

{

zzzz

y

{

zzzzz (2)

where k is the Boltzmann constant, T is a reference
temperature that controls the likelihood of accepting a
modification, and the scores are for the peptide before and
after the modification. The reference temperatures for
sequence changes, Tseq, and conformation changes, Tconf, can
be different. Steps 2−5 are repeated thousands of times to
sample many peptide conformations and sequences.

We now describe the specific parameters used for peptide
design using the original PepBD algorithm. The hydration and
reference temperature parameters will be changed in PepBD
modifications described in the sections Incorporating Simu-
lated Annealing into Peptide Design and Relaxing the
Hydration Constraints. All designed peptides are 12 residues
long, to match the length of peptides often used in library
screening. Sequence changes were performed 67% of the time,
while conformation changes were performed 33% of the time.
When a sequence change was performed, point mutations were
performed 75% of the time and amino acid swaps were
performed 25% of the time. Proline and cysteine were excluded
from all designs to avoid potential issues with solid-phase
peptide synthesis30−32

�proline because its secondary amine
has lower reactivity than the primary amine in all other
canonical amino acids, and cysteine because it is prone to
oxidation. Designs using original PepBD were constrained to
have exactly 5 hydrophobic amino acids, 5 hydrophilic amino
acids, 1 cationic amino acid, and 1 anionic amino acid. This set
of values, termed hydration constraints, was selected because
they are a reasonable for peptides with high affinity for plastics.
The reference temperatures were chosen to be kTseq = 1 kcal/
mol and kTconf = 2 kcal/mol. It should also be noted that the
score function in past designs included an λEpep,bound term,
which was removed in this study. Briefly, the λEpep,bound term is
intended to penalize peptides that have high energy when they
adopt the bound state conformation in solution. The penalty is
relevant when the peptide must adopt the bound conformation
before binding, such as when binding to proteins with binding
pockets that hinder peptide conformational changes after
binding. The flat plastic surfaces used for designs in this paper
do not restrict peptide conformation changes after adsorption,
and thus, the λEpep,bound term was removed.
Reference Plastic-Binding Peptides. We searched for

reference peptides known to have an affinity for plastics. These
peptides can produce starting conformations for PepBD and
serve as useful benchmarks for evaluating the efficacy of the
designs in future computational and experimental tests. We
focus on four plastics in this study: polyethylene, poly-
propylene, polystyrene, and poly(ethylene terephthalate)
(PET). Suitable 12-residue peptides were discovered in

published library screening studies for polyethylene,32

polypropylene,33 and polystyrene.34 No such peptide could
be found for PET, so a 25-residue protein domain termed
Dermaseptin 1 (DS1) with affinity for PET20 was used as a
starting point. To keep all the reference peptides the same
length, we searched for a 12-residue subsequence of DS1 with
high affinity for PET. This was accomplished by conducting
molecular dynamics simulations on three different 12 residue
subsequences of the 25-residue DS1 sequence in the vicinity of
the PET surface: LWSTIKQKGKEA, AAKAAGQAALGA, and
KGKEAAIAAAKA. The subsequence with the lowest inter-
molecular potential energy of interaction with the PET surface
was selected as the reference peptide. Combining this peptide
with the reference peptides for the other plastics gives the final
list of reference sequences shown in Table 2.

Parametrization of the Plastics. Atomistic force field
parameters for polyethylene, polystyrene, polypropylene, and
PET were obtained to model peptide−plastic interactions.
Partial charges for the plastic monomers were calculated in
three steps: (1) obtain an electrostatic surface potential using
Gaussian16 with the HF/6-31G(d) basis set35,36 to optimize
the geometry of the plastic monomer, (2) calculate the
electrostatic surface potential using the B3LYP/6-31G(d) basis
set,37 and (3) find atomic partial charges that best fit the
electrostatic surface potential using the two-stage restrained
electrostatic surface potential (RESP) charge fitting tool of
AMBER.38 In conducting a two-stage RESP, the first stage
allowed all partial charges to vary, while the second stage
required all atoms that are equivalent by symmetry to have
equal partial charges. The capping groups used for the plastic
monomers are provided in the Supporting Information. All
other force field parameters for the plastic monomers, i.e., the
bond lengths, bond angles, dihedral angles, Lennard-Jones
parameters, and generalized Born parameters, were taken from
Amber’s Generalized Force Field 2.39 To determine if the
parametrization could reproduce a plastic’s basic physical
properties, the radii of gyration of the polymer chains as well as
the density and heat capacity for polymer melts were calculated
for all four plastics and then compared to experimental or
theoretical values. Good agreement was found in all cases. The
values of the plastics parameters and details of the calculations
and comparisons to experimental data can be found in the
Supporting Information.
Generation of Atomistic Plastic Surfaces. Two types of

atomistic models for plastic surfaces were generated, as shown
in Figure 1. The first atomistic surface model was crystalline
and was generated only for polyethylene. The crystal was
created by replicating the unit cell of polyethylene40 to
produce crystals of size 7.4 Å by 44.6 Å by 45.6 Å for the
peptide design algorithm and 22.2 Å by 59.5 Å by 58.3 Å for
molecular dynamics (MD) simulations. MD simulations
required a larger crystal than that used in PepBD to prevent
the peptide from interacting with itself across the periodic
boundaries (PepBD does not use periodic boundaries). In

Table 2. Reference Sequences for Plastic-Binding Peptides

plastic sequence

polyethylene HNKSSPLTAALP

polypropylene TSDIKSRSPHHR

polystyrene KRNHWQRMHLSA

poly(ethylene terephthalate) KGKEAAIAAAKA
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both cases, the crystal was rotated so that the shortest
dimension was parallel to the z-axis. The {100} surface of the
plastic, which is perpendicular to the smallest dimension of the
rotated crystal, was exposed for peptide adsorption.

The second atomistic model of the plastic surface was
amorphous. This type of surface was generated for
polypropylene, polystyrene, and PET using a method adopted
from Hirvi et al.41 First, multiple polymer chains were placed
in a periodic box. The number and length of the polymer
chains were chosen such that the plastic surface at the target
density would be 80.0 × 80.0 × 20.0 Å3. Next, two rigid walls
of carbon atoms were placed above and below the polymer
chains, as shown in Figure 1. Harmonic position restraints of
5000 kJ/mol/nm2 were applied to each carbon to maintain the
wall’s shape. Third, the top wall was moved down toward the
bottom wall by slowly changing the location of the harmonic
restraint minimum in 0.1 nm increments, resulting in
compression of the plastic. After each movement of the wall,
the system was equilibrated for 100 ps in the NVT ensemble at
500 K. The plastic was compressed until its average density
within 5 Å of the central plane parallel to the carbon walls was
in the known density range for the plastic. The plastic surface
was then equilibrated in a 5 ns NVT simulation at 500 K
before quenching to 300 K and running a second NVT
simulation for 5 ns. The two walls of carbon atoms were then
removed to expose the final amorphous surface. For PepBD
designs, a 40.0 × 40.0 × 10.0 Å3 portion of the amorphous
surface was extracted. The shape of the final polymer surface
was maintained in PepBD designs by keeping all atoms static
and maintained in molecular dynamics simulations by using
position restraints.
Obtaining Adsorbed Peptide Conformations for

Peptide Design. The starting conformations for the peptides
for PepBD were obtained by conducting molecular dynamics
(MD) simulations on each reference peptide in Table 2 when
placed roughly 10 Å above the corresponding plastic surface.

Two types of simulations were conducted (see Molecular
Dynamics Simulations: Generating Starting Conformations
and Evaluating Designed Peptides for details). The first
simulation type was equilibrium MD; the final conformation
at the end of the simulation was used as the starting
conformation for design. The second simulation type was
well-tempered metadynamics (WTMetaD), which generates
multiple unique adsorbed conformations by applying a bias
potential to the distance between the peptide’s center of mass
and the top of the plastic surface. The bias potential induced
the peptide to adsorb and desorb multiple times during the
simulation. Each distinct adsorption event was selected as a
starting conformation, where adsorption events were consid-
ered distinct if the peptide’s center of mass was at least 10 Å
from the top of the plastic surface for at least 1 ns after the
previous adsorption event. WTMetaD simulations generated
20 unique conformations for polyethylene and 11 unique
conformations each for polystyrene, polypropylene, and PET.
All of the conformations were used for design.
Molecular Dynamics Simulations: Generating Start-

ing Conformations and Evaluating Designed Peptides.
Molecular dynamics simulations were performed to obtain
adsorbed peptide conformations on plastic surfaces. tLEaP42

was used to generate input files in Amber format, and then
parmEd43 was used to convert to Gromacs format. The
conversion from Amber to Gromacs format was necessary, as
the Amber MD engine cannot simulate infinite crystals like our
polyethylene model. In simulations of crystalline polyethylene,
the terminal carbons on each polymer chain in the crystal were
bonded to each other across the periodic boundaries to mimic
an infinite plane. TIP3P water molecules44 were added to the
simulation box and extended at least 30 Å in the z-direction
above both faces of the plastic surface. Simulations were run
using Gromacs ver. 2019.6.45 The first stage of the simulations
consisted of energy minimization using the method of steepest
descent for a maximum of 1000 steps. The second stage was an
NVT ensemble simulation at 300 K for 100 ps by using the
velocity rescale temperature control algorithm. Separate
thermostats were used for water and non-water molecules.
Both thermostats used a time constant of 0.1 ps. For the NVT
simulations and all subsequent simulations, periodic boundary
conditions were used, hydrogens were constrained using the
LINCS algorithm,46 position restraints of 5000 kJ/mol/nm2

were applied to the non-hydrogen atoms in the plastic surface,
and a time step of 2 fs was used. The third simulation stage was
an NPT simulation at 300 K and 1 bar for 200 ps. The semi-
isotropic Berendsen barostat47 was used so that changes to the
simulation box size in the direction normal to the plastic
surface were independent of changes in the other two
directions. An isothermal compressibility of 4.5 × 10−5 was
used in all directions, and the barostat time constant was 5 ps.
The final stage was either equilibrium MD or Well-tempered
Metadynamics (WTMetaD).48 Equilibrium MD was used to
obtain a single adsorbed conformation for the peptide and was
run for 100 ns. WTMetaD was used to obtain an ensemble of
starting conformations and was performed for least 200 ns
using Plumed ver. 2.6.1.51 The collective variable in WTMetaD
simulations was the distance from the center of mass of the
peptide to the top of the plastic surface; the corresponding bias
induced the peptide to adsorb and desorb from the plastic
surface multiple times. The initial strength of the bias potential
was 4.0 kJ/mol; biases were added every 0.5 ps, the bias factor
was 20, and the Gaussian bias width was 0.1 Å.

Figure 1. Atomistic models of plastic. (A) Crystalline polyethylene
and (B) amorphous polypropylene. (C) Procedure for generating
amorphous plastic surfaces. Two walls of carbon atoms, shown in red,
were placed above and below the plastic, and then the top wall was
incrementally moved down to compress the plastic until the
experimental density was reached. Polyethylene is shown in cyan
and white, polypropylene is shown in blue and white, and polystyrene
is shown in black and white.
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■ RESULTS AND DISCUSSION

Improving Conformational Sampling by Using Multi-
ple Starting Conformations. The first designs of plastic-
binding peptides revealed that PepBD ineffectively sampled the
peptide conformational space. Crystalline polyethylene was
selected as the inorganic material in these initial efforts. The
starting conformation was obtained from equilibrium molec-
ular dynamics simulation of the reference polyethylene-binding
peptide shown in Table 2. Figure 2A shows the score profile�

a plot of the peptide score at every step during peptide design.
The score rapidly decreases in the first 50 steps and then
oscillates around −30 kcal/mol for the remaining 1500 steps.
This oscillation led us to hypothesize that PepBD was trapped
in a local minimum in the design space. Subsequent analysis
revealed that the peptide backbone changed negligibly during
the design procedure (Figure 2B), indicating that PepBD was
stuck in the initial conformation. This is an issue, as a peptide
can adopt a vast number of conformations in the adsorbed
state.

Sampling of the peptide conformational space was improved
by using multiple starting conformations to initiate design.
While one solution is to add new conformational moves to
PepBD, a simpler solution is to use different adsorbed peptide
conformations to begin design. In this scheme, each design
samples the conformational space local to the starting
structure, while the ensemble of starting conformations
provides sampling of the global conformational space. Different
starting structures were obtained by running WTMetaD
simulations on the reference polyethylene-binding peptide.
The bias potential in WTMetaD induces the peptide to
repeatedly adsorb and desorb from the plastic, providing the
20 unique adsorbed conformations shown in Figure 2C. Each
starting conformation was used for a single peptide design run,
but 7 of the 20 conformations could not be used during design
(this is due to the hydration constraints, which we revisit in the

section Relaxing the Hydration Constraints). The distribution
of the best scoring peptides from each run is shown in Figure
2D. The top peptide scores vary significantly between different
starting structures; three of the 13 designs using unmodified
PepBD gave better scores than the first design (indicated by
the red arrow in Figure 2D). These results indicate the
importance of sampling different conformations in the design
of plastic-binding peptides.
Incorporating Simulated Annealing into Peptide

Design. Simulated annealing (SA) was added to PepBD to
further improve sampling of the conformation and sequence
space. While global sampling of conformation space was
improved by using multiple starting conformations, each
design poorly sampled the local conformational space as
shown in Figure 2B. As mentioned previously, we believed that
this could be attributed to PepBD being trapped in a local
minimum, so SA52 was added to aid escape from local minima.
Briefly, the SA design process begins with a high temperature
in eq 2 and slowly reduces the temperature with designs
conducted at each temperature until a minimum value is
reached. The high temperature at the start of the design
increases the likelihood of accepting changes that worsen the
score, allowing the peptide conformation to change rapidly.
Reducing the temperature decreases the likelihood of accepting
unfavorable conformational changes. PepBD converges to a
final conformation as the temperature reaches its minimum
value. In general, the final state reached by SA is guaranteed to
be the most stable conformation only if cooling is performed
infinitely slowly.53 Because cooling in peptide design must be
done at a finite rate, the final peptide conformation and
sequence are not guaranteed to be the global minimum. We
adopted a common solution to this issue and performed
multiple designs with each starting conformation to increase
the odds of finding a deep local minimum.

Details of our SA implementation are the following. The
temperature begins at kTstart and is reduced by a fixed ratio r
after N steps. The design terminates when the temperature
reaches kTend. The same KT value is used for both sequence
and conformation changes. When the temperature is
decreased, the peptide sequence and structure with the best
score over the previous N steps is used as the starting point for
the following N design steps. We tested a variety of parameter
combinations to search for an effective SA cooling schedule
(Table S5) and selected kTstart = 4 kcal/mol , kTend = 0.15
kcal/mol, r = 0.9, and N = 75.

We found that SA improves conformational sampling and
leads PepBD to sample new peptide structures and sequences.
We repeated the design of polyethylene-binding peptides using
the 20 starting conformations in Figure 2C, with four design
runs for each starting conformation. As previously mentioned,
multiple runs are performed with the same starting
conformation because different SA designs may converge to
different minima. Figure 3A shows an example score plot from
a design using SA. We see that the peptide score does not
change significantly in the final 500 steps, indicating that the
design has converged. Figure 3B compares one starting peptide
conformation to the final conformations of the four associated
designs. In contrast to designs without SA (Figure 2B), the
final peptide conformation changes significantly over the
course of design. This was observed for all 20 starting
structures, showing that SA improves sampling of the local
conformational space. Another interesting feature of Figure 3B
is that each final peptide conformation is distinct from all of

Figure 2. Peptide scores and structure with single and multiple
starting conformations. (A) Evolution in score using unmodified
version of PepBD. (B) Comparison of the peptide backbone structure
at end (blue) and beginning (orange) of unmodified PepBD design.
(C) The 20 different starting conformations used for designing
polyethylene-binding peptides. (D) Distribution of the best scoring
polyethylene-binding peptides resulting from 13 unique starting
conformations. Red arrow points to the score of the best peptide
found using the initial starting conformation shown in (A) and (B).
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the other final conformations. The corresponding final
sequences are also distinct between designs (Figure 3C). It
thus appears that different designs do indeed converge to
different local minima.
Relaxing the Hydration Constraints. A final modifica-

tion made to PepBD was to address the restriction of peptide
sequence sampling due to the hydration constraints.
Previously, PepBD required that the number of amino acids
of each type (Table 1) remains fixed during design. The
hydration constraints are intended to endow peptides with
desired properties like solubility in water or positive charge.
However, fixing the numbers of each type of amino acid
prevents many peptide sequences from being sampled, possibly
precluding the discovery of high-affinity peptides. Previous
design efforts addressed this issue by running separate designs
with different hydration constraints, but the vast number
hydration of constraint permutations meant that many peptide
sequences still were never sampled. The hydration constraints
also prevented the use of seven of the starting conformations in
Figure 2C, as an amino acid sequence satisfying the hydration
constraints could not be overlaid on the peptide structure
without steric clashes. We note that the designs using SA could
use all 20 starting conformations, as the large starting
temperature tolerated the high energy associated with steric
clashes until a conformational change removed the steric clash.

We addressed these issues by relaxing the hydration
constraints. Rather than fixing the number of each amino
acid type at a single value, the relaxed constraints only require
that the number of amino acids of each type stays between an
upper and lower limit. This greatly expands the sequences that
can be sampled, while still offering control over peptide
properties. The ranges used in this study were 0 to 6
hydrophobic, 3 to 10 hydrophilic, 0 to 2 anionic, 0 to 2
cationic, 0 to 2 glycine, and 0 to 2 other amino acids. The
maximum of 6 hydrophobic amino acids and a minimum of 3
hydrophilic amino acids were chosen to maintain peptide
solubility in water. The other ranges were selected as
preliminary tests without hydration constraints and showed
that high-scoring peptides were not found outside these ranges.

Simulated Annealing and Relaxed Hydration Con-
straints Improve Peptide Design. Combining SA with
relaxed hydration constraints led PepBD to discover better
scoring peptides. Crystalline polyethylene was again used as
the inorganic material. The designs were performed by using
PepBD, PepBD with SA, and PepBD with SA and relaxed
hydration constraints. Eighty total designs were performed
with each PepBD variant (20 unique starting conformations
×4 designs per starting conformation). As previously noted,
designs with original PepBD used only 13 of the 20
conformations. Figure 4A shows a histogram of the top-

scoring peptide from all of the designs using the three PepBD
versions. Comparing the average scores shows that SA alone
reduces the score by about 9 kcal/mol and that adding in the
relaxed hydration constraints gives an additional modest
improvement of 2 kcal/mol. The best peptide score using
both modifications is nearly 15 kcal/mol lower than the best
score with original PepBD. Thus, SA and relaxed hydration
constraints significantly improve peptide design.
Features of the Design Space: Local Minima and

Number of Designs to Perform. We next characterized the
number and depth of local minima in the design space when
simulated annealing and relaxed hydration constraints are used.
It was previously shown in Figure 2D that different starting
structures, i.e., different locations in the global conformational
space, result in significant variability in the associated best
peptide scores. The question investigated now is whether such
variability is also present in the local conformational space,
specifically, how much the best PepBD score varies between
designs that have the same starting conformation. Borrowing

Figure 3. Impact of incorporating simulated annealing (SA) into
PepBD. (A) Evolution of peptide score and system temperature using
SA. The blue curve is the peptide score, and the red curve is the RT
value in eq 2. (B) Comparison of starting peptide conformation (in
orange) and the final conformation in different designs using SA (red,
black, green, and blue). The starting conformation is the same as that
shown in Figure 2C. (C) Peptide sequences with highest scores
obtained from four designs using the same starting conformation.

Figure 4. Comparison of PepBD versions and analysis of variability
for repeated designs with the same starting conformation. (A) Score
distributions of three PepBD variants: (1) original PepBD (red), (2)
PepBD with simulated annealing (SA) (blue), and (3) PepBD with
SA and relaxed hydration constraints (yellow). For each PepBD
version, 80 designs were performed (20 unique starting conformations
× 4 designs per starting conformation). The legend provides the
average and standard deviation of the best peptide score using each
PepBD variant. (B) Distribution of the top scores from 50
polyethylene-designs using the same starting conformation. (C)
Distribution of score differences between best and worst scores using
the same starting conformation, with five designs performed per
starting conformation. Values correspond to the range of scores of the
best peptide from each of the five designs.
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terminology from the protein folding literature, we will term
such variability as roughness in the sequence/conformational
space. Evidence of this variability is present in Figure 3B,
where different designs with the same starting conformation
converged to different final structures. To further investigate
this question, 50 designs of polyethylene-binding peptides with
SA and relaxed hydration constraints were conducted with one
single starting conformation. The distribution of the top
peptide’s scores is shown in Figure 4B and spans a range of 20
kcal/mol. The best-scoring sequence in each design is unique,
like in Figure 3C. It thus appears that the local space is
significantly rough.

These results raise the question of how many designs should
be performed for a given starting conformation to improve the
likelihood of sampling a deep local minimum. Realizing that
there is no simple universal answer to this question, we aimed
to develop a simple design criterion. Our target metric was to
have a 95% chance of being within 5 kcal/mol of the best
score. While the global best score is unknown, the best score in
Figure 4B is believed to be a good approximation, as 50
designs were performed. A bootstrap analysis of the data in
Figure 4B (Supporting Information) showed that when 5
designs are performed, there is a 95% chance that at least one
of the five designs will have a score within 5 kcal/mol of the
best score (see Figure S2 and Supplemental Text for details).
We thus adopted five designs per starting conformation as our
design criterion.

While Figure 4B shows that the local space around that
starting conformation is rough, a lingering question is whether
such roughness is present around other starting structures.
Investigation of this question began by first performing an
additional design for each of the 20 different starting
conformations in Figure 2C to satisfy our design criteria of
five designs per starting conformation. We next calculated the
score range for each starting conformation, by finding the top
score for each of the five designs and then calculating the
difference between the best and worst scores. The score ranges
are shown in Figure 4C and span from 5 to 17 kcal/mol.
Roughness thus appears to be a general feature of the design
space, where the magnitude of the roughness varies with the
starting peptide conformation.
Designing Peptide Binders for the Four Plastics.

Encouraged by the improvement in peptide design using SA,
relaxed hydration constraints, and multiple starting conforma-
tions, all three modifications were applied to design peptides
that bind to polystyrene, polypropylene, and PET. Eleven
starting peptide conformations were obtained for each plastic
via WTMetaD simulations of the reference peptides in Table 2.
Five designs were performed per starting conformation; Table
3 shows the best-scoring peptides for each plastic. It is notable
that the best score for PET is nearly 20 kcal/mol lower than

the best score for polystyrene, which we suspect is due to the
greater roughness of the polystyrene surface compared with the
PET surface. Table 3 also shows that more negative van der
Waals energies are paired with more positive electrostatic
energies, suggesting that strengthening the van der Waals
interactions comes at the price of introducing unfavorable
electrostatic interactions. The electrostatic energies were found
to consist primarily of the polar solvation energy from the
generalized Born solvent model.
Properties of Top Peptide Designs: Amino Acid

Frequencies. Analysis of the PepBD designs reveals that
high scoring peptides are enriched in amino acids with bulky
side chains. The sequences in Table 3 show a high frequency of
certain amino acids such as tryptophan (W), arginine (R), and
histidine (H), which led us to calculate the frequency of each
amino acid in the best peptide designs. The analysis considered
the top 50 peptide sequences for all designs using PepBD with
SA and relaxed hydration constraints, corresponding to 5000
peptides for polyethylene (20 starting conformations × 5
designs per starting conformation × 50 peptides per design)
and 2750 peptides each for polystyrene, polypropylene, and
PET (11 starting conformations × 5 designs per state × 50
peptides per design). The results in Figure 5A show that
peptides are enriched in tryptophan (W), arginine (R),
histidine (H), and glutamine (Q), but depleted of alanine
(A), glycine (G), and lysine (K). Figure 5B shows that the
amino acid frequency correlates positively with amino acid
mass, likely because PepBD scores are linearly correlated to
van der Waals interactions (Figures 5C and S4) and van der
Waals interactions strengthen with increasing mass. Increasing
the number of van der Waals interactions is associated with a
electrostatic interactions becoming less favorable (Figure 5D)
due to the change in the dielectric environment between the
plastic surface and bulk water. Interestingly, several of the most
frequently appearing amino acids are either charged (e.g., R) or
hydrophilic (e.g., H or Q). This may seem counterintuitive
because placing a hydrophilic residue near a hydrophobic
plastic surface could reduce or eliminate hydrogen bonding or
electrostatic interactions between the residue and water.
However, these residues all have relatively large side chains
compared to the other amino acids, and thus can desolvate a
larger area of the plastic surface and have stronger van der
Waals interactions with the plastic compared to other amino
acids. These pros apparently outweigh the cons in our PepBD
model, given the high frequency of these residues. It is also
noteworthy that the amino acid frequencies for all four plastics
shown in Figure 5A are similar, possibly indicating that
peptides with an affinity for different plastics will have similar
compositions.
Properties of Top Peptides Designs: Hydration

Properties. We found that the top peptide designs were not
purely hydrophobic even in the absence of hydration
constraints. Because the four plastics investigated in this
study are hydrophobic, it was reasonable to expect that the
best plastic-binding peptides would consist entirely of
hydrophobic amino acids. Purely hydrophobic peptides are
not suitable, however, for biotechnology or MNP remediation
as they would be difficult to synthesize, poorly soluble in water,
and likely to aggregate. The design of purely hydrophobic
peptides can be avoided via the hydration constraints, but it is
still worth investigating if PepBD produces purely hydrophobic
peptides if the hydration constraints are removed. To answer
this question, we first analyzed the hydration properties of our

Table 3. Top Peptide Binder Designs for Different Plasticsa

plastic sequence
PepBD
score ΔVDW ΔELE

polyethylene HWMWAMKWHMRH −59.6 −90.7 31.1

polypropylene WWQRHMFHFRTW −52.3 −80.5 28.1

polystyrene WHWQRIIWQQMR −44.5 −69.7 25.2

PET WEWWHVFHHRLR −63.8 −105.0 41.2

aVDW: van der Waals; ELE: sum of electrostatics and polar solvation
energy.
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100 polyethylene-binding peptide designs (20 starting
conformations ×5 designs per starting conformation) using
SA and relaxed hydration constraints. Recall that these designs
used the hydration ranges specified in the section Relaxing the
Hydration Constraints. Figure 6A shows the number of amino
acids of each type at each step averaged over all 100 designs.
Because the designs were performed with SA, the values at the
end of design capture what PepBD believes to be the optimal
peptide hydration properties. Figure 6A shows convergence to
six hydrophobic amino acids at the end of the design for
polyethylene-binding peptides, which is the maximum
allowable value. Plots for the other plastics (Figure S6) show
the same trend. We suspected that PepBD would insert more
hydrophobic amino acids if the hydration constraints were
completely removed, so an additional round of peptide design
was performed for all four plastics without any hydration
constraints. Twenty designs were performed for each plastic
(10 starting conformations × 2 designs per starting
conformation). The corresponding hydration profiles (Figure

6B) show that the designs now converge to eight hydrophobic
amino acids. The trend was similar for the other plastics
(Figure S6). Thus, PepBD does not converge to purely
hydrophobic peptides, even in the absence of hydration
constraints. Investigation of the sequences revealed that the
hydrophilic amino acids were primarily histidine, arginine, and
glutamine. Revisiting Figure 5B, it appears that the bulky side
chains of these amino acids make them favorable to include in
the peptide.
Properties of Top Peptides Designs: Sequence Motifs

and Hydrophobic Patches. Analysis of the top peptide
designs showed that they did not share a common sequence
pattern. We wanted to determine if there was an underlying
pattern, or sequence motif, in the best PepBD designs, as this
was previously reported for polystyrene-binding peptides
found experimentally.54 Logos55 were created for the top 100
peptides (20 starting conformations × 5 designs per starting
conformation) for polyethylene and for the top 55 peptides
(11 starting conformations × 5 designs per starting

Figure 5. Properties of the top polyethylene designs. (A) Probability of amino acids found in the top peptide designs for all four plastics. Cysteine
and proline have 0 probability as they were excluded from design. Data taken from top 50 peptides from all designs for each plastic. (B) Correlation
of amino acid mass with the probability with which the amino acid is found in the top polyethylene designs. Data taken from top 50 peptides from
all designs for polyethylene. (C) Correlation of PepBD score with der Waals binding energy. (D) Correlation of van der Waals binding energy with
sum of electrostatic and polar solvation binding energy. Data for (C) and (D) are taken from all peptides generated during the 100 designs for
polyethylene (PE). The results in (B−D) are qualitatively similar for the other plastics (Figures S3−S5).
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conformation) for polypropylene, polystyrene, and PET. Only
one peptide was selected from each design as the top
sequences in each design are sampled from the same local
minimum at the end of design and so are often very similar.
Figure 7A shows the logo for polyethylene. The logos for the
other plastics may be found in Figure S7. To interpret the logo,
a larger letter corresponds to a higher probability of finding the
amino acid at that position and a sequence motif corresponds
to a string of amino acids that collectively appear with high
frequency. Referring to Figure 7A, tryptophan (W) appears
with high frequency at positions 7 and 11, indicating that W
commonly appears at this position in the top designs.
However, the small letter sizes at all other positions indicate
significant variability between peptides and the absence of a
sequence motif. A sequence motif was not found for the other
plastics as well (Figure S7).

While a sequence motif was not found, we wanted to
determine if the best peptide designs had hydrophobic or
hydrophilic patches. Referencing the amino acid classifications
in Table 1, amino acids were divided into two groups:
nonpolar (type N) made up of amino acid types hydrophobic
and other (which is only alanine) and polar (type P) made up
of all other amino acid types. A patch is defined as consecutive
Ns or Ps in the peptide. We first visualized patches by
calculating the frequency of finding each residue type at each
residue position for all 50 peptides in all peptide designs.
Figure 7B shows the results for one polyethylene design (left)
and the average over all 100 polyethylene designs (right). The
single design does show polar patches at residues 1−2 and 8−

10, along with a small nonpolar patch at position 11−12. To
assess peptide patchiness more rigorously, we compared the
distribution of the largest polar and nonpolar patches for the
top PepBD designs to those of a random copolymer. Random
copolymer sequences were generated by selecting either an N
or a P residue at each position of the 12-residue peptide with
each residue selected independently of all others. To align with
the PepBD hydration constraints and the hydration properties
of the top peptide designs in Figure 6B, random copolymer
sequences required either 5 or 6 N residues and 7 or 6 P
residues. Figure 7C,D compares the distributions for the
largest polar and nonpolar patches for the two peptide
populations. The PepBD designs are more likely to possess
large nonpolar patches relative to random copolymer, while a
significant difference is not observed for polar patches.
Referring to Figure 7B, right, it does not appear that the
nonpolar patch always occurs in the same location. This could
be attributable to a dependence of the patch location on the
adsorbed conformation, i.e., which residues are solvent-
exposed or in contact with the plastic surface. Interestingly,
the degree of nonpolar patchiness varied between the top
designs for different plastics, and the top designs for
polystyrene and polypropylene have nonpolar patch size
distributions that closely resemble those of random copoly-
mers (Figure S9).

■ CONCLUSIONS

This work describes the first steps in developing a computa-
tional method for designing peptides that bind to common
plastics. The PepBD algorithm was modified to include
simulated annealing, to relax the hydration properties, and to
use an ensemble of starting conformations. The modifications
improved sampling of conformational and sequence space,
leading to the discovery of peptides with better scores than the
peptides discovered by original PepBD. The updated algorithm
was used to design peptides that bind to polyethylene,
polypropylene, polystyrene, and PET. The best peptides
were found to be enriched in amino acids with bulky side
chains that increase van der Waals interactions with the plastic.
While a common sequence motif for the best designs was not
found, the top designs show patches of hydrophobic or
hydrophilic amino acids whose locations are specific to each
peptide backbone. Experimental and molecular dynamics
testing of the top peptide designs is underway and will be
important for evaluating PepBD in the design of plastic-
binding peptides.

An important parameter in peptide design is the peptide
length. We fixed all peptides to 12 residues to enable
comparison to previous plastic-binding peptides found in
peptide library screening experiments and because the 12-
residue sequence could be repeated multiple times to obtain a
larger, multivalent plastic-binding peptide if a higher affinity is
desired. However, the peptide length is an important
parameter in design, and its impact is worth investigating.
Based on the linear correlation between van der Waals
interactions and peptide scores, we predict that peptide scores
will linearly increase as the peptide length increases. This raises
the question of whether a short sequence repeated several
times will have a higher affinity to a plastic than one long,
unique sequence. This could be explored in future work.

It is crucial to note that PepBD predictions require
verification. PepBD scores are not binding free energies
because the score does not include entropic terms in peptide

Figure 6. Evolution of the hydration properties with variable
hydration. (A) Evolution of peptide hydration properties for design
of polyethylene-binding peptides using hydration constraints of 0 to 6
hydrophobic amino acids, 3 to 10 hydrophilic amino acids, 0 to 2
positive amino acids, 0 to 2 negative amino acids, 0 to 2 other amino
acids, and 0 to 2 glycine. (B) Evolution of peptide hydration
properties for design of polyethylene-binding peptides using no
hydration constraints. Amino acids are classified as per Table 1.
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adsorption, such as solvent restructuring or changes in the
peptide’s conformational space. Entropy is deliberately
excluded from the PepBD score because entropy calculations
require sampling peptide conformational space or the water
structure, a computationally intractable task when the peptide
sequence space is also being sampled. Instead, PepBD aims to
identify potential peptide “hits” that bind strongly to a target
material. The hits can be further evaluated using either
computational methods, like umbrella sampling56 or metady-
namics,57 or experimental methods, like surface plasmon
resonance58 or quartz crystal microbalance.59 We omit these
evaluations in the current work, as our aim is to describe the
PepBD design algorithm and its outputs. Computational and
experimental characterization of the best peptide designs will
be described in future work.

Moving forward, additional modifications are planned to
further improve the peptide design. An improved treatment of
solvent effects may be important given their key role in
adsorption processes.60 Particularly important for peptide
adsorption to plastics are hydrophobic forces, as a major

driving force in peptide adsorption is the displacement of water
from the interface. Hydrophobic energy, attributed to van der
Waals interactions with water as well as entropic energy
resulting from restructuring of water, was neglected in previous
PepBD designs of protein-binding peptides, as the hydro-
phobic energy was found to be roughly constant. The constant
energy stems from calculating the hydrophobic energy in terms
of the peptide surface area, which is roughly constant in a
protein binding pocket due to steric constraints. In contrast,
the peptide surface area can vary significantly from adsorbed
conformation to adsorbed conformation on a plastic surface, so
it is worth revisiting whether the hydrophobic energy is an
important factor in peptide design. We also plan to automate
the generation of starting conformations both to eliminate the
need for molecular dynamics simulations to generate these
conformations and to permit intelligent sampling of the
peptide conformational space. Lastly, we hope to apply PepBD
to the design of peptides that bind to other inorganic materials.
This requires generating accurate atomistic surfaces for the
material, obtaining parameters that accurately model peptide−

Figure 7. Hydration profiles of top peptides. (A) Logo of the top 100 polyethylene designs using PepBD with SA and relaxed hydration constraints.
Logo created using WebLogo.55 (B) Frequency of finding an amino acid type at each position for the top 50 polyethylene-binding peptides for a
single design (left) and averaged over the top 50 polyethylene-binding peptides from all 100 designs (right). Per Table 1, nonpolar residues are
amino acid types “hydrophobic” and “other”, while polar amino acids are all other amino acid types. (C) Distribution of largest nonpolar patches in
top 50 peptides for all 100 polyethylene designs vs distribution of hydrophobic patches in random 12-residue peptide constrained to have either 5
or 6 hydrophobic amino acids. (D) Same as C), except for polar amino acids.
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surface interactions, and revising the score function to include
new interactions such as that between thiols and gold.61

Overall, this is the first of many steps in our journey to
computationally design peptides that bind to inorganic
materials.
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