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MULTI-DIMENSIONAL CONVECTION-DIFFUSION AND

BIHARMONIC EQUATIONS
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Abstract. In this paper, we study ultra-weak discontinuous Galerkin meth-
ods with generalized numerical fluxes for multi-dimensional high order partial
differential equations on both unstructured simplex and Cartesian meshes.
The equations we consider as examples are the nonlinear convection-diffusion
equation and the biharmonic equation. Optimal error estimates are obtained
for both equations under certain conditions, and the key step is to carefully
design global projections to eliminate numerical errors on the cell interface
terms of ultra-weak schemes on general dimensions. The well-posedness and
approximation capability of these global projections are obtained for arbitrary
order polynomial space based on a wide class of generalized numerical fluxes
on regular meshes. These projections can serve as general analytical tools
to be naturally applied to a wide class of high order equations. Numerical
experiments are conducted to demonstrate these theoretical results.

1. Introduction

In this paper, we consider ultra-weak discontinuous Galerkin (DG) methods with
generalized numerical fluxes for high order partial differential equations (PDEs) in
multi-dimensional spaces. Let Ω ⊂ Rd, d ≥ 1, the two examples considered in this
paper are:

• the nonlinear convection-diffusion equation

(1.1) ut +∇ · f(u)− ε∆u = 0,

where f is the general nonlinear convection term, and ε > 0 is the diffusion
coefficient.

• the biharmonic equation

(1.2) ut +∆2u = 0.

For simplicity of analysis and computation, we only consider periodic boundary
conditions on the rectangular domain Ω. The results can be extended to other
boundary conditions and shapes of domains with suitable conditions.
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The DG method is a class of Finite Element Methods (FEM) that employ dis-
continuous piecewise polynomials as trial and test spaces. It was first introduced in
[42] for solving a steady state linear hyperbolic equation in the framework of neu-
tron transport problems. Simultaneously in the 1970s, a class of Interior Penalty
Discontinuous Galerkin (IPDG) was studied for elliptic and parabolic problems
[1, 5, 27]. In the late 1990s, Local Discontinuous Galerkin (LDG) was developed
by Cockburn and Shu [24] for nonlinear convection-diffusion equations. The idea
of LDG is to introduce auxiliary variables and rewrite the equation into an equiv-
alent system of first order equations. It is well-known that numerical flux is an
important ingredient in the design and analysis of the DG method, due to the fact
that discontinuous polynomial spaces do not require continuity on the boundaries
of elements for flexibility of applications. The role of numerical fluxes is to control
the behavior of numerical solutions on element boundaries, which directly affect
and even determine the accuracy and stability behavior of DG schemes. In [2], the
authors summarized the aforementioned DG methods into a unified framework with
only differences in the choice numerical fluxes. In the last decade, there are some
new DG methods proposed for high order PDEs, here we only name a few. Direct
Discontinuous Galerkin (DDG) method was introduced in [35] to solve diffusion
problems. The idea of DDG methods is to directly derive the weak formulation of
numerical solutions without introducing auxiliary variables, which is closely related
to the classical IPDG. For DDG methods, high order spatial derivatives may be
included in the schemes to enrich the stability. Ultra-weak DG method which will
be studied in this paper was proposed in [18] for solving time-dependent PDEs with
higher order spatial derivatives. The spirit of this method is to successively apply
integration by parts on the weak formulation of PDEs and move all high order spa-
tial derivatives to the test functions. The numerical fluxes are carefully chosen to
guarantee numerical stability. Ultra-weak DG method was developed and extended
to solve the one-dimensional Schrödinger equation [15], dispersive wave equations
[31], etc. Recently, an ultra-weak local DG method was introduced in [49], which
combines features of LDG and ultra-weak DG methods.

The a priori error estimates of DG methods have been studied for a long pe-
riod. In [2], the early work of DG methods for diffusion problems is summarized
and analyzed using one unified framework with different numerical fluxes. IPDG
and LDG are both included in this framework and proved to have optimal con-
vergence under certain assumptions. A wide range of other classical DG methods
such as [6, 7, 11, 43] are included in this class. For convection-diffusion equations,
[25,26] obtained O(hk) suboptimal estimate for the modified [7] and vanilla IPDG
[27] methods. Here and in what follows, k denotes the degree of piecewise poly-
nomials in the discontinuous polynomial spaces. Within the LDG framework, the
first O(hk) suboptimal L2 error estimate for one-dimensional linear convection-
diffusion equations with generalized numerical fluxes was obtained in [24]. Only
suboptimal results hold since L2 projection could not treat the numerical errors
on element boundaries optimally. In [12, 13], a special case of numerical fluxes,
alternating numerical fluxes, is chosen to obtain optimal O(hk+1) convergence rate
using Gauss-Radau projections. This projection could eliminate error terms on el-
ement boundaries since it interpolates functions on boundaries. The authors then
extended this result into multi-dimensional Cartesian meshes by discovering the
local superconvergence phenomenon [23]. In [37], an optimal error estimate of DG
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methods with upwind-biased flux was obtained for the linear hyperbolic conserva-
tion law on one- and two-dimensional Cartesian meshes. The difficulty of this work
focuses on the design and analysis of a global type projection. This work was then
extended to convection-diffusion equations with generalized alternating fluxes using
the technique of generalized Gauss-Radau projections [16]. For the DDG method,
Liu and Yan [33–35] derived optimal error estimates for one- and multi-dimensional
convection-diffusion problems. For the ultra-weak DG method, Cheng and Shu con-
sidered the alternating fluxes combined with an O(h−1) penalty term and proved
the suboptimal O(hk) convergence for one-dimensional convection-diffusion equa-
tions in [18]. Only suboptimality is obtained because the chosen Gauss-Radau
projections may not be compatible with the convection terms on the boundaries of
elements. In [8], a global projection was introduced to provide the error estimate
of an ultra-weak energy-conserving DG method for the generalized Korteweg-de
Vries (gKdV) equation. Recently, in [49, 50], the authors studied the ultra-weak
local DG scheme for the time-dependent biharmonic equation and nonlinear fourth-
order wave equations on one- and two-dimensional Cartesian meshes. Optimal error
analysis is obtained through the use of Gauss-Radau projections.

In recent years, there is a growing trend in investigating the theoretical behavior
of generalized numerical fluxes. For convection-diffusion equations, we have men-
tioned [37] with upwind-biased flux and [16] with generalized alternating fluxes.
For two-way wave equations, [17] proposed and studied a class of numerical fluxes,
named αβ fluxes, which yield optimal error estimate. Recently [47] extended the
range of parameters in the numerical fluxes and, by using the novel energy argu-
ment, derived optimal error estimates of DG methods with generalized numerical
fluxes for wave equations on unstructured simplex meshes. In [48], similar en-
ergy argument was carried out to construct a global projection on special simplex
meshes in multi-dimensions satisfying the so-called flow condition, and optimal
error estimates are proved for upwind-biased DG methods for multi-dimensional
linear advection equations on such meshes. DG methods with generalized numeri-
cal fluxes were recently studied for stochastic Maxwell equations with additive or
multiplicative noises in [45, 46]. For one-dimensional models containing high order
derivatives, LDG methods with αβ fluxes were studied in [30]. In [15], an optimal
error estimate for one-dimensional Schrödinger equation is achieved for ultra-weak
schemes with generalized numerical fluxes. The error analysis is rather cumbersome
due to the construction of global projections, which is aggravated in the cases of
ultra-weak schemes since the projections for this type of scheme require coupling of
functions and their derivatives (as compared with LDG-type schemes). This feature
could also explain the lack of such results in the ultra-weak DG method for multi-
dimensional problems. It is therefore interesting and necessary to develop analysis
tools suitable for ultra-weak DG methods in general cases with multi-dimensional
settings and generalized numerical fluxes.

In this paper, we focus on the generalization and development of analysis tools
for the optimal error estimate of ultra-weak DG methods with generalized numer-
ical fluxes. The main objective of this paper is threefold. First, we design novel
global projections suitable for the analysis of ultra-weak type methods on multi-
dimensional settings with unstructured meshes. In addition, properties of such
projections including the well-posedness and optimal approximation capability will
be studied. Second, we apply these tools to study ultra-weak DG methods for



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

2138 YUAN CHEN AND YULONG XING

general dimensional nonlinear convection-diffusion equations and biharmonic equa-
tions. The optimal convergence is obtained by taking advantage of the carefully
designed projections. Third, we also consider generalized numerical fluxes in a
general formulation with various parameters, and study the general behavior of
ultra-weak schemes under this setting. The tools we build in the present work can
be applied not only to convection-diffusion and biharmonic equations, but to other
high-dimensional problems such as Schrödinger [15] and wave [50] equations, etc.
Furthermore, we believe the spirit of current work could also be extended to other
high order problems such as the gKdV equation [8,18,29] and problems with higher
order spatial derivatives [49].

In the analysis of projection error, different from the approaches in [22, 47], we
do not consider Gauss-Radau type projections on unstructured simplex meshes
in this paper. This follows the nature of our problem: instead of coupling aux-
iliary variables, Gauss-Radau type projections for ultra-weak type schemes have
to deal with the aforementioned coupling of function and its derivatives. If we
adopt a similar definition as LDG type projections [22, 47], it may even produce
an overdetermined global linear system. Moreover, the decoupling work of func-
tions with their derivatives is rather harder than that of auxiliary variables, even
in one dimension. Therefore, we consider generating projections directly from the
ultra-weak schemes on simplex meshes and survey the range of parameters that
could guarantee good properties. This setting is flexible and could be extended to
other meshes and discontinuous spaces easily. A similar technique has been applied
to analyze multi-dimensional DDG methods in [34]. We emphasize that compared
with [34], the compatible parameter set of our method can be explicitly written out
and computed, which could be useful in the computation of an application prob-
lem. Moreover, if Cartesian meshes are used, we could still take advantage of the
tensor structure and design tensor product projections from the one-dimensional
projections studied in [15]. Thanks to the structure of the Cartesian mesh, we could
extend the range of parameters with optimal error. Superconvergence properties
corresponding to results of [23] are studied for these tensor projections to over-
come the lack of orthogonality. With these carefully designed projections, we can
improve and extend error estimates for convection-diffusion and biharmonic equa-
tions in the literature [18, 49] under multi-dimensional and generalized numerical
fluxes settings. At the end of this paper, some numerical examples are provided to
further investigate the general behavior of different numerical fluxes.

As a DG method, the ultra-weak DG method automatically enjoys the common
advantages of DG methods, such as easiness to accommodate arbitrary h-p adaptiv-
ity, high parallel efficiency, flexibility in handling geometry and meshes, etc. When
applied to convection-diffusion equation, the ultra-weak DG method avoids using
auxiliary variables or rewriting the original equation into a larger system. As a re-
sult, the stencil is more compact than methods such as LDG, which leads to more
efficient computation. Compared with earlier classical DG methods [7,41], the prov-
able stability and optimal convergence which will be shown in the present paper also
provides stronger theoretical guarantee. For time-dependent biharmonic equations,
the standard discontinuous polynomial spaces are used, instead of C1 conforming
element or mixed elements [4,20] used in FEM. This reduces the difficulty brought
by approximated spaces such as tedious coding and Ladyzhenskaya-Babuska-Brezzi
(LBB) conditions. The theoretical analysis in this paper could provide provable
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stability and convergence, especially for polynomial order k = 1, 2, which usually
bring difficulties for methods of fourth order problems, see [10,28,38,39]. Moreover,
designed to solve high spatial order PDEs, the ultra-weak DG method is easy to
be generalized to other high order equations, such as gKdV equation, fifth, sixth,
seventh and even general nth order PDEs.

The rest of the paper is organized as follows: In Section 2, we introduce notations,
assumptions, ultra-weak DG scheme, and some preliminary analysis results. In
Section 3, we develop a couple of projections designed for ultra-weak schemes which
are critical tools for optimal error estimates. In Sections 4 and 5, we derive optimal
error estimates for the multi-dimensional nonlinear convection-diffusion equation
and biharmonic equation, respectively. Numerical experiments are provided in
Section 6 to validate and explore theoretical results. Finally, a brief conclusion will
be given in Section 7.

2. Ultra-weak scheme

2.1. Notations and assumptions. In this section, we introduce the notations
and assumptions that will be used in this paper. In the one-dimensional case, we
consider Ω as an interval [a, b], where a, b ∈ R. Let Th = {Ii}Ni=1 be a partition
of Ω, where Ii = (xi−1/2, xi+1/2) has the length hi = xi+1/2 − xi−1/2. The global
mesh size is set as h ≡ max1≤i≤N hi. We assume the partition Th is quasi-uniform
[9], i.e., there exists a constant C independent of h, such that Ch ≤ hi ≤ h, for
i = 1, 2, . . . , N as h goes to 0. We also use Eh to represent the set of boundary
points of partition Th, i.e., Eh = {xi+1/2}, i = 0, 1, . . . , N .

In higher dimensional spaces with d ≥ 2, two classes of meshes will be considered
in this paper: simplex mesh and Cartesian mesh. We introduce the setting of these
two classes of meshes respectively. Let Th be a simplex mesh of Ω and Eh be the set
of faces of Th. For T ∈ Th, we denote the local mesh size to be hT = diam(T ) and
global mesh size h = maxT∈Th hT , where diam means diameter of a given geometric
object. For any face e ∈ Eh, we define its size to be he = diam(e).

On the other hand, we use Kh to denote a Cartesian mesh on Ω. With spatial
variables X = (x1, x2, . . . , xd), the rectangular domain Ω can be represented in the

form of Ω =
∏d

j=1[aj , bj ]. Then we can write Ω as:

(2.1) Ω =
⋃

T∈Kh

T,

where each T ∈ Kh can be written as T = I1α1
× I2α2

× · · · × Idαd
, for some indexes

(α1,α2, . . . ,αd). For each dimension j = 1, 2, . . . , d, [aj , bj ] is partitioned to Nj

subintervals, i.e., [aj , bj ] =
⋃Nj

αj=1 I
j
αj

=
⋃Nj

αj=1[x
j
αj−1/2, x

j
αj+1/2] and the index αj

satisfies 1 ≤ αj ≤ Nj . In this case, the definition of Eh, mesh sizes he, and h directly
follows the definition of the corresponding terminologies in the last paragraph.

Similar to the one-dimensional case, we also assume high dimensional meshes to
be quasi-uniform. It is well-known that quasi-uniform meshes are nondegenerate
[9]. In this paper, we will frequently use the following corollary: ∃ σ independent
of h, such that

(2.2)
|e|
|T | ≤

σ

he
, for ∀e ∈ Eh(T ), ∀T ∈ Th or Kh,

here | · | denotes the Lebesgue measure of each geometric object.
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For simplicity of notations, we denote the standard L2 norms of any function
on a domain Ω̃ by ‖·‖Ω̃. For example, for function v defined on Ω, ‖v‖Ω and ‖v‖e
represents the L2 norm of v on the domain Ω and trace of v on a face e (if well-
defined) respectively. Moreover, with these meshes on Ω defined as above, we are
able to construct mesh-dependent norms. Here we take the simplex mesh Th as an
example. We use W k,p(Th), k ≥ 0, 1 ≤ p ≤ ∞ to denote the broken Sobolev space
on Th, which can be defined as:

(2.3) W k,p(Th) = {v ∈ L2(Ω) : v|T ∈ W k,p(T ), ∀T ∈ Th}.
This space is equipped with the following norm for 1 ≤ p ≤ ∞:
(2.4)

‖v‖Wk,p(Th)
=

∑

T∈Th

‖v‖Wk,p(T ) , 1 ≤ p < ∞; ‖v‖Wk,∞(Th)
= max

T∈Th

‖v‖Wk,∞(T ) .

By convention, when p = 2, we denote W k,2(Th) by Hs(Th). For semi-norms,
similar definitions could apply and we just denote the corresponding Sobolev semi-
norm by |v|Wk,p(Th) for 1 ≤ p ≤ ∞. For functions on norm vector spaces V with
additional time variable within t ∈ [0, L], here L represents a positive termination
time, we use Lp(0, L;V ), W k,p(0, L;V ) to denote the corresponding spaces.

To properly handle boundaries of elements and define the DG method, we have to
deal with computations on traces of elements. Here we mention the related concepts
and operators. We first note that the face set Eh can be split into Eb

h, the boundary
face set which contains faces located at the boundary of Ω, and the interior face set
E i
h = Eh\Eb

h. Then we associate one normal vector n to each e ∈ Eh. For e ∈ Eb
h,

this vector points from the interior of the domain Ω to the exterior side. For e ∈ E i
h,

the direction of this vector only needs to be fixed with respect to e. In our work, we
do not assign this direction. Without loss of generality, for each e ∈ E i

h, we denote
the vector n pointing from T 1

e to T 2
e , which are two neighbor elements of e. Note

that functions in the broken Sobolev spaces on Th may be double-valued on traces
e ∈ E i

h = Eh\Eb
h. For these functions, we define the operators !·" and {{·}} on e to

be:

(2.5) !v"e = v|T 1
e
− v|T 2

e
, {{v}}e =

1

2
(v|T 1

e
+ v|T 2

e
), on e ∈ E i

h.

To adapt the above trace operators with the periodic boundary condition, we pair
the faces on opposite boundaries. Each e ∈ Eb

h forms a boundary face pair (e, ê)
with the corresponding symmetrical face ê on the opposite boundary. For simplex
meshes, we assume our triangulation makes this possible. Then we denote T 1

e and
T 2
ê as the elements associated to e and ê, with which the operators !·" and {{·}} on

boundary face pair (e, ê) can be defined similarly:
(2.6)

!v"(e,ê) = v|T 1
e
− v|T 2

ê
, {{v}}(e,ê) =

1

2
(v|T 1

e
+ v|T 2

ê
), for each boundary pair(e, ê).

For the normal vector, we assign n(e,ê) pointing out from T 1
e to the exterior of the

domain, and is naturally identical to the normal vector pointing from exterior to
T 2
ê . We may omit these subscripts if it does not cause any confusion. Note that in

the following context, when we sum with respect to Eh, it means sum with respect
to all the faces in E i

h and all face pairs (e, ê) on the boundary.

Remark 2.1. In one dimension, we set σ = 1 in (2.2) for any partition Th, for the
convenience of providing a unified trace inequality. Moreover, the concept of normal
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vectors can be adapted in one dimension without special treatment by defining the
outer normal vector of each interval I to be n = −1 on the left node, and n = 1 on
the right node. With this setting, it’s possible that our definition of !·"e is slightly
different from that in the literature.

2.2. Preliminary analysis. In this subsection, we list some important results that
are commonly used in the analysis of finite element type methods. The following
inequality reads the trace inequality for H1(T ) element [9]: for any T ∈ Th or Kh,
(2.7)

(Trace inequality). ‖v‖L2(e) ≤ C
(
h−1/2
e ‖v‖L2(T ) + h1/2

e |v|H1(T )

)
, ∀v ∈ H1(T ),

where e is a face of T .
We define the mesh-dependent discontinuous piecewise polynomial space on Th:

(2.8) V k
h = {v ∈ L2(Th) : v|T ∈ Pk(T ), ∀T ∈ Th},

where Pk is the polynomial space of degree at most k. To enforce periodic boundary
conditions, the following subspaces of V k

h will be used in the following sections:

V k,0
h = {v ∈ L2(Th) :

∫

Ω
v dX = 0, v|T ∈ Pk(T ), ∀T ∈ Th},

V k,u
h = {v + 1

|Ω|

∫

Ω
u dX : v ∈ V k,0

h }.
(2.9)

Refined inequalities on polynomial space include trace inequality [51,52] and inverse
inequality (for example, see Theorem 3.2.6 of [21]):
(2.10)

(Trace inequality). ‖v‖L2(e) ≤
√

σ(k + 1)(k + d)

d
h−1/2
e ‖v‖L2(T ), ∀v ∈ Pk(T ),

(Inverse inequality). |v|H1(T ) ≤ Ch−1‖v‖L2(T ), ∀v ∈ Pk(T ),

(L∞ Inverse inequality). ‖v‖L∞(T ) ≤ Ch−d/2‖v‖L2(T ), ∀v ∈ Pk(T ).

Similar to the polynomial spaces defined above, we introduce the discontinuous
tensor product polynomial space Sk

h:

(2.11) Sk
h = {v ∈ L2(Ω) : v|T ∈ Qk(T ), ∀T ∈ Kh},

where Qk is the polynomial space of degree at most k for every spatial variable.
Similar subspace Sk,0

h , Sk,u
h and inverse inequalities can be established for this space

as well. Here we only rewrite and derive the coefficients of the trace inequality.

Lemma 2.1. Let K be a rectangular element, say K = I1α1
× I2α2

× · · ·× Idαd
, e be

one of its faces with he = diam(e). For a function v ∈ Qk(T ), the following trace
inequality holds:

(2.12) ‖v‖L2(e) ≤
√
σ(k + 1)h−1/2

e ‖v‖L2(T ).

The proof of Lemma 2.1 is given in Appendix A.1. It can be seen that the
constant of trace inequality in high-dimensional Cartesian meshes inherits that of
the one-dimensional case.
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2.3. Ultra-weak discretization. The idea of ultra-weak DG methods [18] is to
apply integration by parts repeatedly on the weak formulation of equations so that
high order spatial derivatives can be moved to test functions. Then the numerical
fluxes are carefully chosen to ensure stability and convergence.

For the negative Laplacian operator −∆u which is common to many PDEs, we
can derive its ultra-weak discretization as follows. Assume u, v ∈ Hs(Ω), s ≥ 2, let
us start with performing integration by parts twice to the bilinear form (−∆u, v)T :
(2.13)

(−∆u, v)T = (∇u,∇v)T − 〈∂nu, v〉∂T = −(u,∆v)T + 〈u, ∂nv〉∂T − 〈∂nu, v〉∂T ,

where the test function v is taken from the piecewise polynomial space V k
h or Sk

h.
The notation (·, ·)T denotes the standard inner product of L2 space on element T ,
while the inner product on face e is denoted by 〈·, ·〉e. Note that in one dimension,
〈·, ·〉 will degenerate to multiplication at point e. The functions u and ∂nu defined
on trace space are called physical fluxes. We sum the above equality for all elements
T and substitute u and ∂nu by single value functions û and ∂̃nu on face e, which
leads to

−
∑

T

(u,∆v)T +
∑

e

[
〈û, !∂nv"〉e − 〈∂̃nu, !v"〉e

]
.(2.14)

Using integration by parts on the first term of (2.14), we could define the bilinear
form ah(·, ·) : Hs(Ω)×Hs(Ω) 0→ R, s > 3/2 in the following form:

ah (u, v) :=
∑

T

(∇u,∇v)T −
∑

e

〈!u∂nv" , 1〉e +
∑

e

[
〈û, !∂nv"〉e − 〈∂̃nu, !v"〉e

]
.

(2.15)

Here, the û and ∂̃nu are the so-called numerical fluxes. In this paper, we consider
generalized numerical fluxes with parameters α1,α2,β1,β2 ∈ R:

(2.16) ∂̃nu = {{∂nu}}+ α1 !∂nu" + β1 !u" , û = {{u}}+ α2 !u" + β2 !∂nu" .
This general form of the numerical flux was studied for the one-dimensional lin-
ear Schrödinger equation in [14]. Note that our definitions naturally guarantee
that these numerical fluxes are consistent and conservative (as known as adjoint
consistent [2]).

In our present work, we only consider the scaling invariant form, that is α1 =
−α2 = α, β1 = c1/he, β2 = c2he, which leads to

(2.17) ∂̃nu = {{∂nu}}+ α !∂nu" + c1
he

!u" , û = {{u}}− α !u" + c2he !∂nu" .

The generalized numerical fluxes defined above include a large class of well-known
numerical fluxes, such as central flux (α = c1 = c2 = 0), alternating flux (α = 1/2,
c1 = c2 = 0), αβ fluxes [17] (α2 + c1c2 = 1/4), etc. In addition, the flux considered
for the one-dimensional convection-diffusion equation in the original ultra-weak DG
work by Cheng and Shu [18] is a particular case of the generalized fluxes, where
α = 1/2, c1 is negative with sufficient large absolute value and c2 = 0. Moreover,
the bilinear form of the IPDG method [27] can also be rewritten in form (2.15) and
included in this flux family by letting α = 0, c1 ≤ 0 and c2 = 0. For the convenience
of notations, we denote Θ to be a universal set of the parameter triple (α, c1, c2).
The suitable parameter set Θ will be discussed in the following sections, for the
purpose to provide sufficient stability and/or accuracy of the approximation.
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3. Projections

One critical tool in the analysis of DG methods is the projection which is care-
fully chosen for the purpose of providing optimal a priori error estimate. In this
section, we design a couple of projections for the ultra-weak scheme with general-
ized numerical fluxes. The well-posedness and optimal approximation capability of
these projections will also be studied.

3.1. Ultra-weak projection. We first introduce a projection arising directly from
the formulation of the ultra-weak scheme. In this section, we take polynomial spaces
V k
h on Th as a representative example to illustrate the idea. See Remark 3.5 for the

extension to Sk
h on Kh, and a similar strategy can be applied for other meshes and

spaces.
We consider the following projection ΠUW

h : Hs(Ω) 0→ V k,u
h , s > 3/2, induced by

ah(·, ·):

(3.1) ah(Π
UW
h u− u, vh) = 0, for any vh ∈ V k,0

h .

As we could see later, this projection is designed to eliminate the errors of nu-
merical solutions on the faces. The parameters α, c1, c2 could be chosen to ensure
suitable approximation capability, and we restrict the parameter set Θ to the sub-
class ΘUW = ΘUW

1 ∪ΘUW
2 :

ΘUW
1 = {(α, c1, c2) : c1 < 0, c2 > 0, c1 < −α2

c2
− σ(k + 1)(k + d)

d
},

ΘUW
2 = ∪ε>0,γ∈(0,1)Θ

UW
ε,γ ,(3.2)

ΘUW
ε,γ = {(α, c1, c2) : c1 < 0, c2 ≤ 0, ε|α|− c2 <

γd

2σ(k + 1)(k + d)
,

− c1 −
|α|
ε

>
σ(k + 1)(k + d)

d(1− γ)
},

which will be explained in the following analysis.

Remark 3.1. We restrict the test functions to V k,0
h in the definition (3.1). Indeed,

for any projection ΠUW
h u satisfying the definition, the orthogonality holds for a wider

class of test functions vh:

(3.3) ah(Π
UW
h u− u, vh) = 0, for any vh ∈ V k

h .

This is easy to see with, for example, (3.6), since ah(w, v) only involves jumps and
derivatives of v, which is invariant with respect to constant-shifts.

Remark 3.2. The admissible parameter set ΘUW looks complicated. However,
the set is computable for any dimension d and polynomial k. The only quantity
relatively difficult to be computed is σ, defined in (2.2). For some typical structured
meshes, we could compute σ easily. For example, in two dimensions, σ = 4 for
structured mesh consisted of isosceles right triangles, and σ = 1 for Cartesian mesh
consisted of squares. For unstructured triangular mesh, σ can also be computed
numerically. Actually, this constant is bounded by the reciprocal of sin2θ, where θ
is the smallest angle of triangular elements. Therefore, this condition also suggests
using meshes that are not too ‘bad’ [44].
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Remark 3.3. We remark that the range of parameters ΘUW is a generalization of
such range of IPDG methods. As we can see in the following Lemmas and numer-
ical experiments, the involvement of the extra penalization term 〈!∂nu" , !∂nv"〉e
enlarges and generalizes the admissible parameters range of IPDG methods.

Remark 3.4. To illustrate the range of ΘUW , we draw graphs of cross sections of
the set R3 and compare with the classical numerical fluxes when k = d = σ = 1
(see Figure 3.1). In the left one of Figure 3.1, we plot the ΘUW

1 when α = 1/2 with
blue and the area will extend to the left-upper corner of the c1-c2 plane. Within
our knowledge, there are no other existing numerical fluxes belonging to this area.
In the middle one, we plot the ΘUW

2 at α = 1/2 and use a red dot line to represent
the parameters of the original ultra-weak DG method [18]. In the right subfigure,
we plot ΘUW

2 at α = 0 and mark the (Symmetric) IPDG flux with a red dot line.

Figure 3.1. Illustrations of ΘUW
1 on c1-c2 plane with α = 1/2

(Left), ΘUW
2 on c1-c2 plane with α = 1/2 (Middle) and ΘUW

2 on
c1-c2 plane with α = 0 (Right) as k = d = σ = 1

In addition, we introduce the mesh dependent energy norm ‖·‖E and the aug-

mented norm # · # on V k,0
h :

‖v‖2E =
∑

T∈Th

‖∇v‖2T +
∑

e∈Eh

1

he
‖!v"‖2e ,

#v#2 = ‖v‖2E +
∑

e∈Eh

[
he ‖{{∂nv}}‖2e + he ‖!∂nv"‖2e

]
.

(3.4)

It can be seen these two norms are equivalent on V k,0
h . Next, we present some

properties of ah(·, ·) in order to study the projection ΠUW
h .

Lemma 3.1 (Continuity). For w, v ∈ Hs(Th), s > 3/2, a(·, ·) is continuous, i.e.,
there exists a constant C% independent of h, such that:

(3.5) |ah(w, v)| ≤ C% # w # #v # .
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Proof. Using integration by parts and the identity !fg" = !f" {{g}} + !g" {{f}}, we
can write ah(w, v) as:

ah (w, v) =
∑

T∈Th

(∇w,∇v)T −
∑

e∈Eh

[
〈!w" , {{∂nv}}〉e + 〈{{∂nw}} , !v"〉e

]

(3.6)

−
∑

e∈Eh

[
α〈!w" , !∂nv"〉e + α〈!∂nw" , !v"〉e − c2he〈!∂nw" , !∂nv"〉e

+
c1
he

〈!w" , !v"〉e
]
.

Applying Cauchy-Schwarz inequality yields

(3.7)
∑

T∈Th

| (∇w,∇v)T | ≤
∑

T∈Th

‖∇w‖T ‖∇v‖T ≤ C # w # #v # .

The second term can be bounded as:

(3.8)
∑

e∈Eh

|〈!w" , {{∂nv}}〉e| ≤
∑

e∈Eh

1√
he

‖!w"‖e
√
he ‖{{∂nv}}‖e ≤ C # w # #v#,

and all the other terms can be bounded similarly. !

Lemma 3.2 (Coercivity). Let w ∈ V k
h , and assume (α, c1, c2) ∈ ΘUW , then a(·, ·)

is strongly coercive, i.e., there exists a constant C% independent of h, such that:

(3.9) ah(w,w) ≥ C% # w #2 .

Proof. As a result of the norm equivalence of ‖·‖E and # ·#, we need only to prove
the coercivity result for ‖·‖E . Also by the structure of ah and # · #, we only need

to prove for w ∈ V k,0
h . Assume ‖v‖E ≥ C # v# on v ∈ V k,0

h . From (3.6), we have

ah (w,w) =
∑

T∈Th

(∇w,∇w)T −
∑

e∈Eh

[
2〈!w" , {{∂nw}}〉e + 2α〈!w" , !∂nw"〉e

+
c1
he

‖!w"‖2e − c2he ‖!∂nw"‖2e
]
.

(3.10)

Next we consider two different cases, each corresponding to the set ΘUW
1 or ΘUW

2 ,
respectively.

Case 1. c1 < 0, c2 > 0, provided c1 < −α2/c2 − σ(k + 1)(k + d)/d.

For any e ∈ Eh, we have

|2〈!w" , {{∂nw}}〉e| ≤
σ(k + 1)(k + d)

dhe(1− γ)
‖!w"‖2e +

(1− γ)dhe

σ(k + 1)(k + d)
‖{{∂nw}}‖2e ,

where γ ∈ (0, 1) is a constant to be chosen. Applying the trace inequality (2.10)
yields

(1− γ)dhe

σ(k + 1)(k + d)
‖{{∂nw}}‖2e ≤ 1− γ

2

(
‖∂nw‖2T 1

e
+ ‖∂nw‖2T 2

e

)

≤ 1− γ

2

(
‖∇w‖2T 1

e
+ ‖∇w‖2T 2

e

)
,
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where T 1
e and T 2

e are the two elements adjacent to the face e. Then we combine
the above two inequalities and sum them w.r.t. e ∈ Eh to obtain the estimate
(3.11)

−
∑

e∈Eh

2〈!w" , {{∂nw}}〉e ≥ −
∑

T∈Th

(1− γ) ‖∇w‖2T −
∑

e∈Eh

σ(k + 1)(k + d)

dhe(1− γ)
‖!w"‖2e .

We can follow similar lines and have the following estimate:

(3.12) −2α〈!∂nw" , !w"〉e ≥ −
(
c2he ‖!∂nw"‖2e +

α2 ‖!w"‖2e
c2he

)
.

Combining the inequalities (3.11)–(3.12) with (3.10) yields

(3.13) ah(w,w) ≥ γ
∑

T∈Th

‖∇w‖2T +

(
−c1 −

α2

c2
− σ(k + 1)(k + d)

d(1− γ)

) ∑

e∈Eh

‖!w"‖2e
he

.

Taking Cγ = min{γ,−c1 − α2

c2
− σ(k+1)(k+d)

d(1−γ) } and C% = C2 maxγ∈(0,1) Cγ . We have

C% > 0 provided the assumption c1 < −α2/c2 − σ(k + 1)(k + d)/d, and this leads
to the coercivity (3.9).

Case 2. c1 < 0, c2 ≤ 0, provided ε|α|− c2 < γd/2σ(k+1)(k+d) and −c1− |α|/ε >
σ(k + 1)(k + d)/d(1− γ), for some ε > 0 and γ ∈ (0, 1).

For any fixed ε > 0, we have the following estimate

(3.14) −2α〈!∂nw" , !w"〉e ≥ −|α|
(
εhe ‖!∂nw"‖2e +

‖!w"‖2e
εhe

)
,

and apply the trace inequality to obtain
(3.15)

−(ε|α|−c2)he ‖!∂nw"‖2e ≥ −2(ε|α|−c2)
σ(k + 1)(k + d)

d
· 1
2

(
‖∂nw‖2T 1

e
+ ‖∂nw‖2T 2

e

)
.

Combining the inequalities (3.11), (3.14), (3.15) with (3.10) leads to

ah(w,w) ≥
(
γ − 2(ε|α|− c2)

σ(k + 1)(k + d)

d

) ∑

T∈Th

‖∇w‖2T

+

(
−c1 −

|α|
ε

− σ(k + 1)(k + d)

d(1− γ)

) ∑

e∈Eh

‖!w"‖2e
he

.

(3.16)

Provided ε|α|−c2 < γd/2σ(k+1)(k+d) and −c1− |α|/ε > σ(k+1)(k+d)/d(1−γ),
we can take C% to be minimum of two coefficients in (3.16) multiplied by C2 to
derive the coercivity (3.9). !

Now we are ready to analyze the approximation capability of the projection ΠUW
h

in (3.1).

Theorem 3.1. Let (α, c1, c2) ∈ ΘUW and u ∈ Hs(Th), s > 3/2, then the projection
3.3 is well-defined. Moreover, if u ∈ Hk+1(Th), then the following approximation
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results hold:

#u−ΠUW
h u# ≤ Chk|u|Hk+1(Ω),

|u−ΠUW
h u|H1(Th) ≤ Chk|u|Hk+1(Ω),∥∥u− ΠUW
h u

∥∥
L2(Th)

≤ Chk+1|u|Hk+1(Ω),
∥∥u−ΠUW

h u
∥∥
L2(Eh)

≤ Chk+1/2|u|Hk+1(Ω).

(3.17)

Proof. The existence and uniqueness both follow from the Lax-Milgram Theorem.
We start with proving the approximation capability for the augmented norm # ·#.
We have the following approximation results from Bramble-Hilbert Lemma and the
standard scaling argument:

(3.18) |u− P k
hu|Hs(Th) ≤ Chk+1−s|u|Hk+1(Th),

where P k
h is the L2 projection defined as P k

h : L2(Ω) 0→ V k
h , such that for ∀T ∈ Th,

it holds that

(3.19) (P k
hu, v)T = (u, v)T , ∀v ∈ Pk(T ).

Note that ΠUW
h u−P k

hu ∈ V k,0
h , we use the continuity and coercivity properties of

ah to have:

C% # ΠUW
h u− P k

hu#2 ≤ ah(Π
UW
h u− P k

hu,Π
UW
h u− P k

hu) = ah(Π
UW
h u− P k

hu, u− P k
hu)

≤ C% # ΠUW
h u− P k

hu # #u− P k
hu#,

(3.20)

where the first inequality arises from Lemma 3.2, and the equality follows from
the orthogonality property of the projection (3.3). This produces the following
property:

(3.21) #ΠUW
h u− P k

hu# ≤ C%

C%
# u− P k

hu # .

We can estimate #u − P k
hu# by using the trace inequality (2.7) and the approxi-

mation (3.18):

#u− P k
hu#2 ≤ C

(
h−2

∥∥u− P k
hu

∥∥2
L2(Th)

+
∣∣u− P k

hu
∣∣2
H1(Th)

+ h2
∣∣u− P k

hu
∣∣2
H2(Th)

)

≤ Ch2k|u|2Hk+1(Th)
.

(3.22)

Applying triangular inequality and combining (3.21)–(3.22) yield

(3.23) #u−ΠUW
h u# ≤ #ΠUW

h u− P k
hu # + # u− P k

hu# ≤ Chk|u|Hk+1(Th).

Next, we estimate the L2 norm by a traditional duality argument. Denote the
projection error by η%h = ΠUW

h u− u ∈ L2(Ω). Let ω ∈ H2(Ω) be the solution of the
following auxiliary problem:

−∆ω = η%h, on Ω,(3.24a)

ω = 0, on ∂Ω.(3.24b)

The elliptic regularity ensures that there exists C only depending on Ω, such that:

(3.25) |ω|H2(Ω) ≤ C ‖η%h‖L2(Ω) .
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Since ω ∈ H2(Ω), we have the following relation:

(3.26) ‖η%h‖
2
Ω = (η%h, η

%
h)Ω = (−∆ω, η%h)Ω = ah(ω, η

%
h),

where the last equality could be seen by repeating the steps to derive ultra-weak
schemes

(−∆ω, η%h)Ω =
∑

T∈Th

−(ω,∆η%h)T + 〈ω, ∂nη%h〉∂T − 〈∂nω, η%h〉∂T

=−
∑

T∈Th

(ω,∆η%h)T +
∑

e∈Eh

〈ω, !∂nη%h"〉e − 〈∂nω, !η%h"〉e

=−
∑

T∈Th

(ω,∆η%h)T +
∑

e∈Eh

〈ω̂, !∂nη%h"〉e − 〈∂̃nω, !η%h"〉e,

(3.27)

and the consistency of numerical fluxes as mentioned in Section 2 was used in the
last step. The orthogonality condition (3.3) and symmetric property of ah(·, ·) lead
to ah(P 1

hω, η
%
h) = 0, where P 1

hω, the piecewise L2 projection of ω, belongs to V 1
h .

Combining (3.26), (3.22), and the approximation capability of P 1
h under # ·# yields

(3.28)
‖η%h‖

2
Ω = ah(ω − P 1

hω, η
%
h) ≤ C∗ # ω − P 1

hω # #η%h#
≤ Ch|ω|H2(Ω) # η%h# ≤ Ch ‖η%h‖Ω # η%h#,

which, combined with (3.23), leads to the estimate in the L2 norm

(3.29) ‖η%h‖Ω ≤ Ch # η%h# ≤ Chk+1|u|Hk+1(Ω).

Then, we use inverse inequality to get:

|P k
hu−ΠUW

h u|H1(Th) ≤ Ch−1
∥∥P k

hu−ΠUW
h u

∥∥
L2(Th)

≤ Ch−1
(∥∥u−ΠUW

h u
∥∥
L2(Th)

+
∥∥u− P k

hu
∥∥
L2(Th)

)
,

and the estimate for the H1 norm can be easily obtained by applying triangular
inequality:

(3.30) |u−ΠUW
h u|H1(Th) ≤ |u−P k

hu|H1(Th) + |P k
hu−ΠUW

h u|H1(Th) ≤ Chk|u|Hk+1(Ω).

The estimate for error on faces can be obtained in a similar way by using trace
inequality. This completes the proof. !

Remark 3.5. It can be seen that a similar projection can be established for Sk
h on a

Cartesian mesh Kh. The set ΘUW can be obtained through a simple modification
of that of simplex mesh cases. Recall the trace inequalities established in Lemma
2.1, and it’s easy to see for the Cartesian mesh case, the only modification in the
definition of ΘUW is to take d = 1 in (3.2). We note that the σ value is also the
same as the one-dimensional case. This also shows that this set ΘUW is independent
of dimension d on Cartesian meshes if tensor product spaces are used. In [34], a
similar conclusion holds for parameters of DDG method on Cartesian meshes.

3.2. Gauss-Radau type projection. In the previous section, we demonstrate
that the ultra-weak projection enjoys nice properties on arbitrary meshes when the
parameters belong to the set ΘUW . On Cartesian meshes, we could extend and
improve the range of parameters by taking advantage of the structure of tensor
polynomial spaces.
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We first recall the one-dimensional Gauss-Radau type projection ΠGR
h : Hs(Ω) 0→

V k,u
h , s > 3/2 for ultra-weak schemes studied in [15]:

(
ΠGR

h u, v
)
Ij

=(u, v)Ij , ∀v ∈ Pk−2(Ij), ∀j = 1, 2, . . . , N,(3.31a)

F1(Π
GR
h u) =F1(u), at xj+ 1

2
, ∀j = 1, 2, . . . , N,(3.31b)

F2(Π
GR
h u) =F2(u), at xj+ 1

2
, ∀j = 1, 2, . . . , N,(3.31c)

with F1 and F2 given by

F1(uh) = {{(uh)x}}+ α !(uh)x" + c1
hj

!uh" ,(3.32a)

F2(uh) = {{uh}}− α !uh" + c2hj !(uh)x" .(3.32b)

In [15], two important quantities were introduced and used in the analysis

(3.33) Γj =
Γ̃

hj
, Λj =

Λ̃

hj
, j = 1, 2, . . . , N,

where the constants Γ̃ and Λ̃ are defined by

Γ̃ :=− c1 − k2
(
k2 − 1

)
c2 − 2k2

(
α2 + c1c2 +

1

4

)
,

Λ̃ :=− 2k

(
α2 + c1c2 −

1

4

)
.

(3.34)

Note that these quantities are slightly different from those in [15], due to the fact
that our definition of !·" is opposite. For this case, we could define the parameter
set ΘGR

(3.35) ΘGR =

{
α2 + c1c2 =

1

4
, Γ̃ 3= 0

}
∪
{
α2 + c1c2 3= 1

4
,
∣∣∣Γ̃
∣∣∣ >

∣∣∣Λ̃
∣∣∣
}
.

Many well-known numerical fluxes belong to this set. Examples include the afore-
mentioned upwind flux, alternating flux, αβ flux, central flux (when k ≥ 2), and
the generalized alternating flux (see [16]) etc.

Remark 3.6. We illustrate the range of ΘGR using graphs of cross sections of the set
within R3 as well. In the first plot of Figure 3.2, we plot the set ΘGR when α = 1/2
and d = 1 with the color blue. In this case, we mark the αβ flux [17] using the red
dot line and the alternating flux at the origin as a particular case. In the middle
figure, we change the polynomial order to k = 2 in which a significant difference is
observed and most of the lower half domain with c2 < 0 is now included. This is
due to the effect of the term k2(k2 − 1)c2 in Γj which was zero when k = 1. In the
right figure, we plot the α-c1 plane cross section when c2 = 0, k = 2. The central
flux, generalized alternating flux [16], αβ flux, and alternating flux are marked on
the graph.

For this parameter set, the approximation capability of the one-dimensional
Gauss-Radau type projection (3.31) has been studied in [15]. Below, we recall
the following projection error and provide a slightly modified proof in Appendix
A.2. For simplicity, we assume Ω is uniformly partitioned, i.e. hj = h in the
following analysis.
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Figure 3.2. An illustration of ΘGR on c1-c2 plane with α = 1/2
and k = 1 (Left), ΘGR on c1-c2 plane with α = 1/2 and k = 2
(Middle) and ΘGR on α-c2 plane with α = 0 and k = 2 (Right).
In all three plots, some typical numerical fluxes are marked in red.

Lemma 3.3. For (α, c1, c2) ∈ ΘGR, u ∈ Hs(Ω), s > 3/2, the one-dimensional
projection (3.31) is well-defined. Moreover, the following estimate holds for u ∈
Hs+1(Ω), s ≥ 0,

(3.36)
∥∥u−ΠGR

h u
∥∥
L2(Th)

+ h1/2
∥∥u−ΠGR

h u
∥∥
L2(Eh)

≤ Chmin{k+1,s+1}|u|Hs+1(Th).

Next, we explore the multi-dimensional extension of the Gauss-Radau type pro-
jection (3.31) on Cartesian meshes, and could take advantage of the tensor product
polynomial space Sk

h to define tensor product projections. On the d dimensional
rectangular domain (d ≥ 2), we define

(3.37) ΠGR
h u =

(
Π1

h ⊗ · · ·⊗Πd
h

)
u,

where ⊗ denotes the tensor product and Πj
h is the one-dimensional Gauss-Radau

type projection (3.31) on the spatial variable xj , 1 ≤ j ≤ d. To study the ap-
proximation property of this projection, we restrict ourselves to two-dimensional
cases to illustrate the idea, although the same analysis can be extended to higher
dimension (d ≥ 3) through induction.

For the convenience of displaying our idea, we denote ΠGR
h = Πx

h ⊗ Πy
h, and the

domain as Ω = I × J . I (in x-direction) is split into intervals Ii = [xi−1/2, xi+1/2],
i = 1, 2, . . . , Nx and J (in y-direction) is split into intervals Jj = [yj−1/2, yj+1/2],
i = 1, 2, . . . , Ny. We can observe that the projection ΠGR

h satisfies the following
conditions

(
ΠGR

h u, v
)
T
=(u, v)T , ∀v ∈ Qk−2(T ), ∀T ∈ Kh,(3.38a)

〈F1(Π
GR
h u), w〉e =〈F1(u), w〉e, ∀w ∈ Pk−2(e), ∀e ∈ Eh,(3.38b)

〈F2(Π
GR
h u), µ〉e =〈F2(u), µ〉e, ∀µ ∈ Pk−2(e), ∀e ∈ Eh.(3.38c)

We then prove the following approximation capability for this projection.

Theorem 3.2. Let d = 2 and u ∈ Hs(Kh), s > 3/2, (α, c1, c2) ∈ ΘGR, then the
projection (3.37) is well-defined. Moreover, if u ∈ Hk+1(Kh), the following estimate
holds

(3.39)
∥∥u−ΠGR

h u
∥∥
L2(Kh)

+ h1/2
∥∥u−ΠGR

h u
∥∥
L2(Eh)

≤ Chk+1|u|Hk+1(Kh).

Proof. We can write Πx
h ⊗Πy

h as Πx
h ◦Π

y
h. Note that Πy

hu is a piecewise polynomial
function in y direction, and an Hk+1 smooth function in x direction. As a result,
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Πx
h ◦Πy

hu can be uniquely defined. Then we have

∥∥u−ΠGR
h u

∥∥
L2(Kh)

= ‖u−Πx
hu+Πx

h(u−Πy
hu)‖L2(Kh)

(3.40)

= ‖u−Πx
hu+ u−Πy

hu+Πx
h(u−Πy

hu)− (u−Πy
hu)‖L2(Kh)

≤ ‖u−Πx
hu‖L2(Kh)

+ ‖u−Πy
hu‖L2(Kh)

+ ‖Πx
h(u−Πy

hu)− (u−Πy
hu)‖L2(Kh)

.

The first term on the right-hand side can be estimated by utilizing the one-dimen-
sional projection error in Lemma 3.3

‖u−Πx
hu‖

2
L2(Kh)

=

Ny∑

j=1

Nx∑

i=1

∫ y
j+1

2

y
j− 1

2

∫ x
i+ 1

2

x
i− 1

2

(u−Πx
hu)

2 dxdy

≤Ch2(k+1)

Ny∑

j=1

∫ y
j+ 1

2

y
j− 1

2




Nx∑

i=1

∫ x
i+ 1

2

x
i− 1

2

(∂k+1
x u)2 dx



 dy

≤Ch2(k+1)|u|2Hk+1(Kh)
.

(3.41)

Similarly, we have

(3.42) ‖u−Πy
hu‖

2
L2(Kh)

≤ Ch2(k+1)|u|2Hk+1(Kh)
.

To bound the last term, we first consider the following estimate for a function
w(x) ∈ H1(I):

(3.43) ‖w −Πx
hw‖L2(Ih)

≤ Ch|w|H1(Ih),

with Ih being the partition of interval I. For any fixed y ∈ J , choosing w =
u−Πy

hu ∈ H1(I) yields

‖Πx
h(u−Πy

hu)− (u− Πy
hu)‖

2
L2(Kh)

=

Ny∑

j=1

∫ y
j+1

2

y
j− 1

2

‖Πx
h(u−Πy

hu)− (u−Πy
hu)‖

2
L2(Ih)

dy

≤
Ny∑

j=1

Nx∑

i=1

∫ y
j+1

2

y
j− 1

2

∫ x
i+1

2

x
i− 1

2

Ch2 (∂x(u−Πy
hu))

2
dxdy

=

Ny∑

j=1

Nx∑

i=1

∫ x
i+1

2

x
i− 1

2

∫ y
j+1

2

y
j− 1

2

Ch2 (∂xu−Πy
h∂xu)

2
dydx

≤ Ch2(k+1)

Ny∑

j=1

Nx∑

i=1

∫ x
i+1

2

x
i− 1

2

∫ y
j+1

2

y
j− 1

2

(
∂k
y∂xu

)2
dydx ≤ Ch2(k+1)|u|2Hk+1(Kh)

,

(3.44)

where the one-dimensional projection error in Lemma 3.3 is again used. The error
estimate in the L2 norm follows by plugging (3.41) and (3.44) into (3.40). We can
also derive the semi-H1 norm estimate with the assistance of L2 projection P k

h and
inverse inequality (2.10)

(3.45) |u−ΠGR
h u|H1(Kh) ≤ |u−P k

hu|H1(Kh)+|P k
hu−ΠGR

h u|H1(Kh) ≤ Chk|u|Hk+1(Kh).
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Then the error estimate in the trace norms can be derived by applying trace in-
equality (2.7)

(3.46)

∥∥u−ΠGR
h u

∥∥
L2(Eh)

≤ h−1/2
∥∥u−ΠGR

h u
∥∥
L2(Kh)

+ h1/2|u−ΠGR
h u|H1(Kh)

≤ Chk+1/2|u|Hk+1(Kh).

This completes the proof. !
In the rest of this section, we discuss some properties of the Gauss-Radau type

projection. It is well-known that in the higher dimension, the tensor product of
Gauss-Radau type projections may fail to satisfy the orthogonality condition. For-
tunately, motivated by [16, 23], we can uncover the superconvergent properties of
the projection (3.37), which compensate the orthogonality and will be proved to be
sufficient for optimal error bounds. Lemma 3.4 shows the approximation capability
on higher order polynomial spaces.

Lemma 3.4. Let (α, c1, c2) ∈ ΘGR, k ≥ 1, d ≥ 2, d < 2(k + 1). The following
result

(3.47) ah(u−ΠGR
h u, v) = 0

holds for any u ∈ V k+2
h and v ∈ Sk

h.

Proof. Let η%h = u−ΠGR
h u. On Cartesian meshes we can decompose ah(u−ΠGR

h u, v)
as

(3.48) ah(u−ΠGR
h u, v) =

d∑

i=1

aih(η
%
h, v),

where, for each coordinate, aih is defined by

(3.49) aih(η
%
h, v) = −

∑

K∈Kh

(
η%h, ∂

2
xiv

)
K
+

∑

e∈Eh,i

[
〈η̂%h

i
, !∂xiv"〉e − 〈∂̃nη%h

i
, !v"〉e

]
.

Here, we write Eh into Eh = ∪d
i=1Eh,i, where Eh,i contains faces of K ∈ Kh which

have fixed value on the xi dimension. It is clear that operators !·" and {{·}} are

well-defined on each E i
h. The ûi and ∂̃nu

i
in the above definition are û and ∂̃nu

restricted on Eh,i which can be defined as:

(3.50) ∂̃nu
i
= {{∂xiu}}+ α1 !∂xiu" + c1

h
!u" , ûi = {{u}}+ α2 !u" + c2h !∂xiu" .

For ease of presentation, we consider the two-dimensional case and denote x1,
x2 by x, y, respectively. The result (3.47) automatically holds for u ∈ Sk

h, since the
projection ΠGR

h preserves k-th order tensor product polynomials. To prove the result
for any u ∈ V k+2

h , it is sufficient to show it for the extra terms xk+1, yk+1, xyk+1,
xk+1y, xk+2 and yk+2 with the bilinear form a1h only. We start by validating the
case u = xk+1, which leads to η%h = xk+1−ΠGR

h xk+1 = xk+1−Πx
hx

k+1. Since ∂2
xv is

a polynomial in x with order up to k − 2, applying the definition of the projection
Πx

h leads to

(3.51)
∑

K∈Kh

(
η%h, ∂

2
xv

)
K

=
∑

K∈Kh

(
xk+1 − Πx

hx
k+1, ∂2

xv
)
K

= 0.

We also have η̂%h
1
= 0 and ∂̃nη%h

1
= 0 which again follows from the definition of

Πx
h in (3.31). This leads to the conclusion that a1h(η

%
h, v) = 0 for any v ∈ Sk

h , and
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the same proof also applies to xk+2 and yxk+1. For u = yk+1 and yk+2, we use
integration by parts to rewrite (3.49) as:
(3.52)

a1h (η
%
h, v) =

∑

k∈Kh

(∂xη
%
h, ∂xv)K−

∑

e∈Eh,1

[
〈!η%h∂xv" , 1〉e−〈η̂%h

1
, !∂xv"〉e+〈∂̃nη%h

1
, !v"〉e

]
.

Since u = yk+1 or u = yk+2 are independent of x, so ∂xη%h = 0 thus the first term
of (3.52) is 0. In addition, on each e ∈ Eh,1, we can deduce η%h is continuous with
respect to x, because u is independent of x. By the definition of !·" and consistency
of numerical fluxes, we have:

(3.53) 〈!η%h∂xv" , 1〉e − 〈η̂%h
1
, !∂xv"〉e + 〈∂̃nη%h

1
, !v"〉e

=〈η%h !∂xv" , 1〉e − 〈η%h, !∂xv"〉e + 〈∂xη%h, !v"〉e,

which reduces to 0 since the first two terms cancel and ∂xη%h = 0 in the last term.
Lastly, for u = xyk+1, we apply integration by parts again to have:
(3.54)

a1h (η
%
h, v) = −

∑

k∈Kh

(
∂2
xη

%
h, v

)
K

+
∑

e∈Eh,1

[
〈!∂xη%hv" , 1〉e − 〈!η%h∂xv" , 1〉e + 〈η̂%h

1
, !∂xv"〉e − 〈∂̃nη%h

1
, !v"〉e

]
.

Then since k ≥ 1, we have u − ΠGR
h u = x(yk+1 − Πy

hy
k+1) := xη%h,y, and ∂2

xη
%
h = 0.

For the rest of terms, we have for each e ∈ Eh,1:

〈!∂xη%hv" , 1〉e − 〈!η%h∂xv" , 1〉e + 〈η̂%h
1
, !∂xv"〉e − 〈∂̃nη%h

1
, !v"〉e

= 〈η%h,y !v" , 1〉e − 〈xη%h,y !∂xv" , 1〉e + 〈xη%h,y, !∂xv"〉e − 〈η%h,y, !v"〉e = 0.

(3.55)

This finishes the proof of this Lemma. !

With the above results, we could obtain the following superconvergent result for
ah.

Lemma 3.5. Let (α, c1, c2) ∈ ΘGR, k ≥ 1, d ≥ 2, d < 2(k + 1) and assume
u ∈ Hk+3(Kh), then the linear functional u 0→ ah(u − ΠGR

h u, v) with v ∈ Sk
h is

bounded on the domain of u. Additionally, the following estimate holds:

(3.56)
∣∣ah(u−ΠGR

h u, v)
∣∣ ≤ Chk+1|u|Hk+3(Kh) ‖v‖L2(Ω) .

Proof. We will prove the result for each aih(η
%
h, v) defined in (3.49), with η%h = u−

ΠGR
h u. Each of the three right-hand terms of aih(η

%
h, v) will be bounded respectively.

Applying Cauchy-Schwarz inequality yields

(3.57)

∣∣∣∣∣
∑

K∈Kh

(
η%h, ∂

2
xiv

)
K

∣∣∣∣∣ ≤ ‖η%h‖Kh

∥∥∂2
xiv

∥∥
Kh

.
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The second term can be bounded as follows

∣∣∣∣∣∣

∑

e∈Eh,i

〈η̂%h
i
, !∂xiv"〉e

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∑

e∈Eh,i

〈{{η%h}}− α !η%h" + c2he !∂xiη%h" , !∂xiv"〉e

∣∣∣∣∣∣

≤ C
∑

e∈Eh,i

(‖{{η%h}}‖e + ‖!η%h"‖e + h ‖!∂xiη%h"‖e) ‖!∂xiv"‖e

≤ C
∑

e∈Eh,i

∑

j=1,2

(
h−1/2 ‖η%h‖L2(Kj

e)
+ h1/2|η%h|H1(Kj

e)

)
h−1/2 ‖∂xiv‖L2(Kj

e)

+ C
∑

e∈Eh,i

∑

j=1,2

(
h1/2 ‖∂xiη%h‖L2(Kj

e)
+ h3/2|∂xiη%h|H1(Kj

e)

)
h−1/2 ‖∂xiv‖L2(Kj

e)

≤ C
(
h−1 ‖η%h‖Kh

+ |η%h|H1(Kh) + h|η%h|H2(Kh)

)
|v|H1(Kh),

(3.58)

where the trace inequality (2.10) for v and (2.7) for η%h on the xi dimension were
used, and Kj

e , j = 1, 2 are two neighbor elements sharing the face e. Similarly, we
have the estimate of the last term

∣∣∣∣∣∣

∑

e∈Eh,i

〈∂̃nη%
i
, !v"〉e

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∑

e∈Eh,i

〈{{∂xiη%}}+ α !∂xiη%" + c1
he

!η%" , !v"〉e

∣∣∣∣∣∣

≤ C
(
h−2 ‖η%h‖Kh

+ h−1|η%h|H1(Kh) + |η%h|H2(Kh)

)
‖v‖Kh

.

(3.59)

Combining three estimates above with inverse inequality (2.10) and approximation
capability of ΠGR

h , we have

(3.60)

∣∣aih(η%h, v)
∣∣ ≤ C

(
h−2 ‖η%h‖Kh

+ h−1|η%h|H1(Kh) + |η%h|H2(Kh)

)
‖v‖Kh

≤ Chk−1|u|Hk+1(Kh) ‖v‖Kh
.

Since this holds for all i = 1, 2, . . . , d, we have the following estimates

(3.61)
∣∣ah(u−ΠGR

h u, v)
∣∣ ≤ Chk−1|u|Hk+1(Kh) ‖v‖ .

Inspired by [16], we use Lemma 3.4 to deduce that for any χ ∈ V k+2
h :

(3.62)∣∣ah(u−ΠGR
h u, v)

∣∣ =
∣∣ah(u− χ−ΠGR

h (u− χ), v)
∣∣ ≤ Chk−1|u− χ|Hk+1(Kh) ‖v‖ .

Then we have the following estimate using the standard estimation [19]:
(3.63)∣∣ah(u−ΠGR

h u, v)
∣∣ ≤ Chk−1 inf

χ∈V k+2
h

|u− χ|Hk+1(Kh) ‖v‖ ≤ Chk+1|u|Hk+3(Kh) ‖v‖ ,

which proves our superconvergent result. !

Remark 3.7. When d = 1, the Cartesian mesh and simplex mesh both degenerate
into interval partitions. Therefore, the orthogonality condition also holds for ΘGR,
and the optimal error estimate holds on both ΘGR and ΘUW .

Remark 3.8. Lemmas 3.4 and 3.5 are a generalization of [49, Lemmas 6.2, 6.3] with
slight differences in regularity requirements. We remark that we could also obtain
results similar to [49, Lemma 6.3] with a Taylor expansion argument.
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Remark 3.9. The regularity condition Hk+3 here is analogous to the superconver-
gence result in [16,23], in which the authors obtained Hk+2. The reason is that the
Laplacian operator is written into a first order system in [23] with an LDG scheme,
while the second order is retained in the ultra-weak scheme.

4. Convection-diffusion equation

In this section, we study the ultra-weak DG method for nonlinear convection-
diffusion equations on Ω ∈ Rd:

ut +∇ · f(u)− ε∆u = 0, on Ω× [0, L],(4.1a)

u(X, 0) = g(X), on Ω,(4.1b)

with periodic boundary conditions and the diffusion coefficient ε > 0. The stability
analysis and optimal error estimates are derived for the semi-discrete method with
the special projections designed above. For convenience, in the following analysis,
we take Th and V k

h as an example to illustrate the idea.

4.1. Ultra-weak DG scheme. We multiply (4.1a) with a test function v ∈ V k
h

to obtain

(4.2) (ut, v)T + (∇ · f , v)T + ε(−∆u, v)T = 0,

on each element T . The diffusion term (−∆u, v)T can be discretized by the ultra-
weak discretization ah(u, v). The convection component of (4.2) can be approxi-
mated by Fh(u, v) in the form

(4.3) Fh(u, v) = −
∑

T∈Th

(f(u),∇v)T +
∑

e∈Eh

〈f̂ · n, !v"〉e.

Here f̂ ·n := f̂(u−, u+) is a monotone numerical flux of the nonlinear term f which
admits the following restrictions:

• f̂(u−, u+) is locally Lipschitz continuous;

• f̂(u−, u+) · n is consistent with the normal physical flux, namely f̂n(w,w) ·
n = f(w) · n;

• f̂(u−, u+) is a nondecreasing function of u−, and a nonincreasing function
of u+.

Combining these together, we now have the ultra-weak DG semi-discrete scheme
for problem (4.1): find uh(t) : [0, T ] 0→ V k

h , such that:

(4.4) ((uh)t, vh)Ω + Fh(uh, vh) + εah(uh, vh) = 0, ∀vh ∈ V k
h ,

subjected to the initial conditions:

(4.5) uh(0) = Phg.

Here Ph stands for an approximation operator of the initial value g in the space
V k
h , such as the nodal interpolation or L2 projection. In this paper, we take Ph to

be the L2 projection P k
h .

Remark 4.1. It is remarked in [15] that the specific DDG scheme for the Schrödinger
equation [36] could be reformulated as a particular case of the ultra-weak DG
scheme with generalized numerical fluxes. Motivated by that, we comment that
the proposed ultra-weak scheme and DDG scheme [34] for the convection-diffusion
equation share some similarities. To see this, we can take α = 0 in the numerical
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fluxes (2.17) and it can be observed that the only difference between these two
methods is the treatment of numerical fluxes of normal derivatives. To be precise,
the term 〈!∂nu" , !∂nv"〉e in the ultra-weak scheme is substituted by 〈

$
∂2
nu

%
, !v"〉e

in the DDG scheme. It is well-known that the DDG scheme focuses on the be-
havior of high order derivatives across element faces, while the ultra-weak scheme
preserves the symmetric structure and has a relatively low requirement of regularity
on element faces.

4.2. Stability and error analysis. We provide the stability analysis of the scheme
(4.4) in Theorem 4.1.

Theorem 4.1 (Stability). Given ah(·, ·) which satisfies semi-positivity, the scheme
(4.4) is L2 stable, i.e.

(4.6)
d

dt
‖uh‖2Ω ≤ 0.

Proof. Let vh = uh in the scheme (4.4), we get the following energy equation

(4.7)
d

dt
‖uh‖2Ω + Fh(uh, uh) + εah(uh, uh) = 0.

Due to the semi-positivity of ah(·, ·), we have a(uh, uh) ≥ 0. Next, we claim
that Fh(uh, uh) ≥ 0, which follows from a multi-dimensional extension of the
cell entropy inequality [32]. We write f = (fi)di=1, and introduce the notations
Fi(u) =

∫ u
0 fi(s)ds, F = (Fi)di=1. By Divergence Theorem, on any element T , we

have

(4.8) (f(uh),∇uh)T = (∇ · F(uh), 1)T = 〈F(uh) · n, 1〉∂T .

Taking sum over T ∈ Th and combining with the definition (4.3) yield

(4.9) Fh(uh, uh) = −
∑

e∈Eh

〈!F(uh) · n" , 1〉e +
∑

e∈Eh

〈f̂(u−
h , u

+
h ) · n, !uh"〉e.

Following the same technique as in [32] by using mean value theorem and consis-

tency of f̂ · n leads to

Fh(uh, uh) = −
∑

e∈Eh

〈f(ξ) · n, !uh"〉e +
∑

e∈Eh

〈f̂(u−
h , u

+
h ) · n, !uh"〉e

=
∑

e∈Eh

〈(f̂(u−
h , u

+
h ) · n− f̂(ξ, ξ) · n), !uh"〉e ≥ 0,

(4.10)

where ξ(X) locates between u−
h (X) and u+

h (X) for every X on each e. The last

inequality follows from the monotonicity of the numerical flux f̂ . Combining the
semi-positivity of ah(·, ·) and Fh(·, ·) with (4.7), we obtain the L2 stability (4.6) of
our scheme. !

Remark 4.2. We remark that ah is positive when (α, c1, c2) ∈ ΘUW , although here
we do not require this stronger condition for stability analysis.

Next, we present the optimal error estimate of the ultra-weak DG method (4.4).
Let us start by introducing some ancillary quantities concerning the monotone flux
f̂ · n, which are commonly used in the literature. The following operator α was
proposed in [54], and was later applied to analyze the LDG method for the KdV
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equation in [53], the ultra-weak DG method [18] and the DDG method [33,34]. For
any piecewise smooth function p ∈ L2(Ω), on the set Eh, we define
(4.11)

α(f̂ · n; p) ≡ α
(
f̂ · n; p−, p+

)
:=

{
!p"−1

[
f̂(p−, p+) · n− f({{p}}) · n

]
, if !p" 3= 0,

1
2 |f

′({{p}}) · n| , if !p" = 0.

From the monotonicity of the monotone flux f̂ , we know that α(f̂ · n; p) ≥ 0 on

Eh, and, in addition, α(f̂ · n; p) ≤ Cf ,̂f , in which the constant Cf ,̂f depends on the

Lipschitz continuity constant of f̂ and |f ′|. Therefore, suitable regularity assumption

of f can ensure α(f̂ · n; p) is bounded from above.

Theorem 4.2 (Error estimate). Let (α, c1, c2) ∈ ΘUW , k ≥ (d − 1)/2, assume
u ∈ W 1,∞(0, L;W k+1,∞) and the nonlinear function f ∈ C3, we have the following
error estimates for the scheme (4.4): for every fixed t ∈ [0, L],

(4.12) ‖u− uh‖Ω + h|u− uh|H1(Th) ≤ Ĉeε
−1Cthk+1,

where the constant C, Ĉ is independent of h and ε, but depends on ‖f ′′(u)‖L∞ ,
Cf ,̂f , |g|Hk+1 ‖u‖L∞(0,L;W 1,∞) and ‖u‖W 1,∞(0,L;Hk+1).

Proof. Utilizing the ultra-weak projection ΠUW
h specified in (3.3), we decompose the

numerical error eh = u − uh into eh = ξ%h − η%h, where η%h = ΠUW
h u − u and ξ%h =

ΠUW
h u− uh. By consistency of the scheme and weak formulation of the convection-

diffusion equation, we have the error equation

(4.13) ((eh)t, vh)Ω + εah(eh, vh) + Fh(u, vh)− Fh(uh, vh) = 0.

By taking vh = ξ%h and using eh = ξ%h − η%h, we have

(4.14) ((ξ%h)t, ξ
%
h)Ω + εah(ξ

%
h, ξ

%
h) = ((η%h)t, ξ

%
h)Ω + εah(η

%
h, ξ

%
h) +H,

where H := −Fh(u, ξ%h) + Fh(uh, ξ%h) takes the form

H =
∑

T∈Th

(f(u)− f(uh),∇ξ%h)T +
∑

e∈Eh

〈f(u) · n− f̂(u−
h , u

+
h ) · n, !ξ

%
h"〉e.(4.15)

Following the orthogonality (3.3) of the projection, the coercivity of ah(·, ·) in
Lemma 3.2, we have

(4.16) ((ξ%h)t, ξ
%
h)Ω + εC% ‖ξ%h‖

2
E ≤ ((η%h)t, ξ

%
h)Ω +H.

Next, we estimate the term H. Following the approaches in [33, 34, 53], we take
f({{uh}}) · n as an intermediate value and obtain

H =
∑

T∈Th

(f(u)− f(uh),∇ξ%h)T +
∑

e∈Eh

〈f(u) · n− f({{uh}}) · n, !ξ%h"〉e

+
∑

e∈Eh

〈
f̂({{uh}} , {{uh}}) · n− f̂(u−

h , u
+
h ) · n, !ξ%h"

〉

e
.

(4.17)

Using the definition (4.11) of α(f̂ · n;uh), we obtain

(4.18)

H =
∑

T∈Th

(f(u)− f(uh),∇ξ%h)T +
∑

e∈Eh

〈f(u) · n− f({{uh}}) · n, !ξ%h"〉e

−
∑

e∈Eh

〈α(f̂ · n;uh), !uh" !ξ%h"〉e.
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Applying the second order Taylor expansion (4.19) for each component fi, i =
1, . . . , d of the nonlinear term f leads to

fi(u)− fi(uh) = f ′
i(u)eh − f ′′

i (κi)

2
e2h = f ′

i(u)(ξ
%
h − η%h)−

f ′′
i (κi)

2
(ξ%h − η%h)

2,

fi(u)− fi({{uh}}) = f ′
i(u) {{eh}}−

f ′′
i (εi)

2
{{eh}}2

= f ′
i(u)({{ξ%h}}− {{η%h}})−

f ′′
i (εi)

2
({{ξ%h}}− {{η%h}})2,

(4.19)

where κi and εi are the points of Lagrange form remainder. Then we can decompose
H into H = H1 +H2 +H3 +H4 with each term taking the form

H1 =
∑

T∈Th

(f ′(u), ξ%h∇ξ%h)T +
∑

e∈Eh

〈f ′(u) · n, {{ξ%h}} !ξ%h"〉e,

H2 = −
∑

T∈Th

(f ′(u)η%h,∇ξ%h)T −
∑

e∈Eh

〈f ′(u) · n {{η%h}} , !ξ%h"〉e,

H3 = −1

2

∑

T∈Th

(f ′′κ , (ξ
%
h − η%h)

2∇ξ%h)T − 1

2

∑

e∈Eh

〈f ′′ε · n, ({{ξ%h}}− {{η%h}})2 !ξ%h"〉e,

H4 = −
∑

e∈Eh

〈α(f̂ · n;uh), !ξ%h"2〉e +
∑

e∈Eh

〈α(f̂ · n;uh), !η%h" !ξ%h"〉e,

(4.20)

where f ′′κ := (f ′′
i (κi))di=1 and f ′′ε := (f ′′

i (εi))
d
i=1. The fact !uh" = !uh − u" was used

to drive H4, since u ∈ C0(Ω) by Sobolev embedding.
Each of these terms can be bounded as follows. H1 can be treated by using

integration by parts
(4.21)

H1 = −1

2

∑

T∈Th

(f ′′(u) ·∇u, (ξ%h)
2)T ≤ ‖f ′′(u)‖L∞(Ω) ‖∇u‖L∞(Ω) ‖ξ

%
h‖

2
Ω ≤ C ‖ξ%h‖

2
Ω .

H2 is bounded by applying Young’s inequality, trace inequality (2.7) and the ap-
proximation error of the projection ΠUW

h

H2 ≤ 1

3
εC%

(
∑

T∈Th

‖∇ξ%h‖
2
T +

∑

e∈Eh

‖!ξ%h"‖2e
he

)

+
3

4εC%

(
∑

T∈Th

‖f ′(u)η%h‖
2
T +

∑

e∈Eh

he ‖〈f ′(u) · n {{η%h}}‖
2
e

)

≤ 1

3
εC% ‖ξ%h‖

2
E +

3 ‖f ′(u)‖2L∞(Ω)

4εC%

(
∑

T∈Th

‖η%h‖
2
T +

∑

e∈Eh

he ‖{{η%h}}‖
2
e

)(4.22)

≤ 1

3
εC% ‖ξ%h‖

2
E + ε−1C

(
‖η%h‖

2
Ω + h2|η%h|2H1(Th)

)
≤ 1

3
εC% ‖ξ%h‖

2
E + ε−1Ch2k+2.
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Similarly, we can bound H3 by utilizing Young’s inequality, trace inequality (2.7),
inverse inequality (2.10), and the approximation error of the projection ΠUW

h

H3 ≤1

3
εC%

(
∑

T∈Th

‖∇ξ%h‖
2
T +

∑

e∈Eh

‖!ξ%h"‖2e
he

)

+
3 ‖f ′′(u)‖L∞(Ω) ‖ξ%h − η%h‖

2
L∞(Th)

16εC%

(
‖ξ%h − η%h‖

2
Ω + h2|ξ%h − η%h|2H1(Th)

)

≤1

3
εC% ‖ξ%h‖

2
E + ε−1C ‖ξ%h − η%h‖

2
L∞(Th)

(
‖ξ%h‖

2
Ω + h2k+2

)
.

(4.23)

By applying inverse inequality (2.10) to ξ%h, we obtain following estimate for the
L∞ norm

‖ξ%h − η%h‖L∞(Th)
≤ ‖ξ%h‖L∞(Th)

+ ‖η%h‖L∞(Th)
≤ Ch−d/2 ‖ξ%h‖Ω + ‖η%h‖L∞(Th)

.

(4.24)

The infinity norm error estimate of the projection error η%h can be written as

(4.25) ‖η%h‖L∞(Th)
= max

T∈Th

‖η%h‖L∞(T ) ≤
∥∥u− P k

hu
∥∥
L∞(T̃ )

+
∥∥P k

hu−Π%
hu

∥∥
L∞(T̃ )

.

Here T̃ represents the element in Th where the maximum is achieved. Then we use
L∞, L2 approximation capability of L2 projection operator [19,21], L∞ inverse in-
equality (2.10), triangular inequality and the approximation error of the projection
Π%

h to obtain
(4.26)
‖η%h‖L∞(Th)

≤ Chk+1−d/2 + Ch−d/2
(∥∥P k

hu− u
∥∥
T̃
+ ‖u−Π%

hu‖T̃
)
≤ Chk+1−d/2.

Combining (4.23), (4.24) and (4.26) yields

(4.27) H3 ≤ 1

3
εC% ‖ξ%h‖

2
E + ε−1C

(
h−d ‖ξ%h‖

2
Ω + h2k+2−d

)(
‖ξ%h‖

2
Ω + h2k+2

)
.

Finally, we have the following bound for H4:

H4 ≤
∑

e∈Eh

〈α(f̂ · n;uh), !η%h" !ξ%h"〉e

≤ Cf ,̂f

(
∑

e∈Eh

εC% ‖!ξ%h"‖2e
3heCf ,̂f

+
∑

e∈Eh

3Cf ,̂fhe

4εC%
‖!η%h"‖2e

)

≤ 1

3
εC% ‖ξ%h‖

2
E + ε−1C

(
‖η%h‖

2
Ω + h2|η%h|2H1

)
≤ 1

3
εC% ‖ξ%h‖

2
E + ε−1Ch2k+2.

(4.28)

Combining the above estimates for each term leads to
(4.29)

H ≤ εC% ‖ξ%h‖
2
E + C ‖ξ%h‖

2
Ω + ε−1C

(
h−d ‖ξ%h‖

2
Ω + h2+2k−d

)(
‖ξ%h‖

2
Ω + h2k+2

)

+ ε−1Ch2k+2.
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Then we plug (4.29) into (4.16) to obtain

d

dt
‖ξ%h‖

2
Ω + εC% ‖ξ%h‖

2
E ≤ εC% ‖ξ%h‖

2
E +

1

2
‖(η%h)t‖

2
Ω + C ‖ξ%h‖

2
Ω

+ ε−1C
(
h−d ‖ξ%h‖

2
Ω + h2+2k−d

)(
‖ξ%h‖

2
Ω + h2k+2

)

+ ε−1Ch2k+2.

(4.30)

Since (η%h)t = (Π%
hu − u)t = Π%

hut − ut, its projection error also satisfies Theorem
3.1, therefore, without loss of generality, we assume ε ≤ 1 and have

(4.31)
d

dt
‖ξ%h‖

2
Ω ≤ ε−1C

(
1 + h−d ‖ξ%h‖

2
Ω + h2+2k−d

)(
‖ξ%h‖

2
Ω + h2k+2

)
.

The assumption k ≥ (d − 1)/2 leads to 2k + 2 − d ≥ 1, hence h2k+2−d ≤ h under
the condition h < 1, therefore, the above equation becomes

(4.32)
d

dt
‖ξ%h‖

2
Ω ≤ ε−1C

(
1 + h−d ‖ξ%h‖

2
Ω

)(
‖ξ%h‖

2
Ω + h2k+2

)
.

Let us introduce the notation W (t) = ‖ξ%h‖
2
Ω /h2k+2. We have

(4.33)
dW

dt
≤ ε−1C(1 + h2k+2−dW )(1 +W ) ≤ ε−1C(1 + hW )(1 +W ),

which is equivalent to

(4.34)
d

dt

(
W (t) + 1

hW (t) + 1

)
≤ ε−1C(1− h)

W (t) + 1

hW (t) + 1
.

Since the approximation of the initial condition, we have the initial error ξ%h(0) =
ΠUW

h u(0) − uh(0), which leads to W (0) ≤ C ′ where C ′ is independent of h and ε.
Applying Grönwall’s inequality to obtain

(4.35)
W (t) + 1

hW (t) + 1
≤ W (0) + 1

hW (0) + 1
eε

−1C(1−h)t ≤ (C ′ + 1)eε
−1C(1−h)t,

which leads to

(4.36) W (t) ≤ (C ′ + 1)eε
−1C(1−h)t − 1

1− (C ′ + 1)eε−1C(1−h)th
.

If we take h (depending on ε) to be small enough so that 1−(C ′+1)eε
−1C(1−h)th >

1/2, we haveW (t) ≤ 2((C ′+1)eε
−1C(1−h)t−1) ≤ 2(C ′+1)eε

−1Ct. With Ĉ := 2(C ′+

1), we then have ‖ξ%h(t)‖
2
Ω ≤ Ĉeε

−1Cth2k+2. Combining this with the projection
error of η%h leads to the optimal error estimate

(4.37) ‖u− uh‖Ω ≤ Ĉeε
−1Cthk+1.

The error estimate in the semi-H1 norm

(4.38) |u− uh|H1(Th) ≤ Ĉeε
−1Cthk

can be derived following the same technique in (3.30). The combination of these
leads to (4.12), and this completes the proof. !
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Remark 4.3. Though this proof holds for any fixed diffusion constant ε > 0, it is
not uniform with respect to ε. In Section 6, we numerically test the convergence
behavior for the case of vanishing ε, for which an optimal result is shown, see
Example 6.5. In fact, for convection dominated case (ε = 0), only suboptimal
O(hk) result can be obtained, see [53] via the study of LDG methods. It could be
improved in some special cases, for example, k+ 1/2 order in 1D case [53] or k+ 1
order with upwind flux in 1D case [55].

Remark 4.4. If we relax the requirement on coercivity of ah, this optimal error
estimate may not be obtained, since the ‖ξ%h‖E term in the estimation of H would
dominate O(hk) order of convergence as studied in [18]. From this perspective,
the coercivity condition has enhanced our estimation, although it limits the set
of parameters (α, c1, c2). Note that for the case of f = 0, i.e., the model (4.1)
reduces to heat equation, in this case coercivity is not necessary. Once the stability
condition is satisfied, i.e., ah is semi-positive, the optimal error estimate could be
obtained with the same technique as Theorem 4.2.

Remark 4.5. For d = 1, 2, 3, the condition k ≥ (d− 1)/2 is equivalent to k ≥ 1. So
polynomials with positive order can be used without concerns.

5. Biharmonic equation

In this section, we employ the time-dependent fourth order biharmonic equation
to demonstrate the application of the ultra-weak discretization to equations with
high order spatial derivatives. We consider the following time-dependent bihar-
monic equation on Ω ⊂ Rd, d ≥ 1 with periodic boundary condition:

ut +∆2u = 0, on Ω× [0, L],(5.1a)

u(X, 0) = g(X), on Ω.(5.1b)

5.1. A local ultra-weak DG scheme. The biharmonic equation (5.1a) can be
written into the following system by introducing an auxiliary variable q:

ut +∆q = 0,

q −∆u = 0.
(5.2)

To enhance the stability of the ultra-weak DG method, we consider the local ultra-
weak DG scheme recently developed in [49], which can be written as: find uh, qh ∈
V k
h , for ∀vh, wh ∈ V k

h :

((uh)t, vh)Ω − ah(qh, vh) = 0,

(qh, wh)Ω + ah(uh, wh) = 0,
(5.3)

where ah(·, ·) is the ultra-weak discretization defined in (2.15) with generalized
numerical fluxes (2.17), subjected to the initial conditions

(5.4) uh(0) = Phg.

Remark 5.1. Here we use the same spatial discretization for the two Laplacian
operators, i.e., with the same parameters (α, c1, c2). We remark here it is possible
to choose different parameter sets as long as the stability condition is guaranteed.
In [49], the authors studied four alternating fluxes, two of which are special cases of
our setting above. The other two fluxes belong to the class of generalized numerical
fluxes with α1 = α2.
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5.2. Stability and error analysis. We can immediately derive the following sta-
bility result of this scheme (5.3).

Theorem 5.1 (Stability). Let (α, c1, c2) ∈ R3, the local ultra-weak scheme (5.3) is
L2 stable, i.e.

(5.5)
d

dt
‖uh‖2Ω ≤ 0.

Proof. Let vh = uh, wh = qh in scheme (5.3), we get the following energy equation
by symmetric property:

(5.6)
d

dt
‖uh‖2Ω + ‖qh‖2Ω = 0.

This proves the L2 stability. !
For the parameter (α, c1, c2) ∈ ΘUW , we could take advantage of the properties

of ultra-weak projection to have the following error estimates on both unstructured
simplex and Cartesian meshes. Similar to the convection-diffusion equation, we
take V k

h on the mesh Th as an example to illustrate this, and it is easy to show it
for the other cases.

Theorem 5.2 (Error estimate on triangular mesh or Cartesian mesh). Let
(α, c1, c2) ∈ ΘUW ∪ ΘGR when d = 1, or (α, c1, c2) ∈ ΘUW for d ≥ 2. As-
sume the exact solution u ∈ H1(0, L;Hk+1) ∩ L2(0, L;Hk+3) and initial condition
g ∈ Hk+1(Th), then we have the following error estimate for scheme (5.3): for
every fixed t ∈ [0, L],

(5.7) ‖u− uh‖Ω + ‖q − qh‖L2(0,t;L2) ≤ Chk+1,

where C is independent with h and may depend on |u|H1(0,L;Hk+1), ‖q‖L2(0,L;Hk+1),
|u|Hk+1(Ω) and |g|Hk+1(Ω).

Proof. Let Π%
h be the ultra-weak or Gauss-Raudu type projection. We denote

η%u,h = Π%
hu−u, ξ%u,h = Π%

hu−uh, η%q,h = Π%
hq− q and ξ%q,h = Π%

hq− qh, where all the
projections satisfy the orthogonality condition. We could take either ultra-weak
projection (3.1) or Gauss-Raudu projection (3.31) under our assumption of param-
eters. The error terms can be decomposed into eu = ξ%u,h−η%u,h and eq = ξ%q,h−η%q,h.
We take vh = ξ%u,h, wh = ξ%q,h in error equations associated with scheme (5.3) to
get:

((ξ%u,h)t, ξ
%
u,h)Ω − ah(ξ

%
q,h, ξ

%
u,h) + ah(η

%
q,h, ξ

%
u,h) = ((η%u,h)t, ξ

%
u,h)Ω,

(ξ%q,h, ξ
%
q,h)Ω + ah(ξ

%
u,h, ξ

%
q,h)− ah(η

%
u,h, ξ

%
q,h) = (η%q,h, ξ

%
q,h)Ω.

(5.8)

We add these two equations and use symmetricity of ah(·, ·) and orthogonality
property of ultra-weak projections Π%

h to have:

(5.9)
d

dt

∥∥ξ%u,h
∥∥2
Ω
+
∥∥ξ%q,h

∥∥2
Ω
= ((η%u,h)t, ξ

%
u,h)Ω + (η%q,h, ξ

%
q,h)Ω.

By Cauchy-Schwarz inequality and Young’s inequality:

(5.10)
d

dt

∥∥ξ%u,h
∥∥2
Ω
+
∥∥ξ%q,h

∥∥2
Ω
≤ 1

2

(∥∥(η%u,h)t
∥∥2
Ω
+
∥∥ξ%u,h

∥∥2
Ω
+
∥∥η%q,h

∥∥2
Ω
+
∥∥ξ%q,h

∥∥2
Ω

)
,

which leads to

(5.11)
d

dt

∥∥ξ%u,h
∥∥2
Ω
+
∥∥ξ%q,h

∥∥2
Ω
≤ C

(∥∥(η%u,h)t
∥∥2
Ω
+
∥∥ξ%u,h

∥∥2
Ω
+
∥∥η%q,h

∥∥2
Ω

)
.
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We then take integration over [0, t] to obtain:
(5.12)

∥∥ξ%u,h(t)
∥∥2
Ω
+

∫ t

0

∥∥ξ%q,h(s)
∥∥2
Ω
ds

≤ C

(∫ t

0

∥∥(η%u,h)t
∥∥2
Ω
ds+

∫ t

0

∥∥ξ%u,h
∥∥2
Ω
ds+

∫ t

0

∥∥η%q,h
∥∥2
Ω
ds+

∥∥ξ%u,h(0)
∥∥2
Ω

)
.

Applying Gronwall inequality yields

(5.13)

∥∥ξ%u,h(t)
∥∥2
Ω
+

∫ t

0

∥∥ξ%q,h(s)
∥∥2
Ω
ds

≤ C

(∫ t

0

∥∥(η%u,h)t
∥∥2
Ω
ds+

∫ t

0

∥∥η%q,h
∥∥2
Ω
ds+

∥∥ξ%u,h(0)
∥∥2
Ω

)
.

By the approximation capability, we have:

(5.14)

∥∥ξ%u,h(t)
∥∥2
Ω
+
∥∥ξ%q,h

∥∥2
L2(0,t;L2)

≤ Ch2k+2
(
|u|2H1(0,T ;Hk+1) + ‖q‖2L2(0,T ;Hk+1) + |g|2Hk+1(Th)

)
.

Then by triangular inequality and approximation capability of the ultra-weak pro-
jection, we have the following estimate

(5.15) ‖u− uh‖Ω + ‖q − qh‖L2(0,t;L2) ≤ Chk+1,

where C may depend on |u|H1(0,L;Hk+1), ‖q‖L2(0,L;Hk+1), |u|Hk+1(Ω) and |g|Hk+1(Ω).
!

On Cartesian mesh Kh with the tensor polynomial space Sk
h being the solution

and test function spaces in scheme (5.3), we are able to extend the above optimal er-
ror bound to a wider class of parameters for (α, c1, c2) ∈ ΘGR. The main tool is the
Gauss-Raudu type projection we construct in Section 3.2, and its superconvergent
property in Lemma 3.5.

Theorem 5.3 (Error estimate on Cartesian mesh). Let d ≥ 2, d < 2(k + 1),
(α, c1, c2) ∈ ΘGR, assume the exact solution u ∈ H1(0, L;Hk+1) ∩ L2(0, L;Hk+5)
and initial condition g ∈ Hk+1(Kh), then we have the following error estimate for
scheme (5.3) on Cartesian mesh Kh with the tensor polynomial space Sk

h being the
solution and test function spaces: for any fixed t ∈ [0, L],

(5.16) ‖u− uh‖Ω + ‖q − qh‖L2(0,t;L2) ≤ Chk+1,

where the constant C depends on |u|H1(0,L;Hk+1), ‖u‖L2(0,L,Hk+3), ‖q‖L2(0,L,Hk+3),
|g|Hk+1 and |u|Hk+1 .

Proof. We again denote η%u,h = ΠGR
h u − u, ξ%u,h = ΠGR

h u − uh, η%q,h = ΠGR
h q − q and

ξ%q,h = ΠGR
h q− qh. Here the projections are the tensor Gauss-Raudu type projection

defined in (3.37). The error term can be decomposed into eu = ξ%u,h − η%u,h and
eq = ξ%q,h − η%q,h. We take vh = ξ%u,h, wh = ξ%q,h in error equations associated with
scheme (5.3) to get:

((ξ%u,h)t, ξ
%
u,h)Ω − ah(ξ

%
q,h, ξ

%
u,h) + ah(η

%
q,h, ξ

%
u,h) = ((η%u,h)t, ξ

%
u,h)Ω,

(ξ%q,h, ξ
%
q,h)Ω + ah(ξ

%
u,h, ξ

%
q,h)− ah(η

%
u,h, ξ

%
q,h) = (η%q,h, ξ

%
q,h)Ω.

(5.17)
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We add the two equations and use symmetricity to have:
(5.18)
d

dt

∥∥ξ%u,h
∥∥2
Ω
+
∥∥ξ%q,h

∥∥2
Ω
= ((η%u,h)t, ξ

%
u,h)Ω+(η%q,h, ξ

%
q,h)Ω+ah(η

%
u,h, ξ

%
q,h)−ah(η

%
q,h, ξ

%
u,h).

By Cauchy-Schwarz inequality and Young’s inequality,

(5.19)

d

dt

∥∥ξ%u,h
∥∥2
Ω
+
∥∥ξ%q,h

∥∥2
Ω
≤ 1

2

(∥∥(η%u,h)t
∥∥2
Ω
+
∥∥ξ%u,h

∥∥2
Ω
+
∥∥η%q,h

∥∥2
Ω
+
∥∥ξ%q,h

∥∥2
Ω

)

+ |ah(η%u,h, ξ%q,h)− ah(η
%
q,h, ξ

%
u,h)|.

We use the superconvergent property of ΠGR
h in Lemma 3.5 to bound the last term

on the right:
(5.20)
|ah(η%u,h, ξ%q,h)− ah(η

%
q,h, ξ

%
u,h)| ≤ Chk+1(|u|Hk+3(Kh)

∥∥ξ%q,h
∥∥
Ω
+ |q|Hk+3(Kh)

∥∥ξ%u,h
∥∥
Ω
).

Then we apply Young’s inequality again and use the approximation capability of
projection to obtain

(5.21)

d

dt

∥∥ξ%u,h
∥∥2
Ω
+
∥∥ξ%q,h

∥∥2
Ω

≤ C
∥∥ξ%u,h

∥∥2
Ω
+ Ch2k+2

(
|ut|2Hk+1(Kh)

+ |u|2Hk+3(Kh)
+ |q|2Hk+3(Kh)

)
.

We take integration over [0, t] and use Gronwall inequality to obtain:

∥∥ξ%u,h(t)
∥∥2
Ω
+

∫ t

0

∥∥ξ%q,h(s)
∥∥2
Ω
ds

≤Ch2k+2
(
|u|2H1(0,L;Hk+1) + ‖u‖2L2(0,L,Hk+3) + ‖q‖2L2(0,L,Hk+3) + |g|2Hk+1(Ω)

)
.

(5.22)

Then by triangular inequality and approximation capability of ultra-weak projec-
tion, we have the following estimates:

(5.23) ‖u− uh‖Ω + ‖q − qh‖L2(0,t;L2) ≤ Chk+1,

where C may depend on |u|H1(0,L;Hk+1), ‖u‖L2(0,L,Hk+3), ‖q‖L2(0,L,Hk+3), |g|Hk+1

and |u|Hk+1 . !
Remark 5.2. Our result can be viewed as a generalization of the study in [49] to a
wider range of numerical fluxes on both simplex and Cartesian mesh. Compared
with [49], a lower regularity requirement is needed because of the ultra-weak pro-
jection and Lemma 3.5.

Remark 5.3. We also remark that the technique and tool we built in the paper
can be directly extended to other equations in a general setting of dimension and
numerical fluxes, e.g., the Schrödinger equation [15], wave equation [50], fifth and
general higher order problems [49].

6. Numerical experiments

In this section, numerical examples are presented to validate theoretical results
in previous sections. Various sets of the parameters α, c1 and c2 will be tested.
Periodic boundary conditions are adopted for all numerical examples.

For the temporal discretization of the convection-diffusion equation, we use an
L-stable third-order implicit-explicit (IMEX) Runge-Kutta (RK) (3,4,3) scheme
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[3]. The coefficients of the scheme are listed in Table 6.1, which contains two
butcher tableaus of Runge-Kutta schemes. The left one is the implicit RK scheme
for the linear diffusion term, while the right one is the explicit RK scheme to
discretize the nonlinear convection term. The constants in these schemes are taken
as: γ ≈ 0.435866521508459 which is the middle root of 6x3 − 18x2 + 9x − 1 = 0;
β1 = − 3

2γ
2 + 4γ − 1

4 ;β2 = 3
2γ

2 − 5γ + 5
4 . The parameter α1 is chosen as −0.35

and α2 = ( 13 − 2γ2 − 2β2α1γ)/[γ(1− γ)]. The time marching step size τ is chosen
to adapt the convergence order of spatial discretization. In the numerical tests, we
take τ = O(hmax{1, k+1

3 }) to observe clean convergence rate for each k, as we expect
to observe k+1 order of spatial convergence for Pk. For the temporal discretization
of the biharmonic equation, we apply the L-stable third order Diagonal RK method,
which is a degenerating case of the IMEX RK method used for convection-diffusion
equations.

Table 6.1. Coefficients of IMEX (4,4,3) method used in numerical experiments

0 0 0 0 0 0 0 0 0
γ 0 γ 0 0 γ 0 0 0
γ+1
2 0 1−γ

2 γ 0 γ+1
2 − α1 α1 0 0

1 0 β1 β2 γ 0 1− α2 α2 0
0 β1 β2 γ 0 β1 β2 γ

Example 6.1. We first consider the one-dimensional nonlinear convection-diffusion
equation

ut +

(
u2

2

)

x

− uxx = R,(6.1)

with the exact solution set to be

(6.2) u(x, t) = sin(πx)et.

The right-hand side R can be computed from the exact solution (6.2). The compu-
tational domain is set to be Ω = [−1, 1] which is discretized into N equidistant cells.
This leads to a uniform partition mesh with size h = 2/N . We apply the ultra-weak
DG scheme (4.4) to solve the above equation, with the global Lax-Friedrich flux
taking the form:

(6.3) f̂(u+
h , u

−
h ) · n = {{f(uh) · n}}+

σ

2
!uh" ,

where σ = max1≤i≤d,X∈Ω |f ′
i(u(X))|.

We choose different sets of the parameters α, c1 and c2, and test Example 6.1 with
the final time L = 1. We summarize the convergence rates into one table which
can be seen in Table 6.2. In the table, we take some representative parameters
from ΘUW , for which we could prove the optimal performance for both accuracy
and stability analytically. The numerical examples exhibit optimal convergence,
confirming the validity of our theoretical results. The detailed results and numerical
orders can be seen through the hyperlink in the column ‘Table’. Apart from these
parameters, we also test some well-known numerical fluxes which actually do not
belong to the set of ΘUW (but in the set of ΘGR). Our numerical examples show
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that most of them work well in 1D cases. However, the stability of these semi-
discrete schemes (using parameters in ΘGR) cannot be proved rigorously, therefore
further investigation of these results will be needed. It is also notable that the
central flux with k = 1 does not belong to either ΘUW or ΘGR, for which we
observe an unstable numerical behavior.

Table 6.2. Summary of numerical experiments of 1D ultra-weak
DG scheme with parameters (work for three equations) where ‘U’
means unstable numerical results are observed, ‘k+1’ means opti-
mal convergence

Flux Table
Parameters P1 P2 P3α c1 c2

ΘUW

General Flux 6.3 1/2 -17 1 k+ 1 k+ 1 k+ 1
IPDG 6.3 0 -17 0 k+ 1 k+ 1 k+ 1

αβ Flux [18] 6.4 1/2 -26 0 k+ 1 k+ 1 k+ 1

ΘGR

General Flux 6.4 1/2 0 1 k+ 1 k+ 1 k+ 1
Alternating Flux 6.5 1/2 0 0 k+ 1 k+ 1 k+ 1

αβ Flux 6.5 0.3 0.4 0.4 k+ 1 k+ 1 k+ 1
Central Flux (k ≥ 2) - 0 0 0 - k+ 1 k+ 1

Other fluxes
Central Flux (k = 1) - 0 0 0 U - -

In addition, we have considered the heat equation and the linear convection-
diffusion equation taking the form

ut − uxx = R,(6.4a)

ut + ux − uxx = R,(6.4b)

with different source terms R leading to the same exact solution (6.2). The same
convergence rates as in Table 6.2 have been observed, and we skip these results to
save space.

Example 6.2. In this example, we present numerical results for the two-dimen-
sional convection-diffusion equation

ut + u(ux + uy)−∆u = R,(6.5)

with a suitable choice of R leading to the exact solution

(6.6) u(x, y, t) = sin(πx) sin(πy)et.

We set the domain to be Ω = [−1, 1]× [−1, 1] which is partitioned into an N ×N
Cartesian mesh. A line with slope −1 is used to split each rectangular into two
right-angle triangles. The spatial discretization used on the triangular mesh is
piecewise P space. Meanwhile, we also test the performance of tensor Q space on
the Cartesian mesh.

We apply the ultra-weak DG scheme (4.4) with the global Lax-Friedrich flux
to solve the above equation. We choose different sets of the parameters α, c1
and c2, and test Example 6.2 with the final time L = 1. The summary of 2D
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Table 6.3. Numerical error and convergence rate for the 1D qua-
dratic convection-diffusion equation, with parameter (1/2,−17, 1)
(Left) and (0,−17, 0) (Right)

Parameters (1/2,−17, 1) (0,−17, 0)
k N L2 error order H1 error order L2 error order H1 error order

1

320 6.0454× 10−2 - 4.4358× 10−1 - 5.4919× 10−3 - 3.8987× 10−1 -
640 3.8440× 10−3 2.00 9.8611× 10−2 1.04 1.3774× 10−3 2.00 1.9445× 10−1 1.00
1280 3.8440× 10−3 2.00 9.8611× 10−2 1.04 3.4920× 10−4 1.98 9.7094× 10−2 1.00
2560 9.6142× 10−4 2.00 4.8887× 10−2 1.01 8.8090× 10−5 1.99 4.8496× 10−2 1.00

2

20 4.1958× 10−4 - 3.2051× 10−2 - 4.1078× 10−4 - 3.1693× 10−2 -
40 5.2066× 10−5 3.01 7.9526× 10−3 2.01 5.1899× 10−5 2.98 7.9273× 10−3 2.00
80 6.5303× 10−6 3.00 1.9844× 10−3 2.00 6.5386× 10−6 2.99 1.9821× 10−3 2.00
160 8.1926× 10−7 2.99 4.9586× 10−4 2.00 8.2120× 10−7 2.99 4.9555× 10−4 2.00

3

10 3.1112× 10−4 - 1.1114× 10−2 - 1.1252× 10−4 - 6.7292× 10−3 -
20 2.1506× 10−5 3.85 1.4284× 10−3 2.96 7.2730× 10−6 3.95 8.3611× 10−4 3.01
40 1.3814× 10−6 3.96 1.7969× 10−4 2.99 4.5910× 10−7 3.99 1.0432× 10−4 3.00
80 8.6992× 10−8 3.99 2.2496× 10−5 3.00 2.8913× 10−8 3.99 1.3033× 10−5 3.00

Table 6.4. Numerical error and convergence rate for the 1D qua-
dratic convection-diffusion equation, with parameter (1/2,−26, 0)
(Left) and (1/2, 0, 1) (Right)

Parameters (1/2,−26, 0) (1/2, 0, 1)
k N L2 error order H1 error order L2 error order H1 error order

1

320 5.0640× 10−3 - 3.9042× 10−1 - 1.2135× 10−3 - 9.2393× 10−2 -
640 1.2719× 10−3 1.99 1.9479× 10−1 1.00 3.0301× 10−4 2.00 4.6537× 10−2 0.99
1280 3.2378× 10−4 1.97 9.7282× 10−2 1.00 7.5709× 10−5 2.00 2.3436× 10−2 0.99
2560 8.1868× 10−5 1.98 4.8596× 10−2 1.00 1.8923× 10−5 2.00 1.1792× 10−2 0.99

2

20 4.3872× 10−4 - 3.2020× 10−2 - 2.2745× 10−3 - 7.1868× 10−2 -
40 5.5524× 10−5 2.98 8.0109× 10−3 2.00 2.7159× 10−4 3.07 1.7143× 10−2 2.07
80 6.9953× 10−6 2.99 2.0031× 10−3 2.00 3.3202× 10−5 3.03 4.1898× 10−3 2.03
160 8.7834× 10−7 2.99 5.0081× 10−4 2.00 4.1054× 10−6 3.02 1.0359× 10−3 2.02

3

10 8.2688× 10−5 - 7.3153× 10−3 - 3.5836× 10−4 - 1.1584× 10−2 -
20 5.2400× 10−6 3.98 9.1816× 10−4 2.99 2.2370× 10−5 4.00 1.4457× 10−3 3.00
40 3.2937× 10−7 3.99 1.1494× 10−4 3.00 1.3988× 10−6 4.00 1.8075× 10−4 3.00
80 2.0820× 10−8 3.98 1.4374× 10−5 3.00 8.7492× 10−8 4.00 2.2596× 10−5 3.00

Table 6.5. Numerical error and convergence rate for the 1D
quadratic convection-diffusion equation, with parameter (1/2, 0, 0)
(Left) and (0.3, 0.4, 0.4) (Right)

Parameters (1/2, 0, 0) (0.3, 0.4, 0.4)
k N L2 error order H1 error order L2 error order H1 error order

1

320 3.3188× 10−4 - 9.2363× 10−2 - 4.9457× 10−4 - 5.9011× 10−2 -
640 8.2852× 10−5 2.00 4.6532× 10−2 0.99 1.2353× 10−4 2.00 2.9605× 10−2 1.00
1280 2.0718× 10−5 2.00 2.3435× 10−2 0.99 3.0868× 10−5 2.00 1.4850× 10−2 1.00
2560 5.1839× 10−6 2.00 1.1791× 10−2 0.99 7.7156× 10−6 2.00 7.4460× 10−3 1.00

2

20 1.0528× 10−3 - 4.8030× 10−2 - 1.8232× 10−3 - 5.8216× 10−2 -
40 1.3092× 10−4 3.01 1.1893× 10−2 2.01 2.2104× 10−4 3.04 1.4122× 10−2 2.04
80 1.6327× 10−5 3.00 2.9589× 10−3 2.01 2.7217× 10−5 3.02 3.4788× 10−3 2.02
160 2.0388× 10−6 3.00 7.3796× 10−4 2.00 3.3771× 10−6 3.01 8.6343× 10−4 2.01

3

10 2.1821× 10−4 - 8.9797× 10−3 - 3.3354× 10−4 - 1.0817× 10−2 -
20 1.3608× 10−5 4.00 1.1186× 10−3 3.00 2.0842× 10−5 4.00 1.3513× 10−3 3.00
40 8.4867× 10−7 4.00 1.3945× 10−4 3.00 1.3035× 10−6 4.00 1.6896× 10−4 3.00
80 5.3037× 10−8 4.00 1.7406× 10−5 3.00 8.1538× 10−8 4.00 2.1122× 10−5 3.00
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numerical examples can be found in Table 6.6. It can be seen that we obtain
optimal convergence for ΘUW which verifies our theoretical results. However, when
using parameters in ΘGR, unlike the 1D case, the 2D numerical results are less
clean and even unstable, due to stability issues arising from spatial discretization.

In addition, we have tested the performance of ultra-weak DG methods on the
2D heat and linear convection-diffusion equations, which (if they converge) seem
to have cleaner order of convergence compared with nonlinear models. This may
partially result from the nonlinearity of the convection term and the use of global
Lax-Friedrich flux. The same convergence rate as in Table 6.6 has been observed,
with only one difference marked by U%. For this test, the ultra-weak DG method is
unstable for the heat equation, while optimal for the convection-diffusion equation
with linear or quadratic convection, probably due to the existence of numerical
viscosity in approximating the convection term.

Table 6.6. Summary of numerical experiments for 2D ultra-weak
DG scheme with parameters, where ‘U’ means unstable numerical
results are observed, ‘k+1’ means optimal convergence, U% means
unstable for the heat equation, but optimal for the convection-
diffusion equation with linear or quadratic convection.

Flux Table
Parameters P1 P2 P3 Q1 Q2 Q3α c1 c2

ΘUW

General Flux 6.7 1/2 -41 1 k+ 1 k+ 1 k+ 1 k+ 1 k+ 1 k+ 1
IPDG 6.8 0 -40 0 k+ 1 k+ 1 k+ 1 k+ 1 k+ 1 k+ 1

αβ Flux [18] 6.9 1/2 -121 0 k+ 1 k+ 1 k+ 1 k+ 1 k+ 1 k+ 1
ΘGR

General Flux - 1/2 -10 1 k+ 1 k+ 1 U k+ 1 k+ 1 k+ 1
Alternating Flux - 1/2 0 0 U U k+ 1 U U U

αβ Flux - 0.3 0.4 0.4 k+ 1 U U% U U k+ 1
Central Flux (k ≥ 2) - 0 0 0 - U U - U U

Other fluxes
Central Flux (k = 1) - 0 0 0 U - - U - -

Table 6.7. Numerical error and convergence rate for the 2D qua-
dratic convection-diffusion equation, with parameter (1/2,−41, 1)

Parameters Pk Spaces Qk Spaces
k N L2 error order H1 error order L2 error order H1 error order

1

20 5.2441× 10−1 - 2.8334× 100 - 2.4117× 10−1 - 1.5622× 100 -
40 1.5928× 10−1 1.72 1.0862× 100 1.38 6.4138× 10−2 1.91 6.3800× 10−1 1.29
80 4.2071× 10−2 1.92 4.4173× 10−1 1.30 1.6264× 10−2 1.98 2.9090× 10−1 1.13
160 1.0668× 10−2 1.98 1.9615× 10−1 1.17 4.0867× 10−3 1.99 1.4029× 10−1 1.05

2

10 3.7067× 10−2 - 3.8097× 10−1 - 9.7826× 10−3 - 2.0086× 10−1 -
20 2.7829× 10−3 3.74 8.7515× 10−2 2.12 1.5256× 10−3 2.68 4.6569× 10−2 2.11
40 2.7454× 10−4 3.34 2.1666× 10−2 2.01 2.2942× 10−4 2.73 1.1302× 10−2 2.04
80 3.4569× 10−5 2.99 5.4034× 10−3 2.00 3.2648× 10−5 2.81 2.7950× 10−3 2.02

3

10 1.1902× 10−3 - 4.3722× 10−2 - 7.8639× 10−4 - 1.6524× 10−2 -
20 7.3350× 10−5 4.02 5.1458× 10−3 3.09 5.7909× 10−5 3.76 2.0549× 10−3 3.01
40 4.7716× 10−6 3.94 6.3026× 10−4 3.03 3.9769× 10−6 3.86 2.5560× 10−4 3.01
50 1.9782× 10−6 3.95 3.2186× 10−4 3.01 1.6628× 10−6 3.91 1.3074× 10−4 3.00
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Table 6.8. Numerical error and convergence rate for the 2D qua-
dratic convection-diffusion equation, with parameter (0,−40, 0)

Parameters Pk Spaces Qk Spaces
k N L2 error order H1 error order L2 error order H1 error order

1

20 7.4724× 10−2 - 1.8625× 100 - 3.4415× 10−2 - 1.1401× 100 -
40 1.9602× 10−2 1.93 9.2906× 10−1 1.00 1.0251× 10−2 1.75 5.6201× 10−1 1.02
80 5.3142× 10−3 1.88 4.6301× 10−1 1.00 3.3298× 10−3 1.62 2.7924× 10−1 1.01
160 1.3826× 10−3 1.94 2.2979× 10−1 1.01 9.2290× 10−4 1.85 1.3857× 10−1 1.01

2

10 1.1708× 10−2 - 4.2302× 10−1 - 9.5696× 10−3 - 1.9432× 10−1 -
20 1.7251× 10−3 2.76 1.0648× 10−1 1.99 1.5201× 10−3 2.65 4.6144× 10−2 2.07
40 2.5072× 10−4 2.78 2.6622× 10−2 2.00 2.2923× 10−4 2.73 1.1274× 10−2 2.03
80 3.5036× 10−5 2.84 6.6517× 10−3 2.00 3.2639× 10−5 2.81 2.7933× 10−3 2.01

3

10 8.0828× 10−4 - 3.4523× 10−2 - 6.6334× 10−4 - 1.0888× 10−2 -
20 5.7426× 10−5 3.82 4.2895× 10−3 3.01 5.0207× 10−5 3.72 1.2469× 10−3 3.13
40 3.9211× 10−6 3.87 5.3461× 10−4 3.00 3.5217× 10−6 3.83 1.5014× 10−4 3.05
50 1.6391× 10−6 3.91 2.7359× 10−4 3.00 1.4795× 10−6 3.89 7.6422× 10−5 3.03

Table 6.9. Numerical error and convergence rate for the 2D qua-
dratic convection-diffusion equation, with parameter (1/2,−121, 0)

Parameters Pk Spaces Qk Spaces
k N L2 error order H1 error order L2 error order H1 error order

1

20 7.6357× 10−2 - 1.8862× 100 - 3.4214× 10−2 - 1.1403× 100 -
40 1.9964× 10−2 1.94 9.4490× 10−1 1.00 1.0217× 10−2 1.74 5.6207× 10−1 1.02
80 5.3951× 10−3 1.89 4.7213× 10−1 1.00 3.3251× 10−3 1.62 2.7928× 10−1 1.01
160 1.4019× 10−3 1.94 2.3524× 10−1 1.01 9.2198× 10−4 1.85 1.3858× 10−1 1.01

2

10 1.2530× 10−2 - 4.4638× 10−1 - 9.7027× 10−3 - 1.9387× 10−1 -
20 1.8284× 10−3 2.78 1.1284× 10−1 1.98 1.5351× 10−3 2.66 4.6091× 10−2 2.07
40 2.6252× 10−4 2.80 2.8243× 10−2 2.00 2.3089× 10−4 2.73 1.1263× 10−2 2.03
80 3.6389× 10−5 2.85 7.0589× 10−3 2.00 3.2826× 10−5 2.81 2.7906× 10−3 2.01

3

10 8.2583× 10−4 - 3.5959× 10−2 - 6.6158× 10−4 - 1.0882× 10−2 -
20 5.8060× 10−5 3.83 4.4801× 10−3 3.00 5.0097× 10−5 3.72 1.2489× 10−3 3.12
40 3.9525× 10−6 3.88 5.5894× 10−4 3.00 3.5153× 10−6 3.83 1.5048× 10−4 3.05
50 1.6514× 10−6 3.91 2.8609× 10−4 3.00 1.4770× 10−6 3.89 7.6601× 10−5 3.03

Example 6.3. In this example, we consider the one-dimensional biharmonic equa-
tion with source term R, written as:

(6.7) ut + uxxxx = R,

with the exact solution

(6.8) u(x, t) = et sin(x), on [0, 2π]× [0, 1].

The local ultra-weak DG scheme (5.3) is applied to solve the above equation.
We choose different sets of the parameters α, c1 and c2, and test Example 6.3 with
the final time L = 1. We summarize the numerical results for polynomial order
1 ≤ k ≤ 3 in Table 6.10. For all the numerical fluxes tested, k+ 1 order optimal
convergence is observed. It is remarkable that central flux with k = 1 does not
belong to either ΘUW or ΘGR. However, the numerical test shows the ultra-weak
DG scheme still works well under this setting.

Example 6.4. We consider the two-dimensional time-dependent biharmonic equa-
tion with the source term R:

(6.9) ut +∆2u = R,
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Table 6.10. Summary of numerical experiments of 1D Local
ultra-weak DG scheme with parameters for the biharmonic equa-
tion

Flux Table
Parameters P1 P2 P3α c1 c2

ΘUW

General Flux 6.11 1/2 -17 1 k+ 1 k+ 1 k+ 1
IPDG 6.11 0 -17 0 k+ 1 k+ 1 k+ 1

αβ Flux [18] 6.12 1/2 -26 0 k+ 1 k+ 1 k+ 1

ΘGR

General Flux 6.12 1/2 0 1 k+ 1 k+ 1 k+ 1
Alternating Flux 6.13 1/2 0 0 k+ 1 k+ 1 k+ 1

αβ Flux 6.13 0.3 0.4 0.4 k+ 1 k+ 1 k+ 1
generalized Alternating Flux 6.14 0.8 0 0 k+ 1 k+ 1 k+ 1

Central Flux (k ≥ 2) 6.14 0 0 0 - k+ 1 k+ 1

Other flux
Central Flux (k = 1) 6.14 0 0 0 k+ 1 - -

Table 6.11. Numerical error and convergence rate for the 1D
biharmonic equation, with parameter (1/2,−17, 1) (Left) and
(0,−17, 0) (Right)

Parameters (1/2,−17, 1) (0,−17, 0)
k N L2 error order H1 error order L2 error order H1 error order

1

320 1.2291× 10−3 - 1.9311× 10−2 - 1.1989× 10−4 - 1.9610× 10−2 -
640 3.0730× 10−4 2.00 9.6411× 10−3 1.00 2.9972× 10−5 2.00 9.8049× 10−3 1.00
1280 7.6826× 10−5 2.00 4.8188× 10−3 1.00 7.4930× 10−6 2.00 4.9025× 10−3 1.00
2560 1.9207× 10−5 2.00 2.4092× 10−3 1.00 1.8735× 10−6 2.00 2.4512× 10−3 1.00

2

20 5.0644× 10−4 - 1.3652× 10−2 - 4.9537× 10−4 - 1.3620× 10−2 -
40 6.1881× 10−5 3.03 3.3901× 10−3 2.01 6.1803× 10−5 3.00 3.4080× 10−3 2.00
80 7.6909× 10−6 3.01 8.4608× 10−4 2.00 7.7218× 10−6 3.00 8.5218× 10−4 2.00
160 9.5999× 10−7 3.00 2.1143× 10−4 2.00 9.6513× 10−7 3.00 2.1306× 10−4 2.00

3

10 4.0354× 10−4 - 4.5411× 10−3 - 1.7014× 10−4 - 3.1849× 10−3 -
20 2.7745× 10−5 3.86 5.7434× 10−4 2.98 1.0786× 10−5 3.98 3.9658× 10−4 3.01
40 1.7796× 10−6 3.96 7.1891× 10−5 3.00 6.7658× 10−7 3.99 4.9513× 10−5 3.00
80 1.1316× 10−7 3.98 8.9882× 10−6 3.00 4.4973× 10−8 3.91 6.1882× 10−6 3.00

with the exact solution written in the form

(6.10) u(x, y, t) = e−t sin(π(x+ y)), on [−2, 2]2 × [0, 1].

We test Example 6.4 with the final time L = 1, using represented numerical fluxes
with polynomial order 1 ≤ k ≤ 3. The summarized results are listed in Table 6.15.
When (α, c1, c2) ∈ ΘUW , it can be observed that the numerical results verify our
theoretical findings. For (α, c1, c2) ∈ ΘGR, the ultra-weak scheme works well on Qk

spaces which can be proved rigorously. There are no analytical results on Pk spaces
with the triangular mesh. Numerically, most of these methods work well, as seen
in Table 6.15. It is worth mentioning that if central flux is taken, similar optimal
results in the 1D case are observed, although the case with k = 1 is not included
in either set ΘGR or ΘUW . However, when the alternating flux and generalized
alternating flux are taken on triangular mesh and P1 space, the local ultra-weak
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Table 6.12. Numerical error and convergence rate for the 1D
biharmonic equation, with parameter (1/2,−26, 0) (Left) and
(1/2, 0, 1) (Right)

Parameters (1/2,−26, 0) (1/2, 0, 1)
k N L2 error order H1 error order L2 error order H1 error order

1

320 1.0989× 10−4 - 1.9369× 10−2 - 1.5026× 10−3 - 4.2225× 10−2 -
640 2.7473× 10−5 2.00 9.6844× 10−3 1.00 3.7555× 10−4 2.00 2.1112× 10−2 1.00
1280 6.8683× 10−6 2.00 4.8422× 10−3 1.00 9.3880× 10−5 2.00 1.0556× 10−2 1.00
2560 1.7177× 10−6 2.00 2.4211× 10−3 1.00 2.3469× 10−5 2.00 5.2781× 10−3 1.00

2

20 5.2064× 10−4 - 1.2675× 10−2 - 2.5193× 10−3 - 2.6150× 10−2 -
40 6.5141× 10−5 3.00 3.1721× 10−3 2.00 3.1721× 10−4 2.99 6.5810× 10−3 1.99
80 8.1448× 10−6 3.00 7.9323× 10−4 2.00 3.9724× 10−5 3.00 1.6480× 10−3 2.00
160 1.0182× 10−6 3.00 1.9832× 10−4 2.00 4.9678× 10−6 3.00 4.1219× 10−4 2.00

3

10 1.4050× 10−4 - 2.6762× 10−3 - 4.5029× 10−4 - 4.6036× 10−3 -
20 8.7958× 10−6 4.00 3.3584× 10−4 2.99 2.8275× 10−5 3.99 5.7808× 10−4 2.99
40 5.4995× 10−7 4.00 4.2021× 10−5 3.00 1.7692× 10−6 4.00 7.2340× 10−5 3.00
80 3.8043× 10−8 3.85 5.2548× 10−6 3.00 1.1164× 10−7 3.99 9.0451× 10−6 3.00

Table 6.13. Numerical error and convergence rate for the
1D biharmonic equation, with parameter (1/2, 0, 0) (Left) and
(0.3, 0.4, 0.4) (Right)

Parameters (1/2, 0, 0) (0.3, 0.4, 0.4)
k N L2 error order H1 error order L2 error order H1 error order

1

320 4.1225× 10−4 - 4.2223× 10−2 - 6.2801× 10−4 - 2.6643× 10−2 -
640 1.0306× 10−4 2.00 2.1112× 10−2 1.00 1.5699× 10−4 2.00 1.3322× 10−2 1.00
1280 2.5764× 10−5 2.00 1.0556× 10−2 1.00 3.9245× 10−5 2.00 6.6609× 10−3 1.00
2560 6.4409× 10−6 2.00 5.2781× 10−3 1.00 9.8112× 10−6 2.00 3.3304× 10−3 1.00

2

20 1.1591× 10−3 - 2.1975× 10−2 - 2.0656× 10−3 - 2.2263× 10−2 -
40 1.4539× 10−4 2.99 5.5090× 10−3 2.00 2.5977× 10−4 2.99 5.5941× 10−3 1.99
80 1.8191× 10−5 3.00 1.3782× 10−3 2.00 3.2521× 10−5 3.00 1.4003× 10−3 2.00
160 2.2744× 10−6 3.00 3.4461× 10−4 2.00 4.0667× 10−6 3.00 3.5020× 10−4 2.00

3

10 2.5672× 10−4 - 4.4929× 10−3 - 4.1812× 10−4 - 4.3513× 10−3 -
20 1.6086× 10−5 4.00 5.6472× 10−4 2.99 2.6241× 10−5 3.99 5.4618× 10−4 2.99
40 1.0061× 10−6 4.00 7.0688× 10−5 3.00 1.6417× 10−6 4.00 6.8342× 10−5 3.00
80 6.4098× 10−8 3.97 8.8404× 10−6 3.00 1.0373× 10−7 3.98 8.5452× 10−6 3.00

Table 6.14. Numerical error and convergence rate for the 1D bi-
harmonic equation, with parameter (0.8, 0, 0) (Left) and (0, 0, 0)
(Right)

Parameters (0.8, 0, 0) (0, 0, 0)
k N L2 error order H1 error order L2 error order H1 error order

1

320 8.3592× 10−4 - 6.0787× 10−2 - 1.1991× 10−4 - 1.9611× 10−2 -
640 2.0898× 10−4 2.00 3.0396× 10−2 1.00 2.9973× 10−5 2.00 9.8051× 10−3 1.00
1280 5.2243× 10−5 2.00 1.5198× 10−2 1.00 7.4930× 10−6 2.00 4.9025× 10−3 1.00
2560 1.3061× 10−5 2.00 7.5992× 10−3 1.00 1.8732× 10−6 2.00 2.4512× 10−3 1.00

2

20 8.8953× 10−4 - 1.9209× 10−2 - 2.8862× 10−3 - 2.9622× 10−2 -
40 1.1056× 10−4 3.01 4.7950× 10−3 2.00 3.7750× 10−4 2.93 7.6032× 10−3 1.96
80 1.3800× 10−5 3.00 1.1983× 10−3 2.00 4.7743× 10−5 2.98 1.9138× 10−3 1.99
160 1.7244× 10−6 3.00 2.9955× 10−4 2.00 5.9855× 10−6 3.00 4.7927× 10−4 2.00

3

10 3.0395× 10−4 - 4.6108× 10−3 - 1.8758× 10−4 - 3.2446× 10−3 -
20 1.9517× 10−5 3.96 5.8291× 10−4 2.98 1.1060× 10−5 4.08 3.9836× 10−4 3.03
40 1.2284× 10−6 3.99 7.3071× 10−5 3.00 6.8085× 10−7 4.02 4.9568× 10−5 3.01
80 7.7935× 10−8 3.98 9.1415× 10−6 3.00 4.4897× 10−8 3.92 6.1900× 10−6 3.00
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DG scheme converges to a wrong solution, and we observe that the numerical error
converges to constants larger than 0 (see Tables 6.20 and 6.22). This observation
has been cross validated with multiple software codes. For spaces P2 and P3,
the method behaves optimally. These observations suggest the preference to use
high order spatial spaces (k ≥ 1) of the ultra-weak scheme, which is also reflected
in Figure 3.2, where we found the range of ΘGR varies significantly when k = 1
switches to k ≥ 1.

Table 6.15. Summary of numerical experiments of 2D ultra-weak
DG scheme with parameters for the time-dependent biharmonic
equation. In the table, D represents stable, but the numerical al-
gorithm converges to a solution which is not an exact solution. S
means a convergent result is observed, but the convergence order
is not clean.

Flux Table
Parameters P1 P2 P3 Q1 Q2 Q3α c1 c2

ΘUW

General Flux 6.16 1/2 -41 1 k+ 1 k+ 1 k+ 1 k+ 1 k+ 1 k+ 1
IPDG 6.17 0 -40 0 k+ 1 k+ 1 k+ 1 k+ 1 k+ 1 k+ 1

αβ Flux [18] 6.18 1/2 -121 0 k+ 1 k+ 1 k+ 1 k+ 1 k+ 1 k+ 1

ΘGR

General Flux 6.19 1/2 -10 1 k+ 1 k+ 1 S k+ 1 k+ 1 k+ 1
Alternating Flux 6.20 1/2 0 0 D k+ 1 k+ 1 k+ 1 k+ 1 k+ 1

αβ Flux 6.21 0.3 0.4 0.4 k+ 1 S k+ 1 k+ 1 k+ 1 k+ 1
Generalized Alternating Flux 6.22 0.8 0 0 D k+ 1 k+ 1 k+ 1 k+ 1 k+ 1

Central Flux (k ≥ 2) 6.23 0 0 0 - k+ 1 k+ 1 - k+ 1 k+ 1

Other flux
Central Flux (k = 1) 6.23 0 0 0 k+ 1 - - k+ 1 - -

Table 6.16. Numerical error and convergence rate for the 2D qua-
dratic convection-diffusion equation, with parameter (1/2,−41, 1)

Parameters Pk Spaces Qk Spaces
k N L2 error order H1 error order L2 error order H1 error order

1

20 5.8711× 10−1 - 2.7270× 100 - 5.2541× 10−1 - 2.3969× 100 -
40 2.3134× 10−1 1.34 1.1079× 100 1.30 1.9029× 10−1 1.47 9.2241× 10−1 1.38
80 6.7007× 10−2 1.79 3.5095× 10−1 1.66 5.3271× 10−2 1.84 3.1169× 10−1 1.57
160 1.7431× 10−2 1.94 1.1708× 10−1 1.58 1.3722× 10−2 1.96 1.2056× 10−1 1.37

2

10 1.3733× 10−2 - 3.0145× 10−1 - 2.1371× 10−2 - 3.2248× 10−1 -
20 1.0946× 10−3 3.65 6.7930× 10−2 2.15 1.8186× 10−3 3.55 7.1052× 10−2 2.18
40 1.1754× 10−4 3.22 1.6516× 10−2 2.04 2.0104× 10−4 3.18 1.7211× 10−2 2.05
80 1.4089× 10−5 3.06 4.0998× 10−3 2.01 2.4305× 10−5 3.05 4.2689× 10−3 2.01

3

10 1.3157× 10−3 - 3.9173× 10−2 - 2.0996× 10−3 - 4.2032× 10−2 -
20 1.0608× 10−4 3.63 5.3911× 10−3 2.86 1.7184× 10−4 3.61 5.9497× 10−3 2.82
40 7.2544× 10−6 3.87 6.8897× 10−4 2.97 1.1676× 10−5 3.88 7.7066× 10−4 2.95
50 2.9907× 10−6 3.97 3.5361× 10−4 2.99 4.8347× 10−6 3.95 3.9632× 10−4 2.98
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Table 6.17. Numerical error for 2D, biharmonic equation, with
parameter (0,−40, 0)

Parameters Pk Spaces Qk Spaces
k N L2 error order H1 error order L2 error order H1 error order

1

20 6.0177× 10−2 - 8.1167× 10−1 - 6.6194× 10−2 - 8.4803× 10−1 -
40 1.5483× 10−2 1.96 4.0213× 10−1 1.01 1.7006× 10−2 1.96 4.2056× 10−1 1.01
80 3.8989× 10−3 1.99 2.0053× 10−1 1.00 4.2807× 10−3 1.99 2.0979× 10−1 1.00
160 9.7648× 10−4 2.00 1.0020× 10−1 1.00 1.0720× 10−3 2.00 1.0483× 10−1 1.00

2

10 7.7278× 10−3 - 2.4104× 10−1 - 1.3269× 10−2 - 2.6963× 10−1 -
20 8.2848× 10−4 3.22 6.1475× 10−2 1.97 1.5652× 10−3 3.08 6.7929× 10−2 1.99
40 9.8957× 10−5 3.07 1.5449× 10−2 1.99 1.9266× 10−4 3.02 1.7019× 10−2 2.00
80 1.2227× 10−5 3.02 3.8674× 10−3 2.00 2.3991× 10−5 3.01 4.2570× 10−3 2.00

3

10 5.1967× 10−4 - 2.4046× 10−2 - 9.3230× 10−4 - 2.8650× 10−2 -
20 3.3442× 10−5 3.96 2.9855× 10−3 3.01 6.0347× 10−5 3.95 3.6057× 10−3 2.99
40 2.1044× 10−6 3.99 3.7200× 10−4 3.00 3.8057× 10−6 3.99 4.5130× 10−4 3.00
50 8.6313× 10−7 3.99 1.9038× 10−4 3.00 1.5607× 10−6 3.99 2.3110× 10−4 3.00

Table 6.18. Numerical error for 2D, biharmonic equation, with
parameter (1/2,−121, 0)

Parameters Pk Spaces Qk Spaces
k N L2 error order H1 error order L2 error order H1 error order

1

20 6.1496× 10−2 - 8.3224× 10−1 - 6.4815× 10−2 - 8.4615× 10−1 -
40 1.5751× 10−2 1.97 4.1382× 10−1 1.01 1.6600× 10−2 1.97 4.2032× 10−1 1.01
80 3.9615× 10−3 1.99 2.0658× 10−1 1.00 4.1750× 10−3 1.99 2.0978× 10−1 1.00
160 9.9184× 10−4 2.00 1.0325× 10−1 1.00 1.0455× 10−3 2.00 1.0484× 10−1 1.00

2

10 1.0002× 10−2 - 2.5340× 10−1 - 1.4046× 10−2 - 2.6992× 10−1 -
20 1.1376× 10−3 3.14 6.4707× 10−2 1.97 1.7023× 10−3 3.04 6.7916× 10−2 1.99
40 1.3813× 10−4 3.04 1.6267× 10−2 1.99 2.1111× 10−4 3.01 1.7007× 10−2 2.00
80 1.7137× 10−5 3.01 4.0725× 10−3 2.00 2.6339× 10−5 3.00 4.2535× 10−3 2.00

3

10 6.0022× 10−4 - 2.5546× 10−2 - 9.2133× 10−4 - 2.8611× 10−2 -
20 3.6689× 10−5 4.03 3.2194× 10−3 2.99 5.7451× 10−5 4.00 3.6095× 10−3 2.99
40 2.2787× 10−6 4.01 4.0319× 10−4 3.00 3.5866× 10−6 4.00 4.5225× 10−4 3.00
50 9.3394× 10−7 4.00 2.0648× 10−4 3.00 1.4700× 10−6 4.00 2.3162× 10−4 3.00

Table 6.19. Numerical error for 2D, biharmonic equation, with
parameter (1/2,−10, 1)

Parameters Pk Spaces Qk Spaces
k N L2 error order H1 error order L2 error order H1 error order

1

20 4.3028× 10−1 - 2.3548× 100 - 5.0671× 10−1 - 2.4043× 100 -
40 1.5915× 10−1 1.43 9.2726× 10−1 1.34 1.8533× 10−1 1.45 9.3813× 10−1 1.36
80 4.5056× 10−2 1.82 3.0572× 10−1 1.60 5.2116× 10−2 1.83 3.1813× 10−1 1.56
160 1.1646× 10−2 1.95 1.1235× 10−1 1.44 1.3443× 10−2 1.95 1.2289× 10−1 1.37

2

10 7.9854× 10−3 - 3.9107× 10−1 - 1.5439× 10−2 - 3.2937× 10−1 -
20 6.6730× 10−4 3.58 8.4283× 10−2 2.21 1.0817× 10−3 3.84 7.3154× 10−2 2.17
40 7.1666× 10−5 3.22 2.0257× 10−2 2.06 1.0573× 10−4 3.35 1.7737× 10−2 2.04
80 8.5792× 10−6 3.06 5.0142× 10−3 2.01 1.2219× 10−5 3.11 4.4002× 10−3 2.01

3

10 8.4568× 10−3 - 2.7429× 10−1 - 1.7430× 10−3 - 4.8199× 10−2 -
20 1.7262× 10−4 5.61 1.0341× 10−2 4.73 1.5955× 10−4 3.45 6.5142× 10−3 2.89
40 7.9633× 10−6 4.44 8.5127× 10−4 3.60 1.1407× 10−5 3.81 7.9708× 10−4 3.03
50 3.8125× 10−6 3.30 4.0748× 10−4 3.30 4.7574× 10−6 3.92 4.0545× 10−4 3.03
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Table 6.20. Numerical error for 2D, biharmonic equation, with
parameter (1/2, 0, 0)

Parameters Pk Spaces Qk Spaces
k N L2 error order H1 error order L2 error order H1 error order

1

20 4.6236× 102 - 3.2641× 100 - 2.6103× 10−1 - 1.6419× 100 -
40 4.7880× 102 - 3.3518× 100 - 7.0139× 10−2 1.90 8.3404× 10−1 0.98
80 4.8606× 102 - 3.4100× 100 - 1.7841× 10−2 1.98 4.1869× 10−1 0.99
160 4.8942× 102 - 3.4400× 100 - 4.4793× 10−3 1.99 2.0956× 10−1 1.00

2

10 3.6567× 10−2 - 4.6001× 10−1 - 3.3958× 10−2 - 4.0885× 10−1 -
20 3.8861× 10−3 3.23 1.0083× 10−1 2.19 4.2845× 10−3 2.99 1.0220× 10−1 2.00
40 4.8886× 10−4 2.99 2.5171× 10−2 2.00 5.3733× 10−4 3.00 2.5522× 10−2 2.00
80 6.1471× 10−5 2.99 6.3003× 10−3 2.00 6.7226× 10−5 3.00 6.3782× 10−3 2.00

3

10 1.6826× 10−3 - 3.7294× 10−2 - 1.8272× 10−3 - 3.8179× 10−2 -
20 9.4890× 10−5 4.15 4.3465× 10−3 3.10 1.1541× 10−4 3.98 4.8054× 10−3 2.99
40 5.5928× 10−6 4.08 5.1669× 10−4 3.07 7.2283× 10−6 4.00 6.0165× 10−4 3.00
50 2.2617× 10−6 4.06 2.6155× 10−4 3.05 2.9615× 10−6 4.00 3.0810× 10−4 3.00

Table 6.21. Numerical error for 2D, biharmonic equation, with
parameter (0.3, 0.4, 0.4)

Parameters Pk Spaces Qk Spaces
k N L2 error order H1 error order L2 error order H1 error order

1

20 2.7281× 10−1 - 1.0641× 100 - 3.9476× 10−1 - 1.4447× 100 -
40 7.7330× 10−2 1.82 4.5818× 10−1 1.22 1.0944× 10−1 1.85 5.8052× 10−1 1.32
80 2.0011× 10−2 1.95 2.1757× 10−1 1.07 2.8049× 10−2 1.96 2.6874× 10−1 1.11
160 5.0553× 10−3 1.98 1.0713× 10−1 1.02 7.0557× 10−3 1.99 1.3151× 10−1 1.03

2

10 2.0988× 100 - 2.2654× 101 - 5.5724× 10−2 - 4.9949× 10−1 -
20 2.9742× 10−2 6.14 6.3146× 10−1 5.16 7.2119× 10−3 2.95 1.2100× 10−1 2.05
40 4.9696× 10−3 2.58 1.9670× 10−1 1.68 9.1042× 10−4 2.99 2.9859× 10−2 2.02
80 1.5805× 10−4 4.97 1.3428× 10−2 3.87 1.1408× 10−4 3.00 7.4368× 10−3 2.01

3

10 1.7105× 10−3 - 3.4995× 10−2 - 2.8104× 10−3 - 4.6772× 10−2 -
20 1.0043× 10−4 4.09 4.3282× 10−3 3.02 1.7880× 10−4 3.97 5.8547× 10−3 3.00
40 6.1956× 10−6 4.02 5.4046× 10−4 3.00 1.1219× 10−5 3.99 7.3183× 10−4 3.00
50 2.5367× 10−6 4.00 2.7671× 10−4 3.00 4.5977× 10−6 4.00 3.7469× 10−4 3.00

Table 6.22. Numerical error for 2D, biharmonic equation, with
parameter (0.8, 0, 0)

Parameters Pk Spaces Qk Spaces
k N L2 error order H1 error order L2 error order H1 error order

1

20 3.8323× 101 - 4.5664× 101 - 4.5023× 10−1 - 2.3601× 100 -
40 3.7348× 101 - 4.5257× 101 - 1.4078× 10−1 1.68 1.2251× 100 0.95
80 3.7269× 101 - 4.5392× 101 - 3.7390× 10−2 1.91 6.1650× 10−1 0.99
160 3.7329× 101 - 4.5541× 101 - 9.4931× 10−3 1.98 3.0867× 10−1 1.00

2

10 5.2535× 10−2 - 6.1377× 10−1 - 2.9523× 10−2 - 3.7521× 10−1 -
20 3.5989× 10−3 3.87 9.5501× 10−2 2.68 3.2049× 10−3 3.20 8.7506× 10−2 2.10
40 4.2267× 10−4 3.09 2.2787× 10−2 2.07 3.8521× 10−4 3.06 2.1481× 10−2 2.03
80 5.2348× 10−5 3.01 5.6516× 10−3 2.01 4.7669× 10−5 3.01 5.3454× 10−3 2.01

3

10 4.8013× 10−3 - 9.7740× 10−2 - 2.0124× 10−3 - 4.0358× 10−2 -
20 2.1666× 10−4 4.47 9.3581× 10−3 3.38 1.4097× 10−4 3.84 5.3643× 10−3 2.91
40 1.0510× 10−5 4.37 9.2560× 10−4 3.34 9.0996× 10−6 3.95 6.8214× 10−4 2.98
50 4.0172× 10−6 4.31 4.4337× 10−4 3.30 3.7421× 10−6 3.98 3.5000× 10−4 2.99
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Table 6.23. Numerical error for 2D, biharmonic equation, with
parameter (0, 0, 0)

Parameters Pk Spaces Qk Spaces
k N L2 error order H1 error order L2 error order H1 error order

1

20 3.3726× 10−2 - 8.4539× 10−1 - 7.8927× 10−2 - 8.4553× 10−1 -
40 8.3518× 10−3 2.01 4.2012× 10−1 1.01 1.7818× 10−2 2.15 4.2032× 10−1 1.01
80 2.0830× 10−3 2.00 2.0973× 10−1 1.00 4.3316× 10−3 2.04 2.0977× 10−1 1.00
160 5.2046× 10−4 2.00 1.0483× 10−1 1.00 1.0752× 10−3 2.01 1.0483× 10−1 1.00

2

10 1.6036× 10−2 - 2.9862× 10−1 - 4.5358× 10−2 - 4.9135× 10−1 -
20 1.9435× 10−3 3.04 7.6181× 10−2 1.97 8.5739× 10−3 2.40 1.5206× 10−1 1.69
40 2.4054× 10−4 3.01 1.9119× 10−2 1.99 1.2450× 10−3 2.78 4.0680× 10−2 1.90
80 2.9991× 10−5 3.00 4.7841× 10−3 2.00 1.6231× 10−4 2.94 1.0353× 10−2 1.97

3

10 1.1052× 10−3 - 2.8789× 10−2 - 1.4260× 10−3 - 3.3482× 10−2 -
20 6.0359× 10−5 4.19 3.2449× 10−3 3.15 6.8372× 10−5 4.38 3.7552× 10−3 3.16
40 3.6805× 10−6 4.04 3.9871× 10−4 3.02 3.9326× 10−6 4.12 4.5596× 10−4 3.04
50 1.5033× 10−6 4.01 2.0374× 10−4 3.01 1.5939× 10−6 4.05 2.3263× 10−4 3.02

Example 6.5. In this example, we examine how the parameter ε affects the perfor-
mance of ultra-weak DG scheme on the convection-diffusion equation. We consider
the following equation on general dimension d:

(6.11) ut +∇ · (cu)− ε∆u = R,

where c taken as 1, the vector full of 1. We conduct tests using the following exact
solution for d ≥ 1 [16, 24]:

(6.12) u(x1, . . . xd, t) = sin

(
d∑

i=1

xi − t

)
e−εt.

For one-dimension (d = 1), we test the numerical accuracy with same setting as
examples above for mild values ε = 0.1, 0.01 and vanishing values ε = 10−4, 10−6.
The convergence results are shown in Tables 6.24 and 6.25. For two-dimension
(d = 2), we only present vanishing values cases ε = 10−5, 10−6 in Tables 6.26 and
6.27. Similar optimal results are observed for other ε values. All of these numerical
examples validate our theoretical results.

Table 6.24. Numerical error and convergence rate for the 1D lin-
ear convection-diffusion equation, with ε = 0.1 (Left) and ε = 0.01
(Right)

Parameters ε = 0.1 ε = 0.01
k N L2 error order H1 error order L2 error order H1 error order

1

320 8.4921× 10−5 - 6.4187× 10−3 - 4.8458× 10−5 - 7.0556× 10−3 -
640 2.1234× 10−5 2.00 3.2085× 10−3 1.00 1.2130× 10−5 2.00 3.5184× 10−3 1.00
1280 5.3088× 10−6 2.00 1.6040× 10−3 1.00 3.0350× 10−6 2.00 1.7570× 10−3 1.00
2560 1.3271× 10−6 2.00 8.0196× 10−4 1.00 7.5907× 10−7 2.00 8.7796× 10−4 1.00

2

20 1.7356× 10−4 - 4.5901× 10−3 - 2.0062× 10−4 5.5358× 10−3

40 2.0915× 10−5 3.05 1.1333× 10−3 2.02 2.4305× 10−5 3.05 1.3004× 10−3 2.09
80 2.5808× 10−6 3.02 2.8218× 10−4 2.01 2.9537× 10−6 3.04 3.1547× 10−4 2.04
160 3.2097× 10−7 3.01 7.0443× 10−5 2.00 3.6100× 10−7 3.03 7.7833× 10−5 2.02

3

10 1.5686× 10−4 1.9252× 10−3 1.7818× 10−4 - 2.6674× 10−3 -
20 1.0074× 10−5 3.96 2.1788× 10−4 3.14 1.7543× 10−5 3.34 4.6635× 10−4 2.52
40 6.1312× 10−7 4.04 2.4945× 10−5 3.13 1.2166× 10−6 3.85 5.9734× 10−5 2.96
80 3.8335× 10−8 4.00 3.0272× 10−6 3.04 5.8908× 10−8 4.37 5.4124× 10−6 3.46
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Table 6.25. Numerical error and convergence rate for the 1D
linear convection-diffusion equation, with ε = 10−4 (Left) and
ε = 10−6 (Right)

Parameters ε = 10−4 ε = 10−6

k N L2 error order H1 error order L2 error order H1 error order

1

320 4.7792× 10−5 - 8.4630× 10−3 - 4.9115× 10−5 - 8.7944× 10−3 -
640 1.1709× 10−5 2.03 4.1118× 10−3 1.04 1.2264× 10−5 2.00 4.3953× 10−3 1.00
1280 2.8572× 10−6 2.03 1.9776× 10−3 1.06 3.0627× 10−6 2.00 2.1957× 10−3 1.00
2560 6.9952× 10−7 2.03 9.4917× 10−4 1.06 7.6449× 10−7 2.00 1.0959× 10−3 1.00

2

20 2.7554× 10−4 - 8.0228× 10−3 - 2.8046× 10−4 - 8.1095× 10−3 -
40 3.3964× 10−5 3.02 1.9914× 10−3 2.01 3.5160× 10−5 3.00 2.0343× 10−3 2.00
80 4.1148× 10−6 3.05 4.8819× 10−4 2.03 4.3974× 10−6 3.00 5.0894× 10−4 2.00
160 4.8643× 10−7 3.08 1.1758× 10−4 2.05 5.4941× 10−7 3.00 1.2721× 10−4 2.00

3

10 9.9388× 10−5 - 2.2827× 10−3 - 9.9319× 10−5 - 2.2567× 10−3 -
20 5.7282× 10−6 4.12 2.8076× 10−4 3.02 5.7324× 10−6 4.11 2.8011× 10−4 3.01
40 3.6199× 10−7 3.98 3.5309× 10−5 2.99 3.5332× 10−7 4.02 3.3983× 10−5 3.04
80 2.3962× 10−8 3.92 4.5753× 10−6 2.95 2.2056× 10−8 4.00 4.2007× 10−6 3.02

Table 6.26. Numerical error and convergence rate for the 2D lin-
ear convection-diffusion equation, with ε = 10−5

Parameters Pk Spaces Qk Spaces

k N L2 error order H1 error order L2 error order H1 error order

1

20 3.9743× 10−2 - 5.4830× 10−1 - 7.6490× 10−2 - 6.3544× 10−1 -
40 9.7720× 10−3 2.02 2.6949× 10−1 1.02 1.8988× 10−2 2.01 3.0855× 10−1 1.04
80 2.4195× 10−3 2.01 1.3356× 10−1 1.01 4.7233× 10−3 2.01 1.5220× 10−1 1.02
160 6.0156× 10−4 2.01 6.6432× 10−2 1.01 1.1772× 10−3 2.00 7.5576× 10−2 1.01

2

10 3.2490× 10−3 - 9.3911× 10−2 - 9.1038× 10−3 - 1.4855× 10−1 -
20 3.9410× 10−4 3.04 2.3403× 10−2 2.00 1.1990× 10−3 2.92 3.8735× 10−2 1.94
40 4.8898× 10−5 3.01 5.8518× 10−3 2.00 1.5218× 10−4 2.98 9.8000× 10−3 1.98
80 6.0566× 10−6 3.01 1.4594× 10−3 2.00 1.9002× 10−5 3.00 2.4490× 10−3 2.00

3

10 1.6417× 10−4 - 5.2240× 10−3 - 2.6459× 10−4 - 6.8108× 10−3 -
20 9.7445× 10−6 4.07 6.5899× 10−4 2.99 1.7136× 10−5 3.95 8.3040× 10−4 3.04
40 5.8612× 10−7 4.06 7.9534× 10−5 3.05 9.9821× 10−7 4.10 1.0326× 10−4 3.01
50 2.4256× 10−7 3.95 4.0865× 10−5 2.98 4.0474× 10−7 4.05 5.1776× 10−5 3.09

Table 6.27. Numerical error and convergence rate for the 2D lin-
ear convection-diffusion equation, with ε = 10−6

Parameters Pk Spaces Qk Spaces

k N L2 error order H1 error order L2 error order H1 error order

1

20 3.9740× 10−2 - 5.4845× 10−1 - 7.6493× 10−2 - 6.3557× 10−1 -
40 9.7723× 10−3 2.02 2.6963× 10−1 1.02 1.8990× 10−2 2.01 3.0866× 10−1 1.04
80 2.4202× 10−3 2.01 1.3370× 10−1 1.01 4.7246× 10−3 2.01 1.5230× 10−1 1.02
160 6.0201× 10−4 2.01 6.6568× 10−2 1.01 1.1779× 10−3 2.00 7.5675× 10−2 1.01

2

10 3.2554× 10−3 - 9.3990× 10−2 - 9.1137× 10−3 - 1.4866× 10−1 -
20 3.9565× 10−4 3.04 2.3435× 10−2 2.00 1.2019× 10−3 2.92 3.8800× 10−2 1.94
40 4.9283× 10−5 3.01 5.8672× 10−3 2.00 1.5295× 10−4 2.97 9.8348× 10−3 1.98
80 6.1509× 10−6 3.00 1.4670× 10−3 2.00 1.9199× 10−5 2.99 2.4666× 10−3 2.00

3

10 1.6421× 10−4 - 5.2417× 10−3 - 2.6438× 10−4 - 6.8032× 10−3 -
20 9.7091× 10−6 4.08 6.6144× 10−4 2.99 1.7153× 10−5 3.95 8.3137× 10−4 3.03
40 5.8036× 10−7 4.06 7.9948× 10−5 3.05 9.9388× 10−7 4.11 1.0316× 10−4 3.01
50 2.3955× 10−7 3.97 4.1186× 10−5 2.97 4.0319× 10−7 4.04 5.1637× 10−5 3.10
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Example 6.6. In the last example, we demonstrate the usability of the ultra-
weak DG method on a contaminant transport problem. Consider the following
convection-diffusion equation on a two-dimensional domain Ω=[0, 10]×[−1.25, 1.25]
inspired by [40]: For j = 1, . . . , 5,

ut +∇ · (c(x, y)u)− ε∆u = 0, on Ω× ((j − 1)T, jT ],

u(X, (j − 1)T ) = u0, on Ω,
(6.13)

where c(x, y) is a velocity field taken as c(x, y) =
(
1− eγx cos(2πy), γ

2π e
γx sin(2πy)

)

with γ = Re/2−
√
Re2/4 + 4π2 and Reynolds number taken to be Re = 100. The

above system satisfies the following homogenous boundary condition:

(6.14) u = 0, on ΓD, ∂nu = 0, on ΓN ,

where the inflow boundary is specified as ΓD = {x = 0} × [−1.25, 1.25], and the
outflow boundary is ΓN = ∂Ω\ΓD. This system models transport of the contam-
inant under velocity field c(x, y). Moreover, the same amount of contaminant is
injected every T seconds, while the contaminant is transported to the downstream.
So the initial condition can be modeled by the following:

(6.15) u0 =

{
w0, if j = 1,

w0 + u((j − 1)T ), if j > 1,

with the initial concentration w0 = e−
(x−1)2+y2

0.52 +e−
(x−1)2+(y−0.5)2

0.52 +e−
(x−1)2+(y+0.5)2

0.52 .
We use the proposed ultra-weak DG method to solve this problem with the

diffusive coefficient ε = 0.01. We take the unstructured triangular mesh as in
Example 6.2 and P2 space for space discretization. The IMEX RK (3,4,3) method
as time discretization. In our test, we take N = 40, τ = 0.0025, the time period is
taken as T = 2. The flux parameters are taken as (α, c1, c2) = (0.5,−80, 1.0). The
heatplot of u at time points 0, T , 2T , 3T , 4T , 5T is shown in Figure 6.1. It agrees
with the results of an implicit Hybrid DG method studied in [40] very well.

Figure 6.1. The Heatplot (from left to right, from upper to lower)
of T = 0, T, 2T, 3T, 4T, 5T of contaminant concentration for Exam-
ple 6.6

7. Conclusions

In this paper, we studied multi-dimensional ultra-weak discontinuous Galerkin
methods on unstructured and rectangular meshes with generalized numerical fluxes.
The key contribution of our work is on the study of the global projections designed
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and analyzed for ultra-weak schemes. For simplex meshes, global projections are
defined directly from the ultra-weak schemes. For Cartesian meshes, we have taken
advantage of the tensor product structure of meshes and spaces to define tensor
product projections from one-dimensional Gauss-Radau type projections. These
tensor product projections could extend the range of parameters. These projections
are applied to derive the stability analysis and provide optimal error estimates for
convection-diffusion and biharmonic equations. Extensive numerical examples are
provided to validate our theoretic results in both one and two dimensions.

Appendix A. Proofs

A.1. Proof of Lemma 2.1.

Proof. The case of d = 1 coincides with trace inequality for Pk, so we only consider
the case of d > 1. Without loss of generality, e can be written as I1α1

× I2α2
× · · ·×

{xd
αd−1/2}. We can apply the one-dimensional case of (2.10) (with σ = 1) to have:

(A.1)

‖v‖2L2(e) =

∫

e
v2(x1, x2, . . . , xd−1, xd

αd−1/2)ds

≤ (k + 1)2
∣∣∣xd

αd−1/2 − xd
αd+1/2

∣∣∣
−1

∫

e

∫ xd
αd+1/2

xd
αd−1/2

v2dxddx̂d,

where dx̂i =
∏d

j=1,j '=i dx
j . Here we applied trace inequality on interval x̂d

e ×
[xd

αd−1/2, x
d
αd+1/2] for every x̂d

e ∈ I1α1
× I2α2

× · · · × Id−1
αd−1

, and use the fact that

v(x̂d
e , ·) ∈ Pk([xd

αd−1/2, x
d
αd+1/2]) since v ∈ Qk(T ). Then we can use the assumption

(2.2) of mesh Kh to obtain:

(A.2) ‖v‖2L2(e) ≤ (k + 1)2
|e|
|T |‖v‖

2
L2(T ) ≤

σ(k + 1)2

he
‖v‖2L2(T ),

which finishes the proof. !
A.2. Proof of Lemma 3.3.

Proof. This proof is based on the analysis of [15, Lemmas 3.2, 3.4], and readers
could refer to two lemmas therein for more details. The well-posedness follows
from Lemma 3.2 and 3.3 there. We only prove the approximation capability in this
proof.

Case 1. α2 + c1c2 = 1
4 , Γ̃ 3= 0.

By Lemma 3.1 of [15], this projection is locally defined. Then we can apply
Bramble-Hilbert Lemma on each interval Ij and use a standard scaling argument
to obtain the L2 estimate. The estimate on Eh is obtained using trace inequality
(2.7).

Case 2. α2 + c1c2 3= 1
4 , |Γ̃| > |Λ̃|.

In this case, we note that ΠGR
h is a global projection. Let Π1

hu to be the projection
ΠGR

h with (α, c1, c2) = (1/2, 0, 0), also known as the alternating flux. By Case 1, the
optimal approximation capability holds for this projection. We will use this optimal
projection as a reference. In this proof, we inherit the computations and notations
of [15], and the corresponding equation number of the original definitions therein
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will be commented. We denote Pl(ξ) to be the lth Legendre polynomial on [−1, 1],
with ξ = 2(x − xj)/h on Ij . For any ΠGR

h , using the first condition of (3.31),

we could decompose (ΠGR
h u − Π1

hu)|Ij (x) =
∑k

l=0 αj,lPl(ξ) =
∑k

l=k−1 αj,lPl(ξ),
l = 0, 1, . . . , k − 2, j = 1, . . . , N . Using the other two conditions of (3.31), these
coefficients can thus be written as the solution of a linear system Mα̃ = b, where
α̃ = [α1,k−1,α1,k, . . . ,αN,k−1,αN,k], b = [τ1, ι1, . . . , τN , ιN ] with τj , ιj defined as:

(A.3)

[
τj
ιj

]
=

[
1
2 + α c2h
−c1/h

1
2 + α

] [
ηj
θj

]
,

[
ηj
θj

]
=

[
u−

(
Π1

hu
)+

ux −
(
Π1

hu
)−
x

]

j+ 1
2

.

M is a block circulant matrix, and the inverse of M can be computed explicitly,
which reads (we refer to [15] for details):

(A.4) M−1 = M̃⊗A−1,

where ⊗ denotes Kronecker product for block matrices, M̃ = circ(r0, r1, . . . , rN−1)
with circ denoting the circulant matrix, and

(A.5) A =

[
1
2 − α c2h

c1
h

1
2 + α

] [
Pk−1(1) Pk(1)
2
hP

′
k−1(1)

2
hP

′
k(1)

]
, rj = dj1Q1 + dj2(I2 −Q1),

with dj1 = λj
1/(1− λN

1 ) and dj2 = λj
2/(1− λN

2 ). Here λ1, λ2 ∈ R are two eigenvalues
of a parameter matrix satisfying λ1,λ2 3= 1. Under our scale invariant numerical
fluxes setting, we have λ1, λ2 and Q1 [15, in Eq. (60)] independent of h. We
therefore have:

(A.6) α̃ = M−1b = M̃b̃,

where b̃ = [A−1[τj , ιj ]]Nj=1 = [ηjV1 + θjV2]Nj=1. Note that V1, V2 ∈ R2 [15, in Eq.

(65)], and V1 ∼ O(1), V2 ∼ O(h) in our context. We can analyze M̃ as the following:

(A.7)

‖M̃‖1 = ‖M̃‖∞ ≤ C
N∑

j=1

(|dj1|+ |dj2|)

≤ C

(
1

1− |λ1|
1− |λ1|N∣∣1− λN

1

∣∣ +
1

1− |λ2|
1− |λ2|N∣∣1− λN

2

∣∣

)
≤ C,

where the last inequality results from the independence of λ1, λ2 and h. Therefore
we have:

(A.8)
‖α̃‖22 ≤ ‖M̃‖22‖b̃‖22 ≤ ‖M̃‖1‖M̃‖∞




N∑

j=1

|ηj |2 + h2|θj |2




≤ C
(∥∥u−Π1

hu
∥∥2
L2(Eh)

+ h2|u−Π1
hu|2H1(Eh)

)
.

Note that:
∥∥u−ΠGR

h u
∥∥2
L2(Th)

≤
∥∥u−Π1

hu
∥∥2
L2(Th)

+
∥∥ΠGR

h u−Π1
hu

∥∥2
L2(Th)

≤
∥∥u−Π1

hu
∥∥2
L2(Th)

+
N∑

j=1

k∑

l=k−1

α2
j,l ‖Pl(ξ)‖2L2(Th)

≤
∥∥u−Π1

hu
∥∥2
L2(Th)

+ h ‖α̃‖22 .

(A.9)
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The estimate in L2 norm follows the approximation capability in Case 1, and the
estimate on Eh follows directly from ‖α̃‖2. This completes the proof. !
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