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 Abstract: Antibodies are proteins that can protect against disease using a variety of mechanisms, 
including binding to pathogens and targeting them for destruction. Structural modeling of antibody 
binding to the SARS-Cov-2 spike protein and how mutations might allow viruses to escape antibody 
neutralization has been previously investigated in Antibody Engineering Hackathons. The procedure for 
investigating immune escape can be used for students in affordable and accessible Course-Based 
Undergraduate Research Experiences (CUREs). In this work, we adapted and expanded the SARS-Cov-2 
protocol to address new pathogens, including hookworms, Respiratory Syncytial Virus (RSV), Influenza, 
and Enterovirus D68. We found each presented unique challenges; however, these challenges present 
opportunities for student research. We describe how modifications to the SARS-Cov-2 protocol designed 
for SARS-CoV-2 could allow students to investigate the impact of mutations in each of these pathogens 
when binding to antibodies. 
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Introduction 
Antibodies are important components of the immune system that help protect against disease. One of the 
functions of the antibody is neutralization, where the antibody blocks the pathogen's ability to target 
cellular structures. The strength of antibody binding to a particular pathogen is determined through 
chemical bonds and interactions that together influence the specificity of the interaction. Monoclonal 
antibodies are a pure collection of antibodies with identical amino acid sequences [1]. Previous hackathon 
teams worked to create bioinformatics activities for students involving SARS-CoV-2 and monoclonal 
antibodies [2–4]. In these activities, students can identify locations where antibodies bind and neutralize 
the SARS-CoV-2 Spike protein using 3D modeling tools (iCn3D) [2,3,5]. Furthermore, students can find 
and input new variant sequence information [6], align these variant sequences to sequences from known 
3D structures, and identify mutations within the antibody binding site of the Spike protein [2,5]. Finally, 
using the mutations and interactions tools within iCn3D, students can make predictions regarding the 
strength of antibody binding to new variants through the gain or loss of various bonds [2,5].   
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The instructions and instructor guides developed through earlier hackathons [2-4] for SARS-CoV-2 were 
used in Bioinformatics courses at Shoreline Community College (Fall 2022), a Cellular and Molecular 
Biology course at Prairie State College (Spring 2023 and Fall 2023), and a Microbiology and 
Immunology course at Regis University (Spring 2024). The freely available databases and software 
employed in this project make modern research techniques available to a greater number of students and 
allow students to perform state-of-the-art analyses from their home or classroom computers. iCn3D [5] is 
used in this project because it is a free, open-source, web-based application that does not require students 
to download any files. It is also the only application allowing users to share links to the annotated 
structure models, an important feature for evaluating student work. 
 
Feedback from students and faculty indicated that they wanted to explore different antibody-pathogen 
interactions rather than continue indefinitely with SARS-Cov-2, allowing students to take ownership of 
the project and follow their specific interests. In this study, we broadened the approach and expanded this 
procedure to other pathogens and their neutralizing antibodies. To achieve this goal, we needed two 
important pieces of information: 1) the presence of a particular pathogen and mutation data in the 
Nextstrain database [6] and 2) 3D structural information for an antigenic protein in a complex with an 
antibody. Structures of antibody-protein complexes are deposited by researchers in the Protein Data Bank 
(PDB) (rcsb.org) [7] and compiled in the Structural Antibody Database (SAbDab) [8]. We describe the 
resources we found for four new pathogens (hookworms, Respiratory Syncytial Virus (RSV), Influenza, 
and Enterovirus D68), our initial results, and the challenges posed by each as they can be applied for use 
in student research projects. 
 
Methods 
Antibody Engineers Hackathon 
The 3rd Annual Antibody Engineering Hackathon took place August 7-10th, 2023. During this event, 
small groups of individuals worked collaboratively and virtually to solve problems related to antibodies 
that could then be utilized in undergraduate classroom settings and share their results with the larger 
group [4]. Our group focused on exploring how we could adapt the bioinformatics approach, described 
previously for SARS-CoV-2 [2-4], to determine how the SARS-CoV-2 protocol may need to be adjusted 
to examine the impact of mutations on neutralizing antibodies, potentially resulting in escape from 
neutralization by antibodies. Our goal was to assist faculty who might be developing student projects or 
CUREs based on this procedure and their own interests.  
 
Using SAbDab to find PDB antibody-pathogen structures 
The first step of the SARS-CoV-2 protocol [2] involves locating structure files that contain antibodies that 
are bound to proteins from specific pathogens. SAbDab contains antibody structural data available as 
PDB files and is a useful source for antibody structures because the structures are standardized and 
annotated [8]. To adapt the SARS-CoV-2 protocol to different pathogens, we searched SAbDab for the 
following pathogens: influenza, hookworms (Necator americanus, Ancylostoma ceylanicum, and 
Ancylostoma duodenale), RSV, and Enterovirus D68. Then, we downloaded all available SAbDab data to 
a Microsoft Excel file. Available data includes the PDB file name, antibody heavy and light chain names 
associated with the NCBI Molecular Modeling Database (MMDB) [9], antigen names associated with the 
MMDB [9], organism, species where the antibody heavy and light chain was made, antigen species, 
references to publication(s), notes about the structure, and more [8]. 
 
Alignment of sequence data to structure data 
The next step from the SARS-CoV-2 protocol [2] was to align protein sequence data from antigenic 
variants to the pathogen protein sequence in the structure. Using sequence data available in the Nextstrain 
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database [6] for each of the new pathogens we analyzed, we aligned the mutation data to the structure 
using tools in iCn3D [5]. For influenza, sequence data was also obtained from the Influenza Virus 
Database. The Influenza Virus Database will be redirected to the NCBI Virus site in Fall 2024 [10]. Viral 
sequences can also be found through the Influenza Virus Database with a variety of filters such as 
nucleotide or amino acid sequence, filter for a keyword or strain name, the influenza subtype (A, B, or C), 
the host, the country, protein, H and N subtypes, sequence length, collection date, and release date [10].  
 
Results and Discussion  
We narrowed down a list of potential new organisms based on the availability of data and the interests of 
the group members. SAbDab was used in conjunction with information found in Pubmed to identify 
known structures for the three pathogens (RSV, Enterovirus D68, and Influenza virus) [8]. 
 
Hookworm 
Parasitic hookworms may be found in contaminated soil and infect the intestines of over 400 million 
people globally [11]. These parasites are responsible for the loss of over 4 million disability-adjusted life 
years (DALY) and cause economic losses exceeding $100 billion annually [12,13]. None of the 
hookworms of interest (Necator americanus, Ancylostoma ceylanicum, and Ancylostoma duodenale) were 
found in the Nextstrain database [6]. Furthermore, no structures containing hookworm proteins associated 
with any monoclonal antibody were detected in the SAbDab database [8]. Using the PDB database 
(rscb.org) [7], we identified two structures related to immune responses, Stichodactyla helianthus toxin 
(ShK)-like immunomodulatory peptide from hookworm Ancylostoma caninum (main host is Canids) 
(PDB: 2MD0) and the filarial worm Brugia malayi (PDB: 2MCR) [14]. Structure alignments were 
completed with those two peptides in iCn3D using VAST+ based on TM-align (Figure 1) [5]. Areas 
where the aligned sequences are highly similar (red) (Figure 1) may be good targets for antibodies in the 
future, as they are highly conserved regions among different hookworm species.  
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Figure 1. ShK-like immunomodulatory peptide alignment of PDB files 2MD0 (Ancylostoma 
caninum) and 2MCR (Brugia malayi (filarial worm)). Red = identical amino acids, blue = different 
amino acids, gray = amino acids that are only found in one of the structures. Yellow = disulfide 

bonds https://structure.ncbi.nlm.nih.gov/icn3d/share.html?M4tnYB3gCYjoTsJa7 
 
RSV 
RSV is a non-segmented, enveloped, negative-sense RNA virus that causes cold-like symptoms that are 
typically mild but can be severe, particularly in the very young or immunocompromised [15]. Healthy 
infants under eight months of age can be given monoclonal antibodies (mAb) to prevent severe RSV 
symptoms [16]. Three monoclonal antibodies appear in the literature for this purpose: palivizumab, the 
original mAb studied for use in infants [17–19]; motavizumab, a 2nd generation derivative of 
palivizumab [20,21]; and nirsevimab, a recently approved mAb, commercially known as Beyfortus 
[20,22–25]. Motavizumab is not currently licensed for use due to adverse skin reactions [26,27]. All of 
these antibodies bind to the Fusion Glycoprotein (F) of RSV [28,29], which is highly conserved in RSV 
[30]. 
 
Using the SAbDab database [8], nine PDB structures were identified in August 2023. As of May 2024, 
forty-eight structures were available (Table 1). Of these structures, 64.5% contained an antibody bound to 
the RSV F protein F, and 14.5% contained an antibody bound to the RSV Glycoprotein (G). The 
remaining PDB structures included either only antibody structures or only F protein structures (Table 1). 
Using the Nextstrain database [6], we saw little variability in the F protein [31], so we predict that the 
binding region(s) will not change greatly. The G protein of RSV does mutate frequently [31], but 
structures of G protein-antibody complexes were not available in the SAbDab database at the time of this 
study (August 2023) [8].  
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Table 1. RSV structures available in SAbDab May 2024 

# PDB IDs Antigen protein Antibody species 

23 F Human 

5 F Mouse 

3 F Llama 

7 G Human 

2 F only, no antibody Mouse 

2 N/A Antibody only Llama 

2 N/A Antibody only Cow 

1 N/A Antibody only Human 

1 preF Human 

2 Other  

 
 
Structures of the RSV G protein complexed with antibodies are now available in the SAbDab database [8] 
and could be used for future student projects. The seven unique PDB structures in the SAbDab database 
[8] contain five unique neutralizing antibodies [32–34] (Table 2). Two of the structures (PDB: 5WNA 
(Fig. 2a) and 6BLI) include multiple copies of antibodies (3D3 and CB002.5, respectively) binding to 
multiple G proteins [32,34]. One structure (PDB: 5WN9) includes the heavy chain only (antibody 2D10) 
bound to the G protein [32]. The other structures (PDB: 5WNB, 6UVO, 7T8W, and 6BLH (Fig. 2b)) 
include three different antibodies (3D3, 3G12, 3G12, and CB017.5, respectively), with each heavy and 
light chain in combination with a single, unique conformational state of the G protein [32–34]. The 7T8W 
PDB structure shows a mutated G protein bound to the 3G12 antibody [33]. To simplify the evaluation of 
real-time mutations for student projects, the single antibody-antigen complexes will allow students to 
most easily assess whether a mutation found in the Nextstrain database [6] is likely to result in loss of 
neutralizing activity for any of the known structures following previous protocols [35]. 
 

Table 2. RSV G protein containing structures available in SAbDab May 2024 
PDB ID Antibody name # Antibodies # G proteins Reference 

5WN9 2D10 H chain only 1 [32] 

5WNA 3D3 2 2 [32] 

5WNB 3D3 1 1 [32] 

6BLH CB017.5 1 1 [34] 

6BLI CB002.5 4 4 [34] 

6UVO 3G12 1 1 [32] 

7T8W 3G12 1 1, mutated [32] 
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Figure 2:  Representative PDB structures showing RSV G protein and antibody complexes 
binding to specific portions of the G protein. (a) 5WNA: Structure of antibody 3D3 bound to the 

central conserved region of RSV G protein. 
https://structure.ncbi.nlm.nih.gov/icn3d/share.html?NDTWQ34p1pbgHPCh7 Pink = heavy chain 
of the antibody, Blue = light chain of the antibody, Brown = RSV G protein. (b) 6BLH: Structure 

of RSV G central conserved region bound to antibody Fab CB017.5 
https://structure.ncbi.nlm.nih.gov/icn3d/share.html?xsQadbUuKn6CJRuz9 Pink = heavy chain of 

the antibody, Blue = light chain of the antibody, Brown = RSV G protein. 
 
Influenza 
Influenza A is a segmented, enveloped, negative-sense RNA virus that causes influenza. This highly 
contagious virus is categorized into subtypes by the Hemagglutinin (HA) and Neuraminidase (NA) 
glycoproteins present on the surface of the virus [36]. The mutations associated with this virus lead to 
frequent changes in HA/NA sequences [37] and loss of protection from previous antibodies. Thus, finding 
vaccines effective against the differing strains of the virus is critical due to the economic and health 
impacts of influenza infections [38–41].  
 
Using the SAbDab database [8], we found many structures of antibodies associated with influenza (268 
unique identifiers). We selected one PDB structure for further study, a "Broadly reactive antibody" that 
binds with the hemagglutinin protein (HA1) from the 2009 Pandemic strain (PDB: 4M5Z) (Fig. 3a) [42].  
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To see if the term “Broadly reactive antibody” was still accurate for current strains of influenza, we first 
looked for sequence information in the Nextstrain database [6]. Unfortunately, direct links to Genbank 
accession numbers were unavailable at the time of this study. To avoid manually entering all of the 
mutations, we searched elsewhere for sequence information on isolates. The NCBI's Influenza Virus 
Database provides sequence information on influenza that is linked directly to accession numbers for the 
gene(s) of interest [10]. As a proof of concept, we searched for sequences isolated from 2023 using the 
parameters of influenza type A, human host, any country, H1, N1, full length only, and collapsed identical 
sequences. The first sample that contained a full genome sequence and accession number in the list was 
from an H1N1 influenza strain (OQ615380) [43]. We aligned the HA protein sequence (WEI46805.1) 
from this strain to the hemagglutinin protein from the 2009 Pandemic strain (PDB: 4M5Z) in iCn3D 
using BLAST (Fig. 3b/c) [5].  
 

 
Figure 3: Representative PDB structures showing Influenza HA1 protein and antibody 

complexes. (a) 4M5Z: Crystal structure of the broadly neutralizing antibody 5J8 bound to 2009 
pandemic influenza hemagglutinin, HA1 subunit [5]. Pink = HA1 subunit, Blue = heavy chain of 

the antibody, Brown = light chain of the antibody. (b) HA protein sequence from variant 
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(WEI46805.1) aligned to the HA structure in 4M5Z, with antibody binding domain amino acids 
highlighted in yellow [5]. On HA (bottom): the intensity of red represents the similarity and 

importance of the aligned amino acids, and Blue = different amino acids. 
https://structure.ncbi.nlm.nih.gov/icn3d/share.html?Ej7qWpxs48aQPGpd6 (c) Amino acid 

sequence alignment with amino acids in the antibody-binding domain highlighted yellow. The 
amino acid numbers are indicated along the top, and the green arrows indicate elements of 
secondary structure (S6 = sheet 6 and S7 = sheet 7). The top pink sequence is from the HA 

protein of 4M5Z. A blue color is used to indicate amino acids that differ (mutations) between the 
HA protein in 4M5Z and the amino acids in the third sequence, from the variant (WEI46805.1) 

(shown in black). The sequence between the 4M5Z hemagglutinin and the variant shows amino 
acids that are found in the same position in both HA proteins. An empty space is used when the 

amino acids differ and are not chemically similar. A "+" indicates that the two amino acids are 
different but chemically similar. The bottom sequence (black) is the consensus sequence of the 

hemagglutinin domain.   
 
The HA1 sequences were very similar, as indicated by the red/pink coloration of the aligned amino acids 
(Fig. 3b). After verifying that both sequences came from the H1 version of hemagglutinin, we used the 
Select by Distance function in iCn3D [5] to identify the antibody binding region on the HA protein [2,35]. 
Within this binding region, most of the amino acids remained the same (Fig. 3c). We chose instances 
where a lysine (K) was replaced by an arginine (R) and a glutamine (Q) by a glutamic acid (E) for further 
investigation. The lysine (K) to arginine (R) mutation at position 145 appears to change interactions 
significantly (Fig. 4a). A pi-cation interaction between HA1 K145 and Y100 on the antibody heavy chain 
is lost, along with the following bonds from K145 to the light chain: hydrogen bonds to G29 and K31; 
hydrophobic interactions with T30, K31, V32, and N66; and a salt bridge ionic interaction with K51 (Fig. 
4a). The glutamine (Q) to glutamic acid (E) mutation at 192 does not change interactions with the amino 
acids in the antibody, as indicated by the lack of different interaction lines (Fig. 4b) and only one 
hydrophobic interaction occurs at N32 of the heavy chain. As a consequence, this individual change is 
unlikely to have an effect on HA-antibody interactions. Although many amino acid interactions appear to 
be maintained within the predicted binding domain, and the change at 192 did not have any effect, 
significant changes did occur when amino acid 145 was mutated. Thus, we predict that the antibody 
would not be able to neutralize this variant of the virus. However, the loss of this interaction would need 
to be experimentally confirmed in a wet lab setting.  
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Figure 4: Impact of mutations on predicted binding between antibody 5J8 and Influenza HA1 
PDB structure 4M5Z. (a) HA1 amino acid K145 interactions with antibody 5J8. Top original 

K145. Bottom variant R145. Right: The color of the lines indicates the type of bond or chemical 
interaction. Green: H-bonds, Cyan: Salt Bridge/Ionic, Grey: Contacts, Red: 𝜋-Cation. Pink amino 

acids: HA1 Blue: heavy chain of the antibody. Brown: light chain of the antibody. 
https://structure.ncbi.nlm.nih.gov/icn3d/share.html?4RN9GsSVFZjdFZP96 (b) Neither Q192 
(original) nor E192 (the variant) show different interactions with amino acids in the antibody, 
indicating that the binding is the same in both structures. Top original Q192. Bottom variant 

E192. https://structure.ncbi.nlm.nih.gov/icn3d/share.html?qFKdLueWN8ukBfD57 
 
Enterovirus D68 
Enterovirus D68 is a single, positive-stranded RNA picornavirus that typically causes cold-like 
symptoms, including runny nose, sneezing, coughs, and body aches [44]. Severe symptoms such as 
difficulty breathing or even a polio-like illness with extremity weakness, difficulty swallowing, or facial 
weakness can occur [44]. Children and infants are particularly at risk for disease, which can be spread by 
coughs, sneezes, or touching a contaminated surface [44]. Currently, no specialized treatments for this 
infection exist [44], so understanding the binding between potential monoclonal antibody therapeutics and 
Enterovirus proteins would benefit both basic research endeavors and have potential clinical implications. 
 
The capsid of Enterovirus D68 contains four proteins: Viral Protein (VP) 1, VP2, VP3, and VP4. VP1 is 
the most variable protein, followed by VP2, VP3, and then VP4 [6,45]. Eight PDB structures were 
identified through the SAbDab database [8] in August 2023. The same eight structures remained the only 
available structures in May 2024 in the SAbDab database [8]. Three of the eight structures included 
different conformational states of the complex when the pathogen was bound with the 2H12 antibody. 
These three structures included all four of the viral capsid proteins (PDB: 7EBZ (Fig. 5a), 7ECY, and 
7EBR) [46]. Three of the eight structures contained both antibodies and multiple capsid proteins (PDB: 
6WDS, 6WDT [47], and 7EC5 [46]). The two structures where the antibody contacts only one of the 
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capsid proteins (PDB: 6AJ9 and 6AJ7 (Fig. 5b) [48]) were the easiest to assess whether a mutation found 
in the Nextstrain data would be likely to result in loss of binding [35].  
 

Table 3. Enterovirus D68 capsid protein containing structures available in SAbDab May 2024 
PDB ID Antibody name Capsid proteins Reference 

6WDT EV68-228 VP1, 3 [47] 

6WDS EV68-159 VP1-3 [47] 

7EBZ 2H12 VP1-4 [46] 

7ECY 2H12 VP1-4 [46] 

7EBR 2H12 VP1-4 [46] 

7EC5 8F12 VP1, 3 genome polyprotein [46] 

6AJ7 15C5 VP3 [48] 

6AJ9 11G1 VP1 [48] 

 

 
Figure 5: Representative PDB structures showing Enterovirus D68 capsid proteins and 

antibody complexes. (a) 7EBZ: EV-D68 complete capsid structure in complex with 2H12 Fab. 
Pink: Capsid protein VP1, Blue: VP3, Brown: VP2, Green: VP4, Grey: Antibody heavy chain, 

Gold: Antibody light chain. 
https://structure.ncbi.nlm.nih.gov/icn3d/share.html?EJ3g1tq5QNXEvTKN6 (b) 6AJ7: Three EV-

D68 capsid proteins in complex with antibody (Fab 15C5). Pink: Light chain of the antibody, 
Blue: Heavy chain of the antibody, Grey: VP3, Green: VP2, Brown: VP1. 
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Conclusion 
Detailed instructions and an instructor guide are available for the original and updated protocols for 
analyzing the effect of mutations on antibody binding with SARS-Cov-2 [2, 35]. In this work, we 
identified a number of specific modifications to that protocol that were needed in order to predict whether 
mutations in different pathogens beyond SARS-Cov-2 will be neutralized by an antibody. First, the 
sequence of the reference strain of the pathogen is needed. Furthermore, that pathogen should mutate 
rapidly and have a large number of variants within the proteins being studied, which are most likely to be 
antigens found on the surface of the pathogen that can interact with neutralizing antibodies. The variant 
protein sequence information is needed in NCBI accession number format, or a FASTA sequence, for 
alignment purposes. Some pathogen variant sequence information can be found on the website 
Nextstrain.org, but other pathogens may need to be found at the NCBI or other databases.  
 
Additionally, PDB files containing pathogen protein/antibody complexes are needed in order to analyze 
the structures using iCn3D [5]. PDB files for many pathogen proteins can be found using SAbDab [8] or 
other databases. These structures are needed in order to align variant sequences, identify if mutations are 
happening within the antibody binding region on the pathogen protein, and identify any disruptions to the 
antibody-antigen bonds and interactions. Furthermore, we found that it can be very difficult to analyze the 
antibody-antigen interactions if the structure is composed of a complex of proteins. Thus, single pathogen 
proteins/antibody structures are preferred whenever possible. Finally, we also saw that the way the 
structures may be annotated with colors and chain lettering in the NCBI Molecular Modeling Database 
(MMDB) [9] might result in confusion, as in Figure 5a versus 5b, that can be addressed by changing color 
annotations in iCn3D [5]. 
 
To use this project with students, we recommend that instructors advise students to focus on structures 
that contain a single antibody-antigen interaction. Additionally, students need to be able to correctly 
identify and distinguish between the heavy and light chains of the antibody and the pathogen target. 
Finally, we highly recommend that instructors require students to submit the url of the structure 
alignments. The ability to look at the same structure as the student greatly helps with troubleshooting and 
identifying the source of errors. Our results demonstrate that the SARS-CoV-2 protocols can be applied to 
other pathogens, provided that the following conditions are met: the sequence information for the 
pathogen is available, the pathogen proteins of interest have a high level of mutability, and neutralizing 
antibody structures (PDB files) are available. A “quick start” guide is located under supplemental 
materials to give instructors additional information on the websites and protocols used. 
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http://paperpile.com/b/ANlcZy/K9Nt
http://paperpile.com/b/ANlcZy/6gWr
http://paperpile.com/b/ANlcZy/6gWr
http://paperpile.com/b/ANlcZy/6gWr
http://paperpile.com/b/ANlcZy/17Fh
http://paperpile.com/b/ANlcZy/17Fh
http://paperpile.com/b/ANlcZy/17Fh
http://paperpile.com/b/ANlcZy/17Fh
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