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AbstractÐFPGAs often cannot implement machine learning
inference with high accuracy models due to significant storage
and computing requirements. The corresponding hardware ac-
celerators of such models are large designs which cannot be
deployed on a single platform. In this research, we implement
ResNet-50 with 4 bit precision for weights and 5 bit precision
for activations, which has a good trade-off between precision
and accuracy. We train ResNet-50 using the quantization-aware
training library Brevitas and build a hardware accelerator with
the FINN framework from AMD. We map the result to three
FPGAs that communicate directly with one another over the
network via the User Datagram Protocol (UDP). The multi-FPGA
implementation is compared to a single FPGA ResNet-50 design
with lower precision of 1 bit weights and 2 bit activations. While
the latter can fit on a single FPGA, the former pays for higher
accuracy with a three times increase in the required number
of BRAM tiles and can only be deployed on multiple FPGAs.
We show the difference in accuracy, resource utilization, and
throughput for the designs deployed on AMD/Xilinx Alveo U280
data center accelerator cards available in the Open Cloud Testbed
(OCT). The final multi-FPGA custom accelerator design for
ResNet-50 achieves a 5.3% increase in accuracy and a throughput
of 162.3 images/s at a frequency of 200 MHz, comparable to
the single FPGA lower precision implementation’s throughput of
176.1 images/s at 160 MHz. We further explore a more efficient
usage of the available memory on the target platform. By making
use of the available Ultra RAM, we are able to fit the accelerator
with higher precision on one U280 and achieve a throughput of
165 images/s.

Index TermsÐFPGA, Machine Learning, FINN, ResNet-50,
Quantization

I. INTRODUCTION

The architectures of Machine Learning (ML) models evolve

at a fast pace and their complexity grows significantly with

their increase in performance. ML is applied in numerous

applications but its deployment on edge devices and in data

centers is becoming gradually more difficult. Hardware accel-

erators need to be adapted frequently to changes in the models

and at the same time to be implementable on the available

hardware or cloud structure. For this reason, researchers try

to find the best balance between accuracy, throughput, power

consumption, and hardware footprint based on the application

requirements.

FPGAs represent a low power, flexible platform on which

low latency and high throughput accelerators can be imple-

mented [1], [2]. However, efficient hardware accelerators for

ML, and specifically Deep Neural Networks (DNN), are feasi-

ble only through software-hardware co-design. High accuracy

can be obtained in software using floating point precision,

however floating point precision requires a large amount of

hardware computational resources and is not usually employed

on FPGA platforms. The accelerator design is constrained by

the available resources on the target platform and the through-

put can only be increased by reducing the computational

complexity. Quantization is a popular technique [3], [4], [5]

for reducing the precision and the size of the neural network,

thus reducing the computational complexity and the number

of resources required.

In this research, we implement a quantized ResNet-50 [6]

on multiple network-connected FPGAs. This project builds on

top of existing open-source tools, namely FINN [7], Elastic-

DF [8] and the AMD/Xilinx VNx UDP/IP stack [9]. ResNet-

50 is one of the examples provided with FINN and is also used

by others including the Elastic-DF project to illustrate mapping

machine learning to multiple FPGAs. In the implementations

with FINN and Elastic-DF, ResNet-50 is quantized to 1 bit

weights and 2 bit activations. This results in a design size that

is small enough to fit on a single AMD/Xilinx Alveo U280,

our target accelerator card, and also has a relatively low top-

1 accuracy of 67.97%. In contrast, we implement ResNet-50

with 4 bit weights and 5 bit activations. This results in a larger

model that requires three Alveo U280s for implementation and

also delivers a higher top-1 accuracy of 73.26% which gets

closer to a realistic target for image classification.



Our implementation makes use of the Open Cloud

Testbed [10], which houses multiple AMD/Xilinx Alveo

U280s that are available for public use. Each Alveo U280

is connected directly to a computer host, as well as to a data

switch via two 100 Gbps connections per FPGA. The ResNet-

50 model is mapped to three Alveo U280s in the flow. The

FPGAs are connected using the network infrastructure of the

VNx UDP/IP stack provided by AMD/Xilinx which enables

direct communication between the FPGAs via the network

switch.

In our implementation, the images to be classified are

transferred to the first FPGA from its local host, the processing

is done on all three nodes and the result is returned to the host

from the first node. This is one of two possible configurations

and we refer to this as the loop configuration; the other allows

the result to be produced on a different FPGA from the first

one; we refer to this as the chain configuration.

Both loop and chain configurations illustrate processing in

the network. The amount of data to transmit across the network

using these approaches is less than if the input data was

transmitted to each FPGA separately for processing. This is a

consequence of implementing a dataflow architecture for the

accelerator.

We differentiate throughout the paper between DataFlow

Architectures (DFA) and Matrix of Processing Elements

(MPE) architectures. DFAs are fully customized for the ML

model, while MPEs implement a general parallel architecture

which can accommodate different models but with limited

flexibility in terms of, for example, number of processing

elements and interconnection patterns.

In the DFA model, as the data to be transmitted between

FPGAs is represented by intermediate values in the flow, the

result of the last layer computed on one FPGA serves as input

to the next layer in the network residing on the next FPGA.

Furthermore, the direct FPGA-to-FPGA communication elim-

inates any overhead that might be incurred when host-to-host

communication is involved as data transfer to/from the host

and then between hosts is much slower.

The contributions of this paper are:

• Comparison between quantized ResNet-50 with 1 bit

weights and 2 bit activations (ResNet-50 W1A2) and

ResNet-50 with 4 bit weights and 5 bit activations

(ResNet-50 W4A5) in terms of accuracy as well as

the resource utilization for their corresponding custom

FPGA-based accelerators.

• Multi-FPGA implementation of quantized ResNet-50

model with 4 bit weights and 5 bit activations (ResNet-

50 W4A5). The design is generated using the FINN

framework and the model is partitioned using the Elastic-

DF partitioner. The final custom accelerator is deployed

on three network-connected AMD/Xilinx Alveo U280

data center accelerator cards in the Open Cloud Testbed.

• Comparison between FPGA-based custom designs gener-

ated through the FINN framework for ResNet-50 W1A2

and ResNet-50 W4A5 in terms of throughput. ResNet-

50 W4A5 achieves a comparable throughput compared to

ResNet-50 W1A2 which fits on one single FPGA while

the former requires three FPGAs.

• Exploration of a more efficient usage of the available

memory on the target platform. By making use of the

available Ultra RAM blocks on Alveo U280, the resulting

ResNet-50 W4A5 accelerator is able to fit on a single

FPGA. The design is compared to the original ResNet-

50 W4A5 multi-FPGA accelerator with BRAM storage

of weights in terms of resource utilization and throughput.

The rest of this paper is organized as follows: Sec. II goes

over the main background specifics of the tools used and

related work. Sec. III focuses on the multi-FPGA ResNet-

50 accelerator implementation. Sec. IV describes experiments

and results, Sec. V presents lessons learned and Sec. VI draws

conclusions.

II. BACKGROUND

A. Open Cloud Testbed (OCT)

OCT [11], [12] is a research platform that offers FPGA-

enhanced nodes to users via the CloudLab framework. It

provides the ability to perform experiments on emerging

cloud services and develop cloud-based applications that can

leverage the programmable logic resources offered by FPGAs.

CloudLab nodes are bare metal, meaning they are provided

without an operating system or any pre-installed software or

tools [13]. This provides researchers with a blank slate to

configure the system as desired. The flexibility offered by OCT

enables us to establish repeatable experimental conditions, as

we can install all the required runtime tools, components, and

dependencies necessary for executing our machine learning

accelerators in hardware.

OCT has AMD/Xilinx Alveo U280 accelerator cards that

are directly connected to a 100 GbE network via a 100

GbE data center switch. These network ports are exposed

to FPGA users. This enables direct FPGA-to-FPGA commu-

nication by eliminating the need for processor involvement,

thus significantly reducing the latency associated with data

transfer and resulting in faster processing times. Additionally,

it allows distributing a complex machine learning acceler-

ator across multiple FPGAs allowing direct communication

between them. In addition to the network connectivity, the

U280s are also connected to a host processor via PCIe. This

connection is used to transfer images and weights from the

host to the FPGA and to retrieve inference results from the

FPGA back to the host by using input and output DMAs

(IDMA and ODMA) implemented on the FPGA.

B. FINN

Deep Neural Network inference on FPGAs can be explored

using FINN [7], an open-source end-to-end framework that

allows building custom accelerators based on a given network

topology. The FINN project focuses on Quantized Neural

Networks (QNN) and includes the PyTorch library Brevi-

tas [14] for quantization and quantization-aware training of

neural networks. The network is exported from Brevitas in the



Open Neural Network Exchange (ONNX) format, a standard

that enables interoperability between machine learning tools.

The end goal of FINN is to generate a streaming dataflow

hardware accelerator (DFA) for the input quantized ONNX

model; however, the framework is highly modular and consists

of multiple steps which produce intermediate results. Hence,

the flow can be stopped at different stages if intermediate

results are needed for a different flow or further analysis.

The Brevitas training and export of the model is followed by

network preparation which is in turn followed by the hardware

build.

The network preparation stage has multiple purposes and

sub-steps. One of them is the streamlining step which is in

charge of moving operations around and collapsing them into

the corresponding nodes and also absorbing floating point

scaling factors into integer thresholds [15]. During the same

preparation stage, the layers of the model are converted to

High Level Synthesis (HLS) layers based on the HLS code

library for FINN. One important concept of FINN is folding,

which allows changing the number of Processing Elements

(PEs) and their SIMD lanes to adjust the throughput and the

footprint size of the hardware accelerator. The hardware build

stage takes care of generating the bitfile and all the steps that

come before that, including IP generation and floorplanning.

This is a short overview of FINN; we refer the reader to [7],

[16] for more details.

C. Elastic-DF

Elastic-DF is a tool for automatic partitioning and resource

balancing for dataflow DNN inference accelerators [8]. The

partitioner is based on an Integer Linear Program (ILP) solver

and is integrated into FINN as an analysis pass. Based on the

resource estimation for each layer and the input constraints

(such as resource limits), Elastic-DF aims to find the opti-

mal solution of layer placement across multiple Super Logic

Regions (SLRs) for a multi-die FPGA and across multiple

FPGAs. Based on the resulting floorplan, FINN splits the

ONNX model into partitions where each partition contains a

sequence of layers that must be placed on the same SLR. It is

important for each partition to fit on one single SLR since die

crossings can lead to large propagation delays and therefore

to timing closure issues.

Alonso et al. [8] present, along with the partitioner and

resource balancer, VNx which is the IP core used for direct

FPGA-to-FPGA communication and is covered in Sec. II-D.

They demonstrate their tools by deploying MobileNetV1 with

4 bit weights and 4 bit activations and ResNet-50 with 1 bit

weights and 2 bit activations on multiple FPGAs.

D. VNx UDP/IP Stack

The VNx UDP/IP stack [9] consists of hardware modules

that perform the necessary network and transport layer func-

tions to help send and receive data packets over a network.

These modules are designed using hardware description lan-

guages and are synthesized to run on an FPGA device such as

the Alveo U280. UDP is an unreliable protocol, meaning that

it does not provide any guarantees for the delivery of packets,

nor does it check for errors in transmission. However, since

the FPGAs used in this work are connected to the same switch,

there is little risk of packet loss or high latency because the

switch acts as a direct link between the FPGAs without the

need for additional routing or network hops. As a result, the

use of UDP in this context is appropriate, since the reliability

and error checking features of other transport protocols, such

as TCP, are not necessary and would only add overhead to the

communication process.

Applications running on the FPGA use sockets to send

and receive data which enable them to establish connections

with other applications on different FPGAs or hosts. The

VNx stack implements Address Resolution Protocol (ARP)

and UDP tables which can be accessed from a host processor

via AXI Lite control interfaces. The UDP table manages the

state of UDP sockets for sending and receiving data, while the

ARP table maps IP addresses to MAC addresses for FPGAs

to communicate with each other on the local network. In the

context of this work, the machine learning accelerator is the

application that we split across multiple FPGAs. Integrating

the VNx stack makes it possible to partition a large machine

learning model that would not fit on a single FPGA across

multiple FPGAs and enable smooth communication among

them.

E. Related Work

Multi-FPGA acceleration of DNNs has been previously

explored and there is a wide variety of tools and target

applications which have been implemented.

Zhang et al. [17] target ResNet-152 on four Virtex Ultra-

scale FPGAs; however, they transfer data from host to host as

opposed to our work where we use direct FPGA-to-FPGA

communication. The hosts are connected through 10 GbE

Ethernet switches while the FPGAs are PCIe attached.

Fukushima et al. [18] deploy 8-bit quantized ResNet-50 on

four MKUBOS boards which are based on AMD/Xilinx Zynq

UltraScale+ devices and obtain a throughput of 75.1 images/s.

The 8-bit quantization of weights leads to a top-1 accuracy

of 74.2%, which is 1% higher than the accuracy obtained by

us with 4-bit weights and 5-bit activations. This highlights

the fact that comparable accuracy can be achieved with low

bit width quantization and this can be a convenient trade-off

that results in lower storage demand and smaller accelerated

computations. Their communication uses the AMD/Xilinx

Aurora IP and each serial link between devices has a bit

rate of 8.5 Gbps. The Aurora communication protocol is also

used by [19] to interconnect their ZCU102 FPGAs. Jiang et

al. [19] propose a framework for accelerating DNN inference

across multi-FPGAs; however, they implement a Matrix of

Processing Elements (MPE) type of architecture, while we

focus on streaming dataflow.

Tarafdar et al. [20] also use ResNet-50 to showcase their

AIgean framework for ML deployment on heterogeneous

clusters. They deploy the model with 16-bit weights on 10 and

12 AMD/Xilinx ZU19EG FPGAs targeting high throughput.
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Fig. 1. Multi-FPGA ResNet-50 Accelerator Configurations. (a) Loop config-
uration: The input images are sent to the first FPGA, the processing is done
on all nodes and the result is returned through the first FPGA. (b) Chain
configuration: The input images are sent to the first FPGA, the processing is
done on all nodes and the result is returned to the host of the last FPGA.

TABLE I
COMPARISON BETWEEN RESNET-50 W1A2 AND RESNET-50 W4A5

Model Quantization Dataset Top-1 Accuracy

ResNet-50 W1A2 ImageNet-1K 67.97%
ResNet-50 W4A5 ImageNet-1K 73.26%

They achieve 400 and 660 images/s respectively, by unrolling

the multiplications in the convolutional layers at the cost

of high resource utilization. In this work, the FPGAs are

connected through 100 Gbps Ethernet switches and the UDP

communication protocol.

III. MULTI-FPGA RESNET-50 ACCELERATOR

A. Quantization-Aware Training

Using quantization-aware training, we quantize the weights

and activations of ResNet-50 [6]. In contrast to post-training

quantization, quantization-aware training better preserves the

accuracy by simulating the quantization loss and computing

the scale factors during the fine-tuning stage of the training

process. In post-training quantization, these scale factors are

computed after training, which generally leads to a higher drop

in accuracy. We chose the bit-width in such a way that the

resulting model would have a higher accuracy than ResNet-

50 W1A2 and that it would also allow us to demonstrate the

multi-FPGA partitioning of an accelerator design that cannot

fit on a single FPGA.

We use Brevitas [14], a quantization-aware training library,

to train ResNet-50 on the ImageNet-1K [21] dataset, and we

reduce the bit-width of weights to 4 bits and the bit-width of

activations to 5 bits. We keep the first and the last layer weights

at 8 bits to preserve accuracy. We initialize the weights of our

quantized model from a pre-trained ResNet-50 model. We use

Stochastic Gradient Descent (SGD) with a batch size of 64 for

each of the four training GPUs. The learning rate starts from

0.001 and is divided by 10 for every 30 epochs; the model is

trained for 90 epochs. We also use a weight decay of 0.00005

and a momentum of 0.875. After quantization-aware training,

we export the model weights to integer representation with

scale factors in ONNX format.

B. Hardware Implementation

The next implementation step consists of processing the

ResNet-50 W4A5 ONNX model with the FINN framework.

We go through the same network preparation steps and we

keep the same folding configuration as the one used for

ResNet-50 W1A2 in [22] because we want to fairly compare

the throughput between the two implementations.

We analyze the FPGA resource estimation for ResNet-

50 W4A5, and deduce that, with the same folding config-

uration as ResNet-50 W1A2, it is not possible to fit its

corresponding hardware accelerator on a single FPGA. Hence,

we use the Elastic-DF analysis pass integrated with FINN to

find the optimal placement of layers on the available SLRs.

This optimal placement across multiple multi-die FPGAs and

across their SLRs later instructs FINN how to split the ONNX

model into partitions. A computing kernel is generated for

each partition (a contiguous sequence of layers which reside

on the same SLR) and the kernels are connected through

AXI Stream interfaces. Alonso et al. [8] refer to this type of

design as an explicit dataflow design, whereas an embedded

dataflow has a single kernel that contains the whole design.

We split the final set of kernels across three FPGAs based on

their resource utilization making sure that the total BRAM

utilization on each device is under 80% as Xilinx advises

to exclude the possibility of routing congestion. The network

layer adds logic overhead; the resource utilization breakdown

can be seen in [8]. We use the VNx UDP stack which is much

more lightweight than the TCP stack.

Figure 1 shows the setup of the network-connected FPGAs

and how the ResNet-50 accelerator kernels fit into the infras-

tructure. There are two configurations which we investigate:

(a) Loop configuration and (b) Chain configuration. In [8],

from a model parallelism point of view of a multi-FPGA

DFA implementation, the chain configuration is referred to as

Hardware Model-Parallel (HWMP) and the loop configuration

is referred to as Transparent Model-Parallel (TMP).

In the loop configuration, Figure 1 (a), the batch of input

images to be classified are transferred from the host on the first

Alveo U280 through the IDMA and the result is returned by

the same node to the host through the ODMA. The difference

in the chain configuration, Figure 1 (b), is that the result is

returned to the host of the last FPGA. Note that, as shown in





TABLE IV
COMPARISON BETWEEN DIFFERENT FPGA-BASED IMPLEMENTATIONS OF RESNET-50 W4A5

Implementation LUT BRAM tile (36 Kb) URAM (288 Kb) Number of FPGAs Frequency Throughput
[MHz] [images/s]

Alveo U280 (available resources) 1903200 2016 960 1 - -

Predominant BRAM storage of weights 830906 4320 40 3 200 162.32
Utilization % (with respect to one U280) 43% 214% 4.16% - - -
Utilization % (with respect to three U280) 14.55% 71.42% 1.3% - - -

Predominant URAM storage of weights 561797 981.5 587 1 150 165.09
Utilization % (with respect to one U280) 29.51% 48.68% 61.14% - -

throughput compared to MPE architectures. A multi-FPGA

implementation of the architecture with directly connected

FPGAs is more efficient from a throughput point of view since

it significantly reduces the latency for communication between

nodes.

The baseline FINN configuration for ResNet-50 W1A2 in

[22] includes, besides the folding factors, the type of RAM

the weights of the model should be stored in. Because we

work with Alveo U280 which has an Ultrascale architecture,

we also explore a more memory-efficient implementation. The

initial requirement is for the weights of ResNet-50 W4A5 to

be stored in Block RAM, however, as shown in Table II,

the BRAM tiles represent the most critical FPGA resource.

The other resources are underutilized; thus we chose to take

advantage of the available Ultra RAM (URAM) and to try

to rescale the size of the whole accelerator to fit on a

single FPGA. This means that part of the storage that was

previously implemented through BRAM is now implemented

with URAM; we do not change the folding configuration or

any other parameters. Table IV shows that by storing the

weights of the fully-connected layers in URAM, the number of

BRAM tiles required decreases by a factor of four. The URAM

utilization increases by 14x, but is still below the number of

available tiles on the accelerator card. Ultimately, the entire

ResNet-50 W4A5 design fits on one FPGA and the throughput

is maintained even though the maximum frequency achieved

is lower.

V. DISCUSSION

The main purpose of FPGAs in the cloud is to accelerate

different time-consuming tasks as they can achieve better per-

formance for lower power consumption compared to CPUs and

GPUs [23]. In general, only critical parts of applications are

offloaded onto the FPGAs since they have limited resources

which are often not enough to host an entire cloud applica-

tion. Network-connected FPGA clusters support deployment

of larger designs. The direct FPGA-to-FPGA communication

through 100 Gb Ethernet networking and the UDP/IP protocol

also provide a faster solution in comparison to host-to-host

communication. In the machine learning context, accurate

models demand a significant amount of storage and they also

require a large amount of computation. Even when using

aggressive quantization and quantization-aware training to

reduce the size of the accelerator, the final hardware design

might still be too large to fit on a single FPGA; an example

of this being ResNet-50 W4A5 implemented in this work.

This work focuses on dataflow inference accelerators that

target high throughput. DFAs are architectures customized for

a specific model where each layer has resources allocated as

needed, compared to MPEs which are more generic having

a fixed set of processing elements. The generality of MPEs

comes with several drawbacks such as limited flexibility

and intensive communication between on-chip and off-chip

memory as they need to fetch weights and activations from

the external memory when layers are scheduled to be executed

on the available processing units. DFAs minimize the amount

of data transfers between on-chip and off-chip memories by

storing the parameters of most layers on-chip, hence reducing

latency and power consumption. While MPEs can pipeline

computations on a fixed set of processing elements, DFAs need

to allocate resources for each layer, hence their challenge is

frequently that resources are limited. In this situation, being

able to partition a design onto multiple network-connected

FPGAs allows for the accommodation of larger ML dataflow

accelerators with higher accuracy and higher throughput.

ResNet-50 represents a basic architecture that has enabled

accurate image classification. Recently, other ML models have

taken the lead. After all, the accuracy of ResNet50 W4A5

implemented in this work (73.26%) is much lower than the

state-of-the-art (around 90%). Currently, on the ImageNet-

1K dataset, the highest accuracy is achieved by vision trans-

formers [24]; [25] provides an example of a transformer

acceleration framework. However, transformers demand sub-

stantially more storage. The vision transformer used in [24]

has 1.88 billion parameters, while ResNet-50 has 23 million

parameters. Even if we stick with a CNN architecture, the

most accurate model has almost 100x more parameters (2158

million parameters). In the end, a designer needs to determine

the best trade-off between accuracy and the feasibility of

deploying the corresponding accelerator on FPGAs. Network-

connected FPGAs give a designer more options.

VI. CONCLUSION

We showcase the implementation of a multi-FPGA dataflow

accelerator for a higher precision version of ResNet-50 which

cannot be deployed on a single FPGA. Network-connected

FPGAs enlarge the design space and options for implementa-

tion. In this research, ResNet-50 is trained and quantized with

4 bit weights and 5 bit activations. A custom accelerator is

generated using the FINN framework and is partitioned using

the Elastic-DF partitioner and resource balancer. The design



is deployed in the Open Cloud Testbed on three network-

connected Alveo U280 data center accelerator cards which

communicate through the VNx UDP/IP stack and 100 Gbps

Ethernet. We compare this work in terms of accuracy, resource

utilization and throughput with the accelerator of ResNet-

50 W1A2 which is generated and deployed using the same

tools. An alternative implementation is explored where we

make use of the available Ultra RAM and we reduce the size

of the accelerator, the final design being able to fit on one

FPGA.

In the future, we plan to explore different ML architectures

that achieve or are close to state-of-the-art accuracy on image

classification tasks, such as vision transformers. We aim to

implement and optimize accelerators for such models which

can successfully be implemented on FPGA clusters. Moreover,

we intend to extend FINN to support 3D CNNs for video

classification and investigate how the performance of DFA

architectures compares to MPE accelerators for such appli-

cations.
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