
Asymptotically Optimal Codes Correcting One
Substring Edit

Yuting Li⇤, Yuanyuan Tang†, Hao Lou†, Ryan Gabrys‡, and Farzad Farnoud⇤†
⇤Computer Science, University of Virginia, USA, mzy8rp@virginia.edu

†Electrical & Computer Engineering, University of Virginia, USA,
{yt5tz,hl2nu,farzad}@virginia.edu

‡Calit2, University of California-San Diego, USA, rgabrys@ucsd.edu

Abstract—The substring edit error is the operation of replacing
a substring u of x with another string v, where the lengths of u
and v are bounded by a given constant k. It encompasses localized
insertions, deletions, and substitutions within a window. Codes
correcting one substring edit have redundancy at least log n+k.
In this paper, we construct codes correcting one substring edit
with redundancy log n + O(log log n), which is asymptotically
optimal. The full version of this paper is available online.1

I. INTRODUCTION

In data transmission and storage, especially in data storage
in DNA [1] and other emerging media, the need for robust
error correction for a diverse set of errors is an important
and challenging problem. This paper presents a family of
asymptotically optimal codes capable of correcting a burst
of localized edits, encompassing combinations of insertions,
deletions, and substitutions. In addition to their application
in error-correction, the codes provide a promising approach
to the challenge of synchronizing multiple copies of related
files, where bursts of edits are common. The data synchro-
nization problem, also known as document exchange, has been
explored in various works demonstrating that error-correcting
codes, especially those accommodating file edits, can sub-
stantially reduce the communication required to maintain file
consistency [2].

Specifically, we focus on correcting a single burst of errors
of length at most k, which we refer to as a k-substring edit.
Such an error may be the result of insertions, deletions,
or substitutions, occurring within a bounded interval of our
strings. Formally, a k-substring edit in a string x is the
operation of replacing a substring u of x with another string v,
where |u|, |v| k. An analysis of real and simulated data in [3]
reveals that substring edits are common in file synchronization
and DNA storage, where viewing errors as substring edits leads
to smaller redundancies.

In this paper, we assume that k is a fixed constant. Notice
that for the setting where we replace a string u with another
string v of the same length (i.e., |u|= |v|), a substring edit
is equivalent to a burst of substitutions. Furthermore, if v is
the empty string, then a substring edit is equivalent to a burst
of deletions. Analogously, if u is the empty string, then the
substring edit is a burst of insertions. Despite the fact that

1https://www.ece.virginia.edu/~ffh8x/papers/eccss.pdf

these specialized types of substring edit have each received
significant attention in the past, the problem of constructing
codes for substring edits has received relatively less attention,
with the exception of [3] and [4]. A critical observation in this
context is that the ability to correct an arbitrarily long burst
of deletions does not enable correcting a k-substring edit [3,
Lemma 1].

Using simple counting arguments, it can be shown that a
code correcting one substring edit has redundancy at least
log n+k and at most roughly 2 log n. In [3], the authors present
an efficient construction for a code that corrects one substring
edit with redundancy roughly 2 log n, which matches the
existential upper bound of redundancy. However, the question
of whether it is possible to construct a code with less than
2 log n bits of redundancy remained open. In this paper, we
provide an affirmative answer to this question and construct
codes correcting one substring edit with redundancy roughly
log n+O(log log n), i.e., at most O(log log n) bits larger than
the optimal redundancy. Hence, the codes we propose are
asymptotically optimal in terms of redundancy and improve
the state-of-the-art redundancy by a factor of 2.

The rest of the paper is organized as follows: In Sec-
tion II, we introduce basic definitions and notation, review our
techniques, and compare with related works. In Section III,
we construct asymptotically optimal codes correcting one
substring edit.

II. NOTATION, OVERVIEW, AND RELATED WORK

A. Basic Definitions and Notations
We will deal with two types of strings, strings over {0, 1}

and strings over the set of nonnegative integers. When neces-
sary to identify the alphabet, we refer to a string as a binary
string or an integer string, respectively. Strings are denoted
by bold symbols, e.g., u = u1 · · ·un. Let [i, j] represent the
integers i, i + 1, . . . , j. Furthermore, the set [1, j] is denoted
as [j]. The substring of u starting at position i and ending at
position j is denoted by u[i,j]. We use |u| to denote the length
of u. For z 2 N⇤ and a positive integer A, we say that z is
A-bounded if each symbol of z is at most A.

For binary strings x,y 2 {0, 1}⇤, we denote a k-substring
edit by x �! y. If x �! y and x 6= y, then we may also
write x �! y. In our construction, substring edits over integer
strings also arise. For clarity, we use a different notation for

x y

f(x) f(y)

substring edit

f f

“locatable” substring edit

Figure 1: converting a substring edit to a “locatable” substring edit

these: For two integer strings z,w 2 N⇤, we let z) w
denote a substring edit (not necessarily a k-substring edit) and
let z j:a,b

===) w denote the substring edit that deletes a substring
of length a starting in position j, and inserts a substring of
length b in its place. This operation is a max(a, b)-substring
edit.

A partition P of x is a rule under which one divides x
into parts. We use nP(x) to denote the number of parts and
xP to denote the vector (x1,x2, . . . ,xnP(x)), where xi, 1 
i  nP(x), denotes a part. We call a string (P, �)-dense if
all elements of xP have length at most �. Suppose f is a
function on strings. Then we use fP(x) to denote the string
f(x1)f(x2) · · · f(xnP(x)). When the partition P is clear from
the context, we may simply use f(x) to denote fP(x). (Note
that f(x), in contrast to f(x), is simply the result of applying
f to x.) For a (binary or integer) string z, its VT sketch is
defined as VT(z) =

P|z|
i=1 izi.

B. Overview of the Techniques
The overview of our approach to correcting one substring

edit error is given in Figure 1. Here, x is the input to the
channel while y is the output. The first step in correcting the
error is to approximately identify its position. To achieve this,
we rely on a key insight that goes back to the pioneering work
of Levenshtein [5] on correcting a burst of at most 2 deletions.
Namely, while the VT sketch applied to x can locate only
a single deletion, it can be more powerful when applied to
carefully designed functions of x. Previous work has used this
observation to correct deletions within a window, as well as
to correct one deletion or one adjacent transposition[6][7][8].
Our main contribution in this direction is to introduce a novel
mapping that, when used in conjunction with a VT sketch, can
locate the position of any k-substring edit to within a small
interval. In particular, this mapping allows us to locate a burst
of substitutions, a challenging task since such an edit may
leave the sequence composed of lengths between “markers”
untouched.

To construct the aforementioned mapping, denoted in Fig-
ure 1 by f , we identify a set of conditions on a substring
edit over an integer string that, if satisfied, the location of
the substring edit can be approximately identified using the
VT sketch and some other small amount of information
(Lemma 2). Such a substring edit is called “locatable”, a
term that is defined precisely in Definition 1. Specifically, our
approach will be to find a partition rule P and a function f

such that if x �! y, then f(y) = fP(y) is obtained from
f(x) = fP(x) by a locatable substring edit. Then we restrict

x to be (P, �)-dense. If x �! y, we treat fP(x) and fP(y)
as the z and w in Lemma 2, and determine the edit position
of this locatable substring edit to within an interval of length
O(�) = O(log n). Since we restrict x to be (P, �)-dense,
which means |xi|  � for any i, we can determine the original
edit position to within an interval of length O(�2) (a technique
used in [7]), which is then corrected. The case in which x = y
will also be handled in Theorem 11. The VT sketch used in
our construction will require a redundancy of about log n bits,
while the other components will have negligible redundancy.

C. Related Works
Codes correcting localized errors have been a subject of

extensive study over time. Fire codes [9] are designed to con-
struct a burst of k substitutions with roughly log n redundancy.
Several works, including [4], [10], [11], have construct burst-
deletion correcting codes, where the length of the bursts is
known in advance. More related to this work are codes that
can correct a variable number of deletions. In a pioneering
work by Levenshtein’s work [5], optimal codes are constructed
to correct a burst of at most two consecutive deletions.

For longer deletions and non-consecutive but localazide
deletions, several works [3], [6]–[8] aim to first approximately
locate the deletion. Their method uses the VT sketch of an
integer string that is related to the original binary string to
locate the approximate deletion position. Specifically, in [6],
[7], and [3], each symbol of the integer string is the length
of each part of the original binary string with respect to
some partition. Using this method, Lenz et al. [6] propose
codes correcting a variable-length burst of deletions with
nearly optimal redundancy, but the deletions still need to be
consecutive. Bitar et al. [7] later construct nearly optimal codes
that remove the restriction of consecutive deletions, so that it
could correct deletions within a window that do not necessarily
occur consecutively. Also using VT sketch of the length integer
string, Tang et al. [3] construct codes correcting a substring
edit, but the VT sketch of the length integer string can
locate the edit position only when the substring edit changes
the length of the original binary string. So the construction
from [3] needs another log n bits to handle the other cases,
and the total redundancy is about 2 log n bits, which is not
optimal. By using a different integer string, Gabrys et al. [8]
further construct codes correcting one deletion or one adjacent
transposition with near-optimal redundancy, but their approach
does not address the setup where additional edits may occur.

III. ASYMPTOTICALLY OPTIMAL CODES CORRECTING
ONE SUBSTRING EDIT

In this section, we present the code construction, prove
its correctness, and determine its redundancy. Based on our
earlier discussion in Subsection II-B, the construction has three
interrelated components: a) identifying a set of conditions
that make a substring edit over an integer string “locatable”
and showing that the position of a locatable substring edit
can be found approximately; b) constructing a partition rule
P and a mapping f such that if x �! y, then fP(y) is

obtained from fP(x) through a “locatable” substring edit; and
c) correcting the edit in y and recovering x. We discuss each
in a subsection below. In the next subsection, we discuss each
of these components. Then we prove the correctness of the
overall approach.

A. Components of the Code Construction
a) Locatable substring edits: We will now define the

notion of locatable substring edit in Definition 1, and prove
Lemma 2, which roughly says that for two �-bounded integer
strings z and w, if w is obtained from z by a locatable
substring edit at position j, then given w, VT(z), and some
other little information, one can determine j to within an
interval of length O(�).

Definition 1. For two positive integer strings z and w, we say
that w is obtained from z by a locatable K-substring edit at
position j if z j:a,b

===) w, where a, b  K, and

1) The difference of the sum of z and the sum of w is
bounded by all wi, namely

���
P|z|

j=1 zj �
P|w|

j=1 wj

��� < wi

for all i’s.
2) |z| 6= |w| or

P|z|
j=1 zj 6=

P|w|
j=1 wj .

Now we show that for A-bounded strings z and w, if w is
obtained from z by a locatable K-substring edit at position j,
then one can determine j to within an interval of length O(A)
given VT(z) mod O(m) (for some parameter m specified in
the lemma statement) and some other little information of z.

Lemma 2. For A-bounded strings z and w, if w is obtained
from z by a locatable K-substring edit at position j, then one
can determine j to within an interval of length 6K2

A given
w, |z|� |w|,

P|z|
i=1 zi�

P|w|
i=1 wi, and VT(z) mod m, where

m > 8K2
⇣P|z|

i=1 zi +A

⌘
.

Proof. Suppose z
j:a,b
===) w, where a, b  K and j 2 [1, |z|�

a + 1]. Let ⌘(v, z,w) := (|z| � |w|)
P|w|

i=v
wi + (

P|z|
i=1 zi �P|w|

i=1 wi)v, where v is an integer. Note that since we know
w, |z|�|w|, and

P|z|
i=1 zi�

P|w|
i=1 wi, we know the expression

of ⌘(·, z,w). Let �VT := VT(z) � VT(w). We will prove
the following.

1) ⌘(·, z,w) is strictly monotone on [1, |w|+ 1].
2) |�VT�⌘(j, z,w)| < 3K2

A.
3) |�VT|  4K2

⇣P|z|
i=1 zi +A

⌘
.

For 1), note that

⌘(v, z,w)�⌘(v�1, z,w) = (|z|� |w|)wv+

|z|X

i=1

zi�
|w|X

i=1

wi.

If |z| 6= |w|, since w is obtained from z by a locatable
K-substring edit, we have

���
P|z|

i=1 zi �
P|w|

i=1 wi

��� < wv . So
⌘(·, z,w) is strictly monotone on [1, |w| + 1]. If |z| = |w|,
since w is obtained from z by a locatable K-substring edit,
we have

���
P|z|

i=1 zi �
P|w|

i=1 wi

��� 6= 0. So, ⌘(·, z,w) is strictly
monotone on [1, |w|+ 1].

For 2), since z
j:a,b
===) w, we have

�VT = f(j, z,w) +
a�1X

i=1

izj+i �
b�1X

i=1

iwj+i

� (|z|� |w|)
j+b�1X

i=j

wi.

Since z and w are A-bounded strings, we have���
P

a�1
i=1 izj+i

���  a
2
A,

���
P

b�1
i=1 iwj+i

���  b
2
A, and���

P
j+b�1
i=j

wi

���  bA. So we have

(1)|⌘(j, z,w)��VT|  (a2 + b
2)A+ |a� b|bA

< 3K2
A.

For 3), since ⌘(·, z,w) is monotone on [1, |w|+ 1],

|⌘(j, z,w)| |⌘(1, z,w|) + |⌘(|w|+ 1, z,w)| (2)

K
2

0

@
|z|X

i=1

zi +A

1

A .

Thus, by (1) and (2), we have

|�VT|  |�VT�⌘(j, z,w)|+ |⌘(j, z,w)|

 4K2

0

@
|z|X

i=1

zi +A

1

A .

Now since we know VT(z) mod m, we can find �VT.
Since ⌘(·, z,w) is strictly monotone on [1, |w| + 1] and
|�VT�⌘(j, z,w)| < 3K2

A, we can determine j to within
an interval of length 6K2

A.

b) Constructing a mapping to convert a general substring
edit to a locatable edit: Our goal here is to construct a
partition P and a function f over strings such that if x �! y,
then f(y) = fP(y) is obtained from f(x) = fP(x) by a
locatable substring edit. We first give the partition rule P . Let
p = 0k1k, which we call a pattern.

We define the partition rule P as follows. For x 2 {0, 1}⇤,
let xP = (x1,x2, . . . ,xnP(x)), where the starting position
of x1 is the leftmost bit of x and the starting position of xi

(i � 2) is the leftmost bit of the (i� 1)th p in x.

Example 3. Let k = 3, p = 0313, and

x =

x1z }| {
01001

x2z }| {
000111| {z }

p

100

x3z }| {
000111| {z }

p

101001

x4z }| {
000111| {z }

p

1 .

To get xP , we first find all the patterns, and break it
up at the left side of each pattern. So we get xP =
(01001, 000111100, 000111101001, 0001111).

We now explain the main idea behind the construction of
the function f . For any lowercase function u over strings, we

use the uppercase function U to denote the sum of all the
symbols of u(x), namely

U(x) :=

nP(x)X

i=1

u(xi) =

|u(x)|X

i=1

u(xi),

and use �U to denote U(x) � U(y). For simplicity, we
only consider the second condition of the locatable substring
edit (see the full version for a complete treatment). Applied
to the substring edit f(x)) f(y), the second condition
of Definition 1 requires that if x �! y, then |f(x)| 6=
|f(y)| or �F 6= 0. Note that if the number of patterns
changes (nP(x) 6= nP(y)), then |f(x)| 6= |f(y)|. Hence, we
assume that the number of patterns does not change. We want
to ensure that �F = F (x)�F (y) 6= 0. To better explain our
approach, we first outline two different approaches that have
increasing levels of complexity before arriving at our actual
solution, which is described as the third attempt.

First attempt. For a string x, let l(x) represent the length of
x. Note that L(x) is also the length of x. In our first attempt,
we let f(·) = l(·). Then F (x) = L(x). In this case, if the
lengths of the deleted and inserted strings differ, then �F 6= 0.
However, �F = 0 occurs when the substring edit is a burst
of substitutions. In fact, in [3], the authors use f(·) = l(·),
and use another log n bits of redundancy to handle a burst of
substitutions separately. This leads to a redundancy of 2 log n
bits. In this work, we will introduce two other novel functions,
d (second attempt), and n1k (third attempt), to resolve this
issue.

Second attempt. Let d : {0, 1}n ! [2k] be a function that
can detect a burst of k substitutions, where the jth bit of d(x)
is the parity of every kth index of x stating at position j,
namely,

d(x) :=

M

i⌘k1

xi,

M

i⌘k2

xi, . . . ,

M

i⌘kk

xi

!
,

where � is addition in F2. Note that |�D|  2k. We let
f(·) = d(·) + Cl(·), where C is a sufficiently large constant.
Then, �F = �D + C�L.

Now, if �L 6= 0, then �F 6= 0 provided that we choose
C > 2k. If �L = 0, then the edit transforming x into y is a
burst of substitutions. At first glance, it may seem that in this
case �D 6= 0, and thus �F 6= 0. But while this is the case
if this burst of substitutions does not involve any patterns, it
may not be the case otherwise. The next example shows that
if this burst of substitutions involves some patterns, then �D

may be 0.

Example 4. Let k = 3, p = 0313, and

x =

x1z }| {
000011

x2z }| {
000111| {z }

p

001111,

y =

y1z }| {
00001100001

y2z }| {
000111| {z }

p

1,

where the edited substring is in bold and red. Then l(x) =
l(x1)l(x2) = (6, 12), l(y) = (11, 7). d(x) = (011, 001) =
(3, 1), d(y) = (001, 011) = (1, 3). Then �L = 0 and
�D = 0, so �F = 0. Thus, f(x)) f(y) is not a locatable
substring edit.

Third attempt. Recall that the method in the second
attempt may not work only if the substring edit is a burst of
substitutions that involves some patterns. By careful argument,
one can find that the only case where �F = 0 in the second
attempt is when one pattern 0k1k is shifted because of this
burst of substitutions. So, we need a function, say g, such that
�G 6= 0 in this case, and thus our f will be of the form
f(·) = d(·) + Bg(·) + Cl(·), where B is a sufficiently large
constant and C is much larger than B. This way, if �L 6= 0,
then �F 6= 0. If �L = 0, and �G 6= 0, then �F 6= 0. If
�L = 0 and �G = 0, then x �! y is a burst of substitutions
that does not involve any pattern, then �D 6= 0, thus �F 6= 0.

Let n1k(x) be the number of appearances of 1k in x. For
example, if x = 111100111, then n12(x) = 5. We will
show that n1k is our desired g. The next example provides
the intuition. Note that N1k(x) is the sum of n1k(xi) over
xP = (x1, . . . ,xnP(x)).

Example 5. Let NL

1k(x) and N
R

1k(x) denote the contribution
of the left side and the right side with respect to the ‘|’ symbols
below. Similar definitions apply to y. Below, we show two
typical cases in which x �! y is a burst of substitutions
that shifts a pattern. In both cases, we show that N1k(x) 6=
N1k(y), implying that �N1k 6= 0.

First, suppose x = ↵0✏|0k1k� and y = ↵|0k1k1✏�, for
some binary string ↵ and �. Here 0 < ✏  k. The burst of
substitutions occurs at positions [|↵| + k + 1, |↵| + k + ✏].
Below is an example with k = 10, ✏ = 7.

x = ↵

0✏z }| {
0000000|

0kz }| {
0000000000

1kz }| {
1111111111�

y = ↵|0000000000| {z }
0k

1111111111| {z }
1k

1111111| {z }
1✏

�

In this case, we can see N
L

1k(x) = N
L

1k(y), and because of
the 1k+✏ in y compared to the 1k in x, we have N

R

1k(x) =
N

R

1k(y)� ✏. So N1k(x) 6= N1k(y), and thus �N1k 6= 0.
Second, suppose x = ↵|0k1k0k�✏1k� and y =

↵0k1k�✏|0k1k�. Here 0 < ✏ < k (when ✏ = k, this edit is
also described by the previous case). The burst of substitutions
occurs at positions [|↵| + 2k � ✏ + 1, |↵| + 2k]. An example
with k = 10, ✏ = 7 is shown below.

x = ↵|
0kz }| {

0000000000

1kz }| {
1111111111

0k�✏

z}|{
000

1kz }| {
1111111111�

y = ↵ 0000000000111| {z }
0k1k�✏

|0000000000| {z }
0k

1111111111| {z }
1k

�

In this case, we can see N
L

1k(x) = N
L

1k(y), and because there
are two 1k’s between ‘|’ and � in x compared to only one 1k

between ‘|’ and � in y, we have N
R

1k(x) = N
R

1k(y) + 1. So
N1k(x) 6= N1k(y), and thus �N1k 6= 0.

It can be shown that the two cases in the above example are
the only two key cases in which a burst of substitutions shifts
a pattern (see full version). We can now formally construct f .
For a string x, let both l(x) and L(x) represent the length of
x, let n1k(x) be the number of 1k inside x, and let d(x) be
as in the second attempt. Let B = 3(2k), and C = 40k(2k),
and define

f(x) := d(x) +Bn1k(x) + Cl(x). (3)

If x �! y, then f(x)) f(y) satisfies the second condition
of locatability. It is not hard to prove that f(x)) f(y) also
satisfies the first condition of locatability (see full version). In
summary, we have the following Lemma.

Lemma 6. If x �! y, then f(y) is obtained from f(x) by a
locatable 3-substring edit.

Lemma 7. If x is (P, �)-dense and x ! y, then f(x) and
f(y) are 8�C-bounded strings.

c) Correcting an edit with known approximate location:
We start by adapting a result on systematic codes correcting
multiple edits [12] to a hash correcting a k-substring edit,
since a k-substring edit can also be viewed as k edits. The
adapted result states that a substring edit in a string of length
n can be corrected using 4k log n+o(log n) bits of redundancy.
Although our goal is to achieve about log n redundancy, this
result will be useful in our construction.

Lemma 8 (c.f. [12]). There exists a hash �n : {0, 1}n !
{0, 1}4k logn+o(logn) that can correct a single k-substring edit.
Namely, if r 2 {0, 1}n and r ! s, then r can be recovered
from s and �n(r).

Let A(x) : {0, 1}n ! [24k logA+o(logA)] be defined as

 A(x) =

X

i odd

�A(xi)

!
mod 24k logA+o(logA)

,

X

i even

�A(xi)

!
mod 24k logA+o(logA)

!
,

where the xi result from partitioning x into parts of length A

(note that in the definition of the the map A(x) we are not
partitioning x according to xP).

Lemma 9 is an adaptation of a technique used in [7] to
our substring edit scenario, which will allow us to correct a
substring edit whose position is approximately known.

Lemma 9 (c.f. [7]). If x �! y, then one can recover x given
y and A(x) and an interval of length A that contains the
edit position.

B. Substring edit-correcting code and its redundancy

We now put the components previously discussed together
to construct the error-correcting code. Let P be as in Sec-

tion III-A, and let f and C be the one in equation (3). Let

h(x) :=

✓
VT(f(x)) mod 2000Cn,

✓XnP(x)

i=1
fi(x)

◆
mod 10Ck, nP(x) mod 5

◆
.

For c1, c2 2 N, let

C = {x is (P, �)-dense: h(x) = c1, O(�2)(x) = c2}.

The next lemma will be used to show that the redundancy
arising from restricting x to be (P, �)-dense is negligible.

Lemma 10. Let � = k22k+3 log n. For a uniformly randomly
chosen x 2 {0, 1}n,

Pr[x is not (P, �)-dense] < 1/n.

Theorem 11. C corrects one k-substring edit. Moreover, for
� = k22k+3 log n, it has redundancy log n+O(log log n).

Proof sketch: We first prove the redundancy. Note that
h(x) needs log n + O(1) redundancy and O(�2)(x) needs
O(log log n) redundancy. By Lemma 10, restricting x to be
(P, �)-dense adds O(1) redundancy. So C has redundancy
log n+O(log log n).

To prove the error-correction ability of the code, we first
show that if x ! y, given y and h(x), we can determine
whether x = y. By Lemma 6 and the definition of locatable
substring edit, x = y if and only if

P
nP(x)
i=1 fi(x) ⌘P

nP(y)
i=1 fi(y) mod 10Ck and nP(x) ⌘ nP(y) mod 5.

These two equations can be checked given y and h(x) to
determine whether x = y. If x = y, then we just recover x
by outputting y.

We will now assume x �! y and show that we can
determine the edit position to within an interval of length
O(�2). By Lemmas 6 and 7, we can treat f(x) and f(y)
as the z and w in Lemma 2, and determine the position of
the locatable edit to within an interval of length O(�). Since
x is (P, �)-dense, we can further determine the position of
the original edit to within an interval of length O(�2). In the
final step, by Lemma 9, we can recover x by O(�2)(x).

REFERENCES

[1] S. M. H. Tabatabaei Yazdi, Y. Yuan, J. Ma, H. Zhao, and
O. Milenkovic, “A Rewritable, Random-Access DNA-Based Storage
System,” Scientific Reports, vol. 5, Sep. 2015. [Online]. Available:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4585656/

[2] A. Orlitsky, “Interactive communication: Balanced distributions, corre-
lated files, and average-case complexity,” in [1991] Proceedings 32nd
Annual Symposium of Foundations of Computer Science, Oct. 1991, pp.
228–238.

[3] Y. Tang, S. Motamen, H. Lou, K. Whritenour, S. Wang, R. Gabrys,
and F. Farnoud, “Correcting a substring edit error of bounded length,”
in 2023 IEEE International Symposium on Information Theory (ISIT),
2023, pp. 2720–2725.

[4] P. A. H. Bours, “Codes for correcting insertion and deletion errors,”
1994.

[5] V. Levenshtein, “Asymptotically optimum binary code with correction
for losses of one or two adjacent bits,” Problemy Kibernetiki, vol. 19,
pp. 293–298, 1967.

[6] A. Lenz and N. Polyanskii, “Optimal codes correcting a burst of
deletions of variable length,” in 2020 IEEE International Symposium
on Information Theory (ISIT). IEEE, 2020, pp. 757–762.

[7] R. Bitar, S. K. Hanna, N. Polyanskii, and I. Vorobyev, “Optimal codes
correcting localized deletions,” in 2021 IEEE International Symposium
on Information Theory (ISIT). IEEE, 2021, pp. 1991–1996.

[8] R. Gabrys, V. Guruswami, J. Ribeiro, and K. Wu, “Beyond single-
deletion correcting codes: Substitutions and transpositions,” IEEE Trans-
actions on Information Theory, vol. 69, no. 1, pp. 169–186, 2023.

[9] R. E. Blahut, Algebraic codes for data transmission. Cambridge
university press, 2003.

[10] L. Cheng, T. G. Swart, H. C. Ferreira, and K. A. S. Abdel-Ghaffar,
“Codes for correcting three or more adjacent deletions or insertions,” in
2014 IEEE International Symposium on Information Theory, 2014, pp.
1246–1250.

[11] C. Schoeny, A. Wachter-Zeh, R. Gabrys, and E. Yaakobi, “Codes
correcting a burst of deletions or insertions,” IEEE Transactions on
Information Theory, vol. 63, no. 4, pp. 1971–1985, 2017.

[12] J. Sima, R. Gabrys, and J. Bruck, “Optimal systematic t-deletion cor-
recting codes,” in 2020 IEEE International Symposium on Information
Theory (ISIT). IEEE, 2020, pp. 769–774.

