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Abstract—Hardware performance events are at the center of
application performance analysis. However, the sheer volume of
low-level hardware events in modern HPC systems is overwhelm-
ing, making them difficult for users to comprehend.

Understanding which concepts are monitored by performance
events can be achieved using a two-step process. The first step
is the execution of benchmarks designed to stress different
hardware attributes in isolation. For every hardware event we
wish to understand, we execute the benchmarks while measuring
the event. In the second step, the data produced by executing
the benchmarks is analyzed to identify what each event actu-
ally measures. In this paper, we present the methodology for
analyzing the data from four previously developed benchmarks
that stress key hardware attributes—CPU and GPU floating-
point units, branching units, and data caches—to map low-
level hardware events to high-level programming concepts. We
present an automated methodology to express the event data in
a well-understood, conceptual basis. We implement a specialized
pivoting scheme for QR factorization to identify events that
provide distinct information from each other, and techniques
for addressing noise in event measurements. Lastly, we utilize
least-squares regression to combine the chosen events to define
particular metrics of interest.

I. INTRODUCTION

Performance metrics in HPC systems are monitored by
reading the occurrences of various hardware events. However,
as a user transitions from one architecture to another, the
mapping between raw performance events and the concepts
they measure becomes increasingly ambiguous due to (i)
different architectures containing differing sets of raw events
and (ii) the vast amounts of events present in newer machines.

Modern HPC systems [1], [2], [3] are becoming more
and more heterogeneous in their hardware constitution—
e.g., deeper and more nuanced memory hierarchies, custom
network infrastructures, and GPU accelerators. As such, they
contain on the order of hundreds of thousands of performance
events related to the increasingly diverse array of hardware
components. Furthermore, with the advent of software-defined
events [4], there is an even greater number of more nuanced
events present. While these events are documented to some
extent in vendors’ technical documents [5], they are not always
described thoroughly.

This overall lack of clarity makes it challenging for users to
comprehend the specific high-level programming concepts—
such as total floating-point operations (FLOPs), bidirectional

memory bandwidth, etc.—that events actually represent. Fur-
ther exacerbating this issue, there are far fewer physical
counters available than there are events, by several orders
of magnitude. Therefore, measuring all events at once is not
possible. Even if it was possible, the problem of determining
meaningful combinations of the vast amounts of available
events to define specific metrics is an intractable task to
accomplish manually.

Middleware libraries, such as PAPI [6], serve as porta-
bility layers that provide definitions for performance-metric
presets across diverse architectures using raw events. Since
third-party performance tools—TAU [7], Score-P [8], Vam-
pir [9], Caliper [10], etc.—utilize middleware layers to access
hardware counters, being able to automatically define these
performance metrics using available raw events can have a sig-
nificant impact on the community. While the Counter Analysis
Toolkit (CAT) [11] consists of benchmarks to discover the true
concepts measured by raw events, it has still been necessary
for the developers of PAPI to manually parse its output to
define the presets.

The following contributions are achieved in this work.
• We express raw performance event data (from CAT

benchmarks) as vectors and form them into data matrices
both as-is and in hardware-attribute specific bases.

• We implement a special-purpose column-pivoted QR
factorization (QRCP) for our data matrices to identify
which raw events represent independent concepts from
each other.

• We develop filtering mechanisms to suppress the noise
present in event measurements to eliminate bogus out-
comes from the linear algebra operations.

• We utilize least-squares regression to identify the best-
fit combination of raw events needed to define high-level
metrics of interest.

• We showcase how the analysis presented in this paper
can be used to automatically define useful performance
metrics for recent x86 CPUs and AMD GPUs.

We conduct experiments on two systems:
• Aurora at the Argonne National Laboratory: compute

nodes contain Intel Sapphire Rapids CPUs. [12]
• Frontier at the Oak Ridge National Laboratory:

compute nodes contain AMD MI250X GPUs. [1], [13]
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We use the Aurora supercomputer to collect event measure-
ments from the CAT CPU-FLOPs, branching, and data cache
benchmarks. To verify that our methods hold for an entirely
different category of compute hardware, we collect event
measurements by running a new GPU-FLOPs benchmark on
the Frontier supercomputer.

II. EVENT ANALYSIS METHODOLOGY

Suppose a programmer is interested in monitoring the num-
ber of double-precision floating-point operations performed by
their code. For brevity, we will refer to these operations as DP
FLOPs. However, many architectures—such as Intel Sapphire
Rapids—do not include a raw event that measures DP FLOPs.
Therefore, this quantity has to be constructed by combining
measurements from existing events that measure more detailed
concepts, such as the floating-point instructions of a particular
AVX type (e.g., 256-bit AVX). Combining such events requires
that we identify all the relevant events, but it also involves
an additional problem that must be addressed. Specifically,
these raw events measure instructions, not operations. In some
cases, such as scalar addition and subtraction, instructions and
operations have the same count, but instructions such as fused
multiply-add (FMA) perform two operations for every one
instruction, and the aforementioned 256-bit AVX instructions
perform four FLOPs for every instruction. Therefore, to form
the concept of operations, the existing events first have to be
scaled and then added together.

The challenge now becomes identifying all the events that
measure the independent floating-point instruction concepts.
We do this by running a series of microkernels wherein each
microkernel performs a known, expected number of a specific
type of floating-point instructions, such as single-precision
scalar, or double-precision AVX256 FMA, etc. For every such
microkernel execution, we measure the response of all raw
events found on the target hardware.

Let us assume that the benchmark contains ten kernels. Then
for every raw event ei, we will get a vector of length ten
with values that correspond to the measurements of ei for the
ten kernels. Concatenating the vectors for all events would
produce a matrix A. Ideally, we could turn our search for a DP
FLOPs metric into a linear algebra problem. To do so, we first
have to handcraft the vector that DP FLOPs would measure
for our ten kernels, if such an event existed on the hardware.
We will refer to this handcrafted vector as the signature of
this metric. Now, we can use the matrix A which contains the
real measurements of the raw events and solve the problem:

A · x = b

where b is the signature of the metric we are interested in.
Solving this problem would result in a vector of coefficients,
x, that would tell us which columns of A need to be combined
to form the signature of the metric we seek, and by what
factor they need to be scaled. Since the columns of A directly
correspond to raw events found on the target hardware, solving
this problem would tell us how to compose the metric of
interest using existing raw events.

However, this problem cannot be solved as such, for mul-
tiple reasons. First of all, the matrix A is singular. That is,
it contains multiple columns of only zeros, since multiple
raw events will not measure anything that relates to kernels
with floating-point operations (e.g., events that measure TLB
misses). Even if we removed those columns in a filtering step,
there will be other non-zero columns that will appear multiple
times, columns that are scaled versions of other columns, and
columns that are linear combinations of other columns. For
example, events that measure integer operations or branch
operations would cause this for the floating-point kernels,
since the headers of the loops will contain integer operations
and branches. In theory, such columns could also be filtered
out of A using a matrix orthogonalization algorithm, such
as QR. However, noise in the measurements can hide linear
dependencies between columns, or create bogus dependencies
between columns that ought to be independent. For example,
the vectors (1,1) and (0.99,1.01) are numerically linearly
independent (since one cannot be expressed as a scaled version
of the other) but semantically they are the same vector if
their difference is solely due to noise. Besides noise, the
vast divergence of scale between different columns would
cause QR to pick irrelevant events in the resulting matrix.
For example, events measuring cycles would lead to columns
that have a significantly larger norm than the column resulting
from floating-point events. Since the norm of a vector is the
criterion that QR typically uses to select vectors, the resulting
matrix would contain many irrelevant events.

In the following sections, we describe the analysis and data
manipulation we performed on our measurements in order
to overcome all of these difficulties and produce meaningful
combinations of raw events that define the metrics in which
programmers are interested.

III. STRUCTURE OF CAT BENCHMARK DATA

The first microkernel in the CAT CPU-FLOPs benchmark
contains three loops as shown in Figure 1. The loops con-
tain 24, 48, and 96 double-precision scalar instructions re-
spectively. Let us refer to this kernel as KSCAL. A second
microkernel has the same structure, but contains loops with
12, 24, and 48 AVX256 fused multiply-add instructions. Let
us refer to this one as K256

FMA.
In the interest of readability, in the following discussion we

will assume that the target platform only has two types of
floating-point instructions, double-precision scalar non-FMA,
and double-precision AVX256 FMA.

A. Event Signatures

A metric that performance analysts are often interested
in is double-precision floating-point operations, DP FLOPs.
However, this metric does not correspond to any raw event
in most existing hardware. Therefore, we must compose it by
combining existing raw events. The challenge is to identify
which existing raw events we need to use and how they need
to be scaled in order to properly compose the event in which
we are interested.
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Block x12 times
Instructions: 24

Block x24 times
Instructions: 48

Block x48 times
Instructions: 96

Fig. 1: Double-precision scalar floating-point kernel, KSCAL.

On the simplified target hardware that we mentioned above,
the values of this metric during the execution of the KSCAL

kernel would be (24,48,96) per iteration, for the three loops
of the kernel, since each DP instruction in the kernel per-
forms a DP operation. In contrast, when executing the K256

FMA
kernel, we would expect the FLOP counts for the three
loops to be (96,192,384) since each AVX256 FMA instruc-
tion performs eight FLOPs. The measurements from these
two kernels concatenated together would form the vector
(24,48,96,96,192,384), which we will refer to as the signature
for DP FLOPs.

Since this event does not exist on the target hardware
though, the goal now is to form this signature by adding
together scaled measurement vectors of events that actually
exist on the target architecture. Let us consider that the target
hardware has a raw event that measures only DP scalar non-
FMA instructions, and another that only measures DP AVX256
FMA instructions (both of which are common in real hard-
ware). If we monitor the scalar event while executing kernel
KSCAL followed by kernel K256

FMA, we will obtain as output
the vector (24,48,96,0,0,0), denoted by DSCAL. If we monitor
the AVX event while running the same two kernels, we will
obtain as output the vector (0,0,0,12,24,48), denoted by D256

FMA.
Each AVX256 FMA instruction performs eight floating-point
operations, so since we are interested in composing a FLOPs
event, we need to scale D256

FMA by a factor of eight. Scaling and
adding these measurement vectors, as shown in Equation 1,
produces the desired signature for all DP FLOPs from these
two raw, instruction-counting events.

All DP FLOPs = DSCAL +8 ·D256
FMA


24
48
96
96
192
384

=


24
48
96
0
0
0

+8 ·


0
0
0
12
24
48

=


24
48
96
0
0
0

+


0
0
0
96

192
384

 (1)

In this simplified example, we demonstrated how we can
use the measurements we obtained from monitoring existing
raw events while executing kernels to compose an event based
on its “signature.” Essentially, the signature describes what
we expect the composed event to measure when executing a
specific set of kernels.

However, the aforementioned description was an over-
simplification of the floating-point hardware. In reality,
there are more types of floating-point instructions than
strictly scalar and AVX256 FMA in double-precision.
To capture this complexity, we use more than the two
kernels we discussed previously. Namely, we use ker-
nels for scalar and all AVX vector widths, both FMA
and non-FMA, and in both single- and double-precision:
Space={scalar, 128, 256, 512}×{FMA,non-FMA}×{SP,DP}

B. Event Measurement Normalization

We use the term expectation to refer to the vector of
expected measurements when monitoring an ideal event while
executing all those kernels in sequence. In the above example,
the expectation vectors were DSCAL and D256

FMA. Note that we
used the term “ideal event,” as opposed to “raw event,” because
some of the expectation vectors might refer to events that do
not exist in a target architecture. For example, several Intel
processors only offer raw events that count both FMA and non-
FMA instructions, instead of raw events that count strictly one
or the other. Similarly, several AMD processors do not offer
different events for strictly single-precision, or strictly double-
precision instructions. In contrast, our expectation vectors span
all of these ideal performance concepts.

Scaling and combining all the relevant expectations results
in the correct DP FLOPs signature as follows:

1 ·DSCAL +2 ·D128 +4 ·D512 +8 ·D512 +2 ·DSCAL
FMA +4 ·D128

FMA +8 ·D256
FMA +16 ·D512

FMA

A different way to view this is that we use the expectation
vectors to project the signature of the performance metric we
are trying to compose (e.g., DP FLOPs) onto a set of “ideal
hardware dimensions” defined by the ideal events.

Combining the entire set of expectation vectors into a
matrix forms an expectation basis, E, which we can use as a
coordinate system to represent different events. For example,
in the coordinate system formed by the expectation basis:

E =

 | | | | | · · · | | · · · | | · · · |
SSCAL S128 S256 S512 DSCAL · · · D512 SSCAL

FMA · · · S512
FMA DSCAL

FMA · · · D512
FMA

| | | | | · · · | | · · · | | · · · |


the DP FLOPs signature has the representation:

(0,0,0,0,1,2,4,8,0,0,0,0,2,4,8,16)
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Note that half the values are zeros because they correspond
to single-precision (SP) expectations, which do not contribute
to the signature of DP FLOPs.

After we have established our expectation basis E for the
FLOPs benchmark, we can obtain the representation for the
measurement vector me of a raw event e by solving the linear
algebra problem:

E · xe = me

where E is the expectation basis, and xe is the resulting
representation of me.

However, because this linear system is rectangular for
some expectation bases, we solve it using least squares. If
the least-squares error is too large, then an event cannot be
sufficiently represented in the expectation space and therefore
is disregarded from further analysis.

After using this process to produce the xe vector for each
event e, we concatenate all such vectors into a matrix X. Note
that there is a distinct matrix X for each set of benchmark
kernels (i.e., events for FLOPs, branches, caches, etc. are
handled independently). In Section IV, we describe how we
suppress the noise of the vectors that we add into matrix X,
and in Section V, we explain how we generate a new matrix
X̂ that contains linearly independent columns of X so that we
can use it to define useful metrics.

C. GPU FLOPs

The analysis we are describing in this paper is not limited
to one type of events, nor only events that originate on the
CPU, nor any other event-specific limitation. In this section,
we utilize a GPU benchmark that stresses the floating-point
units. This benchmark contains kernels that do one of addition,
subtraction, multiplication, square root, and fused multiply-
add. We tested these kernels on Frontier’s AMD MI250X
GPUs. The symbols we use in this expectation basis are
denoted by TP, where T is the type of operation—A, S, M,
SQ, or F—standing for the aforementioned operations. P is
the precision of the operation—H, S, or D—denoting half-,
single-, or double-precision. Table II lists the signatures for
floating-point metrics on the GPU. The portions of signatures
corresponding to the FMA kernels are scaled by two because
the kernels issue instructions, but an FMA is two arithmetic
operations per instruction.

EGPU FLOP =

 | | | | · · · | · · · | · · · |
AH AS AD SH · · · MH · · · SQH · · · FD
| | | | · · · | · · · | · · · |

 (2)

D. Branching

We use the same notation as [14] for the branching basis.
The symbols CE, CR, T, D, and M denote Conditional
Branches Executed, Conditional Branches Retired, Condi-
tional Branches Taken, Unconditional (Direct) Branches, and
Mispredicted Branches, respectively.

Table III lists the signatures for branching metrics.
Conditional Branches Not Taken is equivalent to Condi-
tional Branches Retired minus Conditional Branches Taken.

Correctly Predicted Branches is equivalent to Conditional
Branches Retired minus Mispredicted Branches. All other
signatures have a one-to-one mapping with the expectations.

Ebranch =

 | | | | |
CE CR T D M
| | | | |

=



2 2 1.5 0 0
2 2 1 0 0
2 2 2 0 0
2 2 1.5 0 0.5

2.5 2.5 1.5 0 0.5
2.5 2.5 2 0 0.5
2.5 2 1.5 0 0.5
3 2.5 1.5 0 0.5
3 2.5 2 0 0.5
2 2 1 1 0
1 1 1 0 0


(3)

E. Data Caches

The CAT data cache benchmark performs a pointer chase
on a buffer. By controlling the size of the buffer, it can incur
hits or misses on the different levels of the cache hierarchy.
This benchmark uses multiple concurrent threads working
independently on disjoint buffers to add more pressure on the
memory subsystem than a single thread would impose. The
following symbols are used to denote the expectations for the
data caches: L1DM, L1DH, L2DH, and L3DH. In this basis, the
symbols DM and DH denote Demand Misses and Demand
Hits. The signatures for various data cache metrics are listed
in Table IV.

IV. NOISE ANALYSIS

As mentioned in Section II, variability in event measure-
ments due to noise is problematic. Thus, we filter such noisy
events out of our analysis pipeline. To quantify the variability
of an event, we collect the event’s measurement vector from
multiple repetitions of a CAT benchmark. We compute the root
normalized mean-square error (RNMSE) between each pair
of measurement vectors (mi

e and m j
e) and keep the maximum

value. The maximum RNMSE is given by Equation 4. In this
formula, mi

e and m j
e are measurement vectors, and N is the

number of elements in each vector. When the denominator in
this formula is zero, it means that the average value of an
event’s measurement vector (m̄i

e or m̄ j
e) is zero. If one of these

two quantities is zero, then we define the variability to be one,
corresponding to a 100 percent error.1 We introduce a noise
threshold, τ; if an event has a variability measure greater than
the noise threshold τ , it is regarded as being too noisy to be
reliably controlled by CAT benchmarks, and the event is not
considered for further analysis.

Max. RNMSE(me) = maxi̸= j
∥mi

e−m j
e∥2√

N ∗ m̄i
e ∗ m̄ j

e

(4)

In Figure 2a, we show the max-RNMSE value for each event
measurement from the CAT branching benchmark, sorted in
increasing order. There is a cluster of events with a zero
variability (these are plotted as machine epsilon on the y-axis
for the sake of visualization on a logarithmic scale). From
these results, we can see that setting τ to any value from

1If all measurements of an event are zero, then the event is discarded as
irrelevant.
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10−4 to 10−15 unambiguously divides the zero-noise events
from the noisy events. For the experiments described in this
paper, we chose the value 10−10 for τ . We discard events with
noise above this threshold (indicated by the shaded regions in
Figure 2). For events with noise below this threshold, we can
keep the average measurement vector from all repetitions, or
any one of the vectors since all vectors are identical.

We repeat this analysis for the event measurements from the
other CAT benchmarks, as shown in Figures 2b-2d. The event
measurements from the CPU- and GPU-FLOPs benchmarks
have a cluster of zero-noise events, similarly to those from the
branching benchmark. Therefore, for these two benchmarks,
we also set τ to 10−10. For the data cache benchmark mea-
surements, the value of τ is not as clear as it is for the other
benchmarks, due to the unpredictability and complex behavior
of the cache hierarchy. However, from empirical observations,
we found that setting τ to 10−1 is sufficient. This is true
because this filtering step is only meant to reduce the amount
of noisy, irrelevant measurements that will proceed to the next
stage of the analysis. Choosing a lenient filtering threshold
leading to false positives is better than not applying this step
at all.

These results show that τ can vary depending on the part
of the hardware to which a class of events relates, because
different hardware components exhibit different levels of
noise. Other studies [15] have also found that certain hardware
counters are less prone to noise than others. For most classes
of events, the separation between noisy and noise-free events
is clear, and choosing a cutoff threshold does not require a
very careful selection process. For the cache events, where
noise is more prominent, we choose a lenient cutoff threshold
to only filter out the noisiest events, because in a subsequent
step we will use multiple measuring threads and select the
median measurement among them to further suppress noise.

V. SPECIALIZED QRCP FACTORIZATION

As we mentioned before, in order to define useful metrics
from the raw events, we need the columns of matrix X to
be linearly independent. The mathematical reason behind this
requirement is that if there are linearly dependent columns in
a matrix A, then when trying to solve the system A · x = b,
there can be infinite solutions. However, for the purposes of
defining a performance metric, there is only one solution (i.e.,
one combination of raw events) that is the most meaningful.
Another way to view this is that linearly independent event
representations are semantically equivalent to events that pro-
vide distinct information from each other, and therefore are
best equipped to construct higher-level metrics.

QRCP is an orthogonal matrix factorization that provides a
linearly independent subset of a matrix’s columns. Algorithm 1
outlines the basic steps in computing the QRCP, where matrix
X is the input matrix. As can be seen in the listing, π is the ar-
ray containing the permuted column-indices of X. We say that
a matrix has rank k if it has k linearly independent columns. In
this case the first k entries of π will correspond to the linearly
independent columns, and the others will correspond to the
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(a) CAT branching benchmark.
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Fig. 2: Event variabilities in CAT benchmarks.
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remaining columns (which are linearly dependent on the first
k).

Algorithm 2 is our modified version of the QRCP. Our
modifications are focused on the pivot step, so that the linearly
independent columns that are chosen by the algorithm best
fit the needs of our analysis. Our modified algorithm takes
matrix X as input and provides the permutation array as output;
however, it also takes a tolerance α as input. The primary dif-
ference between Algorithms 1 and 2 is that Algorithm 2 uses
a special pivoting scheme (Line 3) that prioritizes columns
that are closer to the expectations in the basis. In other words,
columns that contain a few values of one and multiple values
of zero are prioritized over columns that contain an assortment
of values that differ from one and zero. In contrast, in the
standard QRCP, the pivot is chosen as the column with the
largest norm [16], which is the opposite of what we want
for our analysis. Regardless of the pivoting scheme, linear
independence of the resulting events is guaranteed by the
orthogonalization inherent to QR.

For this scheme to be practical, we introduce the tolerance
α to account for noise in event measurements. Each element
u of X (u := Xi j) is rounded to the closest integer within a
tolerance of α using the formula:

R(u) = α · ⌊ u
α
+0.5⌋

After rounding the values in X, the pivoting scheme scores
each column in X as follows. Every element v := |Xi j| of a
column j contributes to the pivoting score of the column based
on the following formula:

Sc(v) =


v, if v≥ 1
1/v, if 0 < v < 1
0, if v = 0

The global minimum score is tracked along the way. If
multiple columns have this minimum score, then the tie is
broken by choosing the column in X with the smallest norm.
However, if the norm of a column is smaller than a threshold β

(where we define β to be the norm of the vector in which each
element is α), then this column is disregarded. This ensures
that columns close to the zero-vector are not chosen as a pivot.
If all pivot candidates have a norm that is smaller than β ,
then the algorithm terminates (in Algorithm 2, we show this
as setting the pivot to -1).

To give an example of the two operations of the two previ-
ous formulas, for α = 0.01, the vector: (1.002,0.001,90.5,1.5)
would have the score:

1+0+
1

0.5
+1.5 = 4.5

Using the rounding and scoring formulas on the matrix X,
followed by the modified QR that we described, results in a
matrix X̂ which is either square or overdetermined2, and has
linearly independent columns.

2The matrix has at least as many rows as it has columns.

Algorithm 1 QRCP.
Input A ∈ Rm×n

Output π ∈ Nn

1: π ← [1, . . . ,n]
2: for i = 1, . . . ,n do
3: pivot← argmaxi≤ j≤n∥Ai:m, j∥2
4: A:,pivot↔ A:,i
5: πi↔ πpivot
6: Update A using column pivot.
7: end for

Algorithm 2 QRCP with Specialized Pivoting Scheme.
Input A ∈ Rm×n,α ∈ R
Output π ∈ Nn

1: π ← [1, . . . ,n]
2: for i = 1, . . . ,n do
3: pivot← get pivot(A,π, i,α)
4: if pivot == 91 then
5: BREAK
6: end if
7: A:,pivot↔ A:,i
8: πi↔ πpivot
9: Update A using column pivot.

10: end for

A. CPU FLOPs

Setting α = 5×10−4, Algorithm 2 resulted in an X̂ whose
columns correspond to the following events:
FP_ARITH_INST_RETIRED:[128|256|512]B_PACKED_[SINGLE|DOUBLE]

and FP_ARITH_INST_RETIRED:SCALAR_[SINGLE|DOUBLE].

These events chosen by the QR are “good” in the sense that
they closely correspond with the expected event occurrence
patterns and therefore the intended, targeted attributes of the
floating-point units.

B. GPU FLOPs

By setting α = 5×10−4, Algorithm 2 identified the follow-
ing key FLOPs events for the GPU:
SQ_INSTS_VALU_[ADD|MUL|TRANS|FMA]_F[16|32|64].3

The events SQ_INSTS_VALU_ADD_F[16|32|64] occur
in equivalent amounts for addition and subtraction kernels,
indicating that it counts both types of operations.

C. Branching

After setting α = 5×10−4, Algorithm 2 found the events:
• BR_MISP_RETIRED,
• BR_INST_RETIRED:COND,
• BR_INST_RETIRED:COND_TAKEN,
• BR_INST_RETIRED:ALL_BRANCHES.

3These events are prefixed with ‘rocm:::’ and suffixed with ‘device=0’
in PAPI; the ‘device’ qualifier can assume the value of 0-7 on Frontier since
there are 8 GPU devices per node, but we need only define metrics for a single
device. These are excluded from the above text for the sake of readability.
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D. Data Caches

Setting α = 5×10−2, Algorithm 2 chose the events:
• MEM_LOAD_RETIRED:L3_HIT,
• L2_RQSTS:DEMAND_DATA_RD_HIT,
• MEM_LOAD_RETIRED:L1_MISS,
• MEM_LOAD_RETIRED:L1_HIT.

E. Threshold Sensitivity

The threshold α that we used for the data cache events was
chosen to be higher than the other event categories because
α is a noise tolerance threshold and, as we discussed in
Section IV, the cache events exhibit higher levels of noise than
all other events. The actual value of the threshold is chosen
empirically, but it does not have to be a perfect “magic” value.
A wide range of values for α lead to the creation of a matrix
X̂ that contains events that properly capture the behavior of
the hardware component that is tested by the corresponding
kernels.

VI. DEFINING USEFUL METRICS

Since we have the linearly independent events from the
analysis performed in Section V, we are able to meaningfully
solve the system of the form X̂y = s, where X̂ is the matrix of
events chosen by the QR, and s is the signature for a metric
that we want to compose, such as those in Tables I-IV.

TABLE I: CPU FLOPs Metric Signatures

Performance
Metric

Signature
(SSCAL,...,D512

FMA)
SP

Instrs. (1,1,1,1,0,0,0,0,2,2,2,2,0,0,0,0)

SP
Ops. (1,4,8,16,0,0,0,0,2,8,16,32,0,0,0,0)

SP FMA
Instrs. (0,0,0,0,0,0,0,0,2,2,2,2,0,0,0,0)

DP
Instrs. (0,0,0,0,1,1,1,1,0,0,0,0,2,2,2,2)

DP
Ops. (0,0,0,0,1,2,4,8,0,0,0,0,2,4,8,16)

DP FMA
Instrs. (0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2)

TABLE II: GPU FLOPs Metric Signatures

Performance
Metric

Signature
(AH,...,FD)

HP Add
Ops. (1,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

HP Sub
Ops. (0,0,0,1,0,0,0,0,0,0,0,0,0,0,0)

HP Add
and Sub Ops. (1,0,0,1,0,0,0,0,0,0,0,0,0,0,0)

All HP
Ops. (1,0,0,1,0,0,1,0,0,1,0,0,2,0,0)

All SP
Ops. (0,1,0,0,1,0,0,1,0,0,1,0,0,2,0)

All DP
Ops. (0,0,1,0,0,1,0,0,1,0,0,1,0,0,2)

TABLE III: Branching Metric Signatures

Performance
Metric

Signature
(CE,CR,T,D,M)

Unconditional
Branches. (0,0,0,1,0)

Conditional
Branches Taken. (0,0,1,0,0)

Conditional
Branches Not Taken. (0,1,91,0,0)

Mispredicted
Branches. (0,0,0,0,1)

Correctly
Predicted Branches. (0,1,0,0,91)

Conditional
Branches Retired. (0,1,0,0,0)

Conditional
Branches Executed. (1,0,0,0,0)

TABLE IV: Data Cache Metric Signatures

Performance
Metric

Signature
(L1DM, · · · , L3DH)

L1 Misses. (1,0,0,0)
L1 Hits. (0,1,0,0)

L1 Reads. (1,1,0,0)
L2 Hits. (0,0,1,0)

L2 Misses. (1,0,91,0)
L3 Hits. (0,0,0,1)

We solve this system in the following subsections to define
metrics as combinations of raw events. If the QR detected
fewer linearly independent events than there are expectations
in the basis, then X̂ will have more rows than columns. Since
the system is rectangular in this case, we solve the it using
least squares.

Backward Error =
∥Êy− s∥2

∥Ê∥2 · ∥y∥2 +∥s∥2
(5)

The fitness of a least-squares solution is given by the back-
ward error, provided in Equation 5. [16] This error is listed in
Tables V-VII for each signature’s least-squares approximation.

A. CPU FLOPs

Using the events chosen by the QR from Section V and the
signatures from Table I, we utilize least squares to define the
floating-point metrics in Table V. The number of instructions
for both single- and double-precision are simply the sum of
the scalar and vector events for the respective precision. The
number of operations is a weighted sum of the same events.
For the operations metrics, each event is scaled by the number
of floating-point operands. The least-squares error for most
of these metrics is extremely small, indicating that these are
indeed good metric definitions. However, the error is relatively
large for the FMA instructions metrics. Furthermore, the least
squares gives unintuitive linear combination of events for these
metrics. These results suggest that there do not exist dedicated
FMA-counting events in this architecture, which we can verify
by manually inspecting the list of raw events. Therefore, our

722

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on August 30,2024 at 18:53:26 UTC from IEEE Xplore.  Restrictions apply. 



analysis correctly identifies both the existence and the absence
of events that can compose desired performance metrics.

TABLE V: CPU Floating-Point Metrics

Metric Combination of
Raw Events Error

SP
Instrs.

1×FP_ARITH_INST_RETIRED:128B_PACKED_SINGLE

+ 1×FP_ARITH_INST_RETIRED:256B_PACKED_SINGLE

+ 1×FP_ARITH_INST_RETIRED:512B_PACKED_SINGLE

+ 1×FP_ARITH_INST_RETIRED:SCALAR_SINGLE

1.67e-16

SP
Ops.

4×FP_ARITH_INST_RETIRED:128B_PACKED_SINGLE

+ 8×FP_ARITH_INST_RETIRED:256B_PACKED_SINGLE

+ 16×FP_ARITH_INST_RETIRED:512B_PACKED_SINGLE

+ 1×FP_ARITH_INST_RETIRED:SCALAR_SINGLE

6.05e-18

SP FMA
Instrs.

0.8×FP_ARITH_INST_RETIRED:128B_PACKED_SINGLE

+ 0.8×FP_ARITH_INST_RETIRED:256B_PACKED_SINGLE

+ 0.8×FP_ARITH_INST_RETIRED:512B_PACKED_SINGLE

+ 0.8×FP_ARITH_INST_RETIRED:SCALAR_SINGLE

2.36e-1

DP
Instrs.

1×FP_ARITH_INST_RETIRED:128B_PACKED_DOUBLE

+ 1×FP_ARITH_INST_RETIRED:256B_PACKED_DOUBLE

+ 1×FP_ARITH_INST_RETIRED:512B_PACKED_DOUBLE

+ 1×FP_ARITH_INST_RETIRED:SCALAR_DOUBLE

5.55e-17

DP
Ops.

2×FP_ARITH_INST_RETIRED:128B_PACKED_DOUBLE

+ 4×FP_ARITH_INST_RETIRED:256B_PACKED_DOUBLE

+ 8×FP_ARITH_INST_RETIRED:512B_PACKED_DOUBLE

+ 1×FP_ARITH_INST_RETIRED:SCALAR_DOUBLE

1.69e-19

DP FMA
Instrs.

0.8×FP_ARITH_INST_RETIRED:128B_PACKED_DOUBLE

+ 0.8×FP_ARITH_INST_RETIRED:256B_PACKED_DOUBLE

+ 0.8×FP_ARITH_INST_RETIRED:512B_PACKED_DOUBLE

+ 0.8×FP_ARITH_INST_RETIRED:SCALAR_DOUBLE

2.36e-1

B. GPU FLOPs

We repeat the least-squares analysis to define the GPU
floating-point metrics in Table VI. The error for each of the
HP Add and HP Sub metrics is relatively large. This again
suggests that these metrics cannot be defined in isolation on
this architecture; however, the metric of HP Adds and Subs
is indeed defined. The metrics for All Operations for each
precision are also defined using the results from the least
squares. These metric definitions have very small errors.

TABLE VI: GPU Floating-Point Metrics

Metric Combination of
Raw Events Error

HP
Add. 0.5×SQ_INSTS_VALU_ADD_F16 4.14e-1

HP
Sub. 0.5×SQ_INSTS_VALU_ADD_F16 4.14e-1

HP Add.
and Sub. 1×SQ_INSTS_VALU_ADD_F16 5.55e-17

All HP
Ops.

2×SQ_INSTS_VALU_FMA_F16

+ 1×SQ_INSTS_VALU_MUL_F16

+ 1×SQ_INSTS_VALU_TRANS_F16

+ 1×SQ_INSTS_VALU_ADD_F16

2.39-17

All SP
Ops.

2×SQ_INSTS_VALU_FMA_F32

+ 1×SQ_INSTS_VALU_MUL_F32

+ 1×SQ_INSTS_VALU_TRANS_F32

+ 1×SQ_INSTS_VALU_ADD_F32

2.39e-17

All DP
Ops.

2×SQ_INSTS_VALU_FMA_F64

+ 1×SQ_INSTS_VALU_MUL_F64

+ 1×SQ_INSTS_VALU_TRANS_F64

+ 1×SQ_INSTS_VALU_ADD_F64

2.39e-17

C. Branching

We perform the least-squares analysis for the metrics listed
in Table VII. All of these metrics, with the exception of
All Branches Executed, can be defined for this architecture.
The small errors and reasonable linear combinations of raw
events produced by least-squares verify that these metrics are
well defined; whereas, the near-zero coefficient in the last
linear combination, along with the error having the maximum
possible value (1) indicate the lack of raw events that can
compose an All Branches Executed metric.

TABLE VII: Branching Metrics

Metric Combination of
Raw Events Error

Unconditional
Branches.

91×BR_INST_RETIRED:COND

+ 1×BR_INST_RETIRED:ALL_BRANCHES
4.03e-16

Conditional
Branches

Taken.
1×BR_INST_RETIRED:COND_TAKEN 2.15e-16

Conditional
Branches

Not Taken.

1×BR_INST_RETIRED:COND

- 1×BR_INST_RETIRED:COND_TAKEN
2.35e-16

Mispredicted
Branches. 1×BR_MISP_RETIRED 9.26e-17

Correctly
Predicted
Branches.

91×BR_MISP_RETIRED

+ 1×BR_INST_RETIRED:COND
2.80e-16

Conditional
Branches
Retired.

1×BR_INST_RETIRED:COND 4.93e-16

Conditional
Branches
Executed.

2.22e-16×BR_MISP_RETIRED

+ 5.62e-16×BR_INST_RETIRED:COND

+ 1.53e-16×BR_INST_RETIRED:COND_TAKEN

+ 9.86e-32×BR_INST_RETIRED:ALL_BRANCHES

1.0

D. Data Caches

Table VIII shows the least-squares results for the data cache
metrics. For all of these metrics, there is very little least-
squares error. The coefficients are not exactly zero or one in
the event combinations in Table VIII; however, this can be
attributed to the noise from the data cache benchmark. Notice
that the coefficients are either within 2% of one, or smaller
than 5.87× 10−3. Therefore, we can easily round them to
one or zero. If we round the coefficients to zero or one to
form a new combination, then we can evaluate how well the
combination compares to the signature. Figure 3 shows that
rounding the coefficients from least squares provides an exact
match for the signatures. This means that the least squares
yields accurate raw-event combinations, even for the noisy
data cache events. These results show that we must account
for architectural nuance when forming signatures; we are able
to discover valuable combinations of raw events to the extent
that we understand the noise present in the hardware attributes
of a given architecture.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have introduced an automated mathemati-
cal analysis to parse through thousands of events and identify
those most pertinent to specific hardware components. We
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(b) L1 Misses.
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(c) L1 Reads.
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(d) L2 Hits.
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(e) L2 Misses.
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Fig. 3: Various data cache metric approximations from least squares.

have demonstrated the use of this analysis with both CPU
and GPU floating-point units, branching units, and the memory
subsystem, by coupling the analysis with the CAT benchmarks
on the Intel Sapphire Rapids CPU and the AMD MI250X GPU
architectures.

We are able to account for high levels of noise by collecting
event measurements multiple times and excluding events that
have high run-to-run variability across measurements. We
quantify this noise using the maximum RNMSE between
two measurements. For the data cache benchmark, we use

multiple threads for our experiments, and minimize the noise
by keeping the median reading across all threads.

These strategies sufficiently precondition measurement data
prior to the QR factorization. Furthermore, our specialized QR
factorization allows us to account for small noise, making
it useful for data analysis of practical counter readings. We
observed that branching and FLOPs (both CPU and GPU)
events exhibit relatively low amounts of noise when executing
the CAT benchmarks; however, the measurements of events
corresponding to the memory subsystem are noisier.
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TABLE VIII: Data Cache Metrics

Metric Combination of
Raw Events Error

L1 Misses.

2.56e-3×MEM_LOAD_RETIRED:L3_HIT

+ 3.50e-4×L2_RQSTS:DEMAND_DATA_RD_HIT

+ 1.00001×MEM_LOAD_RETIRED:L1_MISS

- 3.05e-4×MEM_LOAD_RETIRED:L1_HIT

4.07e-16

L1 Hits.

95.69e-6×MEM_LOAD_RETIRED:L3_HIT

- 4.21e-4×L2_RQSTS:DEMAND_DATA_RD_HIT

- 4.19e-6×MEM_LOAD_RETIRED:L1_MISS

+ 0.9996×MEM_LOAD_RETIRED:L1_HIT

9.64e-17

L1 Reads.

2.55e-3×MEM_LOAD_RETIRED:L3_HIT

- 7.14e-5×L2_RQSTS:DEMAND_DATA_RD_HIT

+ 1.00001×MEM_LOAD_RETIRED:L1_MISS

+ 0.9993×MEM_LOAD_RETIRED:L1_HIT

1.70e-16

L2 Hits.

95.87e-3×MEM_LOAD_RETIRED:L3_HIT

+ 1.003×L2_RQSTS:DEMAND_DATA_RD_HIT

- 2.39e-3×MEM_LOAD_RETIRED:L1_MISS

- 3.11e-4×MEM_LOAD_RETIRED:L1_HIT

2.51e-16

L2 Misses.

8.43e-3×MEM_LOAD_RETIRED:L3_HIT

- 1.002×L2_RQSTS:DEMAND_DATA_RD_HIT

+ 1.002×MEM_LOAD_RETIRED:L1_MISS

+ 5.74e-6×MEM_LOAD_RETIRED:L1_HIT

2.33e-16

L3 Hits.

1.02×MEM_LOAD_RETIRED:L3_HIT

+ 5.22e-3×L2_RQSTS:DEMAND_DATA_RD_HIT

- 5.26e-3×MEM_LOAD_RETIRED:L1_MISS

- 5.88e-6×MEM_LOAD_RETIRED:L1_HIT

2.54e-16

We implemented a specialized QR pivoting strategy that
chooses the best sets of events representing our hardware
expectation bases. It accomplishes this by prioritizing events
which are closest to the individual dimensions of the expec-
tation basis.

After producing the set of linearly independent events from
the QR, performing least squares on the resulting matrix
successfully provided linear combinations of raw events for
the desired metrics, and it correctly indicated through the
resulting error the cases where a metric cannot be composed
from raw events on a given architecture. This analysis provides
a numerical notion of fitness, which aids in validating event
combinations. Our analysis defined architecturally available
branching, floating-point, and cache metrics.

Even in the case of the cache metrics, where noise is the
most prevalent, we demonstrated that rounding the resulting
coefficients by just a few percent results in simple combina-
tions of raw events that behave in ways that perfectly match
the desired signatures of the performance metrics.

Future work will entail methods to develop different mea-
sures to quantify event noise and more rigorously select noise
suppression thresholds and pivoting criteria.
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