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A B S T R A C T

The stress field around a vertex of angular inhomogeneity has been investigated by Eshelby’s

equivalent inclusion method (EIM). Different from Eshelby’s problem for ellipsoidal inhomo-

geneity with a uniform or polynomial eigenstrain, a singular eigenstrain field is derived by Airy’s

stress function and asymptotic analysis, in which the singular elastic fields can be expressed in

terms of the distance to the vertex. The discontinuity of Eshelby’s tensor along the boundary

has been analytically derived and are used in the stress equivalence condition at the vertex,

which can be converted into an eigenvalue problem with the integral of the Green’s function

and singular eigenstrain over the inhomogeneity. To verify the solution, when the opening

angle 2𝛽 at the vertex approaches zero, the triangular void reduces to a slit-like crack, and

the paper reproduces the classic solution of 1∕
√
𝑟 singularity. When 𝛽 increases from 0 to 𝜋∕2,

the singularity parameter 𝜆 around the vertex of the triangular void reduces at different pace

under the symmetric and antisymmetric loading conditions. When a triangular inhomogeneity

exhibits nonzero stiffness and different angles, 𝜆 changes with the stiffness ratio, 𝛽, and loading

conditions, and the dominant stress singularity around the vertex and stress discontinuity across

the boundary are analytically provided. Particularly, the stress singularity for an adhesive

interface with varying stiffness provides insight for structure repair and integration.

1. Introduction

Stress singularity has been a fascinating and attractive topic in solid mechanics. The discussion of strong singular behavior

can be traced back to the nineteenth century, the infinite elastic fundamental solution (Thomson (Lord Kelvin), 1848), namely

Kelvin’s solution. Subsequently, the fundamental solutions have been extended to surface loads on the half-space (Boussinesq,

1885), and concentrate force within the semi-domain Mindlin (1936), which exhibit a strong stress singularity 𝑟−2 and 𝑟−1 for

three-dimensional (3D) and two-dimensional (2D) problems (Wang, 1985), respectively. In addition to concentrated loads, material

discontinuities (Bogy, 1968), geometric features (Williams, 1952; Dempsey and Sinclair, 1979) and loading aspects (Dundurs and

Markenscoff, 1989) also induce stress singularities. It is challenging to evaluate the local field directly in numerical methods due

to the computational convergence and stability. Surface integral in 3D (Eshelby, 1951) and contour integral in 2D (Eshelby, 1956;

Rice, 1968) have often been used to quantify the singularity. The analytical solution of singularity provides a straightforward and

robust approach to directly show the local field in the neighborhood of the singularity.
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In the literature, there are several schools of analytical methods to identify singularity. Williams (1952) utilized Airy’s stress

function and separation of variables to investigate stress singularities of single-material wedge problems. Subsequently, Dempsey

and Sinclair (1979) extended William’s method by taking derivatives with respect to the singularity parameter 𝜆, which can identify

logarithmic singularities for the composite wedge. A similar approach using complex potentials can solve the single-material wedge

problem (Williams, 1956; Muskhelishvili, 2010) with a compact notation. Bogy (1968) applied the Mellin transform to study

singularities caused by the material mismatch. In addition, Eshelby’s equivalent inclusion method (EIM) can transfer an ellipsoidal

inhomogeneity problem into fracture analysis by changing the aspect ratio of the ellipsoid (semi-axis 𝑎1, 𝑎2, 𝑎3). For example, setting

𝑎1 = 𝑎, 𝑎2 → 0, 𝑎3 → ∞, one can solve the classic slit-like crack problem (Giordano and Colombo, 2007; Zhou et al., 2013). Since

Eshelby’s tensor of ellipsoidal is constant for interior observing points, the eigenstrain of the slit-like crack problem is also constant

if given a uniform far-field load, and the exterior fields exhibit 1∕
√
𝑟 singularity through limiting Eshelby’s tensor. This method can

also be extended to other crack problems, such as penny-shaped cracks, and the solution scheme can be changed with Griffith’s

criteria as well (Mura, 1987).

Extending Eshelby’s solutions on other geometric shapes, Rodin (1996) obtained Eshelby’s tensor for polygonal or polyhedral

inclusion with a uniform eigenstrain. Sevostianov and Kachanov (2007) investigated the effective elastic properties of ellipsoids and

compared them with the non-ellipsoidal cases. Moreover, Zhou et al. (2014) investigated the necessity of applying semi-analytical

solution schemes for cases of multiple and complex-shaped inclusions. Ma and Korsunsky (2014) provided the formulation in integral

form for inhomogeneity problems with an arbitrary shape, but the eigenstrain distribution in an angular inhomogeneity was not

studied.

Sun et al. (2012) and Yue et al. (2015) studied the full-space anisotropic piezoelectric inclusion problem. By virtue of the Green’s

function and equivalent body force transformation, the authors converted domain integrals into boundary integrals, composed

of elementary closed-form expression. Chiang (2015) considers inclusion problems in orthotropic media. The author derived a

more compact Green’s function and conducted an integral over line segment under traction, and the author revealed logarithmic

singularity around two ends. Furthermore, this work (Chiang, 2015) explored more results in specific inclusions under dilatational

eigenstrain, such as polygon-approximated circles. Recently, Trotta’s group (Trotta et al., 2016, 2017) commented on Rodin’s

integral scheme (Rodin, 1996) that using the transformation coordinate may not be straightforward. Hence, they proposed an integral

scheme dependent on the Cartesian coordinate, simplifying the trivial process of domain integrals over polygons and polyhedrons.

Due to the challenge of representing the local varying eigenstrain using a constant term, Wu and Yin (2021) derived Eshelby’s tensors

with polynomial eigenstrain containing uniform, linear, quadratic and even higher order terms. Although such a scheme can provide

reasonable predictions for ellipsoidal or elliptical inhomogeneities, it seldom considers the singular distribution of eigenstrain and

stress fields around vertices.

Subsequently, Wu et al. (2021) proposes a domain discretization method on polyhedral inhomogeneities, which assigns

eigenstrain on nodes of sub-elements, but the analytical rigor is lost by given a finite eigenstrain on the vertex. Ru (1999) has

proposed the celebrated works with conformal mapping with analytical continuation for arbitrarily shaped inhomogeneities for

2-D elastic problems in entire and semi-infinite space. Rather than using Eshelby’s equivalent inclusion method, Ru focused on

continuous equations on the boundary, but the solution is highly dependent on the auxiliary function. Subsequently, Ru (2000) has

extended the solution scheme with conformal mapping for piezoelectric problems. Particularly, Wang and Schiavone (2021) have

suggested the difficulty of determining exterior fields of inhomogeneity as it requires a completely determined auxiliary function

involving the inverse mapping function. Zou et al. (2010) investigated non-elliptical inclusions for 2-D problems, including using

the Laurent polynomials and polygons to characterize the arbitrarily shaped geometric shapes. The authors further calculated the

spatially averaged Eshelby’s tensor for micromechanical models, such as comparing ellipse-approximated particles. In addition, Zou

et al. (2012) investigated the boundary effects of a finite domain with prescribed boundary conditions on an arbitrarily shaped

inclusion. The authors adopted a popular method, the complex variable method, for 2-D analysis, and the problem was solved in a

superposition scheme. Subsequently, Zou and He (2017) extended a similar superposition scheme for eccentric spherical inclusion

embedded in a finite spherical body.

Although Eshelby’s solution of ellipsoids with specific aspect ratios can be applied to investigate several interesting inhomo-

geneities or crack problems, such treatments are generally restricted by geometry shapes. They cannot be generalized to angular

inhomogeneities such as triangular inhomogeneities. According to Rodin’s work (Rodin, 1996) and our recent progress on polygonal

inclusions (Wu and Yin, 2021), given a continuous and differentiable eigenstrain field, stress/strain fields around the vertex exhibit

ln 𝑟 singularity. In such a case, if the classic slit-like crack is simulated by a triangular void with an adjusted aspect ratio, such as
opening angle 2𝛽 → 0 in Fig. 1, the previous conclusion of uniform eigenstrain by adjusted ellipsoidal does not hold for triangular

inhomogeneities due to inconsistent singularity orders for interior and exterior observing points.

Such phenomenon can be interpreted as different geometric functions that ellipsoids are described with quadratic functions,

while triangles exhibit sharp tips. Indeed, using a polynomial eigenstrain can rapidly estimate the solution. However, it may not

approach the exact solution by simply increasing the order of polynomial eigenstrain due to the singularity of Eshelby’s tensor at the

vertices (Zou and Zheng, 2012). Because the variation of eigenstrain is localized in the neighborhood of the vertices, it is inefficient

to represent the variation of eigenstrain through a single polynomial function. For example, the quarter-node elements have been

extensively applied in the boundary element and finite element methods to simulate slit-like crack problems, as its shape function

exhibits
√
𝑟 distribution (Portela et al., 1993). However, such numerical treatment requires a preliminary understanding of the

singular behavior of elastic fields around the tip. Hence, it is critical to understand the eigenstrain distribution and interior/exterior

elastic fields around the tip of the triangular inhomogeneity to integrate them into those numerical treatments (Aliabadi, 2002).
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Fig. 1. Schematic illustration of a triangular inhomogeneity 𝛺 with angle 2𝛽 and height ℎ embedded in an unbounded matrix  subjected to far-field load 𝜎0
𝑖𝑗
.

This paper focuses on the singularity on the top vertex of an isosceles triangle embedded in an unbounded matrix under uniform

far-field load. Using Airy’s stress function, the biharmonic potential functions can be expressed by separating variables. In such a

case, the mechanical stress components within the inhomogeneity can be expressed by functions of distance and angle. Following

Eshelby’s equivalent inclusion method (EIM), the triangular inhomogeneity can be replaced by an inclusion with an eigenstrain field.

Combining mechanical stress with Airy’s stress function, one can derive the eigenstrain through the equivalent stress conditions

in terms of stiffness tensors of the matrix and inhomogeneity. Through domain integrals of the eigenstrain with the modified

Green’s function, the disturbed strain and eigenstrain can be again associated through the equivalent stress condition, and the

dominant terms are isolated through the series expansion. Through solving the eigenvalue problem, the singular eigenstrain and

elastic distribution near the inhomogeneity tip can be obtained.

Note that this paper is fundamentally different from previous inclusion problems in the literature (Rodin, 1996; Gao and Liu,

2012; Wu and Yin, 2021; Wu et al., 2021), which investigated angular inclusion problems with a uniform or polynomial eigenstrain

that cannot exactly satisfy the equivalent inclusion condition. This paper investigates an angular inclusion with a singular eigenstrain

instead to meet the equivalent inclusion condition, and thus capture the singularity around the vertex.

In the following, Section 2 firstly introduces the boundary value problem (BVP) with the interface continuity. Subsequently, the

EIM formulations and equivalent stress conditions are provided. Airy’s stress functions are briefly reviewed, and the equivalent stress

conditions are converted into integral equations. The domain integrals of Green’s function with a singular source or eigenstrain field

are derived from the dominant term. Section 3 verifies the method through comparison with the classic slit-like problem and explains

the consistency of singularity order. Then, the method is applied to a general triangular void with different opening angles. Section 4

discusses the stress singularity for the general triangular inhomogeneity with different stiffness and angles under different loading

conditions. Particularly, when the opening angle is zero, the triangular inhomogeneity becomes an interface glued by an adhesive.

The stress singularity is studied. Section 5 provides some remarks of the significant results of this work and future extensions.

2. Formulation

2.1. Problem statement

Consider an inhomogeneity 𝛺 in the shape of an isosceles triangle with the opening angle 2𝛽 and height ℎ embedded in an
infinite domain  subjected to a far-field load 𝜎0

𝑖𝑗
shown as Fig. 1 in the Cartesian coordinate of the 𝑥1 −𝑥2 plane with the origin at

the top vertex. The matrix domain is denoted by −𝛺. It can be either plane stress or plane strain problem. This paper uses plane
strain for the formulation, in which the triangular inhomogeneities can be considered as a long prism with a triangular cross-section.

For the isotropic elastic medium, let 𝐶𝐼
𝑖𝑗𝑘𝑙

= 𝜆𝐼𝛿𝑖𝑗𝛿𝑘𝑙+𝜇𝐼 (𝛿𝑖𝑘𝛿𝑗𝑙+𝛿𝑖𝑙𝛿𝑗𝑘), where 𝜆𝐼 and 𝜇𝐼 denote the Lame constants of the 𝐼th phase
of the composite, where 𝐼 = 0 or 1 representing the matrix and the inhomogeneity, respectively. The governing equations can be
written as

𝐶𝐼
𝑖𝑗𝑘𝑙

(𝑢𝑘,𝑙𝑖 − 𝜀∗𝑘𝑙,𝑖) = 0 for 𝐱 ∈  (1)

Assume the interfaces are fully bonded. The boundary value problem of inhomogeneities could be enacted with the continuity

equations of displacements and tractions as follows.

𝜎+
𝑖𝑗
(𝐱)𝑛+

𝑗
= 𝜎−

𝑖𝑗
(𝐱)𝑛−

𝑗
, 𝑢+

𝑖
(𝐱) = 𝑢−

𝑖
(𝐱) on 𝜕𝛺 (2)
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Fig. 2. Domain integral of potential functions over a triangle by three sub-triangles with the transformed coordinate, including edge-based directional and normal

vector, 𝑏𝑓 and 𝑙
±
𝑓
.

where 𝜕𝛺 represents the interface between the inhomogeneity and the matrix; superscript + and − denote the outer and inner

surface of the interface, respectively; 𝑛𝑗 is the unit normal vector of the surface. Note that Dempsey and Sinclair (1979) considered

other interfacial discontinuities for wedge problems as well, including smooth or rigid surfaces, which lead to 10 combinations by

4 types of interface conditions. Although the inhomogeneity problem shares some similarity with the wedge problem (Mura, 1987;

Dempsey and Sinclair, 1979), the logarithmic singularity in the wedge problem is not commonly observed in the inhomogeneity

problem with fully bonded interface, which will be revisited subsequently.

2.2. Elastic fields caused by uniformly distributed eigenstrain

The isotropic elastic Green’s function 𝐺𝑖𝑗 (𝐱, 𝐱′) can be expressed through combination of harmonic 𝜙 and biharmonic 𝜓 potentials
as Eq. (3),

𝐺𝑖𝑗 (𝐱, 𝐱′) =
1

4𝜋𝜇
[
𝛿𝑖𝑗𝜙 − 1

4(1 − 𝑣)
𝜓,𝑖𝑗

]
(3)

where 𝜙 = −2 ln |𝐱 − 𝐱′| and 𝜓 = 𝜙−1
2 |𝐱 − 𝐱′|2. Since this paper focuses on the plane strain problem, readers can switch conclusions for

the plane stress problem by adjusting material properties. Following the definition of Green’s function and source fields, disturbed

elastic fields by uniformly distributed eigenstrain 𝜀∗
𝑖𝑗
can be derived through domain integrals as Eq. (4),

𝑢𝑖(𝐱) = ∫𝛺 𝑔𝑖𝑘𝑙(𝐱, 𝐱
′)𝜀∗

𝑘𝑙
(𝐱′) 𝑑𝐱′ and 𝜀𝑖𝑗 (𝐱) = ∫𝛺 𝑠𝑖𝑗𝑘𝑙(𝐱, 𝐱

′)𝜀∗
𝑘𝑙
(𝐱′) 𝑑𝐱′ (4)

where the modified Green’s functions 𝑔𝑖𝑘𝑙 and 𝑠𝑖𝑗𝑘𝑙 are shown as follows (Kröner, 1990),

𝑔𝑖𝑘𝑙 =
1

8𝜋(1 − 𝑣)
{
𝜓,𝑖𝑘𝑙 − 2𝑣𝜙,𝑖𝛿𝑘𝑙 − 2(1 − 𝑣)(𝜙,𝑘𝛿𝑖𝑙 + 𝜙,𝛿𝑖𝑘)

}
𝑠𝑖𝑗𝑘𝑙 =

1
8𝜋(1 − 𝑣)

{
𝜓,𝑘𝑙𝑖𝑗 − 2𝑣𝜙,𝑖𝑗𝛿𝑘𝑙 − (1 − 𝑣)(𝜙,𝑘𝑗𝛿𝑖𝑙 + 𝜙,𝑘𝑖𝛿𝑗𝑙 + 𝜙,𝑙𝑗𝛿𝑖𝑘 + 𝜙,𝑙𝑖𝛿𝑗𝑘)

} (5)

in which 𝑔𝑖𝑘𝑙 = −𝐺𝑖𝑚,𝑛𝐶𝑚𝑛𝑘𝑙 and 𝑠𝑖𝑗𝑘𝑙 =
𝑔𝑖𝑘𝑙,𝑗+𝑔𝑗𝑘𝑙,𝑖

2 = − (𝐺𝑖𝑚,𝑛𝑗+𝐺𝑗𝑚,𝑛𝑖)𝐶𝑚𝑛𝑘𝑙
2 (Yin et al., 2022). Based on the identity of the elastic Green’s

function (Yin and Zhao, 2016),

𝐶𝑖𝑗𝑘𝑙

𝐺𝑘𝑚,𝑙𝑖 + 𝐺𝑙𝑚,𝑘𝑖
2

= 𝐶𝑖𝑗𝑘𝑙𝐺𝑘𝑚,𝑙𝑖 = −𝛿𝑗𝑚𝛿(𝐱 − 𝐱′) (6)

where 𝛿(𝐱−𝐱′) is the Dirac Delta function. Comparing Eq. (6) with the modified Green’s function 𝑠𝑖𝑗𝑘𝑙 (Kröner, 1990), the following
equations can be obtained as 𝑠𝑖𝑗𝑚𝑖 = 𝛿𝑗𝑚𝛿(𝐱 − 𝐱′) and 𝑠𝑖𝑗𝑗𝑖 = 𝑁𝛿(𝐱 − 𝐱′) with 𝑁 = 2 or 3 for 2D or 3D problem, respectively. The

integral of 𝑠𝑖𝑗𝑘𝑙 is called the Eshelby’s tensor 𝑆𝑖𝑗𝑘𝑙 to show the disturbed elastic field caused by a uniformly distributed eigenstrain,

which exhibits a discontinuity across a smooth boundary with the norm vector 𝐧 as (Yin et al., 2022; Ju and Sun, 1999):

𝑆𝐷
𝑖𝑗𝑘𝑙

(𝐧) = 𝑆+
𝑖𝑗𝑘𝑙

− 𝑆−
𝑖𝑗𝑘𝑙

= 1
1 − 𝑣

𝑛𝑖𝑛𝑗𝑛𝑘𝑛𝑙 −
𝑣

1 − 𝑣
𝛿𝑘𝑙𝑛𝑖𝑛𝑗 −

1
2
(𝛿𝑖𝑘𝑛𝑗𝑛𝑙 + 𝛿𝑖𝑙𝑛𝑗𝑛𝑘 + 𝛿𝑗𝑘𝑛𝑖𝑛𝑙 + 𝛿𝑗𝑙𝑛𝑖𝑛𝑘) (7)

Eq. (7) is applicable to both 2D and 3D cases, and tensor 𝐒𝐷 is generated by the singular part of the Dirac Delta function of 𝑠𝑖𝑗𝑘𝑙
as discussed above. Using the Dirac measure property (Yin et al., 2022) in Eq. (4), one can write the strain discontinuity on the



������� �	 
�� 
�������� ��� ������� �	 ������ ��� ������ ������

�

C. Wu and H. Yin

boundary point x of the inclusion as:

𝜀𝐷
𝑖𝑗
(𝐱) = 𝑆𝐷

𝑖𝑗𝑘𝑙
(𝐧)𝜀∗

𝑘𝑙
(𝐱) (8)

which can be transferred to the stress discontinuity with the constitutive law (Mura, 1987; Yin et al., 2022) although the traction

continuity in Eq. (2) shall be satisfied. The strain discontinuity over the boundary point is proportional to the eigenstrain on the

point itself, as the eigenstrain source on other points always produces a continuous strain on x without any discontinuity.

Note that when the eigenstrain in an inclusion is not uniformly but continuously distributed, Eq. (8) is still applicable. This

property creates an approach to solve the stress or strain on the inner boundary points while avoiding the singularity integral of

the source on the point.

For a triangular inclusion 𝛺 shown in Fig. 1, Eshelby’s tensor can be evaluated analytically as follows (Rodin, 1996; Wu and

Yin, 2021): in Fig. 2, the triangle is divided into three elementary triangles by each edge. Using the transformed coordinate system

for the integral over each triangle, the Eshelby’s tensor can be analytically derived. Since this paper mainly focuses on the singular

behaviors of the triangular tip, ℎ = cos 𝛽 is selected for compact expressions of equations assuming the side edge length at 1.
Following the recent work (Wu and Yin, 2021), Eshelby’s tensors along the symmetric line can be derived explicitly. Since the

singular behavior of the triangular tip is of our interest, observing points are set along the symmetric centerline, i.e., 𝐱 = (𝑥1, 0) and
the tip behaviors can be acquired through limiting 𝑥1 → 0. With lengthy but straightforward derivation, Eshelby’s tensor components
𝑆1111, 𝑆1122, 𝑆2211, 𝑆2222 and 𝑆1212 can be written as follows:

𝑆1111 = − 1
4𝜋(1 − 𝑣)

{
−(1 − 𝑣)

[
4𝛽 + 𝑠𝑖𝑛2𝛽 ln(𝑥21)

]
− 2 sin2 𝛽 (cos 2𝛽 − 2𝑣 + 3)[

𝜋

2
− 𝛽 − tan−1

(
cot 𝛽 − csc 𝛽

𝑥1

)]
− 1

4
sin 4𝛽

[
ln
(
𝑥21
)
+ 2

] }
𝑆1122 = − 1

16𝜋(1 − 𝑣)

{
−4𝑣

[
4𝛽 + 𝑠𝑖𝑛2𝛽 ln(𝑥21)

]
+ 8 sin2 𝛽 (cos 2𝛽 − 2𝑣 + 1)[

𝜋

2
− 𝛽 − tan−1

(
cot 𝛽 − csc 𝛽

𝑥1

)]
+ sin 4𝛽

[
ln
(
𝑥21
)
+ 2

] }
𝑆2211 = − cos 𝛽

4𝜋(1 − 𝑣)

{
sin 𝛽

[
2 cos 2𝛽 + ln

(
𝑥21
)
(cos 2𝛽 + 2𝑣)

]
− 2 cos 𝛽(cos 2𝛽 + 2𝑣 − 1)[

𝜋

2
− 𝛽 − tan−1

(
cot 𝛽 − csc 𝛽

𝑥1

)] }
𝑆2222 = − cos 𝛽

4𝜋(1 − 𝑣)

{
2 cos 𝛽 (cos 2𝛽 + 2𝑣 − 3)

[
𝜋

2
− 𝛽 − tan−1

(
cot 𝛽 − csc 𝛽

𝑥1

)]
− sin 𝛽

[
2 cos 2𝛽 + ln

(
𝑥21
)
(cos 2𝛽 + 2𝑣 − 2)

] }
𝑆1212 = − 1

16𝜋(1 − 𝑣)

{
−8(1 − 𝑣) cot−1

(
cot 𝛽 − 𝑥1 csc 𝛽

)
− 2(cos 4𝛽 − 4𝑣 + 3)[

𝜋

2
− 𝛽 − tan−1

(
cot 𝛽 − csc 𝛽

𝑥1

)]
+ sin 4𝛽

[
ln
(
𝑥21
)
+ 2

] }

(9)

As shown in Eq. (9), the singularity terms of at 𝑥1 → 0+ and 𝑥1 → 0− shall be carefully addressed as they change signs for the
integral in the transformed coordinate at the two sides of the origin.

(I) Interior Cases: 𝑥1 → 0+

Simplifying Eq. (9) by limiting 𝑥1 → 0+, five Eshelby’s tensors can be rewritten as,

𝑆1111 =
2(𝜋 − 𝛽) sin2 𝛽(cos 2𝛽 − 2𝑣 + 3) + (1 − 𝑣)

[
4𝛽 + sin 2𝛽 ln

(
𝑥21
)]

+ 1
4 sin 4𝛽

[
ln
(
𝑥21
)
+ 2

]
4𝜋(1 − 𝑣)

𝑆1122 =
−8(𝜋 − 𝛽) sin2 𝛽(cos 2𝛽 − 2𝑣 + 1) + 4𝑣

[
4𝛽 + sin 2𝛽 ln

(
𝑥21
)]

− sin 4𝛽
[
ln
(
𝑥21
)
+ 2

]
16𝜋(1 − 𝑣)

𝑆2211 =
− cos 𝛽

(
sin 𝛽

[
2 cos 2𝛽 + ln

(
𝑥21
)
(cos 2𝛽 + 2𝑣)

]
+ 2(𝜋 − 𝛽) cos 𝛽(cos 2𝛽 + 2𝑣 − 1)

)
4𝜋(1 − 𝑣)

𝑆2222 =
− cos 𝛽

(
2(𝜋 − 𝛽) cos 𝛽(cos 2𝛽 + 2𝑣 − 3) − sin 𝛽

[
2 cos 2𝛽 + ln

(
𝑥21
)
(cos 2𝛽 + 2𝑣 − 2)

])
4𝜋(1 − 𝑣)

𝑆1212 =
2𝛽 − 2(𝛽 − 𝜋) cos 4𝛽 − 2𝜋(4𝑣 − 3) − sin 4𝛽

[
ln
(
𝑥21
)
+ 2

]
16𝜋(1 − 𝑣)

(10)

(II) Exterior Cases: 𝑥1 → 0−

𝑆1111 =
− cos 𝛽

(
−2𝛽 cos 𝛽(cos 2𝛽 − 2𝑣 + 1) − sin 𝛽

[
2 cos 2𝛽 + ln

(
𝑥21
)
(cos 2𝛽 − 2𝑣 + 2)

])
4𝜋(1 − 𝑣)

𝑆1122 =
− sin 4𝛽

[
ln
(
𝑥21
)
+ 2

]
+ 4 cos 𝛽

[
−𝛽 cos 3𝛽 + 𝛽(4𝑣 + 1) cos 𝛽 + 2𝑣 sin 𝛽 ln

(
𝑥21
)]

16𝜋(1 − 𝑣)
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𝑆2211 =
− cos 𝛽

(
2𝛽 cos 𝛽(cos 2𝛽 + 2𝑣 − 1) + sin 𝛽

[
2 cos 2𝛽 + ln

(
𝑥21
)
(cos 2𝛽 + 2𝑣)

])
4𝜋(1 − 𝑣)

𝑆2222 =
cos 𝛽

(
2𝛽 cos 𝛽(cos 2𝛽 + 2𝑣 − 3) + sin 𝛽

[
2 cos 2𝛽 + ln

(
𝑥21
)
(cos 2𝛽 + 2𝑣 − 2)

])
4𝜋(1 − 𝑣)

𝑆1212 =
− sin 4𝛽

[
ln
(
𝑥21
)
+ 2

]
+ 4𝛽 sin2 2𝛽

16𝜋(1 − 𝑣)

(11)

In Eqs. (10) and (11), both interior and exterior cases exhibit logarithmic singularities when 𝑥1 → 0 with uniformly distributed
eigenstrain in the triangular inclusion. Subtracting Eqs. (10) by (11), the difference of Eshelby’s tensor 𝐒𝐷 on the vertex point can

be obtained,

𝑆𝐷1111 =
sin2 𝛽(cos 2𝛽 − 2𝑣 + 3)

2(1 − 𝑣)
; 𝑆𝐷1122 = − sin2 𝛽(cos 2𝛽 − 2𝑣 + 1)

2(1 − 𝑣)

𝑆𝐷2211 =
cos2 𝛽(cos 2𝛽 + 2𝑣 − 1)

2(1 − 𝑣)
; 𝑆𝐷2222 = −cos2 𝛽(cos 2𝛽 + 2𝑣 − 3)

2(1 − 𝑣)

𝑆𝐷1212 = −cos 4𝛽 − 4𝑣 + 3
8(1 − 𝑣)

(12)

where all unlisted components are zero. Alternatively, Eq. (12) can be derived through Eq. (7) as follows: since the vertex involves

two branches of discontinuity, the upper and lower edge, whose normal vectors are 𝑛𝑢 = (− sin 𝛽, cos 𝛽) and 𝑛𝑙 = −(sin 𝛽, cos 𝛽),
respectively. The difference of the Eshelby’s tensor for the upper and lower edges are obtained from Eq. (7) as:

𝑆𝐷𝑢1111 = 𝑆
𝐷𝑙
1111 =

sin2 𝛽(cos 2𝛽 − 2𝑣 + 3)
2(1 − 𝑣)

; 𝑆𝐷𝑢1122 = 𝑆
𝐷𝑙
1122 = − sin2 𝛽(cos 2𝛽 − 2𝑣 + 1)

2(1 − 𝑣)

𝑆𝐷𝑢2211 = 𝑆
𝐷𝑙
2211 =

cos2 𝛽(cos 2𝛽 + 2𝑣 − 1)
2(1 − 𝑣)

; 𝑆𝐷𝑢2222 = 𝑆
𝐷𝑙
2222 = −cos2 𝛽(cos 2𝛽 + 2𝑣 − 3)

2(1 − 𝑣)

𝑆𝐷𝑢1212 = 𝑆
𝐷𝑙
1212 = −cos 4𝛽 − 4𝑣 + 3

8(1 − 𝑣)

𝑆𝐷𝑢1112 = −𝑆𝐷𝑙1112 = −
sin 𝛽 cos 𝛽

(
sin2 𝛽 + 𝑣 − 1

)
1 − 𝑣

; 𝑆𝐷𝑢1211 = −𝑆𝐷𝑙1211 =
sin 𝛽 cos3 𝛽

1 − 𝑣

𝑆𝐷𝑢1222 = −𝑆𝐷𝑙1222 =
sin3 𝛽 cos 𝛽

1 − 𝑣
; 𝑆𝐷𝑢2212 = −𝑆𝐷𝑙2212 = −

sin 𝛽 cos 𝛽
(
cos2 𝛽 + 𝑣 − 1

)
1 − 𝑣

(13)

where superscripts ‘‘𝐷𝑢’’ and ‘‘𝐷𝑙’’ denote the difference along the upper and lower edges, respectively. Because the surface norm

at the vertex is not well defined yet, Eq. (7) cannot be directly used. However, as Eq. (13) exhibits the five components of 𝐒𝐷 in

Eq. (12) are the same for both calculation from the upper and lower edges, and the other components have the opposite signs,

i.e., 𝑆𝐷𝑢1112 = −𝑆𝐷𝑙1112, one can conclude:

𝑆𝐷
𝑖𝑗𝑘𝑙

=
𝑆𝐷𝑢
𝑖𝑗𝑘𝑙

+ 𝑆𝐷𝑙
𝑖𝑗𝑘𝑙

2
(14)

The derivation of all components are provided as script with the Supplemental Materials of ‘‘Discontinuity of Eshelby’s tensor.nb’’.

Although the Eshelby’s tensor exhibits a logarithmic singularity at the vertex, all components of 𝐒𝐷 are finite, because the integral

of a Dirac Delta function leads to a Heaviside function (Yin et al., 2022). Therefore, if the strain at the outside boundary of the

inclusion is obtained, the one at the inside boundary can also be obtained by the superposition of the strain at the outer boundary

point and the discontinuity in Eq. (8).

When Eshelby’s EIM is used, the eigenstrain shall be determined by the stress equivalent condition in the next subsection. For a

particle with a uniform stiffness, the eigenstrain shall be continuous in the equivalent inclusion, but the eigenstrain on the boundary

or vertex is still open to question. An asymptotic elastic analysis can be utilized to determine the eigenstrain and elastic field.

2.3. Equivalent stress conditions

When the inhomogeneity 𝛺 is replaced with the matrix and a continuously distributed eigenstrain, Eshelby’s equivalent stress

condition can be constructed as (Mura, 1987):

𝐶0
𝑖𝑗𝑘𝑙

(𝜀0
𝑘𝑙
+ 𝜀′

𝑘𝑙
− 𝜀∗

𝑘𝑙
) = 𝐶1

𝑖𝑗𝑘𝑙
(𝜀0
𝑘𝑙
+ 𝜀′

𝑘𝑙
) (15)

where 𝜀0
𝑘𝑙
and 𝜀′

𝑘𝑙
are uniform far-field load and disturbed strain caused by eigenstrain in Eq. (4), respectively. Notice that eigenstrain

is a function of source point 𝐱′. For an ellipsoidal inhomogeneity in the infinite domain, the Eshelby’s tensor in the interior domain is
constant, and thus the eigenstrain will be uniform in the inhomogeneity domain. However, a uniform eigenstrain may never satisfy

the equivalent stress condition of Eq. (15) at the neighborhood of the vertex for a triangular inhomogeneity because the Eshelby

tensor becomes singular. Hence, for general cases, directly using uniform or polynomial eigenstrain usually results in inaccurate

predictions for polygonal inhomogeneities (Wu and Yin, 2021), particularly in the neighborhood of the vertices. Discretization of
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particles may provide tailorable accuracy (Wu et al., 2021), but it comes with a high computational cost and an unknown convergent

rate. Therefore, it is critical to investigate and understand the distributions of eigenstrain in the neighborhood of the vertex.

The eigenstrain in the exact solution of this inhomogeneity problem shall satisfy the equivalent stress condition of Eq. (15) at

every point in the triangular inhomogeneity. A polynomial or piecewise continuous eigenstrain function can provide satisfactory

results for the interior points, but can never exactly satisfy the stress equivalence at the vertex. An asymptotic elastic analysis shall

be used to address the singularity of the stress components, which may achieve the stress equivalence at the vertex in an analytical

fashion.

Williams (1952) and Dempsey and Sinclair (1979) proposed to use the separation of variables to express the biharmonic potentials

of Airy’s stress function, which is briefly reviewed as below. Consider a biharmonic potential 𝑉 governed by the strain compatibility

law that ∇4𝑉 = 0. The displacement and stress components in the polar coordinate can be expressed as,

2𝜇𝑢𝑟 = −𝑉,𝑟 + (1 − 𝑣)𝑟𝑉,𝜃 ; 2𝜇𝑢𝜃 = −1
𝑟
𝑉,𝜃 + (1 − 𝑣)𝑟2𝑉,𝑟

𝜎𝑟𝑟 =
1
𝑟
𝑉,𝑟 +

1
𝑟2
𝑉,𝜃𝜃 ; 𝜎𝜃𝜃 = 𝑉,𝑟𝑟; 𝜎𝑟𝜃 =

1
𝑟2
𝑉,𝜃 −

1
𝑟
𝑉,𝑟𝜃

(16)

In general, Airy’s stress function is constructed with the boundary conditions. Following Dempsey and Sinclair’s notation, one can

write the displacements and stresses in the following form:

𝐮 =
[
𝑢𝑟
𝑢𝜃

]
= 𝜕

𝜕𝜆

{
𝑟1−𝜆

[
𝑈 (𝜃, 𝜆)𝑐(𝜆)

]}
; σ =

⎡⎢⎢⎣
𝜎𝑟𝑟
𝜎𝑟𝜃
𝜎𝜃𝜃

⎤⎥⎥⎦ = 𝜕

𝜕𝜆

{
𝑟−𝜆

[
𝑆(𝜃, 𝜆)𝑐(𝜆)

]}
(17)

where 𝑐(𝜆) is a coefficient list of 4 components to be determined by the boundary conditions. Notice that Dempsey and Sinclair
introduce 𝜕∕𝜕𝜆 to consider the logarithmic singularities for composite wedge, and the logarithmic singularity may not exist for all
cases. Based on the bounded energy criteria (Barber, 1992), the singularity parameter 𝜆 < 1.

𝑈 =
[
(𝜆 − 2)𝑝 + (1 − 𝑣)𝑞,𝜃𝜃
−𝑝,𝜃 − (1 − 𝑣)𝜆𝑞

]
; 𝑆 =

⎡⎢⎢⎣
(2 − 𝜆)𝑝 + 𝑝,𝜃𝜃
−(1 − 𝜆)𝑝,𝜃

(2 − 𝜆)(1 − 𝜆)𝑝

⎤⎥⎥⎦
𝑝 =

[
sin(2 − 𝜆)𝜃, cos(2 − 𝜆)𝜃, sin 𝜆𝜃, cos 𝜆𝜃

]
; 𝑞 =

[
0, 0, −4

𝜆
cos 𝜆𝜃, 4

𝜆
sin 𝜆𝜃

] (18)

In an explicit form, the stress components in the polar coordinate can be written as,

𝜎𝑟𝑟 =
𝜕

𝜕𝜆

{
𝑟−𝜆(−1 + 𝜆)

[
𝑐1(𝜆)(2 − 𝜆) sin(2 − 𝜆)𝜃 + 𝑐2(𝜆)(2 − 𝜆) cos(2 − 𝜆)𝜃

− 𝑐3(𝜆)(𝜆 + 2) sin 𝜆𝜃 − 𝑐4(𝜆)(𝜆 + 2) cos 𝜆𝜃
]}

𝜎𝜃𝜃 =
𝜕

𝜕𝜆

{
𝑟−𝜆(1 − 𝜆)(2 − 𝜆)

[
𝑐1(𝜆) sin(2 − 𝜆)𝜃 + 𝑐2(𝜆) cos(2 − 𝜆)𝜃 + 𝑐3(𝜆) sin 𝜆𝜃 + 𝑐4(𝜆) cos 𝜆𝜃

]}
𝜎𝑟𝜃 =

𝜕

𝜕𝜆

{
𝑟−𝜆(−1 + 𝜆)

[
𝑐1(𝜆)(2 − 𝜆) cos(2 − 𝜆)𝜃 − (2 − 𝜆)𝑐2(𝜆) sin(2 − 𝜆)𝜃 + 𝑐3(𝜆)𝜆 cos 𝜆𝜃 − 𝑐4(𝜆)𝜆 sin 𝜆𝜃

]}
(19)

The constitutive law is written in terms of either the actual material or the equivalent inclusion as:

𝜀0
𝑖𝑗
+ 𝜀′

𝑖𝑗
= (𝐶1

𝑖𝑗𝑘𝑙
)−1𝜎𝑘𝑙; 𝜀0

𝑖𝑗
+ 𝜀′

𝑖𝑗
− 𝜀∗

𝑖𝑗
= (𝐶0

𝑖𝑗𝑘𝑙
)−1𝜎𝑘𝑙 (20)

For a 2D problem, the stiffness tensor 𝐶𝑖𝑗𝑘𝑙 = 2𝐾𝐼𝑑
𝑖𝑗𝑘𝑙

+ 2𝜇𝐼ℎ
𝑖𝑗𝑘𝑙
, where 𝐼𝑑

𝑖𝑗𝑘𝑙
≡ 𝛿𝑖𝑗 𝛿𝑘𝑙

2 ; 𝐼ℎ
𝑖𝑗𝑘𝑙

≡ 𝛿𝑖𝑘𝛿𝑗𝑙+𝛿𝑖𝑙𝛿𝑗𝑘
2 − 𝐼𝑑

𝑖𝑗𝑘𝑙
; and 𝐾 is the bulk

modulus (Yin and Zhao, 2016). Hence, the relation between the eigenstrain and stress on the inhomogeneity domain can be

formulated as:

𝜀∗
𝑖𝑗
= (𝐶0

𝑖𝑗𝑘𝑙
)−1(𝐶0

𝑘𝑙𝑚𝑛
− 𝐶1

𝑘𝑙𝑚𝑛
)(𝐶1

𝑚𝑛𝑠𝑡
)−1𝜎𝑠𝑡 =

(𝐾0 −𝐾1

2𝐾0𝐾1 𝐼
𝑑
𝑖𝑗𝑘𝑙

+ 𝜇0 − 𝜇1

2𝜇0𝜇1
𝐼ℎ
𝑖𝑗𝑘𝑙

)
𝜎𝑘𝑙 (21)

In general, the eigenstrain due to the material mismatch shares the same order of the singularity as the stress in the inhomogeneity

around the vertex when the stiffness of the inhomogeneity is not zero. Mathematically, the problem is reduced to search the

eigenstrain at the appropriate singularity parameter 𝜆 that lead to the stress sharing the same singularity parameter around the

vertex to meet the stress equivalent condition in Eq. (15). For different shape, stiffness ratio, and loading conditions, 𝜆 can be

different. For example, for an ellipsoidal inhomogeneity, 𝜆 becomes zero as a uniform eigenstrain can produce a uniform stress field

in the inhomogeneity (Mura, 1987; Yuan and Liu, 2023). However, for a polygonal inhomogeneity, a uniform eigenstrain produces a

stress field with a ln(𝑟) singularity (Rodin, 1996; Yin et al., 2022). Therefore, the singularity parameter of a triangular inhomogeneity
is surely not zero, but needs to be determined by the stress equivalent conditions and loading conditions.

By writing bulk modulus 𝐾 in terms of shear modulus 𝜇 and Poisson’s ratio 𝜈, the eigenstrain components in the polar coordinate

can be written as,

𝜀∗
𝑟𝑟
= − 𝜕

𝜕𝜆

{
𝜆 − 1
2𝜇0𝜇1

𝑟−𝜆
[
𝑐1(𝜆 − 2)(𝜇0 − 𝜇1) sin(2 − 𝜆)𝜃 + 𝑐2(𝜆 − 2)(𝜇0 − 𝜇1) cos(𝜆 − 2)𝜃

−
(
𝑐3 sin 𝜆𝜃 + 𝑐4 cos 𝜆𝜃

)
(𝜇1(𝜆 − 4𝑣0 + 2) + 𝜇0(−𝜆 + 4𝑣1 − 2))

]}
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𝜀∗
𝑟𝜃

= 𝜕

𝜕𝜆

{ (𝜆 − 1)(𝜇0 − 𝜇1)
2𝜇0𝜇1

𝑟−𝜆
[
−𝑐4𝜆 sin 𝜆𝜃 + 𝑐3𝜆 cos 𝜆𝜃 −

(
(𝜆 − 2)

(
𝑐2 sin(𝜆 − 2)𝜃 + 𝑐1 cos(𝜆 − 2)𝜃

))]}
𝜀∗
𝜃𝜃

= 𝜕

𝜕𝜆

{
𝜆 − 1
2𝜇0𝜇1

𝑟−𝜆
[
𝑐1(𝜆 − 2)(𝜇0 − 𝜇1) sin(2 − 𝜆)𝜃 + 𝑐2(𝜆 − 2)(𝜇0 − 𝜇1) cos(𝜆 − 2)𝜃

+
(
𝑐3 sin 𝜆𝜃 + 𝑐4 cos 𝜆𝜃

)
(𝜇0(𝜆 + 4𝑣1 − 2) − 𝜇1(𝜆 + 4𝑣0 − 2))

]} (22)

Based on Eq. (15), the integral equation between disturbed strain and eigenstrain can be used to derive the stress as

𝜎𝑖𝑗 = 𝐶0
𝑖𝑗𝑘𝑙

(
𝜀0
𝑘𝑙
+ ∫𝛺 𝑠𝑘𝑙𝑚𝑛(𝐱, 𝐱

′)𝜀∗
𝑚𝑛
(𝐱′) 𝑑𝐱′ − 𝜀∗

𝑘𝑙

)
(23)

As the form of stress σ and eigenstrain 𝜺
∗ are given in terms of 𝜆 and coefficients 𝑐𝑖 (𝑖 = 1, 2, 3, 4), they can be determined from the

above equation given the loading condition.

Although the stress and eigenstrain in the neighborhood of the vertex are given in the form of the Airy’s stress function in

Eqs. (19) and (22), respectively, the solution of this boundary value problem relies on the integral of the second term, 𝑠𝑘𝑙𝑚𝑛𝜀
∗
𝑚𝑛
, in

Eq. (23). Here 𝜀∗
𝑚𝑛
is discontinuous along the boundary of the triangular domain and singular on the vertex, while the Eshelby’s

tensor 𝑆𝑘𝑙𝑚𝑛 for the uniform eigenstrain also exhibits discontinuity along the boundary of the triangular domain and singularity on

the vertex. The integral of 𝑠𝑘𝑙𝑚𝑛𝜀
∗
𝑚𝑛
shall follow the same phenomenon and the discontinuity across the boundary can be described

by Eq. (8), while Eshelby’s tensor 𝑆𝑘𝑙𝑚𝑛 and eigenstrain 𝜀
∗
𝑚𝑛
are continuous within the triangular domain.

2.4. Stress discontinuity and singularity at the vertex

The integral equation of disturbed strain and eigenstrain, known as Fredholm’s integral equation (Martin, 1991, 1992), has

been well studied in the literature. Many efforts have been devoted to solving such equations in the one-dimensional domain, and

numerical schemes are the popular choice for multi-dimensional problems. Since this paper focuses on the singular behavior of

elastic fields around the tip, asymptotic analysis will be applied. To analyze the singular behavior of elastic fields in Eq. (23), it is

necessary first to evaluate the domain integral of Green’s function and with the varying eigenstrain. Although the authors (Wu and

Yin, 2021) have applied the transform coordinates (TC) to simplify the domain integrals of polynomial eigenstrains, the integral

scheme may not be efficient for source fields with power function distributions, because the form of the distance vector in the TC

changes as the origin of the TC moves, which is different from the polynomial form of eigenstrain.

To appropriately evaluate the stress discontinuity and singularity at the vertex, in Fig. 2, one can calculate the strain at (0−, 0)
or the left side of the origin. Because it is outside of the inhomogeneity, the Dirac Delta function in the Eshelby’s tensor does not

play any role, and the integral of 𝑠𝑘𝑙𝑚𝑛𝜀
∗
𝑚𝑛
in Eq. (23) can be derived directly. As the stress equivalence condition is set up at the

inside of the inhomogeneity or (0+, 0), the discontinuity of the strain at the vertex will be used in terms of Eq. (12).
In the following, the strain at (0−, 0) will be firstly derived in terms of each component. Considering the global coordinate for the

far field load, this section aims to conduct domain integral of Green’s function and dominant terms of eigenstrain in the Cartesian

coordinate. Without the loss of any generality, consider disturbed strain 𝜀′11, which contains domain integrals of 𝜙,11𝜀
∗
,11, 𝜙,22𝜀

∗
,22,

𝜓,1111𝜀
∗
,11, 𝜓,1112𝜀

∗
12 and so on. After a lengthy but straightforward derivation, these integrals can be explicitly obtained. For example,

𝜙,11𝜀
∗
11 and 𝜙,22𝜀

∗
22 are provided in this section, and other components are elaborated in Appendix B. For the simplicity of illustration,

only normal stress coefficients are considered with 𝑐1 = 𝑐3 = 0. Notice that the following integral does not contain contributions
from the Dirac delta function, which has been handled with Eq. (8). Let 𝛺𝑝 represents the polar coordinate integral domain of the

triangle with the observing point at the exterior of the vertex.

Integral of 𝜙,11𝜀
∗
11

Based on Eq. (A.1) and Eq. (A.3),

∫𝛺𝑝 𝜙,11𝜀
∗
11𝑑𝐱

′ = ∫
𝛽

−𝛽 ∫
1

0

2
(
𝑟2 cos 2𝜃 − 2𝑟𝑥1 cos 𝜃 + 𝑥21

)(
𝑟2 − 2𝑟𝑥1 cos 𝜃 + 𝑥21

)
2

𝜀∗11𝑟𝑑𝑟 𝑑𝜃 (24)

where eigenstrain can be described as 𝜀∗
𝑖𝑗
= 𝜕

[
𝑟−𝜆𝐻𝑖𝑗 (𝜆,𝜃)

]
𝜕𝜆

. The following three steps can be conducted to reach the explicit form of

the integral: (i) integrate 𝑟−𝜆; (ii) conduct series expansion around the vertex and combine it with eigenstrain; and (iii) integrate

the variable 𝜃.

Hence, step (i) of Eq. (24) yields as,

∫
1

0
𝜙,11𝑟

1−𝜆𝑑𝑟 = 2𝑟2−𝜆
𝜆

(
− (𝜆 − 1)𝜆
2(𝜆 − 2)𝑥21

(
2𝐹1

(
1, 2 − 𝜆; 3 − 𝜆; 𝑟

[(
cos 𝜃 −

√
− sin2 𝜃

)
𝑥1

]−1)
+ 2𝐹1

(
1, 2 − 𝜆; 3 − 𝜆; 𝑟

[(
cos 𝜃 +

√
− sin2 𝜃

)
𝑥1

]−1))
+ 𝜆

𝑟2 − 2𝑟𝑥1 cos 𝜃 + 𝑥21
− 𝜆𝑟 cos 𝜃
𝑥1

(
𝑟2 − 2𝑟𝑥1 cos 𝜃 + 𝑥21

)) (25)

where 2𝐹1 is the hypergeometric function. Based on the strain energy criteria (𝜆 < 1), when 𝑟 → 0, Eq. (25) yields as zero and
thus the definite integral is only related to its upper limit 𝑟 → 1. To obtain elastic behaviors around the inhomogeneity tip, series
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expansion with respect to 𝑥1 at 0 is conducted. Similar to Eshelby’s tensor in Eq. (9), it is necessary to discuss two cases of 𝑥1 → 0+
and 𝑥1 → 0− for interior and exterior observing points, respectively.

∫
1

0
𝜙,11𝑟

1−𝜆𝑑𝑟 =

{
−2cos 2𝜃

𝜆
− 2𝑥−𝜆1 𝜋(𝜆 − 1) csc 𝜆𝜋 cos[𝜆𝜋 + 𝜃(2 − 𝜆)] + (𝑥31) 𝑥1 → 0+

− 2 cos 2𝜃
𝜆

− 2|𝑥1|−𝜆𝜋(𝜆 − 1) csc 𝜆𝜋 cos[𝜃(2 − 𝜆)] + (|𝑥1|3) 𝑥1 → 0−
(26)

where −2cos 2𝜃
𝜆

is from the far-end contribution, and the rest of terms with 𝑥−𝜆1 is from the close-end contribution, which is closely

related to singular behaviors around the tip. While the second branch determines exterior elastic behaviors, the interior ones can

be obtained by the superposition with the difference tensor 𝐒𝐷, which is later applied to the equivalent stress conditions.
For illustration purposes, considering 𝑐1 = 𝑐3 = 0 for symmetric loading cases, one can obtain the close-end contribution from

the second branch with eigenstrain 𝜀∗11 for step (ii) as follows:

− 2|𝑥1|−𝜆𝜋(𝜆 − 1) csc 𝜆𝜋 cos[𝜃(2 − 𝜆)]𝐻11(𝜆, 𝜃) = |𝑥1|−𝜆 𝜋(𝜆 − 1)2 csc 𝜆𝜋
𝜇0𝜇1

cos[(2 − 𝜆)𝜃]
{
𝑐2(𝜆 − 2)(𝜇0 − 𝜇1) cos 𝜆𝜃

+ 𝑐4
[
𝜆(𝜇0 − 𝜇1) cos[(2 + 𝜆)𝜃] + 2 cos 𝜆𝜃[𝜇0(1 − 2𝑣1) − 𝜇1(1 − 2𝑣0)]

] } (27)

Then the integral of Eq. (27) with respect to angle 𝜃 ∈ [−𝛽, 𝛽], when 𝑥1 → 0−, can be obtained as:

∫𝛺𝑝 𝜙,11𝑟
−𝜆𝐻11(𝜆, 𝛽)𝑑𝐱′ = |𝑥1|−𝜆 𝜋(𝜆 − 1) csc(𝜋𝜆)

8𝜇0𝜇1
{
2𝑐4(𝜆 − 1)(𝜇0 − 𝑣1)

[
𝜆 sin(𝜆𝜋 + 4𝛽) − 2 sin 𝜆(𝜋 − 2𝛽)

]
+
[
4(𝜆 − 1) sin(𝜆𝜋 + 2𝛽) − 4 sin [𝜆𝜋 + 2𝛽(1 − 𝜆)]

][
𝑐2(𝜆 − 2)(𝜇0 − 𝜇1) + 2𝑐4

[
𝜇0(1 − 2𝑣0) − 𝜇1(1 − 2𝑣0)

]]
+ 2(2 − 𝜆) sin 𝜆𝜋

[
2𝑐2(𝜆 − 2)(𝜇0 − 𝜇1) + 𝑐4

[
𝜇1(−𝜆 + 8𝑣0 − 3) + 𝜇0(𝜆 − 8𝑣1 + 3)

]] } (28)

For cases with the logarithmic singularity, one can take the partial derivative of Eq. (28) with respect to 𝜆. More discussion on

the existence of logarithmic singularities is provided in Section 4.

Integral of 𝜙,22𝜀
∗
22

Based on Eqs. (A.1) and (A.3),

∫𝛺𝑝 𝜙,22𝜀
∗
22𝑑𝐱

′ = ∫
𝛽

−𝛽 ∫
1

0
−
2
(
𝑟2 cos 2𝜃 − 2𝑟𝑥1 cos 𝜃 + 𝑥21

)(
𝑟2 − 2𝑟𝑥1 cos 𝜃 + 𝑥21

)
2

𝜀∗22𝑟𝑑𝑟 𝑑𝜃 (29)

Following the same fashion of the previous subsection, the integral of Eq. (29) in 𝑟 can be obtained:

∫
1

0
𝜙,22𝑟

1−𝜆𝑑𝑟 = 2𝑟2−𝜆
𝜆

(
− (𝜆 − 1)𝜆
2(𝜆 − 2)𝑥21

(
2𝐹1

(
1, 2 − 𝜆; 3 − 𝜆; 𝑟

[(
cos 𝜃 −

√
− sin2 𝜃

)
𝑥1

]−1)
+ 2𝐹1

(
1, 2 − 𝜆; 3 − 𝜆; 𝑟

[(
cos 𝜃 +

√
− sin2 𝜃

)
𝑥1

]−1))
+ 𝜆

𝑟2 − 2𝑟𝑥1 cos 𝜃 + 𝑥21
− 𝜆𝑟 cos 𝜃
𝑥1

(
𝑟2 − 2𝑟𝑥1 cos 𝜃 + 𝑥21

)) (30)

Similarly, expanding Eq. (30) with 𝑥1 for both interior and exterior points,

∫
1

0
𝜙,22𝑟

1−𝜆𝑑𝑟 =

{ 2 cos 2𝜃
𝜆

+ 2𝑥−𝜆1 𝜋(𝜆 − 1) csc 𝜆𝜋 cos[𝜆𝜋 + (2 − 𝜆)𝜃] + (𝑥31) 𝑥1 → 0+
2 cos 2𝜃
𝜆

+ 2|𝑥1|−𝜆𝜋(𝜆 − 1) csc 𝜆𝜋 cos[(2 − 𝜆)𝜃] + (|𝑥1|3) 𝑥1 → 0−
(31)

Multiplying the close-end contribution from first branch with eigenstrain 𝐻22(𝜆, 𝜃), the equation of step (ii) can be obtained,

2|𝑥1|−𝜆𝜋(𝜆 − 1) csc 𝜆𝜋 cos[(2 − 𝜆)𝜃]𝐻22(𝜆, 𝜃) =
𝜋(𝜆 − 1)2 csc 𝜆𝜋 cos[(2 − 𝜆)𝜃]

𝜇0𝜇1

{
𝑐2(𝜆 − 2)(𝜇0 − 𝜇1) cos 𝜆𝜃

+ 𝑐4
[
𝜆(𝜇0 − 𝜇1) cos[(2 + 𝜆)𝜃] − 2 cos 𝜆𝜃[𝜇0(1 − 2𝑣1) − 𝜇1(1 − 2𝑣0)]

] } (32)

Therefore, one can obtain:

∫𝛺𝑝 𝜙,22𝐻22(𝜆, 𝛽)𝑟−𝜆𝑑𝐱′ = |𝑥1|−𝜆 𝜋(𝜆 − 1) csc 𝜆𝜋
4𝜇0𝜇1

{
𝑐4(𝜆 − 1)(𝜇0 − 𝜇1)

[
𝜆 sin[𝜆𝜋 + 4𝛽] − 2 sin 𝜆(𝜋 − 2𝛽)

]
− 2

[
sin[𝜆𝜋 + 2𝛽(1 − 𝜆)] − (𝜆 − 1) sin(𝜆𝜋 + 2𝛽)

][
𝑐2(𝜆 − 2)(𝜇0 − 𝜇1) − 2𝑐4

[
𝜇0(1 − 2𝑣1) − 𝜇1(1 − 2𝑣0)

]]
+ (2 − 𝜆) sin 𝜆𝜋

[
2𝑐2(𝜆 − 2)(𝜇0 − 𝜇1) + 𝑐4

[
𝜇0(𝜆 + 8𝑣1 − 5) − 𝜇1(𝜆 + 8𝑣0 − 5)

]] } (33)

After obtaining the integral from the polar coordinate of Green’s function and dominant terms from eigenstrain, the next step is

to consider the influence of eigenstrain at the interior vertex as the observing point. The contribution of Dirac delta function have

been considered as Eq. (8). Hence, equivalent stress conditions of Eq. (23) can be rewritten as,

𝜎𝑖𝑗 = 𝐶0
𝑖𝑗𝑘𝑙

[
𝜀0
𝑘𝑙
+ 𝑆𝐷

𝑘𝑙𝑚𝑛
𝜀∗
𝑚𝑛
(𝐱) + ∫𝛺𝑃 𝑠𝑘𝑙𝑚𝑛(𝐱, 𝐱

′)𝜀∗
𝑚𝑛
(𝐱′)𝑑𝐱′ − 𝜀∗

𝑘𝑙
(𝐱)

]
(34)
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where ∫
𝛺𝑃
𝑠𝑘𝑙𝑚𝑛(𝐱, 𝐱′)𝜀∗𝑚𝑛(𝐱

′)𝑑𝐱′ can be obtained through the combination of the above polar coordinate integrals among other terms,
which are elaborated in Appendix B. The similar procedure can be conducted for the shearing case of the antisymmetric problem

with 𝑐2 = 𝑐4 = 0, and the integrals are provided in Appendix C. Therefore, the stress and eigenstrain can be determined by Eq. (34).

3. Triangular void problems

Section 2 presents the boundary value problem of inhomogeneities and constructs integral equations among disturbed strain,

eigenstrain, and stress components. The domain integral of Green’s function and dominant terms of eigenstrain are calculated

through the combination of uniform Eshelby’s tensor and polar coordinate. In the following, the domain integrals are further applied

to solve equivalent stress conditions for triangular voids.

3.1. Simplification of eigenstrain and domain integrals

The material properties of voids are 𝜇1 = 𝐾1 → 0. The expression for eigenstrain and domain integrals can be greatly simplified
based on such properties. For the symmetric loading condition with 𝑐1 = 𝑐3 = 0, one can write

𝜀∗11 = −𝑥−𝜆1
(𝜆 − 1)

(
𝑐2(𝜆 − 2) cos 𝜆𝜃 + 𝑐4(2 cos 𝜆𝜃 + 𝜆 cos(𝜆 + 2)𝜃)

)
2𝜇1

𝜀∗12 = −𝑥−𝜆1
(𝜆 − 1)

(
𝑐2(𝜆 − 2) sin 𝜆𝜃 + 𝑐4𝜆 sin(𝜆 + 2)𝜃

)
2𝜇1

𝜀∗22 = 𝑥
−𝜆
1

(𝜆 − 1)
(
𝑐4𝜆 cos(𝜆 + 2)𝜃 +

(
𝑐2(𝜆 − 2) − 2𝑐4

)
cos 𝜆𝜃

)
2𝜇1

(35)

and domain integrals can be simplified as,

∫𝛺𝑃 𝑠11𝑘𝑙𝜀
∗
𝑘𝑙
𝑑𝐱′ = 𝑥−𝜆1

(𝜆 − 1) csc 𝜆𝜋
16𝜇1(1 − 𝑣0)

{
2𝑐2(𝜆 − 2)

[
−(𝜆 − 1) sin[𝜆𝜋 + 2𝛽(2 − 𝜆)] + (𝜆 − 4𝑣0 + 2) sin[𝜆𝜋 + 2𝛽(1 − 𝜆)]

+ (4𝑣0 − 3) sin 𝜆𝜋
]
+2𝑐4

[ (
2 − (𝜆 − 2)𝜆

)
sin[𝜆𝜋 + 2𝛽(1 − 𝜆)] + (𝜆 − 1)

(
(𝜆 − 4𝑣0 + 2) sin 𝜆(𝜋 − 2𝛽)

− 2 sin[𝜆𝜋 + 2𝛽]
)
+ sin 𝜆𝜋

[
−𝜆 + 4(𝜆 − 1)𝑣0 − 2

] ]} (36)

and

∫𝛺𝑃 𝑠22𝑘𝑙𝜀
∗
𝑘𝑙
𝑑𝐱′ = −𝑥−𝜆1

(𝜆 − 1) csc 𝜆𝜋
16𝜇1(1 − 𝑣0)

{
2𝑐2(𝜆 − 2)

[
(1 − 𝜆) sin[𝜆𝜋 + 2𝛽(2 − 𝜆)] + (𝜆 + 4𝑣0 − 2) sin[𝜆𝜋 + 2𝛽(1 − 𝜆)]

+ (1 − 4𝑣0) sin 𝜆𝜋
]
+𝑐4

[
4(1 − 𝜆) sin[𝜆𝜋 + 2𝛽] + 2(𝜆 − 1)(𝜆 + 4𝑣0 − 2) sin 𝜆(𝜋 − 2𝛽)

+ 4 [(𝜆 − 2)𝜆 − 2] sin 𝜆𝜋[−3𝜆 + 4(𝜆 − 1)𝑣0 + 6] sin[𝜆𝜋 + 2𝛽(1 − 𝜆)]
]} (37)

Combining contribution from 𝑆𝑑
𝑖𝑗𝑘𝑙
𝜀∗
𝑘𝑙
(0+, 0), one can obtain a linear equation system on stress equivalence for the 11 and 22

components by substituting Eqs. (36) and (37) into (34), and two equations can be acquired by ignoring 𝑟−𝜆 and partial

differentiation with respect to 𝜆 as follows:

− (𝜆 − 1) csc 𝜆𝜋
8𝜇1(1 − 𝑣0)

{
𝑐4

[
[(𝜆 − 2)𝜆 − 2] sin[𝜆𝜋 + 2𝛽(1 − 𝜆)] + (𝜆 − 1)

(
2 sin[𝜆𝜋 + 2𝛽] − (𝜆 − 4𝑣0 + 2) sin 𝜆(𝜋 − 2𝛽)

)
− 3 sin 𝜆𝜋(𝜆 − 4𝑣0 + 2)

]
−𝑐2(𝜆 − 2)

[
(1 − 𝜆) sin[𝜆𝜋 + 2𝛽(2 − 𝜆)] + sin 𝜆𝜋 + (𝜆 − 4𝑣0 + 2) sin[𝜆𝜋 + 2𝛽(1 − 𝜆)]

] }
= 0

(38)

− (𝜆 − 1) csc(𝜋𝜆)
8𝜇1(1 − 𝑣0)

{
𝑐2(𝜆 − 2)

[
−(𝜆 − 1) sin[𝜆𝜋 + 2𝛽(2 − 𝜆)] + sin 𝜆𝜋 + (𝜆 + 4𝑣0 − 2) sin[𝜆𝜋 + 2𝛽(1 − 𝜆)]

]
+ 𝑐4

[
[2 − (𝜆 − 2)𝜆] sin[𝜆𝜋 + 2𝛽(1 − 𝜆)] + (𝜆 − 1)

(
(𝜆 + 4𝑣0 − 2) sin 𝜆(𝜋 − 2𝛽) − 2 sin[𝜆𝜋 + 2𝛽]

)
+ 3 sin 𝜆𝜋(𝜆 + 4𝑣0 − 2)

]}
= 0

(39)

Notice that to find a nontrivial solution to such a system, the determinant of the 2 × 2 coefficient matrix should be zero, also

known as the eigenvalue problem. With a lengthy but straightforward derivation, the determinant of coefficient matrix of 𝑐2 and 𝑐4
can be obtained (ignoring 𝑥1):

− (𝜆 − 2)(𝜆 − 1)2(1 − 2𝑣0) csc2(𝜆𝜋)
32(𝜇1)2(1 − 𝑣0)2

{
(𝜆 − 1)2(cos 4𝛽 − 1) + 3(𝜆 − 1) [cos 2(𝜆 − 2)𝛽 − cos 2𝜆𝛽]

− (𝜆 + 2) cos[2𝜆𝜋 + 2𝛽(2 − 𝜆)] + (𝜆 − 1) cos[2𝜆(𝜋 − 𝛽)] + 3 cos 2𝜆𝜋
}
= 0

(40)

Therefore, a list of roots of 𝜆 can be obtained.
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For anti-symmetric loading problem with 𝑐2 = 𝑐4 = 0, the eigenstrain can be written as,

𝜀∗11 = 𝑥
−𝜆
1

(𝜆 − 1)
(
𝑐1(𝜆 − 2) sin 𝜆𝛽 − 𝑐3(2 sin 𝜆𝛽 + 𝜆 sin(𝜆 + 2)𝛽)

)
2𝜇1

𝜀∗12 = 𝑥
−𝜆
1

(𝜆 − 1)
(
𝑐3𝜆 cos(𝜆 + 2)𝛽 − 𝑐1(𝜆 − 2) cos 𝜆𝛽

)
2𝜇1

𝜀∗22 = −𝑥−𝜆1
(𝜆 − 1)

(
𝑐1(𝜆 − 2) sin 𝜆𝛽 + 𝑐3(2 sin 𝜆𝛽 − 𝜆 sin(𝜆 + 2)𝛽)

)
2𝜇1

(41)

and domain integrals can be simplified as,

∫𝛺𝑝 𝑠12𝑘𝑙𝜀
∗
𝑘𝑙
𝑑𝐱′ = −|𝑥1|−𝜆 (𝜆 − 1) csc 𝜆𝜋

16𝜇1(1 − 𝑣0)

{
2𝑐3

[
−(𝜆 − 1)

[
𝜆 sin 𝜆(𝜋 − 2𝛽) + 2 sin(𝜆𝜋 + 2𝛽)

]
+ [(𝜆 − 2)𝜆 − 2] sin[𝜆𝜋 + 2𝛽(1 − 𝜆)] + 3𝜆 sin 𝜆𝜋

]
−2𝑐1(𝜆 − 2)

[
− sin[𝜆𝜋 + 2𝛽(2 − 𝜆)]

+ 2𝜆 sin 𝛽 cos[𝜆𝜋 + 𝛽(3 − 2𝜆)] + sin 𝜆𝜋
]} (42)

Based on the expansion of Airy’s stress function, for shearing problems, the number of unknown coefficients is two except for the

singularity parameter. However, Eq. (42) only provides one equation to solve two unknowns. Eshelby’s equivalent inclusion method

mathematically transforms the BVP into the superposition of two BVPs through the stress equivalent condition (Yin et al., 2022),

which can be transferred in form of the displacement gradients of 𝑢𝑖,𝑗 . The stress equivalence of (𝜎12) combines two independent

displacement gradients of 𝑢1,2 and 𝑢2,1, through which the symmetric part of
1
2 (𝑢1,2 +𝑢2,1) is taken into consideration in Eq. (42). Due

to the symmetry of stress and strain, either 𝑢1,2 or 𝑢2,1 at the same value will produce the same stress of 𝜎12, which is insensitive to

the rotational component of 𝑢1,2 − 𝑢2,1. However, in this problem, because the rotational component on inhomogeneity will affect
the interfacial continuity, so that the stress equivalence needs to be set up on 𝑢1,2 and 𝑢2,1, respectively, which will automatically

make stress equivalence of 𝜎12 satisfied. For example,

𝑢′2,1 = ∫𝛺𝑝 𝑔2𝑘𝑙,1𝜀
∗
𝑘𝑙
𝑑𝐱′ = −|𝑥1|−𝜆 (𝜆 − 1) csc 𝜆𝜋

16𝜇1(1 − 𝑣0)

{
2𝑐1(𝜆 − 2)

[
−(𝜆 − 1) sin[𝜆𝜋 + 2𝛽(2 − 𝜆)]

+ (𝜆 + 4𝑣0 − 4) sin[𝜆𝜋 + 2𝛽(1 − 𝜆)] + (3 − 4𝑣0) sin 𝜆𝜋
]
+2𝑐3

[
[(𝜆 − 2)𝜆 − 2] sin[𝜆𝜋 + 2𝛽(1 − 𝜆)]

+ (𝜆 − 1)
(
−2 sin[𝜆𝜋 + 2𝛽] −

(
(𝜆 + 4𝑣0 − 4) sin 𝜆(𝜋 − 2𝛽)

))
+ sin 𝜆𝜋[−𝜆 + 4(𝜆 − 1)𝑣0 + 4]

]} (43)

where the actual derivative of displacement 𝑢2,1 can be obtained through Airy’s stress function as,

𝑢2,1 = 𝑥−𝜆1
(𝜆 − 1)

(
𝑐3(𝜆 − 4) − 𝑐1(𝜆 − 2)

)
2𝜇1

(44)

Note that in a specific boundary value problem for an inhomogeneity under a uniform far field stress, the stress equivalent

condition shall be set up at each order of 𝜆 to solve for 𝑐𝑖 (𝑖 = 1, 2, 3, 4). When 𝜆 = 0, a uniform displacement gradient 𝑢0
𝑖,𝑗
=constant

shall be included in 𝑢′2,1 + 𝑢
0
2,1 = 𝑢2,1. For any case 𝜆 ≠ 0, the displacement gradient beyond the constant term shall satisfy 𝑢′2,1 = 𝑢2,1

in the above two equations. Similarly, the same procedure can be applied to 𝑢1,2. Therefore, one can obtain the equation system of

𝑐1 and 𝑐3 by ignoring 𝑟
−𝜆 and partial differentiation with respect to 𝜆 as follows:

(1 − 𝜆) csc 𝜆𝜋
8𝜇1(1 − 𝑣0)

{
𝑐3

[
−(𝜆 − 1)

(
𝜆 sin 𝜆(𝜋 − 2𝛽) + 2 sin[𝜆𝜋 + 2𝛽]

)
+ (𝜆2 − 2𝜆 − 2) sin[𝜆𝜋 + 2𝛽(1 − 𝜆)] + 3𝜆 sin 𝜆𝜋

]
− 𝑐1(𝜆 − 2)

[
− sin[𝜆𝜋 + 2𝛽(2 − 𝜆)] + 2𝜆 sin 𝛽 cos[𝜆𝜋 + 𝛽(3 − 2𝜆)] + sin 𝜆𝜋

] }
= 0

(45)

(𝜆 − 1) csc 𝜆𝜋
16𝜇1(1 − 𝑣0)

{
𝑐3

[
(2 − 𝜆2 + 2𝜆) sin[𝜆𝜋 + 2𝛽(1 − 𝜆)] + (𝜆 − 1)

(
2 sin[𝜆𝜋 + 2𝛽] + (𝜆 − 4𝑣0 + 4) sin 𝜆(𝜋 − 2𝛽)

)
+ 3 sin 𝜆𝜋(−𝜆 + 4𝑣0 − 4)

]
+𝑐1(𝜆 − 2)

[
(𝜆 − 1) sin[𝜆𝜋 + 2𝛽(2 − 𝜆)] + sin 𝜆𝜋 + (−𝜆 + 4𝑣0 − 4) sin[𝜆𝜋 + 2𝛽(1 − 𝜆)]

] }
= 0

(46)

Similarly to the symmetric case, the determinant of the coefficient matrix shall be zero, to assure a nontrivial solution of 𝑐1 and 𝑐3,

as follows:

(𝜆 − 2)(𝜆 − 1)2 csc2 𝜆𝜋
64(𝜇1)2(1 − 𝑣0)

{
(𝜆 − 1)2(cos 4𝛽 − 1) − (𝜆 − 1)

[
3 cos 2(𝜆 − 2)𝛽 + cos 2𝜆(𝜋 − 𝛽) − 3 cos 2𝜆𝛽

− cos(2𝜆𝜋 − 2𝛽𝜆 + 4𝛽)
]
−3 cos[2𝜆𝜋 + 4𝛽(1 − 𝜆)] + 3 cos(2𝜆𝜋)

}
= 0

(47)

which can provide a list of roots of 𝜆.

3.2. Slit-like crack problem

When 𝛽 → 0, the above problem with a triangular void is reduced to the classic slit-like crack problem, which shows 1∕
√
𝑟

singular distribution of strain fields around the crack tip. Unlike the conventional method of adjusting ratios of ellipsoids (Mura,

1987), this section directly uses a triangular void. Before solving Eq. (40), recall the classic work of slit-like crack from Refs. (Mura,
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1987; Bulatov and Cai, 2006), which applies Griffith’s criteria and Eshelby’s equivalent inclusion method, respectively. On the other

hand, because the Eshelby’s tensor of ellipsoid for the interior point is uniform, thus eigenstrain must be uniform when the crack is

simulated using an adjusted ellipsoid (Bulatov and Cai, 2006). For Mode I of opening-mode cracking problem subjected to 𝜎022 in the

far field, eigenstrain can be obtained as 𝜀∗11 is finite while 𝜀
∗
22 = 𝐴𝜀

∗
11, where 𝐴 is ratio of two axis 𝑎1∕𝑎2 (𝑎2 → 0). Based on Eshelby’s

tensor for exterior points, stress around the crack tip exhibits 1∕
√
𝑟 singular distribution. On the other hand, for any arbitrary

opening angles, such a uniform eigenstrain will only generate ln 𝑟 singular distribution for triangular tips (Rodin, 1996). Therefore,
the solution is not applicable for triangular inhomogeneities, even for slit-like cracks simulated by triangular inhomogeneities. The

present formulation provides a consistent explanation to Mode I and Mode II fracture analysis as follows:

3.2.1. Mode I: uni-axial loading 𝜎022
Consider the material with a crack under the far field stress of 𝜎022. The equivalent stress condition for the voids is written

𝜀0
𝑘𝑙
+ 𝜀′

𝑘𝑙
− 𝜀∗

𝑘𝑙
= (𝐶0

𝑖𝑗𝑘𝑙
)−1𝜎𝑖𝑗 = 0. Under the symmetric load case of the plane strain problem, one can write,

− 𝑣0

2𝜇0
𝜎022 + 𝜀

′
11 − 𝜀

∗
11 = 0 (48a)

1 − 𝑣0

2𝜇0
𝜎022 + 𝜀

′
22 − 𝜀

∗
22 = 0 (48b)

where − 𝑣0

2𝜇0 𝜎
0
22 = 𝜀

0
11 and

1−𝑣0
2𝜇0 𝜎

0
22 = 𝜀

0
22 are used under the far-field load of 𝜎

0
22. Note that Eq. (48) leads to a series solution, which

may contain many terms with different power distributions of 𝜆. However, only 𝜆 ∈ [0, 1) is of interest for the singularity. When
𝛽 → 0, sin 𝛽 ≈ 𝛽 + (𝛽), which can be utilized to simplify equivalent stress conditions of 𝜎11 and 𝜎22. Using the determinant of
coefficient matrix Eq. (40), one can determine the highest singular parameter 𝜆 that,

Det = (1 − 2𝑣0)(𝜆 − 2)(𝜆 − 1)3

2(𝜇1)2(1 − 𝑣0)2
cot 𝜆𝜋

{
𝛽 − 2(𝜆 − 1) cot(𝜆𝜋)𝛽2

}
+ (𝛽3) (49)

where the determinant is written as series approximation when 𝛽 → 0+. In the range of 𝜆 < 1 (Barber, 1992), 𝜆 = (−𝑖 + 1∕2)𝜋 with
𝑖 = 0, 1, 2,…, which enables nontrivial solutions for the boundary value problem. Therefore, the singularity parameter of 𝜆 is 1∕2
corresponding to 𝑖 = 0, and all other cases for 𝑖 = 1, 2,… exhibit no singularity.

3.2.2. Mode II: simple shearing 𝜎012
Consider the material with a crack under the far field stress of 𝜎012 = 2𝜇0(𝑢01,2 + 𝑢

0
2,1). The equivalent stress condition for the voids

is written 𝜀0
𝑘𝑙
+ 𝜀′

𝑘𝑙
− 𝜀∗

𝑘𝑙
= (𝐶0

𝑖𝑗𝑘𝑙
)−1𝜎𝑖𝑗 = 0. Under the antisymmetric load case, one can write,

𝜎012
2𝜇0

+𝜀′12 − 𝜀
∗
12 = 0 (50a)

𝑢01,2 + 𝑢
′
1,2 − 𝑢1,2 = 0 or 𝑢02,1 + 𝑢

′
2,1 − 𝑢2,1 = 0 (50b)

Following the same fashion as the last subsection, the determinant in Eq. (47) can be simplified as,

Det = (𝜆 − 2) cot 𝜆𝜋
2(𝜇1)2(1 − 𝑣0)

{
(1 − 𝜆)3𝛽 + 4 (𝜆 − 1)4

(1 − 𝑣0)
𝛽2
}
+ (𝛽3) = 0 (51)

where the singularity parameter of 𝜆 = 1
2 in the range of 𝜆 ∈ (0, 1).

The dominant singularity of the two modes is the same as the classic solution of 1∕
√
𝑟. Therefore, for a triangular void with

𝛽 → 0, it reduces to a slit-like crack, and both the stress and the eigenstrain fields around the tip exhibit a dominant singularity at
1∕

√
𝑟.

3.3. General triangular void problems

Williams (1952) and Dempsey and Sinclair (1979) investigated the singularity of angular wedge and composites wedge,

respectively. As demonstrated in the previous subsection, the solution to the eigenstrain contains a series of components with

different 𝜆. However, the dominant singularity is of our most interest. Therefore, this section aims to use Eshelby’s equivalent

inclusion method to solve dominant stress singularities, which serves as both a verification and tribute to pioneers’ classic works.

Solving Eq. (40) with angles varying 𝛽 ∈ [0, 𝜋∕2], the dominant stress singularities are plotted in Fig. 3, which shows that the
singularity parameter 𝜆 solved by EIM is exactly the same as Williams’ classic solution for the symmetric case. Similarly, the

anti-symmetric case by obtained by solving Eq. (47).

In Fig. 3, for Mode I of the symmetric case, the singularity parameter 𝜆 gradually reduce from 0.5 to 0 when 𝛽 increases from 0 to
𝜋

2 . However, for Mode II of the anti-symmetric case, the singularity parameter become zero when 𝛽 = 0.285𝜋 or 51.3◦. The reduction
of 𝜆 with 𝛽 for Mode II is much faster than that for Mode I. The Eshelby’s EIM solution reproduces Williams’ solution (Williams,

1952; Barber, 1992).
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Fig. 3. Comparison of symmetric and anti-symmetric dominant singularity of a triangular void by EIM with Williams’ solution of the re-entrant corner.

4. General triangular inhomogeneity problems

In the preceding section, EIM was applied to identify the dominant singularity of triangular void problems, and it agrees well

with the classic solutions. Voids are special inhomogeneities with zero stiffness tensor and zero stress; while general inhomogeneities

may exhibit nonzero but different material properties than the matrix, which leads to a stress field in the inhomogeneity as well.

As explained in Section 2.3, to extend the power function distribution to the logarithmic singularity of 𝑟−𝜆 ln 𝑟, a partial derivative
with respect to singularity parameter 𝜆 was introduced by Dempsey and Sinclair (1979). Dundurs (1969) and Bogy (1968) have

investigated that the logarithmic singularity can be sufficiently determined by two material constants, namely 𝛼 and 𝛽 in their works.

This section will investigate the eigenstrain distribution or stress discontinuities around the vertex for inhomogeneities, particularly

with logarithm singularities. The present formulation provides a systemic way to investigate the singularity and discontinuities of

stress around the vertex of inhomogeneities.

4.1. About the logarithmic singularity of inhomogeneity problems

Following Dempsey and Sinclair (1981), when the derivative of the determinant of the EIM equations on 𝜆 is zero, a logarithmic

singularity appears, and the solution scheme for inhomogeneities can be revised from the previous procedure as follows:

1. Apply power function distribution in the same fashion as the triangular voids, and construct two independent integral

equations for symmetric or anti-symmetric problems, respectively.

2. Non-trivial solutions can be obtained by setting determinant of the matrix as zero, which is more complicated than the

triangular void because the stiffness of the inhomogeneity is not zero anymore. The singularity parameter 𝜆 can be solved

similarly.

3. Check if the derivative of the determinant on 𝜆 is zero. If it is zero, the singularity level of the stress and eigenstrain is 𝑟−𝜆 ln 𝑟;
otherwise, it still follows 𝑟−𝜆, the same as the last section (Dempsey and Sinclair, 1979).

In the following, the symmetric and anti-symmetric cases will be studied with the formulation for the general inhomogeneity

problem. Parametric studies are conducted on the ratio of shear modulus 𝜇0∕𝜇1 and opening angle 𝛽.
Note that Section 3 provides analysis on the void problems, which exhibits zero shear modulus on the inhomogeneity. As a

consequence, equivalent stress conditions can be greatly simplified as equivalence between disturbed strain and eigenstrain for

singularity identification. The authors have checked the determinant and its partial derivative cannot be zero at the same time for

voids, and such a procedure is illustrated in the supplementary information with scripts.

In addition, Dundurs (1969) commented on Bogy’s work (Bogy, 1968), and mentioned that singular behaviors are dependent

on two parameters. We can use the two parameters to determine the existence of the logarithmic singularity as well, which will

be discussed in Section 4.4. Dempsey and Sinclair’s method (Dempsey and Sinclair, 1979) provides the consistent prediction of

the logarithmic singularity as Dundurs (1969) for the wedge problem of bi-material systems. The inhomogeneity problem in this

paper can follow the same way (Dempsey and Sinclair, 1979). In the following, the derivative of the determinant on 𝜆 will also

be evaluated for all cases of the two parameters, but in most cases no such solution exists to make both the determinant and the

derivative of the determinant equal to zero, which means that the logarithmic singularity does not exist for the singularity problem

of most cases. However, special cases do exist for the logarithmic singularity.
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4.2. Mode I: uni-axial loading 𝜎022

Based on the equivalent stress conditions, two equations can be obtained as,

(1 − 𝜆)
8𝜇0𝜇1(1 − 𝑣0)

{
𝑐2(𝜆 − 2)

[
−𝜇0 − 3𝜇1 + csc 𝜆𝜋(𝜇0 − 𝜇1)

(
(𝜆 − 1) sin[𝜆𝜋 + 2𝛽(2 − 𝜆)] + (−𝜆 + 4𝑣0 − 2) sin[𝜆𝜋 + 2𝛽(1 − 𝜆)]

)
+ 4𝜇1𝑣0

]
+𝑐4 csc 𝜆𝜋

[
(𝜆 − 1)

(
2 sin[𝜆𝜋 + 2𝛽][𝜇0(1 − 2𝑣1) − 𝜇1(1 − 2𝑣0)] − (𝜇0 − 𝜇1)(𝜆 − 4𝑣0 + 2) sin 𝜆(𝜋 − 2𝛽)

)
+ sin[𝜆𝜋 + 2𝛽(1 − 𝜆)]

(
𝜇0[(𝜆 − 2)𝜆 + 4𝑣1 − 2] − 𝜇1[(𝜆 − 2)𝜆 + 4𝑣0 − 2]

)
+
(
sin 𝜆𝜋(−𝜆 + 4𝑣0 − 2)((3 − 4𝑣1)𝜇0 + 𝜇1)

) ]}
= 0

(52)

(1 − 𝜆)
8𝜇0𝜇1(1 − 𝑣0)

{
𝑐2(𝜆 − 2)

[
𝜇0 + 3𝜇1 + csc 𝜆𝜋(𝜇0 − 𝜇1)

(
(𝜆 + 4𝑣0 − 2) sin[𝜆𝜋 + 2𝛽(1 − 𝜆)] − (𝜆 − 1) sin[𝜆𝜋 + 2𝛽(2 − 𝜆)]

)
− 4𝜇1𝑣0

]
+𝑐4 csc 𝜆𝜋

[
(𝜆 − 1)

(
(𝜇0 − 𝜇1)(𝜆 + 4𝑣0 − 2) sin 𝜆(𝜋 − 2𝛽) − 2 sin[𝜆𝜋 + 2𝛽]

[
𝜇0(1 − 2𝑣1) − 𝜇1(1 − 2𝑣0)

])
+ sin[𝜆𝜋 + 2𝛽(1 − 𝜆)](𝜇1[(𝜆 − 2)𝜆 + 4𝑣0 − 2] − 𝜇0[(𝜆 − 2)𝜆 + 4𝑣1 − 2)] +

(
sin 𝜆𝜋(𝜆 + 4𝑣0 − 2)((3 − 4𝑣1)𝜇0 + 𝜇1)

) ]}
= 0

(53)

and the determinant of the coefficients of the two equations is,

Det𝑛 =
(2 − 𝜆)(𝜆 − 1)2(1 − 2𝑣0) csc 𝜆𝜋

16(𝜇0𝜇1)2(1 − 𝑣0)2
{
(𝜇0 − 𝜇1)

[
(𝜆 − 1) sin 𝜆(𝜋 − 2𝛽)

(
(𝜆 − 1) csc 𝜆𝜋(𝜇0 − 𝜇1) sin[𝜆𝜋 + 2𝛽(2 − 𝜆)]

− 𝜇0 − (3 − 4𝑣0)𝜇1
)
+csc 𝜆𝜋 sin[𝜆𝜋 + 2𝛽(1 − 𝜆)]

(
−2(𝜆 − 1) sin[𝜆𝜋 + 2𝛽][𝜇0(1 − 2𝑣1) − 𝜇1(1 − 2𝑣0)]

+ sin[𝜆𝜋 + 2𝛽(1 − 𝜆)]
[
𝜇1

(
(𝜆 − 2)𝜆 + 4𝑣0 − 2

)
− 𝜇0

(
(𝜆 − 2)𝜆 + 4𝑣1 − 2

)] )
−(1 − 𝜆) sin[𝜆𝜋 + 2𝛽(2 − 𝜆)][(3 − 4𝑣1)𝜇0 + 𝜇1]

]
− sin 𝜆𝜋[𝜇0 + 𝜇1(3 − 4𝑣0)](𝜇0(3 − 4𝑣1) + 𝜇1)

}
= 0

(54)

Similarly, one can solve for 𝜆 and obtain the singularity order. To check if the logarithmic singularity exists, one can take the first

order partial derivative of Det𝑛 with respect to 𝜆 as,

𝜕Det𝑛
𝜕𝜆

=
( 1
𝜆 − 2

+ 2
𝜆 − 1

− 𝜋 cot 𝜆𝜋
)
Det𝑛 +

(2 − 𝜆)(1 − 𝜆)2(1 − 2𝑣0) csc 𝜆𝜋
16(𝜇0𝜇1)2(1 − 𝑣0)2

{
(𝜇0 − 𝜇1)

{
(𝜆 − 1) csc 𝜆𝜋(𝜇0 − 𝜇1) sin 𝜆(𝜋 − 2𝛽)[

(𝜋 − 2𝛽)(𝜆 − 1) cos[𝜆𝜋 + 2𝛽(2 − 𝜆)] + (1 − 𝜋(𝜆 − 1) cot 𝜆𝜋) sin[𝜆𝜋 + 2𝛽(2 − 𝜆)]
]
+ sin 𝜆(𝜋 − 2𝛽)

[
(𝜆 − 1) csc 𝜆𝜋(𝜇0 − 𝜇1)

sin[𝜆𝜋 + 2𝛽(2 − 𝜆)] − 𝜇0 − 𝜇1(3 − 4𝑣0)
]
+(𝜋 − 2𝛽)(𝜆 − 1) cos 𝜆(𝜋 − 2𝛽)

[
(𝜆 − 1) csc 𝜆𝜋(𝜇0 − 𝜇1) sin[𝜆𝜋 + 2𝛽(2 − 𝜆)] − 𝜇0

− 𝜇1(3 − 4𝑣0)
]
+(𝜋 − 2𝛽) csc 𝜆𝜋 cos[𝜆𝜋 + 2𝛽(1 − 𝜆)]

[
2(1 − 𝜆) sin[𝜆𝜋 + 2𝛽]

(
𝜇0(1 − 2𝑣1) − 𝜇1(1 − 2𝑣0)

)
+ sin[𝜆𝜋 + 2𝛽(1 − 𝜆)](

𝜇1[(𝜆 − 2)𝜆 + 4𝑣0 − 2] − 𝜇0[(𝜆 − 2)𝜆 + 4𝑣1 − 2]
) ]

+csc 𝜆𝜋 sin[𝜆𝜋 + 2𝛽(1 − 𝜆)]
[
−2(𝜆 − 1)(𝜇0 − 𝜇1) sin[𝜆𝜋 + 2𝛽(1 − 𝜆)]

− 2 sin[𝜆𝜋 + 2𝛽](𝜇0(1 − 2𝑣1) − 𝜇1(1 − 2𝑣0)) − 2𝜋(𝜆 − 1) cos[𝜆𝜋 + 2𝛽](𝜇0(1 − 2𝑣1) − 𝜇1(1 − 2𝑣0))

+ (𝜋 − 2𝛽) cos[𝜆𝜋 + 2𝛽(1 − 𝜆)]
(
𝜇1[(𝜆 − 2)𝜆 + 4𝑣0 − 2] − 𝜇0[(𝜆 − 2)𝜆 + 4𝑣1 − 2]

) ]
−𝜋 cot 𝜆𝜋 csc 𝜆𝜋 sin[𝜆𝜋 + 2𝛽(1 − 𝜆)][

2(1 − 𝜆) sin[𝜆𝜋 + 2𝛽](𝜇0(1 − 2𝑣1) − 𝜇1(1 − 2𝑣0)) + sin[𝜆𝜋 + 2𝛽(1 − 𝜆)]
(
𝜇1[(𝜆 − 2)𝜆 + 4𝑣0 − 2] − 𝜇0[(𝜆 − 2)𝜆 + 4𝑣1 − 2]

)]
+ sin[𝜆𝜋 + 2𝛽(2 − 𝜆)][𝜇1 + 𝜇0(3 − 4𝑣1)] −

[
(𝜋 − 2𝛽)(1 − 𝜆) cos[𝜆𝜋 + 2𝛽(2 − 𝜆)][𝜇0(3 − 4𝑣1) + 𝜇1]

] }
− 𝜋 cos 𝜆𝜋[𝜇0 + 𝜇1(3 − 4𝑣0)][𝜇0(3 − 4𝑣1) + 𝜇1]

}
= 0

(55)

When Det𝑛 = 0 is applied to determine the singularity parameter 𝜆, one can substitute 𝜆 into the above equation. If 𝜕Det𝑛
𝜕𝜆

= 0,
the singularity level will be 𝑟−𝜆 ln 𝑟; otherwise, it is 𝑟−𝜆.

To show numerical results on dominant singularities, consider properties as 𝜇0 = 1, 𝑣0 = 𝑣1 = 1
4 . Fig. 4(a) plots 𝜆 changing with

the shear modulus ratio 𝜇1∕𝜇0 for five cases of 𝛽. When 𝜇1 = 𝜇0, stress singularity does not exist because of no material mismatch.
The curve ‘‘𝛽 = 0’’ in Fig. 4(a) shows that singularity 𝜆 decreases rapidly with increase of 𝜇1. Even if 𝜇1 = 0.1𝜇0, 𝜆 rapidly decreases
from 1

2 to < 0.15; when 𝜇1 is greater than 𝜇0 along with the increase of material mismatch, the singularity parameter 𝜆 gradually
increases to 1/2, which is not explicitly shown in the log scale coordinate. In the most range of 𝜇1∕𝜇0, the singularity parameter of
the curve ‘‘𝛽 = 0’’ is smaller than the other four cases except 𝜇1∕𝜇0 = 0 or ∞. When 𝛽 increases, the singularity parameter varies in
a smaller range.

Fig. 4(b) shows the singularity parameter changing with 𝛽 for six cases of 𝜇1∕𝜇0. When 𝜇1∕𝜇0 = 0, 𝜆 decreases slowly when 𝛽
is small, and the changing rate increases rapidly when 𝛽 approaches 0.5𝜋, which implies that 𝜆 is highly sensitive to both material
mismatch and opening angles. For two extreme cases of material mismatch (𝜇1∕𝜇0 = 0 or ∞), 𝜆 can be described by a monotonic
function of the opening angle 𝛽, and the maximum values exist when 𝛽 → 0+. When 𝜇1∕𝜇0 < 1, the maximum value exists in the

second half (𝛽 > 0.25𝜋) and the curve becomes more flatten for smaller material mismatch; when 𝜇1∕𝜇0 > 1, the maximum value

exists in the first half (𝛽 < 0.25𝜋) and the shape of curve depends on material mismatch as well. It is observed that when 𝛽 → 0, 𝜆
of four cases 0.1 ≤ 𝜇1∕𝜇0 ≤ 10 are not 1

2 , which differentiates from the slit-like crack problem.
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Fig. 4. Variation of symmetric dominant stress singularity 𝜆, (a) opening angle 𝛽 = 0, 0.10, 0.2, 0.3 and 0.4𝜋 with ratio of shear modulus 𝜇1∕𝜇0 ∈ [0.001, 4]; (b)
ratio of shear modulus 𝜇1∕𝜇0 = 0, 0.1, 0.5, 2, 10 and ∞ versus opening angle 𝛽 ∈ [0, 1∕2)𝜋.

Fig. 5. Variation of anti-symmetric dominant stress singularity 𝜆, (a) opening angle 𝛽 = 0, 0.10, 0.2, 0.3 and 0.4𝜋 with ratio of shear modulus 𝜇1∕𝜇0 ∈ [0.001, 4];
(b) ratio of shear modulus 𝜇1∕𝜇0 = 0, 0.1, 0.5, 2, 10 and ∞ versus opening angle 𝛽 ∈ [0, 1∕2)𝜋.

4.3. Mode II: simple shearing 𝜎012

Based on equivalent stress conditions, two equations can be obtained,

(1 − 𝜆)
8𝜇0𝜇1(1 − 𝑣0)

{
𝑐3 csc 𝜆𝜋

[
(𝜆 − 1)

(
𝜆(𝜇1 − 𝜇0) sin 𝜆(𝜋 − 2𝛽) − 2 sin[𝜆𝜋 + 2𝛽][𝜇0(1 − 2𝑣1) − 𝜇1(1 − 2𝑣0)]

)
+ sin[𝜆𝜋 + 2𝛽(1 − 𝜆)]

(
𝜇0[(𝜆 − 2)𝜆 + 4𝑣1 − 2] − 𝜇1[(𝜆 − 2)𝜆 + 4𝑣0 − 2]

)
+ 𝜆 sin(𝜋𝜆)(3𝜇 + 𝜇1 − 4𝜇𝑣1)

]
− 𝑐1(𝜆 − 2)

[
csc 𝜆𝜋(𝜇0 − 𝜇1)

(
2𝜆 sin 𝛽 cos[𝜆𝜋 + (3 − 2𝜆)𝛽] − sin[𝜆𝜋 + 2𝛽(2 − 𝜆)]

)
+ 𝜇0 + 𝜇1(3 − 4𝑣0)

] }
= 0

(56)

(1 − 𝜆)
8𝜇0𝜇1(1 − 𝑣0)

{
𝑐1(𝜆 − 2)

[
−𝜇0 − 3𝜇1 + csc 𝜆𝜋(𝜇0 − 𝜇1)

(
(𝜆 + 4𝑣0 − 4) sin[𝜆𝜋 + 2𝛽(1 − 𝜆)] − (𝜆 − 1) sin[𝜆𝜋 + 2𝛽(2 − 𝜆)]

)
+ 4𝜇1𝑣0

]
+𝑐3 csc 𝜆𝜋

[
(𝜆 − 1)

(
−2 sin[𝜆𝜋 + 2𝛽][𝜇0(1 − 2𝑣1) − 𝜇1(1 − 2𝑣0)] − (𝜇0 − 𝜇1)(𝜆 + 4𝑣0 − 4) sin 𝜆(𝜋 − 2𝛽)

)
+ sin[𝜆𝜋 + 2𝛽(1 − 𝜆)]

(
𝜇0((𝜆 − 2)𝜆 + 4𝑣1 − 2) − 𝜇1[(𝜆 − 2)𝜆 + 4𝑣0 − 2]

)
+
(
sin 𝜆𝜋(𝜆 + 4𝑣0 − 4)((3 − 4𝑣1)𝜇0 + 𝜇1)

) ]}
= 0

(57)
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and the determinant of the coefficients of the two equations is,

Det𝑠 =
(2 − 𝜆)(𝜆 − 1)2

16(𝜇0𝜇1)2(1 − 𝑣0)

{
csc2 𝜆𝜋(𝜇0 − 𝜇1) sin[𝜆𝜋 + 2𝛽(1 − 𝜆)]

[
(𝜆 − 1)

(
𝜆(𝜇1 − 𝜇0) sin 𝜆(𝜋 − 2𝛽) − 2 sin[𝜆𝜋 + 2𝛽]

[𝜇0(1 − 2𝑣1) − 𝜇1(1 − 2𝑣0)]
)
+ sin[𝜆𝜋 + 2𝛽(1 − 𝜆)]

(
𝜇0[(𝜆 − 2)𝜆 + 4𝑣1 − 2] − 𝜇1[(𝜆 − 2)𝜆 + 4𝑣0 − 2]

)
+ 𝜆 sin 𝜆𝜋[𝜇1 + 𝜇(3 − 4𝑣1)]

]
−
[
(𝜆 − 1) csc 𝜆𝜋(𝜇0 − 𝜇1) sin 𝜆(𝜋 − 2𝛽) − 𝜇1 − 𝜇0(3 − 4𝑣1)

] [
csc 𝜆𝜋(𝜇0 − 𝜇1)(

2𝜆 sin 𝛽 cos[𝜋𝜆 + 𝛽(3 − 2𝜆)] − sin[𝜆𝜋 + 2𝛽(2 − 𝜆)]
)
+ 𝜇0 + 𝜇1(3 − 4𝑣0)

]}
= 0

(58)

Taking the first order partial derivative with respect to 𝜆, one can obtain:

𝜕Det𝑠
𝜕𝜆

=
( 2
𝜆 − 1

+ 1
𝜆 − 2

)
Det𝑠 +

(2 − 𝜆)(𝜆 − 1)2

16(𝜇0𝜇1)2(1 − 𝑣0)
csc 𝜆𝜋(𝜇0 − 𝜇1)

{
−
[
(𝜋 − 2𝛽)(𝜆 − 1) cos 𝜆(𝜋 − 2𝛽)

+
[
1 − 𝜋(𝜆 − 1) cot 𝜆𝜋

]
sin 𝜆(𝜋 − 2𝛽)

][
csc 𝜆𝜋(𝜇0 − 𝜇1)

(
2𝜆 sin 𝛽 cos[𝜆𝜋 + 𝛽(3 − 2𝜆)] − sin[𝜆𝜋 + 2𝛽(2 − 𝜆)]

)
+ 𝜇0 + 𝜇1(3 − 4𝑣0)

]
+csc 𝜆𝜋 sin[𝜆𝜋 + 2𝛽(1 − 𝜆)]

[
𝜆(𝜇1 − 𝜇0) sin 𝜆(𝜋 − 2𝛽) + 2(𝜆 − 1)(𝜇0 − 𝜇1) sin[𝜆𝜋 + 2𝛽(1 − 𝜆)]

− 2 sin[𝜆𝜋 + 2𝛽]
(
𝜇0(1 − 2𝑣1) − 𝜇1(1 − 2𝑣0)

)
+ (𝜋 − 2𝛽) cos[𝜆𝜋 + 2𝛽(1 − 𝜆)]

(
𝜇0[(𝜆 − 2)𝜆 + 4𝑣1 − 2]

− 𝜇1[(𝜆 − 2)𝜆 + 4𝑣0 − 2]
)
+(𝜆 − 1)

(
(𝜇1 − 𝜇0) sin 𝜆(𝜋 − 2𝛽) + (𝜋 − 2𝛽)𝜆(𝜇1 − 𝜇0) cos 𝜆(𝜋 − 2𝛽) − 2𝜋 cos[𝜆𝜋 + 2𝛽][

𝜇0(1 − 2𝑣1) − 𝜇1(1 − 2𝑣0)
] )

+ sin 𝜆𝜋
(
𝜇1 + 𝜇0(3 − 4𝑣1)

)
+ 𝜆𝜋 cos 𝜆𝜋

(
𝜇1 + 𝜇0(3 − 4𝑣1)

) ]
+(𝜋 − 2𝛽) csc 𝜆𝜋

cos[𝜆𝜋 + 2𝛽(1 − 𝜆)]
[
(𝜆 − 1)

(
𝜆(𝜇1 − 𝜇0) sin 𝜆(𝜋 − 2𝛽) − 2 sin[𝜆𝜋 + 2𝛽]

(
𝜇0(1 − 2𝑣1) − 𝜇1(1 − 2𝑣1)

))
+ sin[𝜆𝜋 + 2𝛽(1 − 𝜆)]

(
𝜇0[(𝜆 − 2)𝜆 + 4𝑣1 − 2] − 𝜇1[(𝜆 − 2)𝜆 + 4𝑣0 − 2]

)
+ 𝜆 sin 𝜆𝜋[𝜇1 + 𝜇0(3 − 4𝑣1)]

]
− 2𝜋 cot 𝜆𝜋 csc 𝜆𝜋 sin[𝜆𝜋 + 2𝛽(1 − 𝜆)]

[
(𝜆 − 1)

(
𝜆(𝜇1 − 𝜇0) sin 𝜆(𝜋 − 2𝛽) − 2 sin[𝜆𝜋 + 2𝛽]

(
𝜇0(1 − 2𝑣1) − 𝜇1(1 − 2𝑣0)

))
+ sin[𝜆𝜋 + 2𝛽(1 − 𝜆)]

(
𝜇0[(𝜆 − 2)𝜆 + 4𝑣1 − 2] − 𝜇1[(𝜆 − 2)𝜆 + 4𝑣0 − 2]

)
+ 𝜆 sin 𝜆𝜋[𝜇1 + 𝜇0(3 − 4𝑣1)]

]
−
[
−2(𝜋 − 2𝛽)𝜆 sin 𝛽 sin[𝜆𝜋 + 𝛽(3 − 2𝜆)] −

[
(𝜋 − 2𝛽) cos[𝜆𝜋 + 2𝛽(2 − 𝜆)]

]
+ 𝜋 cot 𝜆𝜋 sin[𝜆𝜋 + 2𝛽(2 − 𝜆)]

− 2 sin 𝛽
(
𝜆𝜋 cot 𝜆𝜋 − 1

)
cos[𝜆𝜋 + (3 − 2𝜆)𝛽]

] [
(𝜆 − 1) csc 𝜆𝜋(𝜇0 − 𝜇1) sin 𝜆(𝜋 − 2𝛽) − 𝜇1 − 𝜇0(3 − 4𝑣1)

] }
= 0

(59)

Similarly to Fig. 4(a), Fig. 5(a) plots 𝜆 changing with 𝜇1∕𝜇0 for the shearing case. As shown in Fig. 3, a singularity for the shearing
case does not exist for a re-entrant corner for all angles. For example, when 𝛽 = 0.1𝜋, singularity exists for ratio of shear modulus
𝜇1∕𝜇0 ∈ (0, 1); when 𝛽 = 0.4𝜋, singularity exists for ratio of shear modulus 𝜇1∕𝜇0 ∈ (1,∞) instead. The singularity may exist at
larger opening angles for stiffer inhomogeneities. Similar trends of singularity can be observed that it increases with larger material

differences, no matter for softer or stiffer inhomogeneities.

Fig. 5(b) plots singularity versus opening angles. The shape of curves is similar to symmetric loading cases, and their main

difference lies in the existing range of angles. Notice that the determination of singularity 𝜆 is independent of logarithm singularity.

To investigate the existence of a logarithmic singularity, one needs to take a partial derivative with respect to 𝜆 on the determinant

and sets 𝜆 as the previous solution (𝜆0) to assume a power function distribution. If
𝜕Det

𝜕𝜆
= 0 (𝜆 = 𝜆0), then there exists the

logarithmic singularities, which will not be repeated below. For general cases, readers can refer to the Supplemental Materials for

scripts and conduct specific case studies.

4.4. Singularity caused by interfacial materials at 𝛽 → 0

When a structure exhibits deficits or cracks, a rapid and economical repair method is to clean the cracks and fill adhesive

materials for lifetime extension and safety enhancement. In this case, 𝛽 → 0 is considered. Although the volume of adhesive material
approaches zero, the stiffness of the adhesive plays a significant role in the stress singularity and discontinuity. The present method

based on the Eshelby’s EIM provides a unique way to investigate this problem. Given an angle 𝛽, the singularity parameter 𝜆 depends

on the material mismatch described by Dundurs’ parameters (Dundurs, 1969) as follows:

𝛼 =
𝛾(𝑘0 + 1) − (𝑘1 + 1)
𝛾(𝑘0 + 1) + (𝑘1 + 1)

; 𝛽 =
𝛾(𝑘0 − 1) − (𝑘1 − 1)
𝛾(𝑘0 + 1) + (𝑘1 + 1)

(60)

where 𝛼 and 𝛽 are equivalent to Dundurs’ work and (.) differentiates it from angles used in this paper; 𝛾 = 𝜇0∕𝜇1 and 𝑘𝑖 = 3 − 4𝑣𝑖
(𝑖 = 0, 1). Given elastic constants of the inhomogeneity and matrix, 𝛼 and 𝛽 are key parameters determining the singularity parameter
𝜆. For instance, given Poisson’s ratios of two materials, the singularity should depend on 𝛼 and 𝛽, which can be verified by adjusting

shear modulus proportionally. When 𝛽 → 0, the numerical results can be directly applied to adhesive interfaces in layered materials
or laminated composite.

According to Dundur’s results, 𝛼 and 𝛽 are limited in a parallelogram region, where 𝛼 ∈ [−1, 1] and 𝛽 ∈ [−0.5, 0.5], respectively,
with some pairs of (𝛼, 𝛽) not physical. To investigate the effects of elastic constants, 21 uniform points of 𝛼 and 𝛽 are selected.



������� �	 
�� 
�������� ��� ������� �	 ������ ��� ������ ������

�)

C. Wu and H. Yin

Table 1 and Table 2 show singularity order of Mode I and Mode II, respectively. Indicated as Table 1, when 𝛼 = −1, 𝜆 = 0.5 for
all cases. In Fig. 2 of Dundurs (1969), 𝛼 = −1 is the left border of the parallelogram, and 𝛾 = 0 implies the maximum material

mismatch. In such a case, the change of Poisson’s ratio does influence the singularity order. And such situations can be observed in

Table 2 as well.

When 𝛼 gradually increases, say 0.9, 0.8 for example, 𝜆 decreases rapidly from 0.5 to less than 0.1. A similar phenomenon can

be observed in Fig. 5(a), suggesting that increasing stiffness of inhomogeneity can efficiently reduce singular effects. For the same

𝛼 ∈ [−1, 0), 𝜆 decreases with larger 𝛽, which can be interpreted as narrowing material mismatch. It can be observed that when
𝛼 = 0, stress singularity disappears for all cases of 𝛽. When 𝛼 ∈ (0, 1], singularity starts to appear again and the number of points
(singularity) gradually increases.

A special case with logarithmic singularity (𝛼, 𝛽) = (0.3,−0.15) is annotated with (∗), as the partial derivative of the determinant
also yields as zero with the same 𝜆. As an inverse trend of 𝛼 ∈ [−0.1, 0), 𝜆 increases with 𝛼, which can also be attributed as greater
material mismatch. Finally, when 𝑜𝑣𝑒𝑟𝑙𝑖𝑛𝑒𝛼 equals 1, 𝛾 → ∞ and 𝜆 become 0.5 again for maximum material mismatch. Similarly,

the solution does not change with variation of Poisson’s ratios.

Table 2 displays singularity parameters of mode II versus 𝛼 and 𝛽. Similar to Table 1, with narrowing material mismatch, 𝜆

rapidly decreases, such as from 0.5 to less than 0.02. The singularity does not always exist for constant 𝛼. It can be observed that

when 𝛼 ∈ [0.1, 0.9], there exist no singularities for mode II. And when 𝛼 = 1, 𝜆 become 0.5 for the maximum material mismatch,

which does not vary with Poisson’s ratios.

Note that the logarithmic singularity in the inhomogeneity problem with 𝜇1∕𝜇0 ≠ 0 can be significantly different from the wedge

problem due to the boundary conditions (Bogy, 1968; Dempsey and Sinclair, 1979). This paper demonstrates the singularity along

the line of 𝑥2 = 0 or 𝜃 = 0 only, the singularity along other lines across the origin (0,0) can also be derived in the similar fashion.
The cases for 𝛽 = 𝜋

12 ,
𝜋

6 ,
𝜋

4 ,
𝜋

3 are provided in Supplementary Materials.

5. Remarks about the significant results and future extensions

This paper extended Eshelby’s equivalent inclusion method (EIM) (Eshelby, 1956) to angular inhomogeneity, which exhibits

complex singularity depending on the stiffness mismatch, opening angle, and loading conditions. Some remarks are provided about

the significance of this work and its future extensions as follows:

1. Although this work used Eshelby’s EIM (Eshelby, 1956) to investigate the singularity of the angular inhomogeneity,

while Rodin (1996) already solved the corresponding inclusion problem, we cannot reproduce Eshelby’s solution of the

ellipsoidal inhomogeneity problem in the present angular inhomogeneity problem based on Rodin’s solution, as a singular

eigenstrain is expected. To our knowledge, this is the first work to study elastic field caused by a singular eigenstrain field with

an analytical solution, although uniform and polynomial eigenstrain fields have been addressed well in the literature (Mura,

1987; Yin et al., 2007; Wu and Yin, 2021; Wu et al., 2021).

2. Mathematically, the problem of the singularity in an angular inhomogeneity is reduced to search the eigenstrain with

singularity parameter 𝜆 to generate a stress field at the same singularity order around the vertex by applying the stress

equivalent condition. Different inhomogeneity shape, stiffness ratio, and loading conditions lead to different 𝜆.

3. Although the stress discontinuity along the boundary of an inclusion or inhomogeneity has been studied for ellipsoidal

particles (Mura, 1987; Ju and Sun, 1999), it is the first time for this paper to show the exact solution in Eq. (7) for the

stress jump cross the interface for polygonal inclusions with the explicit integral, which should credit to Rodin’s original

work (Rodin, 1996) although he did not provide the formulation yet. This analytical form of the discontinuity assures the

exactness and rigorousness of the analysis for singularity.

4. Although the singularity of slit-like cracks or wedge problems has been well studied (Williams, 1956; Dempsey and Sinclair,

1981; Mura, 1987), angular inhomogeneity problems are commonly solved by numerical methods only, and this is the first

work analytically investigating the singularity at the vertex of an angular inhomogeneity. Although we used the wedge or

open cracking problems existing in the literature to verify the solution in special cases, this is the first analytical solution

of the singularities of general inhomogeneities embedded in a matrix that exhibit different boundary conditions from the

wedge problems. This method is versatile. It not only verifies a spectrum of existing solutions, but also discovers singularity

parameters for general inhomogeneities.

5. For a polygonal inhomogeneity in a matrix, the singularity on each vertex depends on its opening angle, which can be used in

material design to control stress singularity. Moreover, the present method can provide the singular eigenstrain field around

the vertex in superposition of continuously distributed eigenstrain in the domain, which can expedite simulation of polygonal

inhomogeneities with much less effort in particle discretization (Wu et al., 2021). The understanding of stress singularity can

further serve as a guidance for other numerical interpolations, such as extended-FEM (Fries and Belytschko, 2010).

6. When a polyhedral inhomogeneity is embedded in a matrix, the singularity in the neighborhood of the edge and vertex

is another challenging problem in the solid mechanics. Although the Airy’s stress function cannot be directly used in 3D

problems, the concept of this paper can be extended to 3D cases by using the singular eigenstrain with Eshelby’s EIM.

Particularly, the singularity along the edge can be straightforwardly predicted by the 2D solution, while the singularity around

the vertex is subjected to a higher order of singularity depending on the sharpness of the angle, stiffness ratio, and loading

condition, which is open for future studies.
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The method can be extended to other multi-physical problems with angular inhomogeneities embedded into a matrix, such as

electric, thermal, and magnetic problems. The singularity behavior of the thermoelastic problems (Wu et al., 2023) is shown in

the Supplementary Materials. The extension from a 2D problem of polygonal inhomogeneities to a 3D problem of cone-shaped or

polyhedral inhomogeneities is underway.

6. Conclusions

The boundary value problem for a triangular inhomogeneity embedded in an unbounded matrix has been mathematically

converted to integral equations by Eshelby’s EIM. By applying Airy’s stress function and asymptotic analysis, the domain integrals of

second-order partial derivatives of Green’s function with the eigenstrain can be expressed through distance and opening angle. The

discontinuities of the Eshelby’s tensor along the boundary and vertex of the inhomogeneity are analytically derived. The dominant

singular term for elastic fields can be separated by the Taylor series expansion. The singular eigenstrain distribution around the vertex

can be derived, which show the same singularity rank as exterior stress fields. The equivalent inclusion method has been extended to

identify dominant singularities for general triangular voids which are verified with classic solutions. For triangular inhomogeneities,

EIM compresses the number of equations as two for either symmetric or anti-symmetric problem without solving four equations in

the conventional methods. By solving the eigenvalue problem of the coefficient matrix and its partial derivative with respect to

the singularity parameter, this method can be easily extended to general inhomogeneities subjected to the two loading conditions

with logarithmic singularity. With a systemically understanding of the eigenstrain around the vertex, the EIM-related numerical

treatments on singularities become possible.
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Appendix A. Components of eigenstrain, displacement gradients and Green’s function in Cartesian coordinate

A.1. Eigenstrain components in the Cartesian coordinate

A strain transformation can be applied to the eigenstrain in Eq. (22) from the polar coordinate to the Cartesian coordinate as

follows:

𝜀∗11 =
𝜕

𝜕𝜆

{ (𝜆 − 1)
2𝜇0𝜇1

𝑟−𝜆
(
𝑐1(𝜆 − 2)(𝜇0 − 𝜇1) sin 𝜆𝜃 − 𝑐2(𝜆 − 2)(𝜇0 − 𝜇1) cos 𝜆𝜃 − 2𝑐3𝜇0 sin 𝜆𝜃

− 𝑐3𝜆𝜇
0 sin(𝜆 + 2)𝜃 − 2𝑐4𝜇0 cos 𝜆𝜃 − 𝑐4𝜆𝜇0 cos(𝜆 + 2)𝜃 + 2𝑐3𝜇1 sin 𝜆𝜃

+ 𝑐3𝜆𝜇
1 sin(𝜆 + 2)𝜃 + 2𝑐4𝜇1 cos 𝜆𝜃 + 𝑐4𝜆𝜇1 cos(𝜆 + 2)𝜃 − 4𝑐3𝜇1𝑣0 sin 𝜆𝜃

− 4𝑐4𝜇1𝑣0 cos 𝜆𝜃 + 4𝑐3𝜇0𝑣1 sin 𝜆𝜃 + 4𝑐4𝜇0𝑣1 cos 𝜆𝜃
)}

𝜀∗12 = − 𝜕

𝜕𝜆

{ (𝜆 − 1)(𝜇0 − 𝜇1)
2𝜇0𝜇1

𝑟−𝜆
(
𝑐2(𝜆 − 2) sin 𝜆𝜃 + 𝑐4𝜆 sin(𝜆 + 2)𝜃 + 𝑐1(𝜆 − 2) cos 𝜆𝜃 − 𝑐3𝜆 cos(𝜆 + 2)𝜃

)}
𝜀∗22 = − 𝜕

𝜕𝜆

{ (𝜆 − 1)
2𝜇0𝜇1

𝑟−𝜆
(
𝑐1(𝜆 − 2)(𝜇0 − 𝜇1) sin 𝜆𝜃 − 𝑐2(𝜆 − 2)(𝜇0 − 𝜇1) cos 𝜆𝜃 + 2𝑐3𝜇0 sin 𝜆𝜃

− 𝑐3𝜆𝜇
0 sin(𝜆 + 2)𝜃 + 2𝑐4𝜇0 cos 𝜆𝜃 − 𝑐4𝜆𝜇0 cos(𝜆 + 2)𝜃 − 2𝑐3𝜇1 sin 𝜆𝜃

+ 𝑐3𝜆𝜇
1 sin(𝜆 + 2)𝜃 − 2𝑐4𝜇1 cos 𝜆𝜃 + 𝑐4𝜆𝜇1 cos(𝜆 + 2)𝜃 + 4𝑐3𝜇1𝑣0 sin 𝜆𝜃

+ 4𝑐4𝜇1𝑣0 cos 𝜆𝜃 − 4𝑐3𝜇0𝑣1 sin 𝜆𝜃 − 4𝑐4𝜇0𝑣1 cos 𝜆𝜃
)}

(A.1)



������� �	 
�� 
�������� ��� ������� �	 ������ ��� ������ ������

��

C. Wu and H. Yin

A.2. Displacement gradients in the Cartesian coordinate

𝑢1,2 = − 𝜕

𝜕𝜆

{ (𝜆 − 1)𝑟−2−𝜆

2𝜇1
(
𝑐3

[
−
(
𝑥21(𝜆 − 4𝑣1 + 4) cos 𝜆𝜃

)
+ 𝑥22(𝜆 + 4𝑣1 − 4) cos 𝜆𝜃 + 2𝜆𝑥1𝑥2 sin 𝜆𝜃

]
+ 𝑐1(𝜆 − 2)𝑟2 cos 𝜆𝜃

)}
𝑢2,1 = − 𝜕

𝜕𝜆

{ (𝜆 − 1)𝑟−2−𝜆

2𝜇1
(
𝑐3

[
−
(
𝑥21(𝜆 + 4𝑣1 − 4) cos 𝜆𝜃

)
+ 𝑥22(𝜆 − 4𝑣1 + 4) cos 𝜆𝜃 + 2𝜆𝑥1𝑥2 sin 𝜆𝜃

]
+ 𝑐1(𝜆 − 2)𝑟2 cos 𝜆𝜃

)}
(A.2)

A.3. Derivatives of harmonic and biharmonic potentials

The Green’s function is composed of biharmonic 𝜓 and harmonic 𝜙 potential functions, and some of their partial derivatives are

listed below when the observing point is along the symmetric line 𝐱 = (𝑥1, 0).
Biharmonic potential function

𝜓,1111 =
2
(
−𝑟4(cos(4𝜃) − 2 cos 2𝜃) + 4𝑟3𝑥1 cos 𝜃(cos 2𝜃 − 2) + 6𝑟2𝑥21 − 4𝑟𝑥31 cos 𝜃 + 𝑥

4
1
)(

𝑟2 − 2𝑟𝑥1 cos 𝜃 + 𝑥21
)
3

𝜓,1112 = −
4𝑟 sin 𝜃

(
𝑟 cos 𝜃 − 𝑥1

) (
𝑟2(2 cos 2𝜃 − 1) − 2𝑟𝑥1 cos 𝜃 + 𝑥21

)(
𝑟2 − 2𝑟𝑥1 cos 𝜃 + 𝑥21

)
3

𝜓,1122 =
2
(
𝑟4 cos(4𝜃) − 4𝑟3𝑥1 cos(3𝜃) + 6𝑟2𝑥21 cos 2𝜃 − 4𝑟𝑥31 cos 𝜃 + 𝑥

4
1
)(

𝑟2 − 2𝑟𝑥1 cos 𝜃 + 𝑥21
)
3

𝜓,1212 = −
𝑟4 cos(4𝜃) − 4𝑟3𝑥1 cos(3𝜃) + 6𝑟2𝑥21 cos 2𝜃 − 4𝑟𝑥31 cos 𝜃 + 𝑥

4
1

2𝜋(𝑣 − 1)
(
𝑟2 − 2𝑟𝑥1 cos 𝜃 + 𝑥21

)
3

𝜓,2212 =
4𝑟 sin 𝜃

(
𝑟 cos 𝜃 − 𝑥1

) (
𝑟2(2 cos 2𝜃 + 1) + 3𝑥1

(
𝑥1 − 2𝑟 cos 𝜃

))(
𝑟2 − 2𝑟𝑥1 cos 𝜃 + 𝑥21

)
3

𝜓,2222 =
6𝑥1

(
𝑟3 sin(4𝜃) csc 𝜃 − 𝑥1

(
2𝑟2(2 cos 2𝜃 + 1) − 4𝑟𝑥1 cos 𝜃 + 𝑥21

))
− 2𝑟4(2 cos 2𝜃 + cos 4𝜃)(

𝑟2 − 2𝑟𝑥1 cos 𝜃 + 𝑥21
)
3

(A.3)

Harmonic potential function

𝜙,11 =
2
(
𝑟2 cos 2𝜃 − 2𝑟𝑥1 cos 𝜃 + 𝑥21

)(
𝑟2 − 2𝑟𝑥1 cos 𝜃 + 𝑥21

)
2

𝜙,12 =
4𝑟 sin 𝜃

(
𝑟 cos 𝜃 − 𝑥1

)(
𝑟2 − 2𝑟𝑥1 cos 𝜃 + 𝑥21

)
2

𝜙,22 = −
2
(
𝑟2 cos 2𝜃 − 2𝑟𝑥1 cos 𝜃 + 𝑥21

)(
𝑟2 − 2𝑟𝑥1 cos 𝜃 + 𝑥21

)
2

(A.4)

Appendix B. Domain integrals of Green’s function and eigenstrain under symmetric loading

This section provides domain integrals for step (iii) in Section 3.3 under symmetric loading, including 𝜙,11𝜀
∗
22, 2𝜙,12𝜀

∗
12, ⋯,

𝜓,2222𝜀
∗
22.

∫𝛺𝑝 𝜙,11𝐻22(𝜆, 𝛽)𝑟−𝜆𝑑𝐱′ = |𝑥1|−𝜆 𝜋(𝜆 − 1)
8𝜇0𝜇1

{
2𝑐4 csc 𝜆𝜋

[
(𝜆 − 1)

[
2(𝜇0 − 𝜇1) sin 𝜆(𝜋 − 2𝛽) − 𝜆(𝜇0 − 𝜇1) sin(𝜆𝜋 + 4𝛽)

+ 4
(
sin(𝜆𝜋 + 2𝛽) − sin[𝜆𝜋 + 2𝛽(1 − 𝜆)]

) [
𝜇0(1 − 2𝑣1) − 𝜇1(1 − 2𝑣0)

] ]
+(𝜆 − 2) sin 𝜆𝜋

[
𝜇0(𝜆 + 8𝑣1 − 5) − 𝜇1(𝜆 + 8𝑣0 − 5)

] ]
− 4𝑐2(𝜆 − 2)(𝜇0 − 𝜇1)

[
csc 𝜆𝜋

(
(𝜆 − 1) sin(𝜆𝜋 + 2𝛽) − sin [𝜆𝜋 + 2𝛽(1 − 𝜆)]

)
− 𝜆 + 2

] } (B.1)

∫𝛺𝑝 𝜙,12𝐻12(𝜆, 𝛽)𝑟−𝜆𝑑𝐱′ = −|𝑥1|−𝜆 𝜋(𝜆 − 1) csc 𝜆𝜋(𝜇0 − 𝜇1)
4𝜇0𝜇1

{
𝑐4(𝜆 − 1)

[
2 sin 𝜆(𝜋 − 2𝛽) + 𝜆 sin(𝜆𝜋 + 4𝛽)

− [(𝜆 + 2) sin 𝜆𝜋]
]
+4𝑐2(𝜆 − 2)

[
𝜆 sin 𝛽 cos(𝜆𝜋 + 𝛽) − sin 𝜆𝛽 cos[𝜆𝜋 + 𝛽(2 − 𝜆)]

] } (B.2)

∫𝛺𝑝 𝜙,22𝐻11(𝜆, 𝛽)𝑟−𝜆𝑑𝐱′ = |𝑥1|−𝜆 𝜋(1 − 𝜆) csc 𝜆𝜋4𝜇0𝜇1
{
𝑐4(𝜆 − 1)(𝜇0 − 𝜇1)

[
𝜆 sin(𝜆𝜋 + 4𝛽) − 2 sin 𝜆(𝜋 − 2𝛽)

]
+ 2

[
(𝜆 − 1) sin(𝜆𝜋 + 2𝛽) − sin [𝜆𝜋 + 2𝛽(1 − 𝜆)]

][
𝑐2(𝜆 − 2)(𝜇 − 𝜇1) + 2𝑐4

[
𝜇0(1 − 2𝑣1) − 𝜇1(1 − 2𝑣0)

]]
+ (2 − 𝜆) sin 𝜆𝜋

[
2𝑐2(𝜆 − 2)(𝜇 − 𝜇1) + 𝑐4

[
𝜇1(−𝜆 + 8𝑣0 − 3) + 𝜇(𝜆 − 8𝑣1 + 3)

]] } (B.3)
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∫𝛺𝑝 𝜓,1111𝐻11(𝜆, 𝛽)𝑟−𝜆𝑑𝐱′ = −|𝑥1|−𝜆 𝜋(𝜆 − 1)
24𝜇0𝜇1

{
6𝑐2(𝜆 − 2) csc 𝜆𝜋(𝜇0 − 𝜇1)

[
(𝜆 − 4)(𝜆 − 1) sin[𝜆𝜋 + 2𝛽]

− 1
2
(𝜆 − 2)(𝜆 − 1) sin(𝜆𝜋 + 4𝛽) − (𝜆 − 4) sin[𝜆𝜋 + 2𝛽(1 − 𝜆)] + (𝜆 − 1) sin[𝜆𝜋 + 2𝛽(2 − 𝜆)]

]
− 𝑐4 csc 𝜆𝜋

[
2(𝜆 − 1)(𝜇0 − 𝜇1)

(
3(𝜆 − 4) sin 𝜆(𝜋 − 2𝛽) + (𝜆 − 2)𝜆 sin(𝜆𝜋 + 6𝛽)

)
+ 12(𝜆 − 4)(𝜆 − 1) sin[𝜆𝜋 + 2𝛽][

𝜇1(1 − 2𝑣0) − 𝜇0(1 − 2𝑣1)
]
− 3(𝜆 − 1) sin(𝜆𝜋 + 4𝛽)

[
𝜇0

[
(𝜆 − 6)𝜆 + 4(𝜆 − 2)𝑣1 + 4

]
− 𝜇1

[
(𝜆 − 6)𝜆 + 4(𝜆 − 2)𝑣0 + 4

]]
− 6 sin[𝜆𝜋 + 2𝛽(1 − 𝜆)]

[
𝜇0

[
𝜆(𝜆 − 4) + 4(𝜆 − 4)𝑣1 + 8

]
− 𝜇1

[
𝜆(𝜆 − 4) + 4(𝜆 − 4)𝑣0 + 8

]]
+ 12(𝜆 − 1) sin[𝜆𝜋 + 2𝛽(2 − 𝜆)][

𝜇1(1 − 2𝑣0) − 𝜇0(1 − 2𝑣1)
] ]

+(𝜆 − 4)(𝜆 − 3)
[
𝑐4

[
𝜇1(𝜆 − 12𝑣0 + 4) + 𝜇0(−𝜆 + 12𝑣1 − 4)

]
− 3𝑐2(𝜆 − 2)(𝜇0 − 𝜇1)

] }
(B.4)

∫𝛺𝑝 𝜓,1112𝐻12(𝜆, 𝛽)𝑟−𝜆𝑑𝐱′ = −|𝑥1|−𝜆 𝜋(𝜆 − 2)(𝜆 − 1)(𝜇0 − 𝜇1)
24𝜇0𝜇1

{
2 csc 𝜆𝜋

(
3𝑐2

(
(𝜆 − 2)

[
(𝜆 − 1)

[
sin(4𝛽 + 𝜋𝜆)

− 2 sin(𝜆𝜋 + 2𝛽)
]
−2 sin[𝜆𝜋 + 2𝛽(1 − 𝜆)]

]
+2(𝜆 − 1) sin[𝜆𝜋 + 2𝛽(2 − 𝜆)]

)
+𝑐4

[
(𝜆 − 1)

{
−6 sin 𝜆(𝜋 − 2𝛽)

− 3𝜆 sin[𝜆𝜋 + 4𝛽] + 2𝜆 sin[𝜆𝜋 + 6𝛽]
}
+6𝜆 sin[𝜆𝜋 + 2𝛽(1 − 𝜆)]

])
+2(𝜆 − 3)

[
3𝑐2𝜆 + 𝑐4(𝜆 + 2)

] } (B.5)

∫𝛺𝑝 𝜓,1122𝐻22(𝜆, 𝛽)𝑟−𝜆𝑑𝐱′ = −|𝑥1|−𝜆 𝜋(𝜆 − 1)
48𝜇0𝜇1

{
12𝑐2(𝜆 − 2) csc 𝜆𝜋(𝜇0 − 𝜇1)

[
(𝜆 − 1)𝜆 sin(𝜆𝜋 + 2𝛽)

− 1
2
(𝜆 − 2)(𝜆 − 1) sin(𝜆𝜋 + 4𝛽) − sin[𝜆𝜋 + 2𝛽(2 − 𝜆)] + 2𝜆 sin 𝛽 cos[𝜆𝜋 + 𝛽(3 − 2𝜆)]

]
−6𝑐2(𝜆 − 2)

[
𝜆2 + 𝜆 − 4

]
(𝜇0 − 𝜇1)

− 2𝑐4 csc 𝜆𝜋
[
6(𝜆 − 1)𝜆(𝜇0 − 𝜇1) sin 𝜆(𝜋 − 2𝛽) + 2(𝜆 − 2)(𝜆 − 1)𝜆(𝜇0 − 𝜇1) sin(𝜆𝜋 + 6𝛽) + 12(𝜆 − 1)𝜆 sin(𝜆𝜋 + 2𝛽)[

𝜇0(1 − 2𝑣1) − 𝜇1(1 − 2𝑣0)
]
+ 3(𝜆 − 1) sin(𝜆𝜋 + 4𝛽)

[
𝜇1(𝜆(𝜆 + 2) − 4(𝜆 − 2)𝑣0 − 4) + 𝜇0(−𝜆(𝜆 + 2) + 4(𝜆 − 2)𝑣1 + 4)

]
+ 6𝜆 sin[𝜆𝜋 + 2𝛽(1 − 𝜆)]

[
𝜆(𝜇1 − 𝜇0) − 4𝜇1𝑣0 + 4𝜇0𝑣1

]
+ 12(𝜆 − 1) sin[𝜆𝜋 + 2𝛽(2 − 𝜆)]

[
𝜇0(1 − 2𝑣1) − 𝜇1(1 − 2𝑣0)

] ]
− 2𝑐4

[
𝜇0

[
𝜆
(
(𝜆 − 3)𝜆 − 16

)
+ 12

(
𝜆2 + 𝜆 − 4

)
𝑣1 + 24

]
− 𝜇1

[
𝜆((𝜆 − 3)𝜆 − 16) + 12

(
𝜆2 + 𝜆 − 4

)
𝑣0 + 24

]] }
(B.6)

∫𝛺𝑝 𝜓,1122𝐻11(𝜆, 𝛽)𝑟−𝜆𝑑𝐱′ = −|𝑥1|−𝜆 𝜋(𝜆 − 1)
48𝜇0𝜇1

(𝜆 − 1)
{

−6𝑐2(𝜆 − 2) csc 𝜆𝜋(𝜇0 − 𝜇1)
[
(𝜆 − 1)

(
2𝜆 sin(𝜆𝜋 + 2𝛽)

− (𝜆 − 2) sin(𝜆𝜋 + 4𝛽)
)
−2 sin[𝜆𝜋 + 2𝛽(2 − 𝜆)] + 4𝜆 sin 𝛽 cos[𝜆𝜋 + 𝛽(3 − 2𝜆)]

]
+6𝑐2(𝜆 − 2)

[
𝜆2 + 𝜆 − 4

]
(𝜇0 − 𝜇1)

+ 2𝑐4𝜇1
[
−𝜆

(
𝜆(𝜆 + 9) − 4

)
+ 12

(
𝜆2 + 𝜆 − 4

)
𝑣0 + 24

]
− 4𝑐24 csc 𝜆𝜋

[
−(𝜆 − 1)𝜆(𝜇0 − 𝜇1)

(
3 sin 𝜆(𝜋 − 2𝛽) + (𝜆 − 2) sin(𝜆𝜋 + 6𝛽)

)
+ 3

2
(𝜆 − 1) sin(𝜆𝜋 + 4𝛽)

(
𝜇0

[
𝜆(𝜆 − 2) + 4(𝜆 − 2)𝑣1 + 4

]
− 𝜇1

[
𝜆(𝜆 − 2) + 4(𝜆 − 2)𝑣0 + 4

])
+ 3𝜆 sin[𝜆𝜋 + 2𝛽(1 − 𝜆)]

(
𝜇0[𝜆 + 4𝑣1 − 4] − 𝜇1[𝜆 + 4𝑣0 − 4]

)
+ 6(𝜆 − 1) sin[𝜆𝜋 + 2𝛽(2 − 𝜆)]

[
𝜇0(1 − 2𝑣1) − 𝜇1(1 − 2𝑣0)

] ]
+ 2𝑐4𝜇0

[
𝜆(𝜆2 + 9𝜆 − 4) − 12

(
𝜆2 + 𝜆 − 4

)
𝑣1 − 24

] }
(B.7)

∫𝛺𝑝 𝜓,2212𝐻12(𝜆, 𝛽)𝑟−𝜆𝑑𝐱′ = −|𝑥1|−𝜆 𝜋(𝜆 − 1) csc 𝜆𝜋(𝜇0 − 𝜇1)
24𝜇0𝜇1

{
6𝑐2(𝜆 − 2)

[
𝜆 sin 𝛽

(
(𝜆 + 5) cos(𝜆𝜋 + 𝛽)

− (𝜆 − 3) cos(𝜆𝜋 + 3𝛽) − 2 cos[𝜆𝜋 + 𝛽(3 − 2𝜆)]
)
−2 sin 𝜆𝛽

(
2 cos[𝜆𝜋 + 𝛽(2 − 𝜆)] + cos[𝜆𝜋 + 𝛽(4 − 𝜆)]

) ]
− 𝑐4

[
(𝜆 − 1)

(
2(𝜆 − 2)𝜆 sin(𝜆𝜋 + 6𝛽) − 3(𝜆 + 2) (2 sin 𝜆(𝜋 − 2𝛽) + 𝜆 sin(𝜆𝜋 + 4𝛽))

)
+ 6(𝜆 − 2)𝜆 sin[𝜆𝜋 + 2𝛽(1 − 𝜆)]

+ (𝜆 + 2) [𝜆(𝜆 + 7) − 6] sin 𝜆𝜋
]}

(B.8)

∫𝛺𝑝 𝜓,2222𝐻22(𝜆, 𝛽)𝑟−𝜆𝑑𝐱′ = −|𝑥1|−𝜆 𝜋(𝜆 − 1)
48𝜇0𝜇1

{
−12𝑐2(𝜆 − 2) csc 𝜆𝜋(𝜇0 − 𝜇1)

[
(𝜆 − 1)(𝜆 + 4) sin(𝜆𝜋 + 2𝛽)

− 1
2
(𝜆 − 2)(𝜆 − 1) sin(𝜆𝜋 + 4𝛽) − (𝜆 + 4) sin[𝜆𝜋 + 2𝛽(1 − 𝜆)] + (𝜆 − 1) sin[𝜆𝜋 + 2𝛽(2 − 𝜆)]

]
+ 6𝑐2(𝜆 − 2) [𝜆(𝜆 + 9) − 20] (𝜇0 − 𝜇1) − 2𝑐4 csc 𝜆𝜋

[
−6(𝜆 − 1)(𝜆 + 4)(𝜇0 − 𝜇1) sin 𝜆(𝜋 − 2𝛽) − 2(𝜆 − 2)(𝜆 − 1)𝜆(𝜇0 − 𝜇1)

sin(𝜆𝜋 + 6𝛽) − 6 sin[𝜆𝜋 + 2𝛽(1 − 𝜆)]
(
𝜇1

[
𝜆2 − 4(𝜆 + 4)𝑣0 + 8

]
+ 𝜇0

[
−𝜆2 + 4(𝜆 + 4)𝑣1 − 8

])
− 12(𝜆 − 1)(𝜆 + 4) sin(𝜆𝜋 + 2𝛽)[

𝜇0(1 − 2𝑣1) − 𝜇1(1 − 2𝑣0)
]
− 3(𝜆 − 1) sin(𝜆𝜋 + 4𝛽)

(
𝜇1

[
𝜆(𝜆 + 6) − 4(𝜆 − 2)𝑣0 − 4

]
+ 𝜇0

[
−𝜆(𝜆 + 6) + 4(𝜆 − 2)𝑣1 + 4

])
− 12(𝜆 − 1) sin[𝜆𝜋 + 2𝛽(2 − 𝜆)]

[
𝜇0(1 − 2𝑣1) − 𝜇1(1 − 2𝑣0)

] ]
+2𝑐4

[
−𝜆𝜇1(𝜆(𝜆 + 9) + 12(𝜆 + 9)𝑣0 − 100) + 48𝜇1(5𝑣0 − 3)

+ 𝜇0
(
𝜆(𝜆2 + 9𝜆 − 100) + 12(𝜆2 + 9𝜆 − 20)𝑣1 + 144

) ]}

(B.9)
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Appendix C. Domain integrals of Green’s function and eigenstrain under anti-symmetric loading

This appendix aims to provide supplementary information on domain integrals (step (iii)) from Section 3.3 under anti-symmetric

loading. Because disturbed shear strain has more compact expressions, this section compresses contribution from 𝜙 and eigenstrain

into two short equations; and domain integrals of 𝜓,1211𝜀
∗
11, 𝜓12,22𝜀

∗
22 and 2𝜓,1212𝜀∗12 are provided.

(i) Contribution by 𝜙 and eigenstrain for the first equation of the shearing case:

1
8𝜋(1 − 𝑣0) ∫𝛺𝑝 −2𝑣

0𝜙,12
[
𝐻11(𝜆, 𝛽) +𝐻22(𝜆, 𝛽)

]
− 2(1 − 𝑣0)

[
𝐻12(𝜆, 𝛽)(𝜙,11 + 𝜙,22) + 𝜙,12

(
𝐻11(𝜆, 𝛽) +𝐻22(𝜆, 𝛽)

)]
𝑟−𝜆𝑑𝐱′

= |𝑥1|−𝜆 𝑐3
𝜇0𝜇1(1 − 𝑣0)

(𝜆 − 1) csc 𝜆𝜋
[
𝜆 sin 𝛽 cos[𝜆𝜋 + 𝛽] − sin 𝜆𝛽 cos[𝜆𝜋 + (2 − 𝜆)𝛽]

][
𝜇0(1 − 2𝑣1) − 𝜇1(1 − 2𝑣0)

] (C.1)

(ii) Contribution by 𝜙 and eigenstrain for the second equation of the shearing case:

1
8𝜋(1 − 𝑣0) ∫𝛺𝑝 −2𝑣

0𝜙,12
[
𝐻11(𝜆, 𝛽) +𝐻22(𝜆, 𝛽)

]
− 4(1 − 𝑣0)

[
𝜙,11𝐻11(𝜆, 𝛽) + 𝜙,12𝐻12(𝜆, 𝛽)

]
𝑟−𝜆𝑑𝐱′

= −|𝑥1|−𝜆 (𝜆 − 1) csc 𝜆𝜋
4𝜇0𝜇1(1 − 𝑣0)

{
−4𝑐1(𝜆 − 2)(1 − 𝑣0)(𝜇0 − 𝜇1) sin(1 − 𝜆)𝛽 cos[𝜆𝜋 + 𝛽(1 − 𝜆)]

+ 2𝑐3
[
(𝜆 − 1)(1 − 𝑣0)(𝜇0 − 𝜇1) sin 𝜆(𝜋 − 2𝛽) −

[
(𝜆 − 1) sin(𝜆𝜋 + 2𝛽) + sin[𝜆𝜋 + 2𝛽(1 − 𝜆)]

] [
𝜇0(1 − 2𝑣1) − 𝜇1(1 − 2𝑣0)

]
+ sin 𝜆𝜋

[
𝜇0(𝜆𝑣0 − 2𝜆𝑣1 − 𝑣0 + 1) + 𝜇1(𝜆𝑣0 + 𝑣0 − 1)

] ]}
(C.2)

(iii) 𝜓,1211𝜀
∗
11

1
8𝜋(1 − 𝑣0) ∫𝛺𝑝 𝜓,1211𝐻11(𝜆, 𝛽)𝑟−𝜆𝑑𝐱′

= −|𝑥1|−𝜆 (𝜆 − 1)
384𝜇0𝜇1(1 − 𝑣0)

{
csc 𝜆𝜋

[
𝑐3

[
−12(𝜆 − 2)(𝜆 − 1)(𝜇0 − 𝜇1) sin 𝜆(𝜋 − 2𝛽) + 4(𝜆 − 2)(𝜆 − 1)𝜆(𝜇0 − 𝜇1)

sin(𝜆𝜋 + 6𝛽) − 24(𝜆 − 2)(𝜆 − 1) sin(𝜆𝜋 + 2𝛽)
[
𝜇0(1 − 2𝑣1) − 𝜇1(1 − 2𝑣0)

]
− 6(𝜆 − 2)(𝜆 − 1) sin(𝜆𝜋 + 4𝛽)(

𝜇0(𝜆 + 4𝑣1 − 2) − 𝜇1(𝜆 + 4𝑣0 − 2)
)
+ 12(𝜆 − 2) sin[𝜆𝜋 + 2𝛽(1 − 𝜆)]

[
𝜇0(𝜆 + 4𝑣1 − 2) − 𝜇1(𝜆 + 4𝑣0 − 2)

]
+ 24(𝜆 − 1) sin[𝜆𝜋 + 2𝛽(2 − 𝜆)]

[
𝜇0(1 − 2𝑣1) − 𝜇1(1 − 2𝑣0)

] ]
−3𝑐1(𝜆 − 2)(𝜇0 − 𝜇1)

[
2(𝜆 − 2)

(
(𝜆 − 1)

[
sin(𝜆𝜋 + 4𝛽)

− 2 sin(𝜆𝜋 + 2𝛽)
]
−2 sin(−2𝛽𝜆 + 2𝛽 + 𝜋𝜆)

)
+4(𝜆 − 1) sin(−2𝛽𝜆 + 4𝛽 + 𝜋𝜆)

]]
−2(𝜆 − 3)

[
3𝑐1(𝜆 − 2)𝜆(𝜇0 − 𝜇1)

+ 𝑐3(4𝜇0 − 4𝜇1 + 𝜆𝜇1(𝜆 − 12𝑣0 + 6) − 𝜆𝜇0(𝜆 − 12𝑣1 + 6))
]}

(C.3)

(iv) 𝜓,1212𝜀
∗
12

1
8𝜋(1 − 𝑣0) ∫𝛺𝑝 𝜓,1212𝐻12(𝜆, 𝛽)𝑟−𝜆𝑑𝐱′

= −|𝑥1|−𝜆 (𝜆 − 1)(𝜇0 − 𝜇1)
384𝜇0𝜇1(1 − 𝑣0)

{
2(𝜆 − 2)

[
3𝑐1

(
𝜆2 + 𝜆 − 4

)
− 𝑐3𝜆(𝜆 + 5)

]
− csc 𝜆𝜋

[
12𝑐3𝜆

[
(𝜆 − 1) sin((𝜋 − 2𝛽)𝜆)

− (𝜆 − 2) sin[𝜆𝜋 + 2𝛽(1 − 𝜆)] + 𝜆(𝜆 − 2)(𝜆 − 1)2
(
cos[2𝜆𝜋 + 10𝛽] − cos 2𝛽

) ]
−3𝑐1(𝜆 − 2)

[
2(𝜆 − 1)

(
(𝜆 − 2) sin(𝜆𝜋 + 4𝛽)

− 2𝜆 sin(𝜆𝜋 + 2𝛽)
)
+4 sin[𝜆𝜋 + 2𝛽(2 − 𝜆)] − 8𝜆 sin 𝛽 cos[𝜆𝜋 + (3 − 2𝜆)𝛽]

]]}
(C.4)

𝜓,1222𝜀
∗
22

1
8𝜋(1 − 𝑣0) ∫𝛺𝑝 𝜓,1222𝐻22(𝜆, 𝛽)𝑟−𝜆𝑑𝐱′

= −|𝑥1|−𝜆 (𝜆 − 1)
384𝜇0𝜇1(1 − 𝑣0)

{
−csc 𝜆𝜋

[
𝑐3

[
12

(
𝜆2 + 𝜆 − 2

)
(𝜇0 − 𝜇1) sin 𝜆(𝜋 − 2𝛽) − 4(𝜆 − 2)(𝜆 − 1)𝜆(𝜇0 − 𝜇1)

sin(𝜆𝜋 + 6𝛽) − 24
[
𝜆2 + 𝜆 − 2

]
sin(𝜆𝜋 + 2𝛽)

[
𝜇0(1 − 2𝑣1) − 𝜇1(1 − 2𝑣0)

]
+ 12 sin[𝜆𝜋 + 2𝛽(1 − 𝜆)]

[
𝜇1

(
𝜆2 − 4(𝜆 + 2)𝑣0 + 4

)
+ 𝜇0

(
−𝜆2 + 4(𝜆 + 2)𝑣1 − 4

) ]
+6(𝜆 − 1) sin(𝜆𝜋 + 4𝛽)

[
𝜇1(−𝜆(𝜆 + 4) + 4(𝜆 − 2)𝑣0 + 4) + 𝜇1(𝜆(𝜆 + 4) − 4(𝜆 − 2)𝑣1 − 4)

]
+ 24(𝜆 − 1) sin[𝜆𝜋 + 2𝛽(2 − 𝜆)]

[
𝜇0(1 − 2𝑣1) − 𝜇1(1 − 2𝑣0)

] ]
−3𝑐1(𝜆 − 2)(𝜇0 − 𝜇1)

(
4
[
𝜆2 + 𝜆 − 2

]
sin(𝜆𝜋 + 2𝛽)

− 2(𝜆 − 2)(𝜆 − 1) sin(𝜆𝜋 + 4𝛽) + 4(𝜆 + 2) sin(−2𝛽𝜆 + 2𝛽 + 𝜋𝜆) − 4(𝜆 − 1) sin[𝜆𝜋 + 2𝛽(2 − 𝜆)]
)]

− 2
[
3𝑐1(𝜆 − 2)𝜆(𝜆 + 5)(𝜇0 − 𝜇1) + 𝑐3(12𝜇0 − 12𝜇1 + 𝜆𝜇1

[
𝜆(𝜆 + 3) + 12(𝜆 + 5)𝑣0 − 22

]
− 𝜆𝜇0

[
𝜆(𝜆 + 3) + 12(𝜆 + 5)𝑣1 − 22)

]] }
(C.5)
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Appendix D. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jmps.2024.105545. The following

information has been included in the Supplementary Materials: (1) the Mathematics scripts for the long equations; (2) the singularity

caused by an angular inhomogeneity with different opening angles, and; (3) the extension of this method to thermoelastic problems.
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