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Abstract 

The fracture toughness of inelastic materials consists of an intrinsic component associated with the 

crack tip fracture process and a dissipative component due to bulk dissipation. Experimental 

characterization of the intrinsic component of fracture toughness is important for understanding 

the fracture mechanism and predictive modeling of the fracture behavior. Here we present an 

experimental study on the intrinsic toughness of a soft viscoelastic adhesive. We first obtained 

full-field and full-history data of the displacement and deformation fields in pure shear fracture 

tests using a particle tracking method. By combining these data with a nonlinear constitutive model, 

we extracted the intrinsic toughness through an energy balance analysis. A two-stage crack 

propagation behavior was observed in our fracture experiments: under monotonic loading the 

crack first underwent a slow propagation stage and then suddenly entered a fast propagation stage. 

We found that the intrinsic toughness was highly scattered for the slow propagation stage, but 

remained consistent for the fast propagation stage. Further examination of the fracture surface and 

the onset of fast propagation revealed that transition from the slow to the fast propagation stage 

was governed by the applied stretch and was likely due to a change in the crack tip fracture process. 
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1. Introduction 

 The fracture toughness of viscoelastic solids is known to be dependent on the velocity of crack 

propagation (Gent, 1996; Knauss, 2015). This behavior, widely observed in elastomers (Knauss, 

1973), rubber (Greensmith, 1964; Tsunoda et al., 2000) and soft adhesives (Creton and Ciccotti, 

2016), has sparked long-lasting interests in understanding the underlying physical mechanism (Hui 

et al., 2022). In particular, the fracture toughness of polyurethane elastomer and synthetic rubber 

measured at different loading rates and temperatures was found to follow the time-temperature 

superposition principle (Knauss, 2015), implying the central role played by viscoelasticity. A 

number of theoretical models have been developed to capture the effect of viscoelasticity on crack 

propagation (Knauss, 1973; Schapery, 1975a; Hui et al., 1992; de Gennes, 1996; Greenwood, 2004; 

Persson and Brener, 2005). These models, typically assuming steady-state crack propagation in a 

linear viscoelastic solid, can be categorized into two approaches. In both approaches, the moving 

crack tip is assumed to be subjected to an asymptotic stress field following the K-field in linear 

elastic fracture mechanics (Persson and Brener, 2005; Knauss, 2015). This assumption, which can 

be justified using the extended correspondence principle of linear viscoelasticity (Graham, 1968), 

allows one to specify the crack tip stress field by prescribing the stress intensity factor K. After 

this common assumption, the two approaches depart from each other.  

 In the first approach (Knauss, 1973; Schapery, 1975a, 1975b, 1975c; Greenwood, 2004; 

Knauss, 2015), the crack tip fracture process is modeled by a cohesive zone, within which the 

crack opening displacement is solved using the prescribed stress intensity factor K and the linear 

viscoelastic constitutive relation. Since the crack is under steady-state propagation, the opening 

displacement in the cohesive zone depends on the crack velocity and satisfies a fracture criterion, 

resulting in an equation relating the crack velocity to the prescribed stress intensity factor K. The 

second approach takes an energetic perspective and focuses on calculating the viscoelastic energy 

dissipation around the moving crack tip (de Gennes, 1996; Saulnier et al., 2004; Persson and 

Brener, 2005). Rate-dependence of fracture toughness originates from the dependence of bulk 

viscoelastic dissipation on crack velocity. It was recently shown that these two approaches are 

qualitatively equivalent (Ciavarella et al., 2021; Hui et al., 2022) and can be represented by the 

following equation: 

                                                              0 D    , (1) 
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where  is the total energy required to propagate the crack by a unit area, Γ0 is the intrinsic 

component of  that is associated with the crack tip fracture process, and ΓD is the dissipative 

component representing the contribution due to bulk dissipation. More broadly, the decomposition 

in eq. (1) can be extended to polymeric materials with other types of inelastic behaviors, such as 

hydrogels or elastomers with sacrificial bond breaking (Gong et al., 2003; Gong, 2010; Sun et al., 

2012; Ducrot et al., 2014). Regardless of the physical nature of inelasticity, these material systems 

share a common toughening principle: the loading-unloading hysteresis locally occurring around 

a propagating crack can induce bulk energy dissipation and hence increase the total toughness 

(Long and Hui, 2016; Qi et al., 2018). This principle has been exploited as a general strategy for 

enhancing the fracture toughness of hydrogels and elastomers (Zhao, 2014; Creton and Ciccotti, 

2016).     

 In the theoretical picture reviewed above, the intrinsic fracture toughness Γ0 is often assumed 

to be a material constant. For example, Lake and Thomas (1967) suggested that Γ0 for crosslinked 

rubbery networks is the energy required to break a layer of polymer chains across a unit area of 

the fracture plane. This model gives an estimate of Γ0 that is on the order of 10 to 100 J/m2, and 

predicts that Γ0 depends on the chain length and the molar density of chains. The prediction of Γ0 

is found to agree well with experimental measurements for unfilled rubber (Ahagon and Gent, 

1975) and hydrogel networks with highly regular network structure (Akagi et al., 2013). However, 

this model assumes that chain scission is localized around the crack tip and occurs over one mesh 

size of the network (~ 10 nm), which may not be valid for all polymer networks in general. Indeed, 

Slootman et al. (2020) recently used mechanophores and confocal microscopy to map the scission 

of covalent bonds around the crack, and found that bond scission can occur in a delocalized manner 

over hundreds of micrometers away from the crack. This work provides experimental evidence for 

a far more complex physical picture underlying Γ0. Theoretically, Yang et al. (2019) proposed that 

the length scale over which chain scission occurs depends on imperfection within the polymer 

network. In comparison to a perfect network, the crack tip region where chain scission occurs in 

an imperfect network can be much larger, thereby leading to toughness enhancement even though 

the dissipative component ΓD is insignificant. Following this idea, there have been extensive 

research interests in engineering soft polymers or gels with high toughness and low hysteresis by 

designing the molecular network structure (Kim et al., 2021; Wang et al., 2021; Nian et al., 2022) 
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and incorporating microscopic (Lin et al., 2019b, 2019a) or even macroscopic structural features 

(Wang et al., 2019; Xiang et al., 2019; Li et al., 2020). 

 Given the complexity of physical mechanisms involved in Γ0, it is challenging to theoretically 

predict Γ0 for soft polymers, which makes experimental characterization especially important. For 

polymers with low hysteresis, Γ0 can be directly measured using fracture tests (Creton and Ciccotti, 

2016) since ΓD is small and thus Γ0   Γ. However, many soft polymers in engineering applications 

are designed to be highly dissipative (e.g., filled rubber and soft adhesives). For these dissipative 

materials, measurement of Γ0 can be difficult due to the challenges in experimentally separating 

Γ0 and ΓD from the total fracture toughness . It is worth mentioning that Zhang et al. (2015) 

demonstrated that for a tough hydrogel with interpenetrating polyacrylamide-alginate network, Γ0 

can be measured by pre-stretching the specimen to consume the dissipation mechanism and hence 

minimize D. Alternatively, when studying fracture of a carbon-black filled rubber, Roucou et al. 

(2020) first estimated D by measuring the peak deformation experienced by material points 

around the crack tip and then determined 0 by subtractingD from . In both works, the 

dominating dissipation mechanism is the stretch-induced softening, i.e., the Mullins effect (Diani 

et al., 2009), which is insensitive to crack velocity or loading rate. In contrast, bulk dissipation in 

viscoelastic solids is rate-dependent. As a result, pre-stretching or measuring the peak deformation 

is no longer sufficient for experimentally determining D in viscoelastic solids. Furthermore, if the 

viscoelastic solid is soft, severe blunting of the crack tip is expected during crack propagation. 

Under such large deformation, linear viscoelasticity and the K-field, a concept from linear elastic 

fracture mechanics, may not be applicable anymore, thereby resulting in a lack of theoretical 

models for viscoelastic fracture with large deformation. 

 In this work, we apply a particle tracking method (Qi et al., 2019; Lu et al., 2021) to 

experimentally characterize 0 for a soft viscoelastic adhesive known as the pressure sensitive 

adhesive (PSA). By tracking the displacements of randomly distributed tracer particles on pure-

shear fracture specimens, we are able to measure the full history of two-dimensional deformation 

fields during crack propagation. The particle tracking method has been recently used to probe the 

crack tip process zone in a brittle hydrogel (Li et al., 2023) or to map the dissipation fields during 

crack propagation in a viscoelastic hydrogel (Qi et al., 2024). In this work, we combine the 

measured deformation fields with a calibrated visco-hyperelastic constitutive model to enable the 
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computation of stress fields. By feeding the deformation and stress fields into a mechanical energy 

balance theory, we are able to circumvent D or  and directly determine 0. This paper is 

organized as follows. The experimental methodology is described in Section 2, and representative 

results from the particle tracking method are shown in Section 3. In Section 4, we present the 

theoretical basis for extracting the intrinsic toughness 0 and the associated experimental data. In 

Section 5, we present additional findings to explain the crack propagation behaviors observed in 

our experiments. We conclude in Section 6 by summarizing the main findings and outlining 

potential extension of our experimental method. 

 

2. Materials and Methods 

2.1 Pressure sensitive adhesive films 

 The PSA was generated by polymerizing a composition of acrylic monomers between carrier 

release liners to create a transferable viscoelastic film of approximately 250 μm in thickness.  2-

ethylhexyl acrylate (60 g), isobornyl acrylate (25 g), 2-hydroxyethyl acrylate (15 g), and 

hexanediol diacrylate (0.15 g) were combined with 1,2-diphenyl-2,2-dimethoxyethanone (0.25 g), 

and 1,4-bis (3-mercaptobutyryloxy) butane (0.01 g) until all components were sufficiently 

dissolved and mixed.  The solution was coated between siliconized PET liners at a set gap of 250 

μm using a notch bar coating apparatus.  The construction was then UV cured from both sides of 

the composite with fluorescent bulbs having an irradiance output centered around 365 nm and a 

dose of approximately 1,640 mJ/cm2.   

 Laminated sheets of PSA were created by first removing one of the carrier release liners from 

two sheets of the PSA.  One of the sheets was placed on a flat surface with the exposed PSA surface 

facing up.  The second sheet was aligned with the exposed PSA surface facing toward that of the 

first sheet.  One of the edges of each sheet was aligned and a handheld roller (Polymag Tek, Inc., 

Rochester, NY, USA) was used to laminate the sheets together starting at the aligned edge and 

progressing across the sheet.  Two additional individual sheets were added to the laminate to create 

a laminated sheet with a thickness of approximately 1 mm. Rectangular strips that are 12.7 mm 

wide by 25.4 mm long were cut from the laminated sheets for uniaxial tensile tests. Uniaxial tensile 

tests were performed using an MTS RF100 electromechanical load frame (MTS Corporation, Eden 

Prairie, MN, USA).  Force was measured using a +/− 25N load cell.  Strain in the loading direction 
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was measured independently of the load frame using an Aramis adjustable base digital image 

correlation (DIC) system (GOM, Braunschweig, Germany). The DIC system consisted of two 4MP 

cameras (Teledyne DALSA, Waterloo, ON, Canada) with 20 mm focal length lenses (Schneider 

Titanar B 20, Bad Kreuznach, Germany).  A 350 mm × 260 mm × 260 mm measuring volume was 

used for strain measurements.  The speckle pattern used for strain measurement was applied to the 

samples using a black permanent marker.  Tests were run using a constant crosshead velocity of 

10 mm/min, 100 mm/min, and 1000 mm/min. Each test was terminated when the tracking pattern 

moved out of the field of view of the DIC system.  Five replicates were run for each crosshead 

velocity. The three crosshead velocities correspond to stretch rates (measured by DIC) of 0.0015 

s−1, 0.015 s−1 and 0.14 s−1, respectively. 

 Viscoelastic property of the PSA was characterized as a function of temperature and oscillatory 

frequency using shear dynamic mechanical analysis (DMA). 8-mm diameter disk samples were 

punched from the laminated sheet. The release liners were removed from PSA, which was then 

mounted between two 8-mm diameter parallel plates attached to an ARES G2 strain controlled 

rotational rheometer (Waters/TA Instruments, New Castle, DE). Temperature of the sample and 

test plates was controlled using a nitrogen-purged forced convection oven, using liquid nitrogen 

for additional temperature control to sub-ambient conditions. Using this setup, glass transition 

temperature (Tg) of the PSA was measured to be −16.5 oC using an oscillating strain (amplitude   

1% and frequency = 1 Hz) with a temperature scan of 3 oC per minute. For the characterization of 

viscoelasticity, the PSA was subjected to rotational oscillatory shear deformations at 100 °C at 

frequencies from 0.1 Hz to 10 Hz, with frequencies sampled logarithmically at 5 points per decade. 

The initial strain amplitude of this deformation was 5%, which could decrease as the PSA modulus 

increased, to maintain small strain conditions and satisfy assumptions of linear viscoelasticity. This 

frequency sweep measurement was then repeated on the same specimen in 5 °C increments, 

cooling down to a final temperature of −60 °C. The resulting frequency sweeps were then shifted 

according to the principles of time-temperature superposition (TTS), holding the 25 °C frequency 

sweep as the reference data set and shifting the results at the remaining temperatures along the log-

frequency axis to achieve optimal superposition of the storage modulus (G') signal. Prior to 

frequency-axis shifting, a vertical shift inversely proportional to the absolute temperature was 

applied to the dynamic modulus data to account for entropic stresses common to polymeric 

systems exhibiting rubber-like elasticity.   
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Figure 1 Crack propagation experiment with particle tracking. (a) Schematic of the pure shear 
fracture test geometry and the imaging setup. Origin of the coordinate system X1-X2 is located at 
the initial crack tip. (b) Representative image of the deformed sample (t = 2.88s) with insets 
showing a subset of tracer particles in two consecutive time frames (tn = 2.88s and tn+1 = 2.89s) in 
an experiment with a loading rate of 0.5 s-1. (c) Tracking particles between two consecutive time 
frames. Top: A representative pattern of neighboring particles around a tracked particle 
(highlighted in yellow). Bottom: Zoomed-in view of a region near the crack tip with tracer particle 
displacements (blue arrows) between two consecutive frames. (d) Top: Cumulative tracer particle 
displacements from the initial time frame (t = 0) to at t = 2.88s. Bottom: displacement fields (in-
plane components u1 and u2) and velocity fields (in-plane components v1 and v2) at t = 2.88s. 

 

2.2 Fracture experiments 

 Fracture experiments were conducted using the pure shear test geometry (Fig.1a). Thin-sheet 

fracture samples with dimensions of ~100 mm (width) × 70 mm (height) × ~ 1 mm (thickness) 

were cut from the laminated PSA sheets. An initial crack with a length of c0 ~ 15 mm was 

introduced at the mid-height on one edge of each sample by a pair of scissors. We sprinkled black 

spherical glass beads (Cospheric LLC, Santa Barbara, CA) with diameters of 150~180 μm on the 

sample surface. These glass beads remained adhered to the sample surface during the entire 
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fracture experiment and hence can serve as tracer particles for mapping the two-dimensional (2D) 

deformation field on the sample surface. After that the sample was clamped by two sets of rigid 

plates and mounted on an Instron 5965 electromechanical load frame (Instron Corporation, 

Norwood, MA, USA), leaving a rectangular area of the sample (width L0 ~ 100 mm and height H0 

~ 20 mm) that underwent deformation during the fracture test. A pretension was applied before 

each test to leave a small initial crack opening of ~ 1 mm to prevent adhesion of the crack surfaces. 

A displacement Δ was applied to the upper boundary of the sample with a fixed loading rate Δሶ /𝐻଴, 

while the bottom boundary of the sample remained fixed. The loading rate Δሶ /𝐻଴ for different 

experiments was varied from 0.005 s-1 to 1 s-1. During each fracture test, the sample was imaged 

using a digital camera (Canon EOS R5) with 4K resolution (i.e., 3840 pixels × 2160 pixels per 

image) and a frame rate of 120 frames per second. The camera was placed at a distance in front of 

the sample to achieve a spatial resolution of ~30 μm per pixel so that each tracer particle was 

captured by 5 ~ 6 pixels. To enhance the contrast between the tracer particles and the background, 

we used a white light source on the opposite side of the camera to illuminate the sample. Since the 

PSA samples were transparent, light emitted from the light source transmitted through the sample 

and was collected by the camera on the other side of the sample (Fig.1a). 

 
2.3 Particle tracking method 

 We tracked the displacements of tracer particles using the images recorded from a fracture test. 

The procedures are briefly described here. First, the built-in function ‘imfindcircles’ in MATLAB 

(MathWorks, Natick, MA, USA) was used to identify the tracer particles and obtain their centroid 

coordinates at each time frame of the recorded images (Fig.1b). Second, the Feature-Vector-

Relaxation Method (FVRM) (Feng et al., 2014) was adopted to track the tracer particles in two 

consecutive frames. As shown in Fig.1c, this method leverages the relative positions of 

neighboring particles around a tracer particle as a geometrical signature for tracking. Specifically, 

the geometrical pattern formed by a target particle and its neighboring particles in the current 

image frame is compared with a few candidate patterns in the next image frame (Fig.1c). The 

pattern that best matches that in the current frame is selected, from which a pair of corresponding 

particles in the current and next frames is identified. Repeating this process for all tracer particles 

in the current image frame, we obtain the incremental tracer particle displacements between the 

current and the next image frame. By linking the incremental displacements for each tracer particle 
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from the first to the last image frame, one can determine the total displacements and trajectories 

of the tracer particles during an experiment.  

 
2.4 Moving least square interpolation 

 The displacement data of tracer particles reflect the sample deformation upon loading and 

crack propagation. To quantify the 2D deformation field on the sample surface, we adopt the 

deformation gradient tensor F defined as: 

  XF u δ , (2) 

where X is the 2D coordinate vector of a material point in the initial time frame (i.e., the reference 

configuration for deformation; see Fig.1a), u is the displacement vector and δ is the identity tensor. 

The displacement field is represented by the function u(X). Evaluation of its spatial gradient 

requires us to interpolate the tracer particle displacements into a continuous field, which was 

achieved using the Moving Least Square (MLS) method (Liu and Long, 2016; Qi et al., 2019). To 

illustrate the principle of the MLS method, let us consider a generic scalar field function f(X). 

Suppose its values are known at m points, i.e., f(X = dk) = wk where dk (k = 1, 2, ..., m) are 

coordinate vectors of the points and wk are the corresponding values of f(X). In this work, dk 

represents the location of a tracer particle in the initial frame and wk is the displacement component 

of the tracer particle. To determine the value of f(X) at an arbitrary point X, we construct an 

interpolate function using a polynomial basis P(X) and the corresponding coefficients a(X) (both 

P and a are column vectors): 

      Tf X P X a X . (3) 

Unlike conventional polynomial interpolation, the MLS method allows the coefficients a to be 

field functions as well, and thus can accommodate complex fields using relatively simple 

polynomial basis. For example, even the linear basis P(X) = [1, X1, X2]T can capture a sophisticated 

field f(X) due to the spatial variation in a(X). The coefficients a(X) are determined by minimizing 

a least-square error function: 

     2T

1

( )
m

k k k
k

L w


     X d P d a X , (4) 
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where ζ(X – dk) is a weight function for the tracer beads that decays monotonically from 1 to 0 as  

the distance |X – dk| increases from 0 to +. Following Qi et al.(2019), we adopted linear basis 

P(X) = [1, X1, X2]T and an exponential weight function: 

 
 2 2exp 1 / 1

( )   exp(1) 1

0

k c
k c

k
k c

r
r

r


   
  

     


X d
X d

X d
X d

. (5) 

The cut-off radius rc was chosen to be twice the average of the ten smallest values of |X – dk|, i.e., 

twice the average distance to the ten closest tracer beads. As demonstrated by Qi et al.(2019), this 

set of MLS interpolation parameters can provide accurate measurement for the crack tip 

displacement and strain fields in soft elastomer. The MLS method described above was applied to 

the two displacement component: u1 and u2, thereby providing a continuous displacement field 

u(X).  

 An example of the tracer particle displacements and the interpolated displacement fields is 

shown in Fig.1d. The continuous fields of displacement components 1u  and 2u  establish a one-to-

one mapping between the initial coordinates of any material point (i.e., X1 and X2) at t = 0 to its 

coordinates in the deformed configuration (i.e., x1 = X1 + u1 and x2 = X2 + u2) at any time frame t 

(> 0). Following the Lagrangian description of deformation, we use the initial coordinates (X1, X2) 

of a material point as its identifier, and thus will refer to the X1-X2 plane as the reference 

configuration. The displacement fields u1(X1, X2) and u2(X1, X2) at a representative time frame are 

shown in Fig.1d. Note that there is a non-colored strip (gap height   0.7 mm) in the contour map 

of 1u  and 2u . This strip represents the trajectory of crack propagation after being mapped to the 

reference configuration. The crack trajectory was obtained by first identifying the location of crack 

tip in the image of each time frame (i.e., the deformed configuration) and then mapping it back to 

the reference configuration using the interpolated displacement fields (Qi et al., 2019).  

 By interpolating the tracer particle displacements for all time frames, we obtained the full-field 

and full-history data of the displacement components u1 and u2. Spatial gradients of the 

displacement fields u1(X1, X2) and u2(X1, X2) result in the in-plane components of the deformation 

gradient tensor: F11, F12, F21 and F22 (see Eq. (2)), which will be illustrated in the next section. 

Time derivatives of u1 and u2 provide the velocity fields as shown in Fig.1d. Both spatial and 
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temporal variations of the displacement fields are needed for evaluating the stress fields in the PSA 

because of its viscoelastic nature.  

 
2.5 Constitutive modeling 

 The deformation fields obtained from particle tracking allows us to further evaluate the stresses 

in the PSA samples during crack propagation. This step requires a nonlinear constitutive model 

capturing the viscoelastic behavior of the PSA. Although physics-based constitutive modeling is 

advantageous for capturing the nonlinear mechanical behaviors of soft elastomers (Vernerey et al., 

2017), it is difficult for commercial PSAs which are often synthesized with complicated chemistry 

(e.g., see Section 2.1 for the chemical formulation of the PSA used in this work). Restrictions on 

the PSA chemistry originate from the need to achieve a compromise over the multi-faceted 

requirements for material properties, e.g., tackiness, low modulus, extensibility, high toughness 

and creep resistance (Creton, 2003). Additional requirements such as optical transparency, 

manufacturability and chemical stability may impose further constraints on the PSA chemistry. 

Therefore, we adopt a phenomenological model (Simo, 1987) for the PSAs used in this work. This 

model, schematically illustrated in the inset of Fig.2a, uses a hyperelastic model to accommodate 

large deformation and the Prony series to capture viscoelastic relaxation. Specifically, the Cauchy 

stress tensor σ  is decomposed into a deviatoric component Dσ  and a hydrostatic component H δ  

(recall that δ  is the identity tensor): 

 D H σ σ δ . (6) 

The deviatoric component Dσ  at an arbitrary time t is given by a convolutional integral of the 

deformation history F(t) (Simo, 1987):  

                 * 1 * * * *
0 00

tD D D T Tt t dev t g t t t t t dt t      σ σ F F σ F F , (7) 

where “dev” represents deviatoric component of a tensor, e.g., dev(A) = A – [tr(A)/3] for a generic 

tensor A. In addition, g= dg/dt where g(t) is a dimensionless relaxation function that decays 1 to 

0 as t increases from 0, and 0 ( )D tσ is the deviatoric stress due to the instantaneous elastic response 

which depends only on the current deformation gradient F(t) and is specified by a hyperelastic 

model. Note that Eq. (7) assumes that deformation starts at time t = 0 without loss of generality.  
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Figure 2 Constitutive modeling for the PSA. (a) Calibration of the relaxation function using DMA 
data in terms of the normalized storage and loss modulus versus loading frequency. The inset 
shows a schematic of the visco-hyperelastic constitutive model, where the springs represent elastic 
components given by a polynomial hyperelastic model and dash pots represent viscous 
components that result in relaxation. (b) Calibration of the hyperelastic parameters by fitting the 
constitutive model to uniaxial tensile data with strain rate = 0.14 s−1 (main plot) and 1.5×10−3 s−1 

(inset). The shade represents range of experimental data from five repeated tests and the solid 
curve represents mean values of these repeated tests. The dashed curve is given by the calibrated 
constitutive model. (c) Calculation of stresses from the measured deformation field and the 
constitutive model. Left: fields of in-plane deformation gradient components at t = 2.88 s in a 
representative experiment (loading rate = 0.5 s−1). Right: the deformation history F(t) at a material 
point (marked as the star on the left panel) and the first Piola-Kirchhoff stress components 
calculated using F(t) and the calibrated constitutive model.   
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 The constitutive model described above is set up for three-dimensional (3D) deformation 

gradient tensor F, while only the in-plane components of F (i.e., in the X1-X2 plane) are measured 

in our experiments. To adapt the constitutive model to 2D deformation, we assume plane stress 

and incompressibility for the thin PSA samples so that F3 = F3 = 0 ( = 1, 2) and F33 = 

1
11 22 12 21( )F F F F  . Also, the plan stress condition implies the out-of-plane normal stress 33 is zero, 

which allows us to determine the hydrostatic component H as 33
H D   .  

 Once the relaxation function g(t) and the elastic deviatoric stress 0 ( )D tσ  are specified, the 

Cauchy stress tensor ( )tσ  can be determined for any given deformation history F(t) using Eq. (6), 

Eq. (7) and 33
H D   . The first Piola-Kirchhoff stress tensor S can be calculated using 

  det T T  S F σF σF , (8) 

where we have used the incompressibility condition to set det (F) = 1. In the following we specify 

the relaxation function g(t) and the hyperelastic model to determine the elastic deviatoric stress.  

 For the relaxation function g(t), we adopt the following form based on the Prony series: 

  
1

/ i

N
t

i
i

g t g g e 




  , (9) 

where i are the relaxation times and the coefficients gi satisfy 
1

1
N

i
i

g g


   such that ( 0) 1g t   .  

 For the hyperelastic model, we adopt the incompressible polynomial model with the following 

strain energy density function W(F): 

      1 2
1

3 3
M

i j

ij
i j

W C I I
 

  F , (10) 

where I1 and I2 are the first and second invariants of the left Cauchy-Green tensor TB FF , 

respectively. We choose M = 2 and the strain energy density W becomes: 

           2 2

10 1 01 2 11 1 2 20 1 02 23 3 3 3 3 3W C I C I C I I C I C I           . (11) 

The corresponding Cauchy stress tensor is given by 
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 1
1 2 2

0 2 2
W W W

p I
I I I

   
        

σ δ B BB , (12) 

where p is the Lagrange multiplier to enforce the incompressibility constraint. The deviatoric 

component of 0σ  is 0
Dσ  in which the Lagrange multiplier p is canceled out:  

  0 0 1
1 2 2

2 2D W W W
dev dev I

I I I

    
         

σ σ B BB . (13) 

By plugging the history data of F(t) into Eq. (13), we obtain the full history of the elastic deviatoric 

stress 0 ( )D tσ which is then used in Eq. (7) to determine the deviatoric stress ( )D tσ .  

 

Table 1 Calibrated parameters of the constitutive model 
Parameters for the relaxation function  

g∞ g1 g2 g3 g4 g5 g6 g7 g8 g9

0.032 0.844 0.072 0.036 9.4×10−3 4.8×10−3 1.4×10−3 9.8×10−10 1.4×10−3 2.7×10−13 

 τ1 (s) τ2 (s) τ3 (s) τ4 (s) τ5 (s) τ6 (s) τ7 (s) τ8 (s) τ9 (s)

 10−3 10−2 10−1 1 10 102 103 104 105 

Parameters for the hyperelastic model 
C10 (MPa)  C01 (MPa)  C20 (MPa)  C11 (MPa)  C02 (MPa) 

−10−4 1.148 0.023 −10−4 −10−4 

 

 

 Parameters of the constitutive model were calibrated by two sets of experimental data. First, 

the relaxation function g(t) in Eq. (9) was calibrated using the DMA data under oscillatory shear 

(see Section 2.1). After the time-temperature shift, the DMA data covered a wide range of 

frequency (10−4 Hz to ~ 7.5 × 1012 Hz) at room temperature (25 oC). However, fitting the entire 

frequency range of the DMA data would require many terms in the Prony series, i.e., N = 17 with 

i ranging from 10−11 s to 105 s. Moreover, numerical evaluation of the convolution integral in Eq. 

(7) needs to be carried out with a time increment less than the shortest relaxation time (10−11 s), 

which could lead to extremely high computational cost especially for experiments with low loading 

rates. Therefore, instead of using the entire frequency range of the DMA data, we chose a subset 
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of the DMA data between 10−3 Hz and 200 Hz to calibrate g(t). This frequency interval was 

selected according to the time derivative of deformation gradient F, i.e., the deformation gradient 

rate 𝐅ሶ  (=dF/dt), measured in our experiments. For example, 𝐹ሶଶଶ, which is the dominant component 

of 𝐅ሶ , was found to range from ~ 0.005 s−1 to ~ 100 s−1 from our particle tracking measurements. 

Note that 𝐹ሶଶଶ near the crack tip can be higher than the loading rate (0.005 s-1 to 1 s-1) because of 

the strain concentration and the fast crack propagation speed.  Figure 2a shows the storage and the 

loss shear modulus G’ and G” within the frequency internal of 10−3 Hz and 200 Hz at room 

temperature (25 oC). Given the dimensionless nature of the relaxation function g(t), we have 

normalized G’ and G” by the storage modulus at the lower end of the frequency interval (i.e., 10−3 

Hz), which is denoted as G0 (= 58.6 kPa). The normalized data of G’ and G” can be well fitted by 

Eq. (9) with N = 9 and parameters shown in Table 1. Second, the second-order polynomial 

hyperelastic model in Eq. (11) was calibrated using uniaxial tension data under three different 

strain rates spanning two orders of magnitude, i.e., 1.5 × 10−3 s−1, 0.015 s−1, 0.14 s−1 (see Section 

2.1). The calibrated parameters for the hyperelastic model are also listed in Table 1. Using these 

parameters, the constitutive model can capture the uniaxial tensile data under all three strain rates. 

For example, comparisons between the model and the uniaxial tensile data under the highest strain 

rate (0.14 s−1) and the lowest strain rate (1.5 × 10−3 s−1) are shown in the main plot and the inset of 

Fig.2b, respectively.  

 It should be emphasized that the consitituive model adopted in this work (Simo, 1987) is an 

extension of linear viscoelasticity to accommodate large deformation. It does not include any 

coupling between the relaxation function and the level of deformation or stress, i.e., the relaxation 

function is independent of deformation. In general, the potential coupling between relaxation 

kinetics and deformation, if it exists, needs to be considered especially for material points near the 

crack tip (Knauss, 2015). However, this remains an open question due to difficulties in both 

experimental characterization and theoretical modeling of nonlinear viscoelasticity (Knauss, 2015). 

Nevertheless, the calibrated constitutive model is capable of capturing the PSA’s viscoelastic 

behavior relevant to the fracture tests. While the DMA data used to calibrate the relaxation function 

were limited to small strain (< 5% as stated in Section 2.1), the uniaxial tensile data covered the 

regime of large strain (see Fig.2b). The maximum stretch ratio in the uniaxial tensile data ranges 

from 3 to 5, which is comparable to the level of deformation in our fracture tests. To illustrate the 

deformation fields in the fracture tests, we use a representative experiment with the loading rate 
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being 0.5 s−1, and plot the fields of in-plane components of F at a particular time frame in the 

reference configuration (see Fig.2c). In particular, the value of F22 near the crack tip is ~ 3. 

 Equipped with the calibrated constitutive model, we can calculate the stress fields using the 

measured deformation gradients F(t). To demonstrate the calculation of stress components, we 

consider a specific material point (marked by a star in the deformation fields of Fig.2c) and plot 

the full history of all the in-plane deformation gradient components. The first Piola-Kirchhoff 

stress components are obtained by substituting the deformation history F(t) into the constitutive 

model in Eq. (7) and are shown in Fig.2c. Through this process we are able to obtain the full stress 

history at any given material point. As mentioned earlier, the time increment for numerically 

computing the convolutional integral in Eq. (7) is limited by the shortest relaxation time1 = 10−3 

s. As a result, the stress calculation was more computationally expensive for experiments with 

lower loading rates because of the longer time span. However, the shortest relaxation time 1 

corresponds to the high frequency response, and thus is not as relevant in experiments with low 

loading rates. We found that the computational cost of stress calculation can be drastically reduced 

without affecting the result by recalibrating the constitutive model with the shortest relaxation time 

capped at 10−2 s (Appendix A). This reduced constitutive model was applied to experiments with 

loading rates below 0.5 s−1. 

 

3. Evolution of Displacement, Deformation and Stress Fields 

 Figure 3 illustrates how the displacement, deformation and stress fields evolve during crack 

propagation using five time frames from a representative fracture experiment (loading rate 

Δሶ /𝐻଴ = 0.5 1s ). We choose the displacement component u2 (Fig.3a), the deformation gradient 

component F22 (Fig.3b), and the first Piola-Kirchhoff stress component S22 (Fig.3c) to represent 

the displacement, deformation and stress fields, since they are the dominating components for 

Mode-I cracks. All fields are plotted in the reference configuration to facilitate comparison. A 

movie showing the continuous evolution of these fields in the deformed configuration is included 

in the Supplementary Materials (Supplementary Movie S1).  
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Figure 3 Evolution of fields in a representative experiment (loading rate = 0.5 s−1) shown in terms 
of (a) the displacement u2, (b) the deformation gradient F22, (c) the stress S22, and (d) the internal 
stress power density. All contour plots are shown in the reference configuration and the 
corresponding time frames from the top to bottom is t = 0.41s, 0.99s, 1.49s, 2.58s and 2.91s. 

 

 The displacement field (Fig.3a) exhibits a discontinuity across the crack, which is due to the 

opening of the crack under the applied tensile loading. Ahead of the crack tip, a positive gradient 

of u2 along the X2-direction is observed, consistent with the expectation that the material ahead of 

the crack tip is primarily subjected to a stretch along the X2-direction. This is confirmed by the F22 

fields in Fig.3b showing an approximately uniform distribution ahead of the crack tip. The value 

of F22 ahead of the crack tip increases with time because of the monotonic tensile loading. Around 

the crack tip, F22 is highly concentrated. In addition, the concentration of F22 near the crack tip 

continues to intensify in first three time frames during which the length of crack propagation was 
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small. In the last two time frames, the crack propagated significantly and the concentrated pattern 

of F22 is found to translate with the crack tip.  

 The fields of stress component S22 shown in Fig.3c are calculated using the calibrated 

constitutive model and the measured deformation gradient F(t). Similar to the F22 fields, the stress 

S22 is also concentrated at the crack tip. More importantly, the stress fields, when combined with 

the deformation fields, enables quantitative examination of the energy transfer associated with 

crack propagation. Specifically, the double inner product 𝐒: 𝐅ሶ  is the internal stress power density 

at a material point. Recall that 𝐅ሶ ൌ 𝑑𝐅/𝑑𝑡 is the time derivative of the deformation gradient F. 

Physically 𝐒: 𝐅ሶ  is the work density (i.e., per unit reference volume) done to a material point by its 

surrounding in a unit time. Positive 𝐒: 𝐅ሶ  implies that the material point’s surrounding is doing 

positive work to it (i.e., loading), while negative 𝐒: 𝐅ሶ  implies the material point is doing positive 

work to its surrounding (i.e., unloading). Figure 3d shows evolution of the 𝐒: 𝐅ሶ  field in the 

reference configuration. The continuous evolution of  the 𝐒: 𝐅ሶ  field in the deformed configuration 

is shown in the Supplementary Movie S1.  No obvious pattern is observed in the first two time 

frames when the crack propagation was insignificant. In contrast, in the last two time frames the 

𝐒: 𝐅ሶ  field features a distinct pattern near the crack tip. In front of the crack tip there is a region of 

positive 𝐒: 𝐅ሶ  indicating the material points there were experiencing loading. Behind the crack tip 

there are two symmetric regions of negative 𝐒: 𝐅ሶ  indicating unloading behind the crack tip. As 

shown in the next section, the areal integral of the 𝐒: 𝐅ሶ  field provides the net energy transfer within 

the PSA sample during crack propagation, which is necessary for determining the energy 

consumed at the crack tip (i.e., the intrinsic toughness). 

 

4. Energetic Analysis and Fracture Toughness 

4.1 Energy balance during crack propagation 

 To determine the intrinsic toughness 0, we follow the energy balance theory in Qi et al. (2018), 

which leads to the following equation during quasi-static crack propagation: 

 0:
d d d

d d
dt dt dt 


      

u F
T S , (14) 
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where  is the volume of a solid body in the reference configuration,  is the corresponding 

boundary surface,  is the traction vector, u is the displacement vector, 0 is the intrinsic fracture 

toughness,  is the crack surface area measured in the reference configuration. Eq. (14) is 

essentially a statement of mechanical energy balance in the solid (Holzapfel, 2002). The first 

integral on the left hand side of Eq. (14) is the power of external work to the solid, and the second 

integral is the power of net internal stress work within the solid. Their difference is the power 

consumed at the crack tip during crack propagation. If there is no crack propagation, /d dt  

vanishes and thus Eq. (14) recovers the mechanical energy balance equation for solids under quasi-

static deformation and without body forces (Holzapfel, 2002). 

 Using the plane stress condition for the thin PSA sheets in our experiments, we can simplify 

Eq. (14) into the following form by cancelling the sample thickness from both sides of the equation:     

 0:
A A

d d dC
dl dA

dt dt dt

    
u F

T S , (15) 

where A is the surface area of the PSA sample, A  represents the boundary of A (Fig.4a), and C is 

the length of crack propagation measured in the reference configuration (Fig.4a). Evaluation of the 

time derivatives in Eq. (15) from two consecutive time frames is sensitive to uncertainties in the 

particle tracking data and numerical errors in the stress calculation. To circumvent this difficulty, 

we introduce the cumulative external work Wext and the cumulative stress work Wint as 

      ext

0

t

A

d
W dl dt

dt

 
  

 
 

u
T ,          (16) 

      int

0

:
t

A

d
W dA dt

dt

 
  

 
 

F
S .         (17) 

Combining Eqs. (15), (16) and (17), we obtain the following equation for the intrinsic toughness: 

      
 ext int

0

d W W

dC


  .          (18) 

Eq. (18) suggests that 0 is equal to the slope of the ext intW W versus C curve. This approach 

enables us to average over different time frames and hence reduce the impact of measurement 

uncertainties and numerical errors. As shown in Fig.3d, the field of 𝐒: 𝐅ሶ  is obtained at all time 
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frames. By integrating 𝐒: 𝐅ሶ  over the sample surface and over time, we obtain Wint at all time frames. 

For Wext, we first calculate the traction vector T on the boundary as  T S n  where n is the unit 

outward normal vector on the boundary in the reference configuration, then obtain the velocity 

vector /d dtu  on the boundary (e.g., see the velocity field in Fig.1d), and finally integrate 

( / )d dtT u  over the boundary and over time to obtain Wext.  

 

 

Figure 4 Determination of the intrinsic toughness 0 using a representative experiment (loading 
rate = 0.5 s-1). (a) The length of crack propagation C is measured in the reference configuration. 
The two contour plots illustrate the distributions of 𝐒: 𝐅ሶ  in reference configuration at (top) t = 0.41 
s and (bottom) t = 2.58 s. The contour plots also illustrate the integration region for obtaining Wint 

and its boundary (dashed lines) for obtaining Wext. (b) History of Wext, Wint and Wext − Wint. (c) 
History of the crack propagation length C showing two stages of crack propagation (i.e., slow and 
fast). (d) The slope of the Wext − Wint versus C curve is extracted as the intrinsic toughness 0.   
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 Example results for Wext, Wint and ext intW W  in a representative experiment (loading rate Δሶ /𝐻଴ 

= 0.5 1s ) are shown in Fig.4b. Initially (t < ~ 0.5 s), Wext and Wint are approximately equal, 

indicating that the crack has not propagated yet. After t = 0.5 s, Wext becomes larger than Wint, thus 

resulting in an excessive amount of energy ( ext intW W  > 0) consumed by crack propagation. To 

determine the intrinsic toughness, we obtain the length of crack propagation C over time (Fig.4c) 

and plot ext intW W  against C in Fig.4d. Interestingly, Fig.4c shows that there are two stages of 

crack propagation. Before t = ~ 2 s, the crack underwent a stage of slow propagation with a speed 

of /V dC dt  = 0.7 mm/s. After t = ~ 2 s the crack propagation transitioned to a fast stage with a 

speed of V = 53.3 mm/s. The two stages of crack propagation are also manifested in the ext intW W  

versus C curve (Fig.4d), which consists of two segments (approximately linear) with distinct slopes. 

The segment corresponding to the slow stage has a higher slope than the segment corresponding 

to the fast stage. By performing linear fits to the two segments and obtaining their slopes, we found 

two values of intrinsic toughness:  0 = 28.3 kJ/m2 for the slow stage and 0 = 1.9 kJ/m2 for the 

fast stage. The stark contrast in 0 between the two stages of crack propagation indicates it may 

not be a material constant, which will be further discussed in Section 4.2.  

 Our method for extracting 0 relies on two key inputs: 1) experimentally measured fields of 

displacement u and deformation gradient F, and 2) a constitutive model to enable the computation 

of stress S, traction T and internal stress power density  𝐒: 𝐅ሶ . Since the deformation field is 

measured from experiments, no assumption is needed for the crack propagation (e.g., the steady-

state assumption). Therefore, this method can be extended to any fracture test geometry and 

loading history as long as full-field and full-history measurements of u and F are available. In 

addition, the constitutive model is only used to calculate the stress S and does not need to provide 

any interpretation for the stored energy and dissipation. This feature allows one to apply 

phenomenological models such as the one described in Section 2.5.   

 
4.2 Two stages of crack propagation 

 We conducted a series of fracture experiments with the loading rate Δሶ /𝐻଴ ranging from 0.005 

s-1 to 1 s-1. Among all these experiments, the two stages of crack propagation were consistently 

observed. The crack propagation speeds in both stages increased as the loading rate was increased. 
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Following the same data processing method described in Section 4.1, we extracted the intrinsic 

toughness 0 and the crack propagation speed V for both stages in each experiment and plotted the 

results in Fig.5. 

 

 

Figure 5 Intrinsic toughness of the two stages of crack propagation. (a) Intrinsic toughness 0 
versus crack propagation speed V for both the slow propagation (blue squares) and fast propagation 
stages (red circles). (b) Zoomed-in view of the 0 versus V data for the fast propagation stage.  

 

 As shown in Fig.5a, the crack propagation speed for the slow stage falls into the range of 0.04 

~ 6 mm/s. The intrinsic toughness 0 exhibits a large range of variation from 2 to 20 kJ/m2, and 

does not show any correlation with the crack propagation speed V. In contrast, the 0 versus V data 

for the fast stage (Fig.5b) feature a clear trend. Specifically, as the crack propagation speed V 

increased from ~7 to ~120 mm/s, 0 increased from ~1.3 to ~2 kJ/m2. This range is much smaller 

than that found for the slow stage. Since the deformation field F was obtained by interpolating the 

tracer particle displacements, its spatial resolution is limited by the spacing of tracer particles. 

Therefore, our method may not be able to resolve the highly concentrated deformation field in the 

vicinity of the crack tip. Recall that a strip-like gap with a height of 0.7 mm across the crack 

surfaces is excluded from the deformation field (see Section 2.4 and Fig.1d). Any viscoelastic 

dissipation occurring within this gap region is not included in our calculation, and hence is lumped 

into 0. This could explain the slight dependence of 0 on the crack propagation speed V for the 

fast stage. In summary, we draw two conclusions from Fig.5. First, the slow stage of crack 
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propagation in our experiments cannot be represented by a constant intrinsic toughness. Second, 

the fast stage of crack propagation features an approximately constant intrinsic toughness 0 (1.3-

2 kJ/m2) for crack speed between 7 and 120 mm/s.  

 It is worth mentioning that the intrinsic toughness 0 for the fast stage of crack propagation is 

much larger than the intrinsic toughness LT given by the Lake-Thomas model, which is typically 

on the order of 10 ~ 100 J/m2 (Creton and Ciccotti, 2016). To understand this discrepancy, we 

emphasize that 0 in this work is defined relative to the bulk dissipation D and accounts for the 

crack tip fracture processes below the continuum scale, whereas LT by the Lake-Thomas model 

is due to the chain scission occurring over one mesh size of the polymer network. The large gap 

between the two length scales underlying 0 and LT leaves room for additional fracture processes. 

As discussed in Section 1, it has been experimentally observed that chain scission can occur in a 

delocalized manner over hundreds of micrometers away from the crack (Slootman et al., 2020). 

Such delocalized damage could be caused by network imperfection (Yang et al., 2019). A recent 

work by Lin et al. (2022) showed that delocalized damage contributes to a “near-tip dissipation” 

term tip
D  in addition to the Lake-Thomas term LT. The 0 defined in our work should be 

interpreted as LT + tip
D  rather than LT. More recently, Deng et al. (2023) found that nonlocal 

energy release during the fracture of polymer-like networks is not captured by the Lake-Thomas 

model, causing LT to be significantly lower than 0. Given that the molecular structure of 

commercial PSAs is not readily available, it can be difficult to directly estimate LT. To this end, 

it is worth mentioning that Lin et al. (2022) determined LT as the cyclic fatigue threshold (Bai et 

al., 2019b). Therefore, future work can be directed towards measuring the cyclic fatigue threshold 

for the PSAs and comparing it with the 0 for continuous crack propagation, which is reminiscent 

of the contrast between the cyclic and the static fatigue thresholds (Bai et al., 2019a). 

 The two-stage crack propagation observed in our experiments should be distinguished from 

the delayed fracture reported for hydrogels (Tang et al., 2017; Bai et al., 2019b; Qi et al., 2024). 

Although both phenomena feature a transition from slow to fast crack propagation, delayed 

fracture occurs under a fixed global loading (Tang et al., 2017), whereas our experiments were 

conducted under a monotonically increasing global loading. The phenomenon of two-stage crack 

propagation similar to that found in our experiments has been reported for unfilled synthetic rubber 
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(Roucou et al., 2019). In their fracture experiments with pure-shear samples and monotonic 

loading, the crack first propagated slowly and then in a “quasi-instantaneous” manner. 

Interestingly, Roucou et al. (2019) found that the two stages of crack propagation can be 

differentiated based on the crack surface morphology: the slow propagation stage resulted in rough 

crack surfaces and the fast propagation stage caused smooth, mirror-like crack surfaces. This 

finding suggests that the two stages of crack propagation may be associated with different fracture 

processes at the crack tip. Motivated by this hypothesis, we performed additional experiments to 

gain insights towards the underlying mechanism of the two-stage crack propagation and the stark 

contrast in 0 values, as detailed in the next section. 

 

5. Mechanism for the Two-stage Crack Propagation 

5.1 Onset of fast crack propagation 

 Examination of the post-mortem fracture surface, as shown in Fig.6a, reveals regions with 

distinct morphology. Surface of the initial crack is rough, presumably because it was introduced 

by cutting the PSA sample with a scissor. The fracture surface caused by the slow crack 

propagation is also rough, but the fracture surface caused by the fast crack propagation is much 

smoother (Fig.6a). Such transition from rough to smooth fracture surface closely resembles that 

described by Roucou et al. (2019), and supports the hypothesis that the two stages of crack 

propagation in our experiments are governed by different crack tip fracture processes.  

 The next question is what controls the transition from rough to smooth fracture surfaces. To 

answer this question, we plot the critical global stretch ratio 01 / H    at the onset of fast crack 

propagation as a function of the loading rate Δሶ /𝐻଴ in Fig.6b. For all experiments, the critical global 

stretch ratio is consistently found at ~ 2. Furthermore, we extract the value of F22 closest to the 

crack tip when the onset of fast crack propagation occurred, which can serve as an indication of 

the local stretch ratio at the crack tip. The data of the critical crack tip F22 are more scattered 

(Fig.6b), which is expected because of the uncertainties associated the particle tracking and 

interpolation processes. Despite the scattering, the critical crack tip F22 falls into 3 ~ 4.8 for a wide 

range of loading rates (Δሶ /𝐻଴ = 0.005 to 1 s−1), thereby suggesting that the transition from rough to 

smooth fracture is governed by a critical stretch at the crack tip. Since the pure-shear PSA samples 
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in our experiments were subjected to monotonic loading, the stretch at the crack tip should also 

increase accordingly. Once the critical stretch is reached, smooth fracture would occur.  

 

 

Figure 6 Two stages of crack propagation. (a) Post-mortem fracture surface of a representative 
experiment (loading rate = 0.005 s−1) showing rough fracture surface for the slow propagation 
stage and smooth fracture surface for the fast propagation stage. (b) The critical global stretch ratio 
and the crack tip F22 at the onset of the fast propagation stage as a function of the loading rate. 

 

 
5.2 Hypothesized mechanism 

 Based on the discussions in Section 5.1, we hypothesize the following mechanism for the two-

stage crack propagation. Assume there exists a critical stretch governing material failure at the 

crack tip. The material at the crack tip breaks if this critical stretch is exceeded. However, in 

practice the initial crack introduced by a pair of scissors is not perfectly sharp and may not be 

uniform throughout the sample thickness. Therefore, we envision a three-dimensional (3D) 

tortuous surface profile instead of a sharp and straight front at the initial crack tip. The imperfect 

geometrical profile of the initial crack tip can lead to through-thickness variations in the tensile 



26 
 

deformation around the initial crack tip. Such variations amplify the stretch locally and thus may 

trigger material failure even when the average crack tip stretch is below the critical value.  

 Once localized failure is initiated at some point along the surface of the initial crack tip, the 

excessive load would be transferred to the rest of the initial crack tip surface, thereby causing a 

cascade of failure events and eventually inducing the slow crack propagation stage. This physical 

picture is similar to the subcritical fracture observed and characterized recently for soft elastomers 

(Ju et al., 2023). Furthermore, recall that the PSA samples in our experiments (~ 1-mm thick) were 

prepared by laminating 4 layers of PSA films. This lamination structure may also affect the load 

transfer process. Nevertheless, the slow propagation stage should involve a crack tip failure 

process that is non-uniform across the thickness and is sensitive to the geometric imperfection of 

the initial crack tip. This can explain the rough fracture surface and the highly scattered values of 

0 for the slow propagation stage.  

 As the global loading continues to increase, the critical stretch for material failure is exceeded 

and the fast propagation stage starts. In this stage, the crack tip failure process occurs 

simultaneously across the sample thickness, thus resulting in smooth fracture surfaces and 

consistent values of 0 (Fig.5b). This also implies that the crack tip in the fast propagation stage is 

sharp.  Consequently, the fast propagation stage involves a smaller length scale for the crack tip 

failure process and hence smaller 0 values than the slow propagation stage.  

 
5.3 Controlling the onset of fast crack propagation 

 We performed additional experiments to test the hypothesized mechanism for the two-stage 

crack propagation, as illustrated in Fig.7. Specifically, we applied the same experimental 

configuration as described in Section 2.2, but replaced the monotonic loading by a two-step 

loading history, i.e., a continuous loading step with constant loading rate (0.01 s−1) followed by a 

holding step at a fixed global stretch ratio = λhold. By varying λhold, we can test if the onset of fast 

crack propagation can be controlled by altering the global stretch. 
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Figure 7 Controlling the onset of fast propagation using two-step loading tests with the initial 
loading rate of 0.01 s−1 and different λhold. (a)-(b) Result for λhold = 1.75: (a) loading history and 
crack tip location in the deformed configuration versus time, and (b) crack surface with a zoomed-
in view for the segment (bounded by the orange rectangle) corresponding to the region in (a) 
highlighted in orange. (c)-(d) Result for λhold = 1.86: (c) loading history and crack tip location in 
the deformed configuration versus time, and (d) crack surface with a zoomed-in view for the 
segment (bounded by the green rectangle) corresponding to the region in (c) highlighted in green. 
(e)-(f) Result for λhold = 1.75 with an in situ cut to the blunted crack tip at t = ~ 200s: (e) loading 
history and crack tip location in the deformed configuration versus time, and (f) crack surface with 
a zoomed-in view for the segments (bounded by the orange and green rectangles) corresponding 
to the regions in (e) highlighted in orange and green. The razor blade symbol illustrates the point 
at which the in situ cut was introduced. 
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 According to our hypothesis, the fast propagation stage should not occur if λhold is not 

sufficiently large. We set λhold = 1.75 which is below the critical global stretch at the onset of fast 

propagation (i.e., ~ 2 in Fig.6b). The loading history and the consequent crack propagation 

behavior are shown in Fig.7a. Since no tracer particles were used here, we were unable to 

determine the length of crack propagation C (Fig. 4a). Instead we use the horizontal coordinate of 

the crack tip in the deformed configuration to represent the extent of crack propagation (i.e., the 

“crack tip location” in Fig.7a). As expected from our hypothesis, no transition to the fast 

propagation stage was observed in this experiment. The entire course of crack propagation 

remained in the slow propagation stage. Although there were variations in crack speed (see the 

slope of the crack tip location versus time curve in Fig.7a), indicating that the crack propagated in 

a jigged manner, the average crack speed was ~ 0.1 mm/s, which falls into the range for the slow 

propagation stage. The slow propagation stage is further evidenced by the rough fracture surface 

found after this experiment (Fig.7b). 

 When λhold is increased, the fast propagation stage should emerge. To test this prediction, we 

increased λhold to 1.86 (Fig.7c). Note that we intentionally kept λhold smaller than 2 to avoid 

triggering the fast propagation stage prematurely in the continuous loading step. After the holding 

step started, the crack first underwent slow propagation for a few seconds and then suddenly 

transitions into the fast propagation stage (average crack speed = ~ 4 mm/s). Smooth fracture 

surface was found after this experiment (Fig.7d).  

 To further test our hypothesis, we repeated the experiment with λhold = 1.75. After the holding 

step started, the crack entered the slow propagation stage (similar to Fig.7a). After holding for ~ 

200 seconds, we applied a small cut to the blunted crack tip in situ using a razor blade. This cut 

can disrupt the crack tip process associated with the slow propagation stage. In addition, since the 

material near the blunted crack tip is highly stretched and much thinner than the initial thickness, 

the in situ cut can induce a sharper crack tip, thus triggering the fast propagation stage. This was 

indeed observed in our experiment. After the cut was applied, the crack suddenly entered the fast 

propagation stage (Fig.7e), which lasted ~ 40 s before getting back to the slow propagation stage. 

The fracture surface also exhibits a transition from rough to smooth after the cut was applied. 

While observations in this experiment are consistent with our hypothesis, more thorough 

experiments need to be carried out in the future to draw conclusions on the different crack tip 

processes underlying the slow and fast propagation stages. 
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6. Conclusion 

 In this work we experimentally characterized the intrinsic toughness 0 for a soft pressure 

sensitive adhesive (PSA). We performed pure shear fracture experiments under monotonic loading. 

Tracer particles were randomly deposited on the surface of the PSA samples. By tracking the tracer 

particles over the entire course of each experiment and interpolating their displacements, we 

obtained full-field and full-history data of the 2D displacement and deformation gradient fields in 

each fracture experiment. The deformation gradient data were then substituted into a calibrated 

nonlinear constitutive model from which the fields of stress and internal stress power density were 

calculated at each time frame. Finally, we integrated the internal stress power density both spatially 

and temporally, and determined the intrinsic toughness 0. This process was repeated for fracture 

experiments with different loading rates to uncover the dependence of 0 on the crack propagation 

speed. 

 The experimentally extracted values of 0 provide useful insights towards the two-stage crack 

propagation behavior observed in our experiments. We found that under monotonic loading the 

initial crack first underwent a slow propagation stage and then suddenly entered a fast propagation 

stage. The 0 values for the slow propagation stage are highly scattered and do not exhibit any 

correlation with the crack speed, whereas the 0 values for the fast propagation stage remain 

consistently in the range of 1.3-2 kJ/m2 and exhibit a slight increase with the crack speed. This 

contrast is in line with the distinct morphology of fracture surface for the two stages of crack 

propagation, i.e., rough fracture surface for the slow propagation and smooth fracture surface for 

the fast propagation. Additional experiments revealed that the onset of fast crack propagation can 

be controlled by altering the applied stretch or introducing an in situ cut to the blunted crack tip 

during the slow propagation stage. These findings suggest that the slow and fast propagation stages 

involve different crack tip fracture processes.  

 Although our fracture experiments were performed using the pure shear geometry under 

monotonic loading, our method for determining 0 does not rely on any assumptions on the sample 

geometry or loading history. In principle, our method can be extended to any soft thin-sheet 

samples with arbitrary geometries and loading histories, as long as the particle tracking method 

can be applied and an accurate constitutive model is available. Moreover, since we can follow the 

crack trajectory by mapping the crack tip location in the deformed configuration to the reference 
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configuration, this method does not require a straight crack trajectory and thus can be applied 

beyond Mode-I loading (Lu et al., 2021). Therefore, this method can serve as a general tool for 

characterizing the intrinsic fracture toughness of soft materials. Experimental results on the 

intrinsic toughness can provide important insights towards understanding the crack tip fracture 

process or be used as inputs for computational modeling of crack propagation in soft materials. 
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Supplementary Materials 

 Movie S1:  Evolution of the displacement u2 field (top left), the deformation gradient F22 field 

(top right), the stress  S22 field (bottom left), and the internal stress power density 𝐒: 𝐅ሶ  field in the 

deformation configuration from a representative experiment (loading rate = 0.5 s−1). 

 

Appendix A: Reduced Constitutive Model 

 The constitutive parameters listed in Table 1 can provide good agreement between the model 

and the DMA and uniaxial tensile data. However, since the smallest relaxation time is 10−3 s, the 

number of time increments needed to numerically compute the convolution integral in Eq. (7) can 

be very large, because the time increment size should be much lower than the smallest relaxation 

time. This means the stress calculation process can be extremely time consuming for experiments 

with low loading rates. For example, experiments with the lowest loading rate (0.005 s-1) lasted 

for ~200 s, which would require 2 million time increments for an increment size of 10−4 s.  To 

balance accuracy and efficiency for experiments with low loading rates, we recalibrated the 

constitutive model with the smallest relaxation time capped at 0.01 s. This would allow us to use 

larger time increments for evaluating Eq. (7) and hence reduce the computational cost of stress 

calculation. Also, increasing the shortest relaxation time from 10−3 s to 0.01 s does not affect the 

results of stress and energetics for experiments with low loading rates, because the relaxation time 
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of 10−3 s corresponds to the material’s response at high strain rate (e.g., on the order of 102 ~ 103 

s-1) which is well beyond the range for experiments with low loading rates.  

 In the following, we will refer to the constitutive model with the shortest relaxation time of 

0.01 s as the reduced model. Parameters for the reduced model were calibrated following similar 

procedures in Section 2.5 and are listed in Table 2. Figure 8 shows the comparison between the 

reduced model and the DMA data or the original model (Table 1). First, as expected, the reduced 

model does not capture the DMA data at high frequency (~10 to 100 Hz) because the relaxation 

time is capped at 0.01 s (Fig.8a). However, it still provides a good agreement with the DMA data 

when the frequency is below 10 Hz (Fig.8a). Second, the reduced model gives almost identical 

stress-stretch curve under uniaxial tension as the original model under a strain rate of 0.14 s−1 

(same as the main plot of Fig.2b) and a higher strain rate (1 s−1) (Fig.8b). Third, we utilized both 

the reduced and original models to process a representative experiment with the loading rate being 

0.5 s-1. As shown in Fig.8c, the ext intW W  versus C curves obtained from the two models agree 

well initially, and exhibit a slight discrepancy when the fast propagation stage ocurred. This is  

expected because the fast propagation stage entails higher strain rate near the crack tip. 

Nevertheless, the intrinsic toughness  for the fast propagation stage is 1.93 kJ/m2 based on the 

original model, and is 2.09 kJ/m2 based on the reduced model, exhibiting a relative difference of 

~8%. However, the computational time was reduced from ~2 weeks with the original model to 

~36 hours with the reduced model. This drastic improvement in computational efficiency 

motivated us to adopt the reduced model for all experiments with loading rates below 0.5 s−1. 

 

 Table 2 Calibrated parameters of the reduced constitutive model 
Parameters for the relaxation function  

g∞ g1 g2 g3 g4 g5 g6 g7 g8

0.104 0.769 0.0663 0.0358 0.0152 4.7×10−3 4.51×10−9 4.6×10−3 5.26×10−12

 τ1 (s) τ2 (s) τ3 (s) τ4 (s) τ5 (s) τ6 (s) τ7 (s) τ8 (s)

 10−2 10−1 1 10 102 103 104 105 

Parameters for the hyperelastic model 
C10 (MPa)  C01 (MPa)  C20 (MPa)  C11 (MPa)  C02 (MPa) 

−10−4 0.4313 0.0069 −10−4 −10−4 
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Figure 8 Reduced constitutive model. (a) Comparison between the relaxation function of the 
reduced model (Table 2) to the normalized DMA data. (b) Comparison between the reduced model 
(Table 2) and the original model (Table 1) under uniaxial tension with strain rate = 0.14 s-1 (main 
plot) and 1 s-1 (inset). (c) The Wext − Wint versus C curve and the intrinsic toughness in the fast 
propagation stage based on the reduced model and the original model for an experiment with a 
loading rate of 0.5 s-1. (d) Contour of the internal stress power density obtained for an experiment 
with a loading rate of 0.5 s-1 at t = 2.91s using the reduced model and the original model. 
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