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A B S T R A C T

The Green’s function technique has been used to directly calculate the local fields of a

functionally graded material (FGM) under thermomechanical loading, thus predicting its

effective material properties. For a bi-phase FGM continuously switching the particle and matrix

phases, the particle size and material gradation play a complex role in its effective material

behavior. Using Eshelby’s equivalent inclusion method, particles are simulated by a source

of eigen-fields in a bounded bi-layered domain, while the boundary effects are evaluated by

the boundary integrals of the fundamental solutions. Using the volume integral of Green’s

functions, over 10,000 particles are used to simulate an FGM under thermal and mechanical

loading, respectively. The dual equivalent inclusion method is used to solve for the temperature

and stress fields coupled with temperature loading. The averaged thermomechanical field

distribution in the gradation direction is evaluated under different loading conditions. The

effective stiffness, thermal expansion coefficient, and heat conductivity significantly change

with the loading condition, particle size, and material gradation. The homogenization methods,

which approximate an FGM as a continuously graded material with thermoelastic properties

depending on the volume fraction only, cannot capture these micromechanical features of FGMs,

while the present cross-scale approach with the inclusion-based boundary element method

(iBEM) directly evaluates local fields and predicts effective material behaviors with high fidelity

and efficiency.

1. Introduction

Advanced material designs are often subjected to requirements in multi-functions with a number of constraints, which may not be

achieved by conventional composites with uniform particle distributions (Saleh et al., 2020; Wang et al., 2019). Functionally graded

materials (FGMs) have been used in many engineering industries, such as biomedical (Roy, 2020), aerospace (Kumar et al., 2013),

and automobile (Ram et al., 2017) applications, in which materials gradually change from one phase to another in the gradation

direction. With the graded microstructure, FGMs exhibit the improved integrity and performance of the material systems (Carvalho

et al., 2015; Tanvir et al., 2017).

In the transition of the material phases, the material concentration variation in the gradation direction can be either step functions

or continuous functions. An FGM with a step function of material phase distribution is equivalent to laminated composites, which
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may still exhibit discontinuous properties at interfaces between layers, i.e., thermal expansion ratio and stiffness, which arises

concentration of misfit stress and thermal stress due to large temperature variation (Kumar et al., 2013) and thus causes damage and

separation of layers (Lin et al., 2017). A continuous variation of material phases is favorable and allows the application of materials

with conflicting properties (Shinohara, 2013). Chawla (2003) presented an example of an aerospace thermo-structure composed of

ceramic and polymers. Due to the gradual change of the microstructure, thermal stress in the FGMs can be significantly relieved

compared to a bi-layered structure (Yin et al., 2007, 2004).

Because FGMs play important roles in many engineering fields, investigating mechanical and thermomechanical behaviors has

attracted extensive attention. Kesler et al. (1998) and Khor and Gu (2000) measured the coefficients of thermal expansion and

thermal stress concerning the graded direction. For numerical methods, finite element method (FEM) (Agrawal et al., 2003; Reiter

& Dvorak, 1998; Reiter et al., 1997) have been applied to understand and analyze experimental results. Ebrahimijahan et al. (2022)

integrated the finite difference approach with radial basis functions for the simulation of two-dimensional FGMs, which aims to

reduce the number of grid nodes. Since FGMs possess complex microstructures, the accuracy of numerical methods depends on the

discretization of material phases with different shapes and distributions (Yin et al., 2007; Zou & He, 2018). When the particle size

varies in a range, using a finite element mesh to describe those particles is difficult. Even if internal grids, meshes, or cells can

reasonably simulate the geometry, it is challenging to provide accurate results because of the stress concentration and singularities.

Therefore, defining the size of a representative volume element (RVE) or unit cell for homogenization is difficult.

More methods turned to the effective graded material behavior with equivalent material phase variation instead of the actual

particle distribution. Aboudi’s group (Aboudi et al., 1996a, 1996b) proposed a higher-order theory for FGMs. In the review

paper (Aboudi et al., 1999), the authors pointed out that using standard micromechanical models on an RVE for FGMs disobeys

the non-unique definition of RVE because of continuously changing material properties along the graded direction and nonuniform

spacing of inhomogeneities. In general, the primary purpose of RVE is to homogenize the microscopic features and thus simplify

the materials in evaluating effective macroscopic behaviors. For a homogeneous composite with large sizes compared with

inhomogeneities, it is suitable to apply RVE based on the rational assumption of an infinite material domain. However, when the

gradation and inhomogeneity size of FGMs are not very small for an FGM, an RVE with a different size may provide different results,

which may never reach a convergent result.

Due to the above limitations, several numerical methods and their extensions have been proposed to simulate the continuously

changing material properties. The conventional FEM with homogeneous elements has been used to simulate two-phase FGMs (Anlas

et al., 2000; Fujimoto & Noda, 2004; Reiter & Dvorak, 1998; Reiter et al., 1997). The simulations were achieved by carefully assigning

two properties to elements in successive layers, which may lead to stepwise changing properties along the gradation direction.

Similarly, the conventional multi-region boundary element method (BEM) can also be used through discretizing internal boundaries.

This school of methods can provide rational predictions with refined mesh, but the main obstacles are a trivial preparation process

and a large consumption of computational resources. Subsequently, Kim and Paulino (2002) and Santare and Lambros (2000)

suggested using a graded finite element, where the material properties can be evaluated through the Gauss points of the element.

Using the graded finite element (GFM), Burlayenko et al. (2017) simulated a two-dimensional plane strain FGM plate. Although

the GFM avoids the preparation process of assigning material properties by volume fraction, it simply assumes uniform material

properties at the same height (layer). It ignores the critical physics of particle interactions, resulting in an unrealistic local field

with two strong assumptions. Other related works can be found in the critical review (Jha et al., 2013). Overall, the inhomogeneity

interactions with the loading configuration in FGM applications have not been well studied. An actual FGM sample with loading

on the boundary may show some actual material behavior across the micro- and macro-scales with both local fields and effective

material behavior.

In the recent book (Yin et al., 2022), we presented the algorithm of iBEM, where the boundary response and inhomogeneity

interactions are fully considered through BEM and EIM, respectively. Since three-order Taylor series polynomials express the eigen-

fields on the ellipsoidal inhomogeneities and thus no internal mesh is required, the number of degrees of freedom (DOF) is tailorable

and well controlled, which is particularly suitable for virtual experiments of a large number of inhomogeneities. Considering

a bi-phase FGM composite with phase concentration continuously changing from 0 to 1 (Fig. 1), it is straightforward to assign
inhomogeneities to satisfy gradation distribution. However, similar to the work (Reiter et al., 1997), this scheme is neither physical

nor efficient because the particle’s volume fraction cannot reach 100%, and the number of inhomogeneities increasing from 0 to

100% results in a large number of particles that lead to high computational costs and physical difficulty to make the particle phase

close to 100%. Alternatively, a bi-matrix model for FGM with interchanged inhomogeneity and matrix phases (Fig. 1) will be more

reasonable. Considering a linearly graded FGM, the entire volume fractions of inhomogeneities are 50% and 25% for one-matrix

and bi-matrix models, respectively, so that the bi-matrix model can significantly reduce the DOFs with a better physical meaning

of the particle phase volume fraction much less than 50%, which can be other values depending on the physics of materials.

In the literature, the thermomechanical analysis is generally conducted in two separate steps: (i) solving thermal fields and

(ii) coupling temperature-induced stress through the domain integral of the kernel functions. Prasad et al. (1994) mathematically

transformed the domain integrals of temperature into boundary integrals with the Galerkin technique, where the kernel function

is also known as the thermoelastic fundamental solution. Since then, the thermomechanical analysis can be completed by solving

one global matrix instead of two coupling steps. Following Prasad’s method, this paper firstly presents a bimaterial BEM based

on elastic (Walpole, 1996; Wu, Zhang, Cui & Yin, 2023) and thermoelastic bimaterial fundamental solutions (Hou et al., 2013;

Wu, Wang, & Yin, 2023). Since two matrices generally exhibit different thermoelastic properties, the DEIM is proposed to consider

thermal and elastic fields (Wu, Wang, & Yin, 2023; Wu, Zhang, Singhatanadgid & and Zhang, 2023). In DEIM, two eigen-fields

are used: (i) eigen-temperature gradient (ETG) for mismatch of thermal conductivity and (ii) eigenstrain for mismatch of thermal
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Fig. 1. Schematic plot and comparison of one-matrix and bi-matrix models.

modulus and stiffness. Due to pairwise interactions and boundary effects, Taylor’s series expansion has been utilized to describe

spatial variations of the two eigen-fields. Solving the global system of linear equations, the thermoelastic boundary response and

eigen-fields can be determined. Subsequently, thermomechanical fields, i.e., temperature, thermal strain, etc., and the related

effective behaviors can be determined through the post-process.

This paper uses the bimaterial fundamental solution to develop a single-domain boundary integral method for thermomechanical

simulation of an FGM with two matrix phases containing many particles. Section 2 presents a bi-layered system embedded with

multiple inhomogeneities. Subsequently, the bimaterial elastic/thermoelastic fundamental solutions and global matrix of iBEM are

presented in Section 3. Subsequently, the accuracy and efficiency of the iBEM algorithm is verified by comparing thermoelastic fields

and the computational costs with the FEM results of simple case studies. Section 5 presents numerical examples of ceramic–metal

FGMs with different distribution and particle dimensions.

2. Problem statement

Consider a bimaterial containing a number of inhomogeneities, which interchanges material phases of inhomogeneities and

matrix in the gradation direction, under a thermomechanical load. It can be formulated by a boundary value problem (BVP) of a two-

jointed dissimilar half-spaces  composed of the upper + and lower − phases, which is embedded with multiple 𝑁𝐼 subdomains

𝛺𝐼 , where +, − and 𝛺𝐼 generally possess dissimilar material properties, which are thermal conductivity (𝐾), modulus () and
stiffness (). Let superscripts (.)′, (.)′′, (.)𝐼 indicates material properties of +, − and 𝛺𝐼 respectively. For a two-phase FGM, the
inhomogeneity and matrix switch the properties in the two domains, which is a special case for this general BVP.

Let 𝜆 and 𝜇 represent the two Lame constants. Then the isotropic stiffness tensor 𝑖𝑗𝑘𝑙 = 𝜆𝛿𝑖𝑗𝛿𝑘𝑙 + 𝜇(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘) and thermal
modulus  = (3𝜆 + 2𝜇)𝛼 can be expressed. Shown in Fig. 2, a cuboid bi-layered system with length 𝑙, width 𝑏, thicknesses ℎ1
and ℎ2 contains multiple spherical inhomogeneities, which is subjected to prescribed thermal (temperature 𝑇 , flux 𝐪) and elastic
(displacement 𝐮, traction 𝐭) boundary conditions.

The bimaterial interface is placed at the 𝑥1−𝑥2 plane. In the following, perfect subdomain and bimaterial interfaces are assumed,
which exhibit non-debonding behavior and hence satisfy thermal and elastic continuity equations of temperature, flux, displacement,

and traction as follows:

𝑇 (𝐱+) = 𝑇 (𝐱−), 𝑞𝑖(𝐱+)𝑛𝑖(𝐱+) = 𝑞𝑖(𝐱−)𝑛𝑖(𝐱−)
𝑢𝑖(𝐱+) = 𝑢𝑖(𝐱−), 𝜎𝑖𝑗 (𝐱+)𝑛𝑗 (𝐱+) = 𝜎𝑖𝑗 (𝐱−)𝑛𝑗 (𝐱−)

(1)

where superscripts + and − indicate the inward and outward surfaces of bimaterial and subdomain interfaces, respectively; 𝐧 stands
for the unit surface normal vector of interfaces. Combining prescribed boundary conditions and continuity equations at interfaces,

the thermal and its induced thermoelastic BVPs can be formulated, usually handled by multi-region schemes and volume integrals.

As introduced previously, the thermal effects are mathematically involved through the boundary integral equation of bimaterial

thermoelastic fundamental solutions. In addition, the conventional BVPs (inhomogeneity problems) were analytically reformulated

to determine eigen-fields, which elegantly avoided trivial discretization procedures of numerical methods. In this paper, the iBEM

method employs the bimaterial thermal, thermoelastic, and elastic fundamental solutions to analyze thermoelastic inhomogeneity

problems in a bounded bi-layered structure, and it is further applied for thermoelastic case studies of FGM composites.

3. Formulation and algorithm implementation

The above BVP will be formulated with the iBEM (Yin et al., 2022) using the bimaterial fundamental solution instead to achieve

the interface continuity analytically.
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Fig. 2. Illustrative plot of a cuboid bi-layered system embedded with multiple spherical inhomogeneities subjected to prescribed thermomechanical conditions

(dimensions: length 𝑙, width 𝑏, thickness ℎ1, ℎ2).

3.1. Bimaterial fundamental solutions

The fundamental solution provides a response at field point 𝐱 caused by a unit excitation at arbitrary source point 𝐱′. For
a concentrated heat source 𝛿(𝐱′), the bimaterial thermal (𝐺(𝐱, 𝐱′)) and thermoelastic (𝐺𝑖(𝐱, 𝐱′)) fundamental solution provides

temperature and displacement, respectively,

𝑇 (𝐱) = 𝐺(𝐱, 𝐱′)𝛿(𝐱′); 𝑢𝑖(𝐱) = 𝐺𝑖(𝐱, 𝐱′)𝛿(𝐱′) (2)

For a point force 𝐟 , the bimaterial elastic fundamental solution 𝐺𝑖𝑗 (𝐱, 𝐱′) provides the displacement field,

𝑢𝑖(𝐱) = 𝐺𝑖𝑗 (𝐱, 𝐱′)𝑓𝑗 (𝐱′) (3)

Though the fundamental solutions are expressed with the same character 𝐺, they are distinguished through ranks. Although there

exist various expressions of bimaterial elastic (Walpole, 1996) and thermoelastic (Wu, Wang, & Yin, 2023) fundamental solutions,

in the following, they are modified and present in the form of potential functions, which is particularly suitable for domain integrals

in Eshelby’s inhomogeneity problem. The derivation of bimaterial fundamental solutions generally involves a method of the image.

Therefore, the explicit expressions depend on the relative position of the source and field points.

3.1.1. Thermal fundamental solution

The explicit thermal fundamental solution is provided in our recent work (Wang et al., 2022),

𝐺(𝐱, 𝐱′) =
⎧⎪⎨⎪⎩

1
4𝜋𝐾𝑤 (𝜙 + 𝐾𝑤−𝐾𝑠

𝐾𝑤+𝐾𝑠 𝜙) 𝑥′3𝑥3 ≥ 0
1

2𝜋(𝐾𝑤+𝐾𝑠)𝜙 𝑥′3𝑥3 < 0
(4)

where (i) 𝑤 =′, 𝑠 =′′ for 𝑥′3 ≥ 0 and (ii) 𝑤 =′′, 𝑠 =′ for 𝑥′3 < 0; 𝜓 = |𝐱 − 𝐱′| and 𝜙 = 𝜓−1 are the biharmonic and harmonic potential

functions, respectively; (.) represents image terms, for example, 𝜙 = |𝐱 − 𝐱′|−1, where 𝑥′
𝑖
= 𝑄𝐼𝑥′𝑖 and the vector 𝐐 = (1, 1,−1). Here

the dummy index rule follows Mura’s notation (Mura, 1987) that the upper case subscript changes with lower case subscript but

not be summed.

3.1.2. Thermoelastic fundamental solution

The explicit thermoelastic fundamental solution is provided in our recent work (Wu, Wang, & Yin, 2023),

𝐺𝑖(𝐱, 𝐱′) =
1

2𝜇𝑞

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑞

5𝜓,𝑖 + (𝑞

1 + 𝐿
𝑦

𝐵
)𝛽
𝑦

,𝑖
+ 𝐿𝑦

𝐵
𝜓,𝑖

+ 𝑥3

[
𝜒
(
𝐿
𝑦

𝐷
− 𝐿𝑦

𝐹

)
𝛼
𝑦

,𝑖
+ 𝐿𝑦

𝐶

(
𝜓,𝑖3 + 2(1 − 2𝜈𝑞)𝛿𝑖3𝜙 − 𝑥3𝜙,𝑖

)]
+ 𝛿𝑖3

[
−(3 − 4𝜈𝑞)

(𝑞

3𝛼
𝑦 + 𝐿𝑦

𝐶
𝜓,3

)
+ 𝜒

(
4(1 − 𝜈𝑞)𝑞

6 − 𝐿
𝑦

𝐵

)
𝛼
𝑦] 𝑥3𝑥

′
3 ≥ 0

(𝑞

2 + 𝐿
𝑦

𝐺
)𝛽𝑦
,𝑖
− 𝑥3

[𝑞

4 − 𝐿
𝑦

𝐺

]
𝛼
𝑦

,𝑖
+ 𝐿𝑦

𝐺
𝜓,𝑖

− 𝜒𝛿𝑖3𝛼
𝑙
[
𝐿
𝑦

𝐺
+ (3 − 4𝜈𝑞)𝑞

4 − 4(1 − 𝜈𝑞)𝑞

7

] 𝑥3𝑥
′
3 < 0

(5)
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where (i) 𝑞 =′, 𝑦 = 𝑢 and 𝜒 = 1 for 𝑥′3 ≥ 0 and (ii) 𝑞 =′′, 𝑦 = 𝑙 and 𝜒 = −1 for 𝑥′3 < 0. Four branches of harmonic functions (𝛼, 𝛽) are
listed below,

𝛼𝑢 = ln[𝑥′3 − 𝑥3 + 𝜓], 𝛼
𝑢 = ln[𝑥′3 + 𝑥3 + 𝜓]

𝛽𝑢 = (𝑥′3 − 𝑥3)𝛼
𝑢 − 𝜓, 𝛽

𝑢
= (𝑥′3 + 𝑥3)𝛼

𝑢 − 𝜓

𝛼𝑙 = ln[−𝑥′3 + 𝑥3 + 𝜓], 𝛼
𝑙 = ln[−𝑥′3 − 𝑥3 + 𝜓]

𝛽𝑙 = (−𝑥′3 + 𝑥3)𝛼
𝑙 − 𝜓, 𝛽

𝑙
= (−𝑥′3 − 𝑥3)𝛼

𝑙 − 𝜓

(6)

𝛼 and 𝛽 are Boussinesq’s displacement potential functions (Barber, 1992; Boussinesq, 1885), and they are introduced to handle

higher order partial derivatives (third direction) in Boussinesq’s problem of surface load. The four branches of expressions in Eq. (6)

are obtained through partial integration along the third axis and differentiated by 2 integral limits as [𝑥3,−∞), (∞, 𝑥3] for superscript
𝑢 and 𝑙, respectively. For example, 𝛼𝑢 = ∫ −∞

𝑥3
𝜙(𝑥1, 𝑥2, 𝑡) 𝑑𝑡 and 𝛼

𝑢 = ∫ 𝑥3∞ 𝜙(𝑥1, 𝑥2, 𝑡) 𝑑𝑡. The material coefficients 𝑢
1 ∼ 𝑢

7 and 𝐿
𝑢
𝐵
∼ 𝐿𝑢

𝐹

are provided as follows:

𝑢
1 = 𝑢

5 − 2𝜇′
[ 𝑢

7(1 − 𝜈
′′)

(3 − 4𝜈′′)𝜇′ + 𝜇′′
+

(𝑢
5 +𝑢

6)(1 − 𝜈
′)

(3 − 4𝜈′)𝜇′′ + 𝜇′
]

𝑢
2 = −2𝜇′′

[ 𝑢
7(1 − 𝜈

′′)
(3 − 4𝜈′′)𝜇′ + 𝜇′′

+
(𝑢

5 +𝑢
6)(1 − 𝜈

′)
(3 − 4𝜈′)𝜇′′ + 𝜇′

]
𝑢

3 =
4𝑢

6(1 − 𝜈
′)𝜇′′ −𝑢

5(𝜇
′ − 𝜇′′)

(3 − 4𝜈′)𝜇′′ + 𝜇′
, 4 = 4𝑢

7
(1 − 𝜈′′)𝜇′

(3 − 4𝜈′′)𝜇′ + 𝜇′′

𝑢
5 = 1

8𝜋𝐾 ′
(1 − 2𝑣′)′

1 − 𝑣′
, 𝑢

6 = 1
8𝜋𝐾 ′

(1 − 2𝑣′)′

1 − 𝑣′
𝐾 ′ −𝐾 ′′

𝐾 ′ +𝐾 ′′ , 𝑢
7 = 1

4𝜋(𝐾 ′ +𝐾 ′′)
(1 − 2𝑣′′)′′

1 − 𝑣′′

(7)

𝐿𝑢
𝐵
= 𝑢

5
(3 − 4𝜈′)(𝜇′ − 𝜇′′)
(3 − 4𝜈′)𝜇′′ + 𝜇′

, 𝐿𝑢
𝐶
= 2𝑢

5
(𝜇′ − 𝜇′′)

(3 − 4𝜈′)𝜇′′ + 𝜇′

𝐿𝑢
𝐷
=

4𝑢
6(1 − 𝜈

′)𝜇′′

(3 − 4𝜈′)𝜇′′ + 𝜇′
, 𝐿𝑢

𝐹
=

4𝑢
5(𝜇

′ − 𝜇′′)(1 − 𝜈′)
(3 − 4𝜈′)𝜇′′ + 𝜇′

(8)

Following the same fashion, when the source point is located at − (𝑥′3 < 0), material coefficients 𝑙
1 ∼ 𝑙

7 and 𝐿
𝑙
𝐵
∼ 𝐿𝑙

𝐹
can be

obtained through switching sequence of material properties of two matrix phases. For instance, 𝑙
7 =

1
4𝜋(𝐾′+𝐾′′)

(1−2𝜈′)′

1−𝜈′ .

3.1.3. Elastic fundamental solution

The explicit bimaterial elastic fundamental solution was proposed by Walpole (Walpole, 1996, 1997). Subsequently, the

fundamental solution was completed by current authors and implemented in BEM for elastic analysis of bi-layered structures (Wu,

Zhang, Cui & Yin, 2023). The compact bimaterial elastic fundamental solution is expressed as Eq. (9),

𝐺
𝑦

𝑖𝑗
(𝐱, 𝐱′) = 1

4𝜋𝜇𝑤

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(𝛿𝑖𝑗𝜙 −
𝜓,𝑖𝑗

4(1 − 𝜈𝑤)
) + 𝐴𝑦𝜙𝛿𝑖𝑗 + 𝜒𝐵𝑦(𝛿𝑖3𝛿𝑗𝑘 − 𝛿𝑖𝑘𝛿𝑗3)𝛼

𝑦

,𝑘

− 𝐶𝑦𝑥3

[
𝑄𝐽𝜓,𝑖𝑗3 + 4(1 − 𝜈𝑤)𝛿𝑗3𝜙,𝑖 + 2(1 − 2𝜈𝑤)𝛿𝑖3𝑄𝐽𝜙,𝑗 −𝑄𝐽𝑥3𝜙,𝑖𝑗

]
− 𝐷𝑦𝑄𝐼𝑄𝐽𝜓,𝑗𝑖 − (𝐺𝑦 + 𝐵𝑦)𝑄𝐽𝛽

𝑦

,𝑖𝑗

𝑥′3𝑥3 ≥ 0

(𝛿𝑖𝑗𝜙 −
𝜓,𝑖𝑗

4(1 − 𝜈𝑤)
) + 𝐴𝑦𝜙𝛿𝑖𝑗 + 𝜒𝐵𝑦(𝛿𝑖3𝛿𝑗𝑘 − 𝛿𝑖𝑘𝛿𝑗3)𝛼

𝑦

,𝑘

− 𝐷𝑦𝜓,𝑖𝑗 − 𝜒𝑥3𝐹𝑦𝛼
𝑦

,𝑖𝑗
− (𝐺𝑦 + 𝐵𝑦)𝑄𝐼𝛽

𝑦

,𝑗𝑖

𝑥′3𝑥3 < 0

(9)

where four branches of 𝛼 and 𝛽 are expressed in Eq. (6); the material coefficients 𝐴𝑢 ∼ 𝐺𝑢 are listed as Eq. (10),

𝐴𝑢 = 𝜇′ − 𝜇′′

𝜇′ + 𝜇′′
, 𝐵𝑢 = 2𝜇′(1 − 2𝜈′)(𝜇′ − 𝜇′′)

(𝜇′ + 𝜇′′)(𝜇′ + 𝜇′′(3 − 4𝜈′))

𝐶𝑢 = 𝜇′ − 𝜇′′

2(1 − 𝜈′)(𝜇′ + (3 − 4𝜈′)𝜇′′)
, 𝐷𝑢 = 3 − 4𝜈′

2
𝐶𝑢

𝐹 𝑢 = 2𝜇′(𝜇′(1 − 2𝜈′′) − 𝜇′′(1 − 2𝜈′))
(𝜇′ + 𝜇′′(3 − 4𝜈′))(𝜇′′ + 𝜇′(3 − 4𝜈′′))

𝐺𝑢 = 𝜇′(𝜇′′(1 − 2𝜈′′)(3 − 4𝜈′) − 𝜇′(1 − 2𝜈′)(3 − 4𝜈′′))
(𝜇′ + 𝜇′′(3 − 4𝜈′))(𝜇′′ + 𝜇′(3 − 4𝜈′′))

(10)

Similar to Section 3.1.2, coefficients 𝐴𝑙 ∼ 𝐺𝑙 can be derived through switching sequences of material properties of two matrix phases.
For example, 𝐴𝑙 = 𝜇′′−𝜇′

𝜇′+𝜇′′ . In general, two matrix phases exhibit different material properties. The bimaterial thermal, thermoelastic

and elastic fundamental solutions can be further modified for infinite and semi-infinite problems by tailoring the material constants

of one layer equal to the ones of the other layer and zero or infinite, respectively, and the explicit forms are provided in Wu, Wang,

and Yin (2023).
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3.2. Boundary element method with bimaterial fundamental solution

Proposed in Prasad et al. (1994) for thermoelastic stress intensity analysis, the authors applied Galerkin’s stress vector to

transform domain integrals as boundary integrals instead. The main advantages are: (i) It overcomes domain integrals of temperature

so that no internal cells are required. As a result, the thermal effects are not considered by polynomial interpolation anymore,

which reduces errors of approximation; (ii) The solutions of both thermal and thermoelastic problems can be obtained with the

same boundary mesh using the collocation method, which retains the strong-form property of BEM. The solving schemes can be

constructed as thermal thermoelastic and elastic boundary integral equations.

3.2.1. Bimaterial thermal boundary integral equations

Consider a domain  composed of two jointed different isotropic homogeneous material phases, which is subjected to prescribed

thermal boundary conditions such as temperature 𝑇𝐵𝐶 and flux 𝐪𝐵𝐶 . Notice that only flux perpendicular to the boundary surface
is considered, a scalar quantity for boundary response. Based on the concept of fundamental solution, through boundary integral

equations of boundary temperature and flux, the temperature field can be obtained as Eq. (11),

𝑇𝐵(𝐱) = −∫𝜕𝑇 𝐾(𝐱′)𝑛𝑚𝐺,𝑚′ (𝐱, 𝐱′)𝑇𝐵𝐶 (𝐱′) 𝑑𝐱′ + ∫𝜕𝑞 𝐺(𝐱, 𝐱
′)𝑞𝐵𝐶 (𝐱′) 𝑑𝐱′ (11)

where 𝐧 is unit outward surface normal of surface 𝑇 ; (.),𝑚′ = 𝜕𝑥𝑚′ (.) denotes partial differentiation with respect to source point.
Using the Fourier’s law, heat flux at field point is as Eq. (12),

𝑞𝐵
𝑖
(𝐱) = 𝐾(𝐱)

[
∫𝜕𝑇 𝐾(𝐱′)𝑛𝑚𝐺,𝑚′𝑖(𝐱, 𝐱′)𝑇𝐵𝐶 (𝐱′) 𝑑𝐱′ − ∫𝜕𝑞 𝐺,𝑖(𝐱, 𝐱

′)𝑞𝐵𝐶 (𝐱′) 𝑑𝐱′
]

(12)

3.2.2. Bimaterial thermoelastic and elastic boundary integral equations

Following the description in Section 3.2.1, let  be subjected to both prescribed thermal (same as in the previous section) and

elastic loads, such as displacement 𝐮𝐵𝐶 and traction 𝐭𝐵𝐶 . In addition to Eq. (11) (Wu, Zhang, Cui & Yin, 2023), thermoelastic

boundary integral equations are introduced to handle temperature change as follows:

𝑢𝐵
𝑖
(𝐱) = −∫𝜕𝑡 𝑇𝑖𝑗 (𝐱, 𝐱

′)𝑢𝐵𝐶
𝑗

(𝐱′)𝑑𝐱′ + ∫𝜕𝑢 𝐺𝑖𝑗 (𝐱, 𝐱
′)𝑡𝐵𝐶
𝑗

(𝐱′)𝑑𝐱′

− ∫𝜕𝑇 𝐾(𝐱′)𝑛𝑗 (𝐱′)𝐺𝑖,𝑗′ (𝐱, 𝐱′)𝑇𝐵𝐶 (𝐱′) 𝑑𝐱′ + ∫𝜕𝑞 𝐺𝑖(𝐱, 𝐱
′)𝑞𝐵𝐶 (𝐱′) 𝑑𝐱′

(13)

where 𝑇𝑖𝑗 (𝐱, 𝐱′) is fundamental solution of traction in 𝑖th direction caused by point force in 𝑗th direction, which can be expressed
in terms of 𝐺𝑖𝑗 (𝐱, 𝐱′),

𝑇𝑖𝑗 (𝐱, 𝐱′) =
𝑖𝑚𝑘𝑙(𝐱′)(𝐺𝑘𝑗,𝑙′ + 𝐺𝑙𝑗,𝑘′ )

2
𝑛𝑚(𝐱′) (14)

Subsequently, strain at a field point is obtained through partial derivatives as follows:

2𝜀𝐵𝑀
𝑖𝑚

(𝐱) = −∫𝜕𝑡

[
𝑇𝑖𝑗,𝑚(𝐱, 𝐱′) + 𝑇𝑚𝑗,𝑖(𝐱, 𝐱′)

]
𝑢𝐵𝐶
𝑗

(𝐱′)𝑑𝐱′ + ∫𝜕𝑢

[
𝐺𝑖𝑗,𝑚(𝐱, 𝐱′) + 𝐺𝑚𝑗,𝑖(𝐱, 𝐱′)

]
𝑡𝐵𝐶
𝑗

(𝐱′)𝑑𝐱′

− ∫𝜕𝑇

𝐾(𝐱′)𝑛𝑗 (𝐱′)
[
𝐺𝑖,𝑗′𝑚(𝐱, 𝐱′) + 𝐺𝑚,𝑗′ 𝑖(𝐱, 𝐱′)

]
𝑇 𝐵𝐶 (𝐱′) 𝑑𝐱′ + ∫𝜕𝑞

[
𝐺𝑖,𝑚(𝐱, 𝐱′) + 𝐺𝑚,𝑖(𝐱, 𝐱′)

]
𝑞𝐵𝐶 (𝐱′) 𝑑𝐱′

(15)

3.2.3. Global matrices of the boundary element method

As thermal and thermoelastic/elastic boundary integral equations provided by Eqs. (11) and (13), a global matrix involving both

thermal and thermoelastic boundary integral equations can be constructed in the boundary element method (BEM). Let 𝑁𝑁 and

dim denote the number of boundary nodes and the dimension of the problem; this scheme, specifically, involves a square dense

global matrix with size (dim + 1)2 × 𝑁𝑁2. When the number of DOFs increases, this scheme becomes expensive and inefficient,

considering limited computational resources due to larger memory usage and more effort to solve a larger matrix. It is observed

that thermal solutions are independent while thermoelastic/elastic solutions require coupling of thermal solutions. In this paper,

we propose to separate the solving procedures for thermal and thermoelastic problems. The scheme with two global matrices only

requires two matrices with size 𝑁𝑁2 and dim2 ×𝑁𝑁2 for thermal and thermoelastic problems, respectively, while the same amount

of calculation is needed for coefficients.

Through boundary discretization, boundary responses can be written as interpolations of nodal values. Subsequently, one can

write the discretized boundary integral equations for thermal, thermoelastic problems, respectively.

𝑇𝐵(𝐱) =
𝑁𝐸∑
𝑒=1

[
−𝐻𝑇 𝑒 + 𝑈𝑞𝑒

]
, 𝑢𝐵

𝑖
(𝐱) =

𝑁𝐸∑
𝑒=1

[
−𝐻𝑖𝑗𝑢

𝑒
𝑗
+ 𝑈𝑖𝑗 𝑡𝑒𝑗 −𝐻𝑖𝑇

𝑒 + 𝑈𝑖𝑞𝑒
]

(16)
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where 𝐻,𝐻𝑖,𝐻𝑖𝑗 and 𝑈,𝑈𝑖, 𝑈𝑖𝑗 represents discretized boundary integral of 𝐺,𝐺𝑖 and 𝐺𝑖𝑗 , respectively; 𝑁𝐸 is the number of elements

and the superscript 𝑒 stands for quantities in the 𝑒th element.

𝐻 = ∫𝑆𝑒 𝐾(𝐱′)𝑛𝑗 (𝐱′)𝐺,𝑗′ (𝐱, 𝐱′)𝑁(𝐱′) 𝑑𝑆, 𝑈 = ∫𝑆𝑒 𝐺(𝐱, 𝐱
′)𝑁(𝐱′) 𝑑𝑆

𝐻𝑖 = ∫𝑆𝑒 𝐾(𝐱′)𝑛𝑗 (𝐱′)𝐺𝑚,𝑗′ (𝐱, 𝐱′)𝑁𝑚𝑖(𝐱′) 𝑑𝑆, 𝑈𝑖 = ∫𝑆𝑒 𝐺𝑚(𝐱, 𝐱
′)𝑁𝑚𝑖(𝐱′) 𝑑𝑆

𝐻𝑖𝑗 = ∫𝑆𝑒 𝑇𝑚𝑖(𝐱, 𝐱
′)𝑁𝑚𝑗 (𝐱′) 𝑑𝑆, 𝑈𝑖𝑗 = ∫𝑆𝑒 𝑈𝑚𝑖(𝐱, 𝐱

′)𝑁𝑚𝑗 (𝐱′) 𝑑𝑆

(17)

Assembling coefficients of boundary integral equations in Eq. (17), the global matrix for thermal problem can be constructed as

follows:[
𝐻
] [
𝑇𝐵𝐶

]
=
[
𝑈
] [
𝑞𝐵𝐶

]
for the thermal problem (18)[

𝐻𝑖𝑗

] [
𝑢𝐵𝐶
𝑗

]
+
[
𝐻𝑖

] [
𝑇𝐵𝐶

]
=
[
𝑈𝑖𝑗

] [
𝑡𝐵𝐶
𝑗

]
+
[
𝑈𝑖

] [
𝑞𝐵𝐶

]
for the thermoelastic problem (19)

The thermal boundary response can be obtained by solving the global equation system in Eq. (18), and then thermal effects are

coupled through thermoelastic boundary integral equations in Eq. (19). Since BEM is a collocation method, strongly singular (𝑟−2)

diagonal elements in
[
𝐻
]
,
[
𝐻𝑖𝑗

]
can be handled through the method of rigid-body motion. Notice that only weak singularities 𝑟−1

exist in diagonal elements of
[
𝐻𝑖

]
, which can be numerically evaluated by the conventional Gauss quadrature rule.

3.3. Dual equivalent inclusion method for bounded bimaterial domain

In Eshelby’s celebrated works (Eshelby, 1957, 1959), when an ellipsoidal inhomogeneity is embedded in an infinite solid, it

is proposed to simulate inhomogeneity with an inclusion with constant eigenstrain. The surrounding disturbed fields are obtained

through volume integrals of fundamental solutions composed of biharmonic and harmonic potential functions, namely Eshelby’s

tensors. By fundamental solutions, the original EIM was further extended to heat conduction in full-space (Hatta & Taya, 1986) as

well as bimaterial (Wang et al., 2022), where ETGs are introduced to handle mismatch of thermal conductivity. For the thermoelastic

problems, the straight combination of thermal EIM and elastic EIM is trivial, where the main obstacle is the domain integral

of varying temperature fields disturbed by ETGs. As mentioned in Section 3.1, fundamental solutions provide a response at the

field point caused by excitation at the source point. Using Gauss’ theorem, the full-space domain integrals of temperature can

be mathematically transformed as domain integrals over the inhomogeneity, which introduces coupled thermal effects to elastic

fields. A thermoelastic inclusion/inhomogeneity (DEIM) problem is first introduced, and DEIM is further combined with BEM for

thermoelastic analysis in a bounded bimaterial domain.

3.3.1. Inclusions in two jointed dissimilar half spaces

Consider an infinite domain  composed of two dissimilar half spaces embedded with multiple 𝑁𝐼 subdomains 𝛺
𝐼 , exhibiting

exactly the same material properties as . For an inclusion problem, 𝛺𝐼 is subjected to prescribed eigen-fields, such as ETGs 𝑇 𝐼∗
𝑖

(𝐱′)
and eigenstrains 𝜀𝐼∗

𝑖𝑗
(𝐱′). Due to intensive interactions and disturbance by boundary, bimaterial interface and other subdomains

elaborated in Section 3.3.2, the eigen-fields, including ETGs and eigenstrains, are provided in polynomial-form expanded at the

center of 𝛺𝐼 as Eq. (20),

𝑇 𝐼∗
𝑖

(𝐱) = 𝑇 𝐼0∗
𝑖

+ (𝑥𝑘 − 𝑥𝐼𝑐𝑘 )𝑇 𝐼1∗
𝑖𝑘

+ (𝑥𝑘 − 𝑥𝐼𝑐𝑘 )(𝑥𝑙 − 𝑥𝐼𝑐𝑙 )𝑇 𝐼2∗
𝑖𝑘𝑙

+⋯

𝜀𝐼∗
𝑖𝑗
(𝐱) = 𝜀𝐼0∗

𝑖𝑗
+ (𝑥𝑝 − 𝑥𝐼𝑐𝑝 )𝜀𝐼1∗

𝑖𝑗𝑝
+ (𝑥𝑝 − 𝑥𝐼𝑐𝑝 )(𝑥𝑞 − 𝑥𝐼𝑐𝑞 )𝜀𝐼2∗

𝑖𝑗𝑝𝑞
+⋯

(20)

where 𝐱𝐼𝐶 is the center of subdomain 𝛺𝐼 ; superscripts 𝐼0, 𝐼1, and 𝐼2 represent uniform, linear and quadratic polynomial terms,
which are applied to approximate ETGs and eigenstrains in 𝐼th subdomain. According to fundamental solution in Eq. (4), Eq. (5)

and (9), the induced temperature (𝑇 ) and displacement (𝐮) can be acquired,

𝑇𝐷(𝐱) =
𝑁𝐼∑
𝐼=1

∫𝛺𝑛 𝐾(𝐱′) 𝜕𝐺(𝐱, 𝐱
′)

𝜕𝑥′
𝑚

𝑇 𝐼∗
𝑚

(𝐱′) 𝑑𝑉 (𝐱′) =
𝑁𝐼∑
𝐼=1

𝐷𝐼
𝑘
𝑇 𝐼0∗
𝑘

+𝐷𝐼
𝑘𝑝
𝑇 𝐼1∗
𝑘𝑝

+𝐷𝐼
𝑘𝑝𝑞
𝑇 𝐼2∗
𝑘𝑝𝑞

𝑢𝐷
𝑖
(𝐱) =

𝑁𝐼∑
𝐼=1

[
∫𝛺𝐼

𝜕𝐺𝑖𝑗 (𝐱, 𝐱′)
𝜕𝑥′

𝑚

𝜀∗
𝑘𝑙
(𝐱′)𝐶𝑗𝑚𝑘𝑙(𝐱′) 𝑑𝑉 (𝐱′) + ∫𝛺𝐼

𝜕𝐺𝑖(𝐱, 𝐱′)
𝜕𝑥′

𝑘

𝑇 ∗
𝑘
(𝐱′)𝐾(𝐱′) 𝑑𝑉 (𝐱′)

]

=
𝑁𝐼∑
𝐼=1

𝑔𝐼
𝑖𝑘𝑙
𝜀𝐼0∗
𝑘𝑙

+ 𝑔𝐼
𝑖𝑘𝑙𝑝
𝜀𝐼1∗
𝑘𝑙

+ 𝑔𝐼
𝑖𝑘𝑙𝑝𝑞

𝜀𝐼2∗
𝑘𝑙𝑝𝑞

+𝑊 𝐼
𝑖𝑘
𝑇 𝐼0∗
𝑘

+𝑊 𝐼
𝑖𝑘𝑝
𝑇 𝐼1∗
𝑘𝑝

+𝑊 𝐼
𝑖𝑘𝑝𝑞

𝑇 𝐼2∗
𝑘𝑝𝑞

(21)

where 𝐷𝐼
𝑘𝑝𝑞...

= ∫
𝛺𝐼
𝐺,𝑘′ (𝑥′𝑝 − 𝑥

𝐼𝐶
𝑝

)(𝑥′
𝑞
− 𝑥𝐼𝐶

𝑞
)...𝑑𝑉 (𝐱′) is polynomial-form Eshelby’s tensor relating ETGs to temperature; 𝑔𝐼

𝑖𝑘𝑙𝑝𝑞...
=

∫
𝛺𝐼
𝐺𝑖𝑗,𝑚′𝐶𝑗𝑚𝑘𝑙(𝑥𝑝−𝑥𝐼𝐶𝑝 )(𝑥𝑞 −𝑥𝐼𝐶𝑞 )...𝑑𝑉 (𝐱′) and 𝑊 𝐼

𝑖𝑘𝑝𝑞...
= ∫

𝛺𝐼
𝐺𝑖,𝑘′𝐾(𝑥𝑝−𝑥𝐼𝐶𝑝 )(𝑥𝑞 −𝑥𝐼𝐶𝑞 )...𝑑𝑉 (𝐱′) are polynomial-form Eshelby’s tensors

relating eigenstrains and ETGs to displacement field, respectively. Subsequently, eigen-fields induced temperature gradients and
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mechanical strain can be acquired through partial derivatives with Eq. (21).

𝑇𝐷
,𝑖
(𝐱) =

𝑁𝐼∑
𝐼=1

𝐷𝐼
𝑘,𝑖
𝑇 𝐼0∗
𝑘

+𝐷𝐼
𝑘𝑝,𝑖
𝑇 𝐼1∗
𝑘𝑝

+𝐷𝐼
𝑘𝑝𝑞,𝑖

𝑇 𝐼2∗
𝑘𝑝𝑞

𝜀𝐷𝑀
𝑖𝑗

(𝐱) = 𝜀′
𝑖𝑗
(𝐱) − 𝛼𝛥𝑇 (𝐱)𝛿𝑖𝑗 =

𝑁𝐼∑
𝐼=1

{ [
𝑆𝐼
𝑖𝑗𝑘𝑙
𝜀𝐼0∗
𝑘𝑙

+ 𝑆𝐼
𝑖𝑗𝑘𝑙𝑝

𝜀𝐼1∗
𝑘𝑙𝑝

+ 𝑆𝐼
𝑖𝑗𝑘𝑙𝑝𝑞

𝜀𝐼2∗
𝑘𝑙𝑝𝑞

]
+

[
𝑅𝐼
𝑖𝑗𝑘
𝑇 𝐼0∗
𝑘

+ 𝑅𝐼
𝑖𝑗𝑘𝑝

𝑇 𝐼1∗
𝑘𝑝

+ 𝑅𝐼
𝑖𝑗𝑘𝑝𝑞

𝑇 𝐼2∗
𝑘𝑝𝑞

]
− 𝛼𝛿𝑖𝑗

[
𝐷𝐼
𝑘
𝑇 𝐼0∗
𝑘

+𝐷𝐼
𝑘𝑝
𝑇 𝐼1∗
𝑘𝑝

+𝐷𝐼
𝑘𝑝𝑞
𝑇 𝐼2∗
𝑘𝑝𝑞

] }
(22)

where 𝑆𝐼
𝑖𝑗𝑘𝑙𝑝𝑞

=
𝑔𝐼
𝑖𝑘𝑙𝑝𝑞,𝑗

+𝑔𝐼
𝑗𝑘𝑙𝑝𝑞,𝑖

2 and 𝑅𝐼
𝑖𝑗𝑘𝑝𝑞

=
𝑊 𝐼
𝑖𝑘𝑝𝑞,𝑗

+𝑊 𝐼
𝑗𝑘𝑝𝑞,𝑖

2 are polynomial-form Eshelby’s tensors relating eigenstrain, ETG to strain,

respectively; 𝛼 is the thermal expansion ratio. The analytical forms of the above domain integrals have been reported in our

recent work (Wu, Zhang, & Yin, 2023). And the time consumption on calculating coefficients on inhomogeneities is elaborated

in Section 3.3.4.

3.3.2. Inhomogeneities in bounded bimaterial domain

The previous subsection considers the inclusion problem in infinite bimaterial medium, where prescribed polynomial-form eigen-

fields exist over the subdomains. The application of a polynomial-form eigen-fields is necessary due to intensive interactions and

other boundary effects, which is analogous to strain gradient theories (Ma et al., 2018). For practical applications, the assumption

of an infinite medium is too ideal as experimental samples are bounded. In addition, shown as Fig. 2, the subdomain 𝛺𝐼 generally

exhibits different material properties, specifically stiffness, thermal modulus, and thermal conductivity. Since the boundary response

is considered through BEM, the temperature and displacement can be obtained through superposition of Eqs. (11), (13) and (21).

𝑇 (𝐱) = 𝑇𝐵(𝐱) + 𝑇𝐷(𝐱) =
𝑁𝐸∑
𝑒=1

[
−𝐻𝑇 𝑒 + 𝑈𝑞𝑒

]
+
𝑁𝐼∑
𝐼=1

[
𝐷𝐼
𝑘
𝑇 𝐼0∗
𝑘

+𝐷𝐼
𝑘𝑝
𝑇 𝐼1∗
𝑘𝑝

+𝐷𝐼
𝑘𝑝𝑞
𝑇 𝐼2∗
𝑘𝑝𝑞

]
𝑢𝑖(𝐱) = 𝑢𝐵𝑖 (𝐱) + 𝑢

𝐷
𝑖
(𝐱) =

𝑁𝐸∑
𝑒=1

[
−𝐻𝑖𝑗𝑢

𝑒
𝑗
+ 𝑈𝑖𝑗 𝑡𝑒𝑗 −𝐻𝑖𝑇

𝑒 + 𝑈𝑖𝑞𝑒
]
+
𝑁𝐼∑
𝐼=1

{
𝑔𝐼
𝑖𝑘𝑙
𝜀𝐼0∗
𝑘𝑙

+ 𝑔𝐼
𝑖𝑘𝑙𝑝
𝜀𝐼1∗
𝑘𝑙

+ 𝑔𝐼
𝑖𝑘𝑙𝑝𝑞

𝜀𝐼2∗
𝑘𝑙𝑝𝑞

+𝑊 𝐼
𝑖𝑘
𝑇 𝐼0∗
𝑘

+𝑊 𝐼
𝑖𝑘𝑝
𝑇 𝐼1∗
𝑘𝑝

+𝑊 𝐼
𝑖𝑘𝑝𝑞

𝑇 𝐼2∗
𝑘𝑝𝑞

}
(23)

where the temperature gradient and mechanical strain can be derived through a combination of Eqs. (12), (15) and (22). The

polynomial-form ETGs can be determined through equivalent flux conditions as Eq. (24),

𝐾𝑤(𝑇𝐵
𝑖
+ 𝑇𝐷

𝑖
− 𝑇 𝐼0∗

𝑖
) = 𝐾𝐼 (𝑇𝐵

𝑖
+ 𝑇𝐷

𝑖
)

𝐾𝑤(𝑇𝐵
𝑖,𝑚

+ 𝑇𝐷
𝑖,𝑚

− 𝑇 𝐼1∗
𝑖𝑚

) = 𝐾𝐼 (𝑇𝐵
𝑖,𝑚

+ 𝑇𝐷
𝑖,𝑚

)

𝐾𝑤(𝑇𝐵
𝑖,𝑚𝑛

+ 𝑇𝐷
𝑖,𝑚𝑛

− 2𝑇 𝐼2∗
𝑖𝑚𝑛

) = 𝐾𝐼 (𝑇𝐵
𝑖,𝑚𝑛

+ 𝑇𝐷
𝑖,𝑚𝑛

)
(24)

where the superscript 𝑤 is determined by the position of 𝛺𝐼 that when 𝑥′3 ≥ 0 𝑤 =′ and 𝑥′3 < 0 𝑤 =′′; 𝑇𝐵
𝑖
and 𝑇𝐷

𝑖
are temperature

variation by thermal boundary response in Eq. (11) and eigen-fields in Eq. (21), respectively; 𝑇𝑖,𝑚, 𝑇𝑖,𝑚𝑛 are first and second

order partial derivatives of temperature. Following the same fashion, the polynomial-form eigenstrains can be determined through

equivalent stress conditions as Eq. (25),

𝑤
𝑖𝑗𝑘𝑙

(𝜀𝐵𝑀
𝑘𝑙

+ 𝜀′
𝑘𝑙
+ 𝜀𝐸

𝑘𝑙
− 𝜀𝐼0∗

𝑘𝑙
) −𝑤𝛿𝑖𝑗𝛥𝑇 = 𝐼

𝑖𝑗𝑘𝑙
(𝜀𝐵𝑀
𝑘𝑙

+ 𝜀′
𝑘𝑙
) −𝐼 𝛿𝑖𝑗𝛥𝑇

𝑤
𝑖𝑗𝑘𝑙

(𝜀𝐵𝑀
𝑘𝑙,𝑚

+ 𝜀′
𝑘𝑙,𝑚

− 𝜀𝐼1∗
𝑘𝑙𝑚

) −𝑤𝛿𝑖𝑗𝛥𝑇,𝑚 = 𝐼
𝑖𝑗𝑘𝑙

(𝜀𝐵𝑀
𝑘𝑙

+ 𝜀′
𝑘𝑙
) −𝐼 𝛿𝑖𝑗𝛥𝑇,𝑚

𝑤
𝑖𝑗𝑘𝑙

(𝜀𝐵𝑀
𝑘𝑙,𝑚𝑛

+ 𝜀′
𝑘𝑙,𝑚𝑛

− 2𝜀𝐼2∗
𝑘𝑙𝑚𝑛

) −𝑤𝛿𝑖𝑗𝛥𝑇,𝑚𝑛 = 𝐼
𝑖𝑗𝑘𝑙

(𝜀𝐵𝑀
𝑘𝑙

+ 𝜀′
𝑘𝑙
) −𝐼 𝛿𝑖𝑗𝛥𝑇,𝑚𝑛

(25)

3.3.3. Global matrices of inclusion-based boundary element method

Using the volume integral on the equivalent inclusions or inhomogeneities and boundary integral on outer surface, one can

obtain both temperature and displacement field. The DEIM provides eigen-fields on the inhomogeneities. Therefore, the global

linear equation system can be set up as follows:

For thermal analysis only, thermal global matrix can be written as:⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝐻 … −𝐷𝐼0 −𝐷𝐼1 −𝐷𝐼2 …
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝛥𝐾𝐼𝐻𝐼1 … 𝛥𝐾𝐼𝐷𝐼0
′

𝛥𝐾𝐼𝐷𝐼1
′

𝛥𝐾𝐼𝐷𝐼2
′ …

𝛥𝐾𝐼𝐻𝐼2 … 𝛥𝐾𝐼𝐷𝐼0
′′

𝛥𝐾𝐼𝐷𝐼1
′′

𝛥𝐾𝐼𝐷𝐼2
′′ …

𝛥𝐾𝐼𝐻𝐼3 … 𝛥𝐾𝐼𝐷𝐼0
′′′

𝛥𝐾𝐼𝐷𝐼1
′′′

𝛥𝐾𝐼𝐷𝐼2
′′′ …

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(𝑁𝑁+𝑁𝐼𝑇 )×(𝑁𝑁+𝑁𝐼𝑇 )

⎡⎢⎢⎢⎢⎢⎢⎣

𝑇

⋮
𝑇 𝐼0∗

𝑇 𝐼1∗

𝑇 𝐼2∗

⋮

⎤⎥⎥⎥⎥⎥⎥⎦
(𝑁𝑁+𝑁𝐼𝑇 )

=

⎡⎢⎢⎢⎢⎢⎢⎣

𝑈

⋮
−𝛥𝐾𝐼𝑈𝐼1

−𝛥𝐾𝐼𝑈𝐼2

−𝛥𝐾𝐼𝑈𝐼3

⋮

⎤⎥⎥⎥⎥⎥⎥⎦
(𝑁𝑁+𝑁𝐼𝑇 )×(𝑁𝑁)

[
𝑞
]

(𝑁𝑁)
(26)

The ranks of the matrix are marked under itself. 𝛥𝐾𝐼 = 𝐾𝑤−𝐾𝐼 ; 𝑁𝑁 is the number of boundary nodes; 𝑁𝐼𝑇 is the total number of

ETGs, which is 3, 12, 30×𝑁𝐼 for uniform, linear, and quadratic terms, respectively. Superscripts 𝐼1–𝐼3 of 𝐻,𝑈 represent the order of

partial derivatives at the 𝐼th inhomogeneity; superscripts 𝐼0–𝐼2 of 𝐷 stands for Eshelby’s tensors for uniform, linear and quadratic
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Table 1

Time consumption for the coefficient matrix on inhomogeneities.

Number of

inhomogeneities

Thermal (s) Thermoelastic (s) Total (s)

𝑁𝐼 = 1 0.069 0.423 0.492

𝑁𝐼 = 100 0.089 0.991 1.08

𝑁𝐼 = 500 0.217 4.758 4.975

𝑁𝐼 = 1, 000 0.473 12.642 13.115

𝑁𝐼 = 2, 000 1.261 40.578 41.839

𝑁𝐼 = 4, 000 5.047 153.811 158.858

𝑁𝐼 = 6, 000 9.799 339.576 349.375

𝑁𝐼 = 8, 000 18.252 591.002 609.254

𝑁𝐼 = 10, 000 28.109 938.853 966.962

Processor: Intel i9-13900K & RAM: DDR4 4400 MHz.

ETGs, respectively, which follows Eq. (24). As demonstrated in Section 3.2.3, to save computational resources, the thermal global

matrix in Eq. (26) needs to be solved first, and corresponding ETGs and thermal boundary responses can be obtained.

When both temperature and thermal expansion are considered, the thermoelastic global matrix can be written as

⎡⎢⎢⎢⎢⎢⎢⎣

𝐻𝑖 … −𝑊 𝐼0 −𝑊 𝐼1 −𝑊 𝐼2 …
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝛥𝐼𝐻𝐼1
𝑖

− 𝛥𝐼𝐻 … 𝛥𝐼𝑅𝐼0 − 𝛥𝐼𝐷𝐼0 𝛥𝐼𝑅𝐼1 − 𝛥𝐼𝐷𝐼1 𝛥𝐼𝑅𝐼2 − 𝛥𝐼𝐷𝐼2 …
𝛥𝐼𝐻𝐼2

𝑖
− 𝛥𝐼𝐻𝐼1 … 𝛥𝐼𝑅𝐼0′ − 𝛥𝐼𝐷𝐼0′ 𝛥𝐼𝑅𝐼1′ − 𝛥𝐼𝐷𝐼1′ 𝛥𝐼𝑅𝐼2′ − 𝛥𝐼𝐷𝐼2′ …

𝛥𝐼𝐻3𝐼
𝑖

− 𝛥𝐼𝐻𝐼2 … 𝛥𝐼𝑅𝐼0′′ − 𝛥𝐼𝐷𝐼0′′ 𝛥𝐼𝑅𝐼1′′ − 𝛥𝐼𝐷𝐼1′′ 𝛥𝐼𝑅𝐼2′′ − 𝛥𝐼𝐷𝐼2′′ …
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⎤⎥⎥⎥⎥⎥⎥⎦
(3×𝑁𝑁+𝑁𝐼𝐸 )×(𝑁𝑁+𝑁𝐼𝑇 )

⎡⎢⎢⎢⎢⎢⎢⎣

𝑇

⋮
𝑇 ∗𝐼0

𝑇 ∗𝐼1

𝑇 ∗𝐼2

⋮

⎤⎥⎥⎥⎥⎥⎥⎦
(𝑁𝑁+𝑁𝐼𝑇 )

+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝐻𝑖𝑗 … −𝑔𝐼0 −𝑔𝐼1 −𝑔𝐼2 …
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝛥𝐼𝐻𝐼1
𝑖𝑗

… 𝛥𝐼𝑆𝐼0 𝛥𝐼𝑆𝐼1 𝛥𝐼𝑆𝐼2 …
𝛥𝐼𝐻𝐼2

𝑖𝑗
… 𝛥𝐼𝑆𝐼0′ 𝛥𝐼𝑆𝐼1′ 𝛥𝐼𝑆𝐼2′ …

𝛥𝐼𝐻3𝐼
𝑖𝑗

… 𝛥𝐼𝑆𝐼0′′ 𝛥𝐼𝑆𝐼1′′ 𝛥𝐼𝑆𝐼2′′ …
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(3×𝑁𝑁+𝑁𝐼𝐸 )×(3×𝑁𝑁+𝑁𝐼𝐸 )

⎡⎢⎢⎢⎢⎢⎢⎣

𝑢

⋮
𝜀∗𝐼0

𝜀∗𝐼1

𝜀∗𝐼2

⋮

⎤⎥⎥⎥⎥⎥⎥⎦
(3×𝑁𝑁+𝑁𝐼𝐸 )

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑈𝑖𝑗
⋮

−𝛥𝐼𝑈𝐼1
𝑖𝑗

−𝛥𝐼𝑈𝐼2
𝑖𝑗

−𝛥𝐼𝑈𝐼3
𝑖𝑗

⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(3×𝑁𝑁+𝑁𝐼𝐸 )×(3×𝑁𝑁)

[
𝑡
]

(3×𝑁𝑁)
+

⎡⎢⎢⎢⎢⎢⎢⎣

𝑈𝑖
⋮

−𝛥𝐼𝑈𝐼1
𝑖

+ 𝛥𝐼𝑈

−𝛥𝐼𝑈𝐼2
𝑖

+ 𝛥𝐼𝑈𝐼1

−𝛥𝐼𝑈𝐼3
𝑖

+ 𝛥𝐼𝑈𝐼2

⋮

⎤⎥⎥⎥⎥⎥⎥⎦
(3×𝑁𝑁+𝑁𝐼𝐸 )×(𝑁𝑁)

[
𝑞
]

(3×𝑁𝑁)

(27)

where 𝛥𝐼 = 𝑤 − 𝐼 and 𝛥𝐼 = 𝑤 −𝐼 ; 𝑁𝐼𝐸 is the total number of eigenstrains, which is 6, 24, 60 ×𝑁𝐼 for uniform, linear and

quadratic terms, respectively. The definition of superscripts is the same as Eq. (26). Solving the global system of linear equations,

one can obtain thermal/elastic boundary responses and eigen-fields. Subsequently, the thermoelastic fields can be determined using

Eq. (23).

3.3.4. Time consumption for the coefficient matrix on inhomogeneities

This subsection aims to illustrate time consumption for the calculation of coefficients in Eqs. (21) and (22), which are eventually

assembled in the global thermal/thermoelastic matrices. Table 1 shows the time consumption of such analytical domain integrals

calculated by the Intel i9-13900K processor. Notice that although (Yin et al., 2022) has suggested setting the cut-off distance to

improve computational efficiency due to the rapid vanishing properties of fundamental solution, the data in Table 1 considers

interactions among all inhomogeneities without setting cut-off distances. Based on the above Table, the calculation of coefficients

in the thermal matrix is much faster than that of the thermoelastic problem.

4. Numerical verification and computational comparison of iBEM

This section aims to illustrate the accuracy of the iBEM algorithm with FEM and further compare the computational costs in

three aspects, (i) preprocess, such as domain/surface discretization; (ii) CPU and RAM usage; and (iii) computational time. In the

following, the thermoelastic BEM is first verified through case studies of thermal and elastic fields, and subsequently the iBEM will

be verified considering bimaterial interfacial effects along with intensive inhomogeneity interactions.

As a numerical verification, without the loss of any generality, the material properties are assigned as: (1) 𝐾 ′ = 5 W∕m K,
𝜇′ = 0.3 MPa, 𝜈′ = 0.2 and ′ = 15 kPa for the upper phase +; (2) 𝐾 ′′ = 10 W∕m K, 𝜇′′ = 0.8 MPa, 𝜈′′ = 0.25 and ′′ = 10 kPa
for the lower phase −; and (3) 𝐾𝐼 = 1 W∕m K, 𝜇𝐼 = 0.1 MPa, 𝜈𝐼 = 0.1 and 𝐼 = 5 kPa. As shown in Fig. 2, the dimensions
ℎ1 = ℎ2 = 𝑏 = 𝑙 = 1 m are selected. The thermal and elastic boundary conditions are: (i) constant temperature 100 ◦C and uniformly
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Fig. 3. Comparison and verification between the FEM with 250,000 hexagonal elements and the present BEM with 90, 250, 1000 quadrilateral elements of (a)
temperature 𝑇 , (b) vertical displacement 𝑢3, normal stresses (c) 𝜎11 and (d) 𝜎33 subjected to a linear temperature change and downward uniform load 10 kPa
along the vertical symmetric line 𝑥3 ∈ [−0.8, 0.8] m.

applied downward pressure 10 kPa on the top surface; (ii) constant temperature 0 ◦C and constrained displacement of the bottom

surface; and (iii) all other four surfaces are insulated and traction-free. This section uses the commercial FEM software ANSYS to

verify the variations of thermal and elastic fields.

4.1. Comparison of thermoelastic fields between FEM and the single-domain BEM

To verify the convergence of the bimaterial BEM, results of 90,250, and 1000 boundary elements for the surface mesh are

present below, where 4-node quadrilateral elements are used. As a well-established method, the convergence of the FEM results is

not elaborated, but the final size step is provided. Since FEM applies domain integrals to couple thermal effects to elastic fields, it

is important to adopt a similar (or the same) mesh to reduce numerical errors in thermal load (temperature) transfer between the

‘‘Steady-state thermal‘‘ and ‘‘Structural static’’ modules in ANSYS. Since the geometry is simple, a uniform global element size of

0.02 m is applied, and thus, the model adopts 250,000 hexagonal elements and 1,037,901 nodes.

Fig. 3 compares the temperature, displacement, and normal stresses between FEM and BEM with three surface meshes. Since the

temperatures are prescribed on top and bottom surfaces, Fig. 3(a) exhibits a linear varying temperature. Due to the mismatch of

thermal conductivity, the slope of the temperature suddenly changes at the bimaterial interface to satisfy the continuity of flux. As

indicated, all curves agree well with each other on the description of temperature variation, which is important for thermoelastic

modeling as the accuracy heavily relies on temperature change. Subsequently, Fig. 3(b) exhibits the variation of the displacement

field. Although the curve ‘‘BEM-90’’ shows minor discrepancies when 𝑥3 is close to 0.8 m, it agrees well with the other three cases.
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Table 2

Comparison of the computational efficiency between FEM and BEM.

CPU RAM (Gb) Mesh (s) Data transfer (s) Solving (s)

FEM-0.02-thermal 8 2.31 11.6 0 7.21

FEM-0.02-static 8 4.15 11.8 17.2 78.29

BEM-90 8 0.015 5 0 0.327

BEM-250 8 0.06 5 0 1.088

BEM-1000 8 0.77 5 0 7.912

Fig. 4. Comparison and verification between FEM and dual iBEM with polynomial-form eigen-fields on (a) temperature 𝑇 , (b) flux 𝑞3 subjected to a linear

temperature change along the vertical symmetric line 𝑥3∕𝑎 ∈ [−5, 5].

Figs. 3 (c) and 3 (d) compare normal stress 𝜎11 and 𝜎33, and the main differences between FEM and BEM can be found with surface

mesh 90 and 250 when 𝑥3 is close to 0.8 m.
Before interpreting such a phenomenon, readers can first refer to Fig. 4 in Wu, Zhang, Cui and Yin (2023), which merely involves

a comparison of elastic fields, and comparatively larger differences can be observed between the case of 90 elements and FEM.
Due to the change in temperature and large thermal modulus, the thermal effects dominate, which changes the distribution of

normal stresses. However, when comparing the results of three numbers of meshes, the difference between BEM and FEM becomes

much smaller. This case study used 4 Gauss integral points and adopts an adaptive subdivision integration scheme. Therefore, the
discrepancies with fewer elements should be interpreted as less accuracy in the description of boundary responses. Table 2 compares

the time consumption and resource usage between the BEM and FEM methods.

4.2. Comparison of thermoelastic fields between FEM and iBEM with polynomial-form eigen-fields

In Eq. (20), the eigen-fields are expanded into a polynomial form at the center of each inhomogeneity to provide tailorable

accuracy. The necessity of higher-order terms has been discussed extensively in the literature (Mura, 1987; Wu, Zhang, & Yin,

2023; Yin et al., 2022), especially when the local fields around the inhomogeneity are under intensive disturbance, such as close

to the boundary, bimaterial interface or to other inhomogeneities. The distance ratio ℎ∕𝑎 has been used to measure interfacial and
interaction effects, where 𝑎 and ℎ are the radius and distance from the inhomogeneity (Yin et al., 2022). Based on Eqs. (24) and

(25), the polynomial-form eigen-fields can be determined, and they are found to be positively related to material mismatches, such

as the difference between thermal conductivity and thermal modulus. Regarding the magnitude of disturbed fields caused by ETGs

and eigenstrains, two primary factors determine their influences: their magnitude and distance between the field point and the

inhomogeneity. Because the matrix and inhomogeneity exhibit greater material mismatch of thermal modulus, ETGs dominate local

disturbed fields. Based on the definition of fundamental solutions, the disturbances by ETGs and eigenstrain on stress fields decay

in 𝑟−1 and 𝑟−2, respectively. Therefore, it is necessary to consider both ETGs and eigenstrains. For verification with FEM, 3,331,649

nodes and 2,453,741 10-node tetrahedral elements are used with distance ratio ℎ∕𝑎 = 1.2. Since only distance ratios change among
cases, other cases ℎ∕𝑎 = 1.5, 2.0, 3.0 apply similar discretization.

4.2.1. One inhomogeneity subjected to interfacial effects

Fig. 4 compares the variation of temperature and flux 𝑞3 among FEM and iBEM with three orders of polynomial-form ETGs

when the distance ratio ℎ∕𝑎 = 1.5. The differences among the four curves can barely be identified for the thermal fields, particularly
for temperature. Slight discrepancies of the curve ‘‘iBEM-UNI’’ of flux are observed at the entering point of the inhomogeneity on
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Fig. 5. Comparison and verification between FEM and dual iBEM with polynomial-form eigen-fields on displacement component 𝑢3 subjected to a linear

temperature change and a uniform downward pressure 10 kPa along the vertical symmetric line 𝑥3∕𝑎 ∈ [−5, 5].

Fig. 6. Comparison and verification between FEM and dual iBEM with polynomial-form eigen-fields on normal stresses (a) 𝜎11 and (b) 𝜎33 subjected to a linear

temperature change and a uniform downward pressure 10 kPa along the vertical symmetric line 𝑥3∕𝑎 ∈ [−5, 5].

Fig. 4(b) since the uniform ETG may not be adequate to describe thermal disturbance by the bimaterial interface. Therefore, even

uniform eigen-fields can provide good prediction at most field points. Notice that the accuracy of thermal fields significantly impacts

the stress field prediction. The reasons are that (i) temperatures directly associated with thermal modulus and (ii) flux are indeed

partial derivatives of temperature, which affects the subsequent solutions with higher-order eigenstrains.

Fig. 5 shows the displacement field caused by a linear temperature change and a pressure. Although the ‘‘iBEM-UNI‘‘ may not

provide the most accurate prediction, the four curves on displacement 𝑢3 agree well with each other. Subsequently, Figs. 6(a)

and 6(b) support our preceding conclusion on negative effects caused by an inaccurate thermal field. It is observed that in both

figures of normal stresses, the ‘‘iBEM-UNI’’ curve exhibits obvious discrepancies among FEM and iBEM with linear and quadratic

terms. Such large numerical error can be interpreted as an accumulation of thermal predictions and the rough assumption of

the uniform eigenstrain distribution. As illustrated in Figs. 3(c) and 3(d), the initial fields without the inhomogeneity are non-

uniform (approximately linear around the position of inhomogeneity). Therefore, the assumption of merely uniform eigenstrains is

not accurate enough, and the higher-order variations should be considered. In Figs. 6(c) and 6(d), the results of ‘‘iBEM-LIN‘‘ and

‘‘iBEM-QUA’’ are close. Such phenomenon can be interpreted as a consequence of linear varying temperature fields and thus similar

stress fields.

Verifying uniform, linear, and quadratic order eigen-fields indicates that higher-order terms can better describe local fields.

Hence, Figs. 7–9 only use quadratic terms. This subsection aims to investigate the bimaterial interfacial effects by adjusting distance

ratios ℎ∕𝑎 = 1.2, 1.5, 2.0, and 3.0, respectively. Similar to a case study of ℎ∕𝑎 = 1.5, the comparison of higher-order fields,

i.e., displacement and temperature, exhibits better agreement than stress and flux. With quadratic terms, the discrepancies can

seldom be noticed between the iBEM and FEM in Figs. 7 (a) and 8.
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Fig. 7. Comparison and verification between FEM and dual iBEM with quadratic eigen-fields on (a) temperature 𝑇 , (b) flux 𝑞3 subjected to a linear temperature

change along the vertical symmetric line 𝑥3∕𝑎 ∈ [−5, 5] when distance ratios ℎ∕𝑎 = 1.2, 1.5, 2.0 and 3.0.

Fig. 8. Comparison and verification between FEM and dual iBEM with polynomial-form eigen-fields on displacement component 𝑢3 subjected to a linear

temperature change and a uniform downward pressure 10 kPa along the vertical symmetric line 𝑥3∕𝑎 ∈ [−5, 5] when distance ratios ℎ∕𝑎 = 1.2, 1.5, 2.0 and 3.0.

In addition, the interfacial effects disturb local thermal fields, resulting in a larger variation of temperature and higher flux in the

neighborhood of the bottom region of the inhomogeneity. As discussed above, such interfacial effects on thermal fields accumulate,

significantly influencing the corresponding stress. Fig. 9(a) presents the variation of normal stress 𝜎11, and it is observed that the

jump of the normal stresses drastically increases with less distance ratios. For instance, the difference at the bottom of inhomogeneity

(ℎ∕𝑎 = 1.2) is approximately 6 times compared with that of ℎ∕𝑎 = 3. Such interfacial effects can be considered a constraint since
the lower phase + is filled with stiffer material. Moreover, a similar trend can also be observed in Fig. 9(b).

Table 3 compares the usage of computational resources between the FEM and iBEM on the case study with distance ratio

ℎ∕𝑎 = 1.2. Since FEM couples the thermal effects through volume integrals, as shown, ‘‘FEM-static’’ consumes a much longer time

than that in Table 2 to obtain convergent thermal effects, which is generally computationally expensive. Among iBEM with three

orders of eigen-fields, the linear and quadratic terms are capable of reproducing high-fidelity results as FEM. The iBEM is much

faster since it analytically limits source domain integrals within the inhomogeneity.

4.2.2. Two top-down and side-by-side inhomogeneity interactions

The previous case studies investigated the performance of the iBEM considering bimaterial interfacial effects through adjusting

distance ratios, which draws preliminary conclusions on the necessity to employ polynomial-form eigen-fields. Following the same

fashion, this subsection aims to provide more insights into inhomogeneity interactions. The material properties, dimensions, and

boundary conditions remain the same. In the following, two alignments of inhomogeneities are studied, (i) the top-down case that

two inhomogeneities are placed in two phases along the vertical center line with distance ℎ = 0.2𝑎 to the bimaterial interface; (ii)
the side-by-side case that two inhomogeneities are placed in the upper phase + (ℎ = 1.5) with horizontal distance 0.5𝑎.
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Table 3

Comparison of efficiency among iBEM and FEM on case of ℎ∕𝑎 = 1.2.
CPU RAM (Gb) Mesh (s) Data transfer (s) Solving (s)

FEM-thermal 8 4.52 24.46 0 35.45

FEM-static 8 14.08 24.46 46.59 324.04

iBEM-UNI 8 0.77 5 0 8.35

iBEM-LIN 8 0.79 5 0 8.90

iBEM-QUA 8 0.81 5 0 15.426

Table 4

Comparison of efficiency among iBEM and FEM on case of top-down inhomogeneity interactions.

CPU RAM (Gb) Mesh (s) Data transfer (s) Solving (s)

FEM-thermal 8 13.89 15.6 0 166.59

FEM-static 8 5.50 15.6 30.08 99.04

iBEM-UNI 8 0.78 5 0 8.318

iBEM-LIN 8 0.80 5 0 8.949

iBEM-QUA 8 0.82 5 0 21.104

Fig. 9. Comparison and verification between FEM and dual iBEM with polynomial-form eigen-fields on normal stresses (a) 𝜎11 and (b) 𝜎33 subjected to a linear

temperature change and a uniform downward pressure 10 kPa along the vertical symmetric line 𝑥3∕𝑎 ∈ [−5, 5] when distance ratios ℎ∕𝑎 = 1.2, 1.5, 2.0 and 3.0.

In general, the comparison of temperatures shows minor discrepancies. As indicated in Fig. 10(c), the curve of uniform eigen-

fields tends to have a wrong trend when 𝑥1 is close to zero. However, the numerical errors regarding temperature are only 0.02%.

As for flux 𝑞3, Fig. 10(b) exhibits relatively large differences around the bimaterial interface. Although the quadratic eigen-fields can

accurately describe most interior parts of flux fields, FEM results indicate a more flattened trend. Notice that the two inhomogeneities

are subjected to intensive interfacial effects and interactions. Consequently, it causes more complex fields, which require even higher

order source fields to describe the sudden variations, and therefore, the quadratic terms may not be adequate. Since the influence of

source fields is related to distance, a larger distance between inhomogeneities is accompanied by less intensive interactions, which

is supported by Fig. 10(d) with distance from 0.4𝑎 to 0.5𝑎.
Figs. 11(a) and (d) show that the variation of displacements and iBEM with three orders of eigen-fields agree well with the

results of FEM. As interpreted in Section 4.2.2, the initial thermal field is approximately linear, and a linear temperature variation

will result in linear non-mechanical strains. Therefore, the assumption of a uniform eigenstrain is not appropriate. Figs. 11(b-c) and

Figs. 11(e-f) have demonstrated the limitation of using merely uniform terms. However, the main differences between uniform and

other higher-order terms exist within inhomogeneities and have limited impact on further exterior field points. Table 4 compares

the computational resource usage between iBEM and FEM, and 1,062,729 nodes and 785,124 elements are used in FEM.

5. Applications to a ceramic–metal FGM composite – Ni/Al𝟐O𝟑

The ceramic–metal FGM composite has been widely applied to avoid singularity issues associated with bimaterial interfacial

effects, which aims to reduce intensive thermal stresses and takes advantage of the thermal resistance of ceramic. As one typical

example, Ni/Al2O3 FGM composite can be described by three phases, namely (i) Nickel (height ℎ𝑛), (ii) gradation (height ℎ𝑔) and

(iii) Al2O3 (height ℎ𝑎), where the phase gradation only exist in (ii). Suresh and Mortensen (1997) summarized thermomechanical

behaviors of FGMs and defined the gradation ratio, i.e., ℎ𝑔∕(ℎ𝑛 +ℎ𝑔 +ℎ𝑎) in this manuscript. According to their review, more minor
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Fig. 10. Comparison and verification between FEM and dual iBEM with three orders of polynomial-form eigen-fields on top-down interaction (a) temperature 𝑇 ,

(b) flux 𝑞3 along the vertical center line 𝑥3∕𝑎 ∈ [−5, 5]; and side-by-side interaction (c) temperature 𝑇 , (d) flux 𝑞3 along the horizontal center line 𝑥1∕𝑎 ∈ [−3, 3].

thermal stresses are expected with larger gradation ratios, which can be straightforwardly interpreted as effects of the microstructure

and volume fraction.

5.1. Uniform temperature change

Since this section aims to illustrate iBEM on handling FGM composite, the effect of gradation ratios on averaged thermal stress

fields is investigated. To control disturbances resulting from different inhomogeneity distributions and subsequent thermal effects,

as indicated in Fig. 12(a-b), inhomogeneities are uniformly distributed within the gradation region. The gradation region is evenly

divided into 𝑛𝑢𝑚 layers, and the volume fraction of each layer follows the linear gradation in 𝑥3 direction. Therefore, inhomogeneities

are located at the same position for each layer but with increasing radius to achieve a specific volume fraction. For example,

Fig. 12(a) plots 7776 inhomogeneities with 𝑛𝑢𝑚 = 24 divisions, when ℎ𝑛 = ℎ𝑎 = 1.67×10−3 m and ℎ𝑔 = 4ℎ𝑎. When the gradation ratio
changes, it significantly impacts thermal fields. Hence, to avoid such disturbance, this section only considers uniform temperature

increase of 100 ◦C, and the effects of such thermal effects will be studied in the following section.
According to Suresh and Mortensen (1997), the thermomechanical properties of nickel and aluminum oxide are (i) 𝜇𝑛 =

76.73 GPa, 𝜈𝑛 = 0.3, 𝐾𝑛 = 90.7 W∕K m2, 𝑛 = 7.681 MPa; and (ii) 𝜇𝑎 = 157.2 GPa, 𝜈𝑎 = 0.25, 𝐾𝑎 = 30.1 W∕K m2, 𝑎 = 5.816 MPa.
The elastic boundary conditions are (i) the vertical displacement component is constrained of the bottom surface 𝑥3 = −0.005 m,
and (ii) all other surfaces are free of traction. Five gradation ratios, ratio = 1, 5∕6, 2∕3, 1∕2, and 2∕5, are selected, and their resultant
averaged thermal stresses are compared with the bimaterial case (without gradation). Figs. 13(a-d) plot variation of averaged thermal

stresses along 𝑥3. To acquire the averaged stress fields, for instance, (i) the FGM sample indicated in Fig. 12 is first evenly divided
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Fig. 11. Comparison and verification between FEM and dual iBEM with three orders of polynomial-form eigen-fields on top-down interaction (a) displacement

𝑢3, (b) 𝜎11,(c) 𝜎33 along the vertical center line 𝑥3∕𝑎 ∈ [−5, 5]; and side-by-side interaction (d) displacement 𝑢3, (e) 𝜎11, (f) 𝜎33 along the horizontal center line
𝑥1∕𝑎 ∈ [−3, 3].
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Fig. 12. Schematic plot of a FGM composite with dimension 𝑙𝑥, 𝑙𝑦 and ℎ𝑛, ℎ𝑔 , ℎ𝑎 embedded with uniformly distributed spherical inhomogeneities subjected to

uniform temperature increase 100◦𝐶, (a) the sample (𝑥1 , 𝑥2 ∈ [−0.0025, 0.0025] m, 𝑥3 ∈ [−0.005, 0.005] m) and (b) one quarter of the sample (𝑥1 , 𝑥2 ∈ [−0.0025, 0]
m, 𝑥3 ∈ [−0.005, 0.005] m).

into 𝑛𝑢𝑚 = 24 layers along the height direction (𝑥3); (ii) for each layer, its length (𝑥1 direction), width (𝑥2 direction) and height
(𝑥3 direction) are evenly divided into 10,10 and 20 for the quarter of the sample, which generates 10 × 10 × 20 small cuboids;

(iii) sampling points are located at the center of each small cuboids, and thus 2000 uniformly distributed sampling points in each

layer and totally 48,000 sampling points for the quarter of the sample. In such a case, the averaged stress in Figs. 13 (a-d) is a

volume-averaged quantity, which are not calculated based on the cross-section.

Indicated in Fig. 13(a), when there exists no gradation region, normal stress 𝜎11 increases significantly in the neighborhood of the

bimaterial interface due to material mismatch. Walpole (1996) has demonstrated such a phenomenon, where singular stress issues

are expected. The intensive bimaterial effect and its significant stress can lead to the failure of the structure, such as delamination.

When the gradation ratio is 2∕5, the definition of the previously mentioned bimaterial interface becomes vogue since the materials
cross 𝑥3 = 0 exhibit continuous change, which improves stress singularity issues. As the gradation ratio increases, the magnitude of
the maximum 𝜎11 rapidly decreases. For the case ‘‘ratio = 1’’, the maximum 𝜎11 around 𝑥3 = 0 reduces to 14.43 MPa, while other
cases are 19.38, 22.74, 46.2, and 105.52 MPa for gradation ratio equals 5∕6, 2∕3, 1∕2 and 2∕5, respectively. In addition, the variation
trend of thermal stress 𝜎11 differs from the bimaterial case.

Figs. 13(b) and (c) shows the variation of averaged thermal shear stress 𝜏12 and 𝜏13 along 𝑥3 direction. Similar to the case of 𝜎11,

the variation trend of shear stress becomes different due to the gradually changing microstructure, and the maximum shear stress

reduces with the increase of gradation ratio. Oppositely, as indicated in Fig. 13(c), the maximum shear stress 𝜏13 increases with the

gradation ratio. It is observed in Fig. 13(d) the averaged thermal stress 𝜎33 of cases ‘‘ratio = 1, 5/6, 2/3‘‘ exhibit smaller maximum

𝜎33 than the bimaterial one. Then it increases significantly with the case ‘‘ratio = 2/5’’. Moreover, although the gradation region

reduced 𝜎11, it also causes increase of 𝜎33. See 𝑥3 ∈ [−0.005,−0.002] m in Fig. 13(d).

Figs. 14(a-b), Figs. 15(a-b) and Figs. 16(a-b) plot the normal thermal stress contour of one-quarter structure (as shown in

Fig. 12(b)), respectively. Comparing the stress contours, although the stress distribution within the gradation region is similar,

the maximum magnitude of normal stresses changes from 805,915 to 1990, which indicates the same trend of the averaged fields.

When the FGM range is smaller, the stress variation range is larger.

5.2. Effects of size and distribution of inhomogeneities

The preceding section presents an FGM composite subjected to uniform temperature increase with five gradation ratios and

illustrates how iBEM handles the microstructure variation of linearly distributed inhomogeneities. In general applications, it is more

likely that the FGM composite experienced more complex thermal conditions, such as the combination of prescribed temperature

and flux. To illustrate iBEM’s capability to handle the above scenarios, the thermal boundary conditions are revised as (i) zero

reference temperature on the bottom surface, (ii) 100 W∕m2 heat flux on the top surface, and (iii) all other surfaces are insulated.

The elastic boundary conditions are retained as in the previous section, and the gradation ratio is 1.

This section considers four numbers of divisions, 𝑛𝑢𝑚 = 20, 24, 32 and 48, which leads to 2000, 3456, 7776 and 27,648 inhomo-
geneities (500, 864, 1944 and 6912 of the quarter structure). Notice that although inhomogeneities are linearly distributed along 𝑥3
direction, the volume fraction of inhomogeneities decreases with the increase of height division (𝑛𝑢𝑚). Taking the half structure
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Fig. 13. Comparison and variations of spatial-averaged thermal stresses along the gradation direction, (a) 𝜎11, (b) 𝜏12, (c) 𝜏13 and (d) 𝜎33 versus different gradation

ratios 1, 5∕6, 2∕3, 1∕2 and 2∕5 subjected to uniform 100 temperature increase from a stress-free state.

(the upper phase) as an instance, the volume fractions are 0.325, 0.313, 0.297, and 0.281, and when 𝑛𝑢𝑚 → ∞, the volume fraction
of the linear gradation is 0.25. Fig. 17(a) plots the variation of averaged temperature along the gradation direction. Interestingly,

although the volume fractions, size, and distribution differ, the averaged temperature for the four curves is the same. The other four

curves are smooth compared to the bimaterial case, which exhibits a sudden slope change. This can be interpreted as no obvious

material mismatch crossing the former bimaterial interface. Fig. 17(b) and Fig. 17(e) plot the variation of averaged 𝜎11 and 𝜎33,

respectively. Similar to case studies as Fig. 13(a-d), the gradation region significantly reduces the maximum normal stresses. When

𝑛𝑢𝑚 increases, the maximum stress reduction is less, which can be interpreted as a smaller volume fraction. Fig. 17(c) and Fig. 17(d)

indicates the variation of averaged shear stress 𝜏12 and 𝜏13, respectively. Similarly, the reduction of maximum stress increases with

the decrease of 𝑛𝑢𝑚.

As Fig. 17 demonstrates the variation of the averaged thermomechanical behavior of the FGM composites, the stress variation

along inhomogeneity interfaces, such as𝜎𝑟𝑟 and 𝜎𝜃𝜃 , generally exhibit stress concentration effects, which may lead to local failure of

the FGM composites. Therefore, it is important to investigate and evaluate some examples of such stress concentration. As reported

in Wu, Zhang, and Yin (2023), the intensive interaction among inhomogeneities and bimaterial interface can cause strong stress

concentration effects and angle shift of the maximum stress.

In the following, this subsection considers two adjacent layers of inhomogeneities close to the bimaterial interface of the

quarter structure. Shown as Fig. 18, the number of inhomogeneities in each layer changes accordingly when the number of height

divisions changes. Specifically, 𝑛𝑢𝑚 = 20, 24, 32, 48 and the corresponding 𝑛 = 25, 36, 64, 144, respectively. For simplicity, 4 pairs
of inhomogeneities, highlighted by the blue rectangle, are selected to plot stress variation along two circumferences. The primary

reason for such selection is that those inhomogeneities are subjected to intensive interfacial effects, boundary effects, and interactions

among other inhomogeneities. For each inhomogeneity, two circumferences, the vertical (𝑥1−𝑥3) and horizontal (𝑥1−𝑥2) ones, where
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Fig. 14. Thermal stress contour of the internal cross-section of one quarter structure (𝑥2 ∈ [−0.00218,−0.00032] m, 𝑥3 ∈ [−0.00499, 0.00499] m) with gradation

ratio 1 subjected to uniform 100 ◦C temperature increase from a stress-free state.

Fig. 15. Thermal stress contour of the internal cross-section of one quarter structure (𝑥2 ∈ [−0.002215,−0.000285] m, 𝑥3 ∈ [−0.00499, 0.00499] m) with gradation
ratio 2∕3 subjected to uniform 100 ◦C temperature increase from a stress-free state.

40 uniformly distributed observing points are located. When the angle 𝜃 starts from 𝑥1 axis, 𝜃 = 0, 𝜋40 ,
𝜋

20 ,… ,
39𝜋
20 are considered. Since

the FGM composites are only subjected to external thermal load (without external mechanical load), to reveal the phenomenon of

stress concentration, two normal components 𝜎𝑟𝑟 and 𝜎𝜃𝜃 are normalized by averaged stress components. The calculation of averaged

normal and tangential stresses are obtained through Eq. (28),

𝜎
𝐻∕𝑉
𝑟𝑟 or 𝜎

𝐻∕𝑉
𝜃𝜃

=
𝑛×40∑
𝑖=1

|𝜎𝑖
𝑟𝑟
| or |𝜎𝑖

𝜃𝜃
|

𝑛 × 40
, 𝑛 = 25, 36, 64, 144 (28)

where 𝐻 and 𝑉 represent quantities calculated in horizontal or vertical circumference, respectively. Based on the calculation, the

averaged stress are provided in Table 5,

For more details, plots of stress concentration for two cases 𝑛𝑢𝑚 = 24 and 𝑛𝑢𝑚 = 32 are elaborated in the Supplemental

Information. As demonstrated, the selected four pairs of inhomogeneities are subjected to intensive bimaterial interfacial effects
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Fig. 16. Thermal stress contour of the internal cross-section of one quarter structure (𝑥2 ∈ [−0.00233,−0.000171] m, 𝑥3 ∈ [−0.00499, 0.00499] m) with gradation
ratio 1∕2 subjected to uniform 100 ◦C temperature increase from a stress-free state.

Table 5

Averaged stress of adjacent layers of the bimaterial interface.

𝑛 Position of

the layer

𝜎𝑉
𝑟𝑟
(MPa) 𝜎𝑉

𝜃𝜃
(MPa) 𝜎𝐻

𝑟𝑟
(MPa) 𝜎𝐻

𝜃𝜃
(MPa)

25 up 0.016946 0.0217784 0.0194782 0.0212711

25 down 0.0205907 0.0300842 0.0227368 0.0274418

36 up 0.0214511 0.024721 0.0214511 0.024721

36 down 0.0205734 0.0155885 0.0205734 0.0155885

64 up 0.027866 0.0298515 0.0398948 0.0287286

64 down 0.0302834 0.036588 0.0382809 0.0347697

144 up 0.0323278 0.033094 0.049306 0.0353601

144 down 0.036647 0.0342221 0.0467166 0.0356278

and interactions among inhomogeneities. These can significantly change local fields, such as the shape of stress curves, maximum

angle of stress concentration, and maximum stress concentration value. Our recent work (Wu, Zhang, & Yin, 2023) also studied

the stress concentration of one micro-void embedded in a bi-layered structure subjected to mechanical load, which showed even

without inhomogeneity interactions, the boundary effects led to an apparent maximum value angle shift.

In the following, Fig. 19 (a-d) plots variations of normal stress along the vertical circumference, and those stress components are

compared to that of bimaterial cases (without inhomogeneities) at the same time. Comparing stress curves in Figs. 19 (a-d), it can

be noticed that the stress curves for ‘‘up‘‘ and ‘‘down’’ cases exhibit reverse trends that, which is caused by the definition of angle

coordinate 𝜃. For the inhomogeneity in the upper phase, when 𝜃 = 3𝜋
2 , the observing point is closest to the bimaterial interface,

while 𝜃 = 𝜋

2 is the closest observing point of the inhomogeneity in the lower phase. Comparing maximum values in Fig. 21 (a-d), the

inhomogeneity in the lower phase has very slightly greater values; for instance, the maximum value in Fig. 21(d) is 1.88 and 1.93

for the inhomogeneity in the upper and lower phase, respectively. Although Figs. 21(a-d) exhibit similar stress variation, the angle

for maximum value are different. For inhomogeneities in the upper phase, 𝜃 = 𝜋, 0, 0, 𝜋 and for inhomogeneities in the lower phase,
𝜃 = 𝜋, 0, 0, 𝜋. Notice that for Fig. 19(d), there exists an obvious difference when 𝜃 ∈ [0, 0.25]𝜋 for the upper phase and 𝜃 ∈ [1.75, 2]𝜋
for the lower phase, which is caused by boundary effects.

Fig. 20 (a-d) plots variations of tangential stress along the vertical circumference, compared with bimaterial cases. In addition

to the description in the previous paragraph, the differences among curves ‘‘up‘‘ and ‘‘down’’ become more apparent. Although

the maximum value of stresses in Fig. 20 (a-c) are close, it increases from 1.36 to 1.74 for the upper inhomogeneity and 1.42 to

1.47 for the lower inhomogeneity. The closest observing point of the fourth inhomogeneity to the boundary exists when 𝜃 = 0 for
inhomogeneities in the upper or lower phase. The boundary effects significantly change the local fields and the angle for maximum

values are: (i) 𝜃 = 0, 0, 0, 𝜋2 for the upper inhomogeneity and (ii) 𝜃 = 𝜋

2 for the lower inhomogeneity. Comparing the maximum value

of bimaterial cases, an initial conclusion can be drawn that inhomogeneities cause more local stress concentrations.

Figs. 21 (a-d) plot variations of normal stress along the horizontal circumference. It can observed that stress curves on horizontal

circumference are not symmetric to 𝜃 = 𝜋, which is caused by the non-symmetric position of the inhomogeneity. Although the
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Fig. 17. Variation and comparison of averaged temperature and thermal stresses of four numbers of height division for gradation (20, 24, 32 and 48) subjected

to 100 W∕m2 heat flux on the top surface, (a) 𝑇 , (b) 𝜎11, (c) 𝜏12, (d) 𝜏13 and (e) 𝜎33.
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Fig. 18. Schematic illustration of two adjacent layers near the bimaterial interface in the quarter of the FGM composite with two symmetric surfaces; 𝑛 = 𝑠2

spherical inhomogeneities are uniformly distributed in each layer, where 𝑛 = 25, 36, 64, 144 for 𝑛𝑢𝑚 = 20, 24, 32 and 48, respectively; and 4 pairs of inhomogeneities
(close to boundary) are selected to plot stress variation along the vertical (𝑥1 − 𝑥3) and horizontal (𝑥1 − 𝑥2) circumference.

Fig. 19. Variation and comparison of normalized stress 𝜎𝑟𝑟 with bimaterial cases along the vertical circumference for inhomogeneities of adjacent layers when

𝑛𝑢𝑚 = 20, (a) the first; (ii) the second; (iii) the third; and (iv) the fourth inhomogeneity along 𝑥2 direction.
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Fig. 20. Variation and comparison of normalized stress 𝜎𝜃𝜃 with bimaterial cases along the vertical circumference for inhomogeneities of adjacent layers when

𝑛𝑢𝑚 = 20, (a) the first; (ii) the second; (iii) the third; and (iv) the fourth inhomogeneity along 𝑥2 direction.

stress values for inhomogeneities in the upper and lower phases may differ, the shapes (distribution) of stress curves are similar.

The maximum value appears at the same angle for inhomogeneities in two phases. Specifically, 𝜃 = 𝜋, 3𝜋4 , 0 and
3𝜋
4 for Fig. 21 (a-d),

respectively. As discussed previously, due to more intensive boundary effects of the fourth pair of inhomogeneities, stress curves

Fig. 21(d) exhibit different trends. Due to the complexity of several coupled factors, explicitly explaining the angle shift of maximum

values is challenging. Fig. 22 (a-d) plot variations of tangential stress along the horizontal circumference. Similar to normal stress,

the angle of maximum values appears at the same angle as that of normal stress for both upper and lower cases. Compared to

the stress curves of bimaterial cases, the variation of stress of horizontal circumference is much smaller than that of vertical ones.

However, due to inhomogeneities, the local fields have been significantly disturbed, and fluctuations can be observed.

Figs. 23 (a-d) and Fig. 24 (a-d) plot variations of normal and tangential stresses along the vertical circumference, respectively.

Those figures’ Stress curves share similar trends as the case 𝑛𝑢𝑚 = 20. Perhaps the major difference is that the first inhomogeneity is
subjected to more intensive boundary effects than the other three. Due to such effects, local fields have been changed significantly

that the maximum values in Fig. 23 (a-d) are 5.18, 1.48, 1.02, and 0.92 for the upper case and 3.55, 1.14, 1.06 and 0.86 for the lower

case. For tangential stress in Figs. 24 (a-d), the maximum values are 1.42, 0.82, 0.85, and 0.86 for the upper case and 1.72, 1.69,

1.46, and 1.41. Notice that the boundary effects can be obtained in stress curves as bimaterial cases, and Fig. 25(a) and Fig. 26(a)

show completely different stress variations and such boundary effects can be measured as the distance from observing points to

the boundary. Figs. 25 (a-d) and Fig. 26 (a-d) plot variations of normal and tangential stresses along the horizontal circumference,

respectively. Similar phenomena can be observed, with the maximum values 3.39, 0.97, 0.67, and 0.63 for the upper case and 2.79,

0.90, 0.83, and 0.82 for the lower case in Figs. 25 (a-d). Moreover, the maximum values are 1.35, 0.71, 0.74, and 0.75 for the

upper case and 1.23, 1.21, 1.08, and 1.14 for the lower case in Figs. 26 (a-d). Although stress concentration becomes more severe

for inhomogeneities close to the boundary, the maximum stress for interior inhomogeneities becomes smaller.
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Fig. 21. Variation and comparison of normalized stress 𝜎𝑟𝑟 with bimaterial cases along the horizontal circumference for inhomogeneities of adjacent layers when

𝑛𝑢𝑚 = 20, (a) the first; (ii) the second; (iii) the third; and (iv) the fourth inhomogeneity along 𝑥2 direction.

6. Conclusions

This paper extends the single-domain iBEM algorithm to efficiently simulate three-dimensional thermoelastic problems for a

bi-layered system containing multiple inhomogeneities. The accuracy of this method is verified by the FEM simulation considering

inhomogeneities with bimaterial interfacial effects and interactions with other inhomogeneities. The present method exhibits much

higher efficiency than the FEM in mesh discretization, storage, and computational costs, and thus enables the simulation of a bi-phase

FGM containing > 10, 000 particles with the following uniqueness features:
1. The iBEM converts the former complicated volume integral of temperature and kernel functions to boundary integrals of

the thermoelastic fundamental solution and Eshelby’s tensors of inhomogeneities only, which significantly reduce volume-integral

related computational costs and resources.

2. Using the bi-matrix model to simulate functionally graded materials by interchanging inhomogeneities and two matrices

further reduces computational costs on simulation of inhomogeneities in the one-matrix model (saving half costs on simulation of

inhumanities for linear gradation). This algorithm is suitable and stable for thermoelastic modeling of bi-layered composite and

FGMs.

3. Using the bimaterial fundamental solution analytically address the interfacial continuity between material layers and

significantly increases the robustness and convergence of the numerical methods.

4. The DEIM assembles the coupled linear equation system of temperature and displacement in one step, and improves the

accuracy and efficiency compared with the two-step thermomechanical analysis with temperature field solved separately.

5. The high efficient iBEM algorithm enables the cross-scale modeling of FGM samples with high fidelity microstructure for

digital twins of material testing.

Overall, this method provides a powerful tool for the design and analysis of FGMS, and can be extended to multiphysical and

multiscale modeling of other composite materials.
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Fig. 22. Variation and comparison of normalized stress 𝜎𝜃𝜃 with bimaterial cases along the horizontal circumference for inhomogeneities of adjacent layers when

𝑛𝑢𝑚 = 20, (a) the first; (ii) the second; (iii) the third; and (iv) the fourth inhomogeneity along 𝑥2 direction.
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Appendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.ijengsci.2024.104040.The

supplemental materials aim to provide more information on stress concentrations along the vertical and horizontal circumferences

when height divisions are 𝑛𝑢𝑚 = 24 and 𝑛𝑢𝑚 = 32. The averaged stress components have been provided in the Table 5.
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Fig. 23. Variation and comparison of normalized stress 𝜎𝑟𝑟 with bimaterial cases along the vertical circumference for inhomogeneities of adjacent layers when

𝑛𝑢𝑚 = 48, (a) the first; (ii) the second; (iii) the third; and (iv) the fourth inhomogeneity along 𝑥2 direction.

Fig. 24. Variation and comparison of normalized stress 𝜎𝜃𝜃 with bimaterial cases along the vertical circumference for inhomogeneities of adjacent layers when

𝑛𝑢𝑚 = 48, (a) the first; (ii) the second; (iii) the third; and (iv) the fourth inhomogeneity along 𝑥2 direction.
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Fig. 25. Variation and comparison of normalized stress 𝜎𝑟𝑟 with bimaterial cases along the horizontal circumference for inhomogeneities of adjacent layers when

𝑛𝑢𝑚 = 48, (a) the first; (ii) the second; (iii) the third; and (iv) the fourth inhomogeneity along 𝑥2 direction.

Fig. 26. Variation and comparison of normalized stress 𝜎𝜃𝜃 with bimaterial cases along the horizontal circumference for inhomogeneities of adjacent layers when

𝑛𝑢𝑚 = 48, (a) the first; (ii) the second; (iii) the third; and (iv) the fourth inhomogeneity along 𝑥2 direction.
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