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Abstract: When cables use many wires packed in a hexagonal pattern wrapped by bands around the surface, effective stiffness plays an
important role in structural integrity and safety. This paper studies cylindrical wires packed in a hexagonal lattice tightened up by wrapping
bands. When a transverse load is applied, the stress transferred through the contacts between the wires can be represented by a center-center
force network with the Hertz contact theory. When yielding is considered in the contact zone, an elastoplastic contact model is developed. The
Singum model simulates the singular forces by the stress between continuum particles. The effective stress-strain relationship changes with
the stress of the wrapping bands and exhibits isotropic behavior in the cross section. Therefore, the overall elastic behavior of the cable is
transversely isotropic with a tailorable stiffness in the cross section by the wrapping force. This method is general for mechanical modeling
of packed parallel wire cables, and its application to bridge cable testing and repair with development length prediction is underway.
DOI: 10.1061/JENMDT.EMENG-7731. © 2024 American Society of Civil Engineers.

Practical Applications: This study introduces a novel approach, the Singum model, for analyzing the overall mechanical properties of
packed wire cables, which are crucial for ensuring structural integrity and safety in various engineering applications. By investigating the
effective transverse stiffness of packed wire cables through a combination of theoretical modeling, finite element analysis (FEM), and
experimental tests, this research provides valuable insights into optimizing cable design and performance across diverse engineering
applications such as cable domes, electric transmission lines, tramways, cable-stayed bridges, and suspension bridges. The findings highlight
the significant impact of wrapping force on the effective stiffness of packed cylinders, offering engineers a means to tailor the stiffness of
cable cross sections for specific requirements in these applications. This study provides a robust framework for advancing the understanding
and optimization of packed wire cable systems in engineering practice with reasonable assumptions and simplifications, which can be tailored
for specific materials or applications.

Author keywords: Contact mechanics; Wire cables; Hexagonal packing lattices; Singum model; Elastoplastic analysis; Transversely
isotropic stiffness.

Introduction

Steel cables find extensive applications in engineering construc-
tions, such as cable domes, electric transmission lines, tramways,
cable-stayed bridges, and suspension bridges (Fig. 1), due to their
exceptional capacity to provide effective structural solutions for
achieving substantial spans. The primary cables within structural
systems are of paramount importance as they bear critical loads,
serving as essential structural components (Chacar 2001). Com-
prising thousands of parallel cylindrical steel wires, these cables

are encircled at intervals by wrapping bands [Fig. 1(c)]. The higher
wrapping force leads to higher effective stiffness in the cross
section, but the elastoplastic properties of steel may make mechani-
cal behavior complex.

The contact mechanics among individual wires within these
cables that are enveloped by wrapping bands have been the subject
of prior investigation by scholars (Gjelsvik 1991; Raoof and Huang
1992). Many analytical, experimental, and numerical studies have
been performed in the past in order to simulate and predict the
contact properties (Hertz 1882; Radzimovsky 1953; Griffin 1961;
Johnson 1987; Lankarani and Nikravesh 1989; Ghaednia et al.
2016; Olsson and Larsson 2016; Ghaednia et al. 2017), mainly
the contact force, contact pressure, and indentations. However,
most of these research studies are focused on elastic contact, and
because of its complexity, no closed-form solution has been provided
for elastoplastic contacts. In addition, most of the work focuses
on spherical contacts, and only a few researchers have worked on
cylindrical contacts (Sugunesh and Mertens 2021; Guo et al. 2020,
2022; Sharma and Jackson 2017). Despite a large amount of work
existing on the contact of spherical elastic-plastic surfaces, little
exists on the contact of cylinders in elastic-plastic contact. There-
fore, the study of contacts, which include simultaneous elastic and
plastic deformation in cylindrical contact, is crucial and applicable
to real-life problems such as wire contacts and wheel contacts
(Ghaednia et al. 2017).
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In 1882, Hertz (1882) studied the normal force between two
compressed elastic spheres. Hertz developed an expression for con-
tact force with respect to the material properties and the radius of
the spheres, which is used even now in most contact models. In
1985, Johnson (1987) developed a new model for cylindrical con-
tacts that followed Hertzian contact theory. In addition, (Johnson
1987) considered plastic deformation in contact and showed that
the restitution phase follows the Hertz theory even after yielding
occurs. Johnson verified his results with Tabor’s works (Tabor
2000) on the hardness of metals.

In literature, contact mechanics is divided into three phases:
purely elastic, elastic-plastic, and fully plastic (Ghaednia et al.
2017). For a majority of metallic contacts, the elastic phase ends
at very small deformations. The cylinders usually begin yielding at
very small deformations, and the elastic regime only covers a small
range of the deformation. The elastic-plastic regime initiates with
the inception of yield and then transitions into the fully plastic re-
gime. Many researchers have come up with analytical solutions for
cylindrical contacts in the elastic phase (Radzimovsky 1953;
Johnson 1987; Lankarani and Nikravesh 1989) based on the Hertz
theory (Hertz 1882).

The contact between parallel wire cables mainly used in bridges
has been defined using the Hertzian contact model (Hertz 1882) by
researchers in the past (Gjelsvik 1991; Raoof and Huang 1992).
When these cylindrical surfaces are loaded, the contact areas are
extremely small, which results in high contact pressures and
stresses. In many cases, this results in yielding in the contact re-
gions, and thus, the elastic analysis is not accurate enough (Yin
et al. 2023).

Ghaednia et al. (2017) reviewed over 200 published literature
about the modeling of elastic-plastic contact and concluded that
the average pressure during heavily loaded elastic-plastic contact
is not governed by the conventional hardness to yield strength
the ratio of approximately three but rather varies according to
the boundary conditions and deformed geometry. Zhang et al.
(2022) employed the finite element method (FEM) to investigate
the behavior of an elastic-perfectly plastic hemisphere pressed
by a rigid flat. The study defined the boundaries for regions of
purely elastic, elastic-plastic, and fully plastic deformation and
provided a new elastic–plastic constitutive model.

A continuum mechanics model proposed by Yin (2022) and Yin
et al. (2023), the Singum model uses the Wigner–Seitz (WS) cells
of a lattice to represent a continuum solid so that the singular point
forces can be transformed into the contacting stress between the
continuum particle. The elastoplastic constants can be obtained
by applying a displacement variation from the relationship between
the stress and the strain increments. This model can be used for the
assembly of cylinders packed in a hexagon such as cable cars

[Fig. 1(b)] and bridge wire cables [Fig. 1(c)] and the relationship
between the stiffness and the wrapping force can be formulated.

Finite element method (FEM) simulations have been widely
used to predict the mechanical behavior of cable structures (Montoya
et al. 2012; Brügger et al. 2022). However, FEM simulations often
require significant computational resources and expertise, making
them time-consuming and expensive. In contrast, the Singum
model offers a computationally efficient alternative for predicting
the stiffness of cable structures (Yin et al. 2023). By leveraging
simplified analytical equations, this model provides accurate pre-
dictions while reducing computational costs and time requirements
compared to FEM simulations.

In this study, the Singum model is presented as a method to
analyze the mechanical characteristics of packed wire cables, where
the cylindrical steel wires are arranged in hexagonal lattice struc-
tures. In this approach, an inner cylinder’s behavior is emulated
through a continuous Singum particle, while the interaction force
between cylinders follows the Hertz contact model. This formu-
lation allows for the determination of the effective constitutive
relation of the cross section of the wire cables. Notably, variations
in displacement give rise to configurational stresses caused by
wrapping, consequently leading to a substantial alteration in the
effective stiffness of the packed cylinders.

This paper studies the effective stiffness of packed wire cables
employing the Singum model (Yin 2022; Yin et al. 2023), which is
verified by the FEM and validated by the experimental tests. Firstly,
the elastoplastic contact of two low-carbon steel cylinders is
studied. The Hertz contact model (Johnson 1987) will be used to
model the elastic relationship, and then initiation of plastic defor-
mation is found analytically using the von Mises criterion (Green
2005). Experiments are conducted to validate the potential func-
tion. Secondly, cables containing cylindrical steel wires packed
in a hexagonal lattice tightened up by wrapping bands at certain
stress intervals are studied. By applying transverse load, the
average material response is used to define the effective stiffness
of the packed cylinder, which is homogenized by a transversely
isotropic cylinder with a tailorable stiffness in the transverse plane.
The effect of wrapping force on the effective transversal stiffness
will be demonstrated. When one wire is broken, the force transfer
among the neighboring wires will be very complex, which can be
analyzed by the homogenized continuum containing a crack. The
application of this theory to the development length of a broken
wire in a cable is underway.

Problem Statement

When many wires are packed into a cable in a hexagonal pattern
(Yin et al. 2023) in Fig. 2(a), they are commonly wrapped by

Fig. 1. Parallel wire cables: (a) cables in suspension bridges; (b) cables in electric cable cars; and (c) main cable wrapping clamps/bands.
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bands with a certain wrapping force, and the packed cable ex-
hibits isotropic elastic behavior in the cross- while maintaining
a high loading capacity in the axial direction. Although there
exists space between circular wires, overall, the cable can be
treated as a homogeneous cylinder with an effective stiffness

tensor C in Fig. 2(b). Yin et al. (2023) showed the cable is
isotropic in the cross section. Therefore, the homogenized cylin-
der can be approximated as a transversely isotropic solid, and
the stiffness tensor and its inverse can be written in the Voigt
notation as

C ¼

0
BBBBBBBBBB@

C1111 C1122 C1133 C1123 C1131 C1112

C2211 C2222 C2233 C2223 C2231 C2212

C3311 C3322 C3333 C3323 C3331 C3312

C2311 C2322 C2333 C2323 C2331 C2312

C3111 C3122 C3133 C3123 C3131 C3112

C1211 C1222 C1233 C1223 C1231 C1212

1
CCCCCCCCCCA

¼

0
BBBBBBBBBBB@

C11 C12 C13 0 0 0

C12 C11 C13 0 0 0

C13 C13 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0
C11 − C12

2

1
CCCCCCCCCCCA

ð1Þ

and

C−1 ¼ 1

Δ

0
BBBBBBBBBBBBBBBB@

C11C33 − C2
13 C2

13 − C12C33 ðC12 − C11ÞC13 0 0 0

C2
13 − C12C33 C11C33 − C2

13 ðC12 − C11ÞC13 0 0 0

ðC12 − C11ÞC13 ðC12 − C11ÞC13 C2
11 − C2

12 0 0 0

0 0 0
Δ
C44

0 0

0 0 0 0
Δ
C44

0

0 0 0 0 0
2Δ

C11 − C12

1
CCCCCCCCCCCCCCCCA

ð2Þ

where Δ ¼ ðC2
11 − C2

12ÞC33 − 2ðC11 − C12ÞC2
13.

The five independent elastic constants are correlated with the
tensor-form components as C11 ¼ C1111, C12 ¼ C1122, C13 ¼
C1133, C33 ¼ C3333, and C44 ¼ C1313. Engineering strain shall be
used with the Voigt notation, whereas the present strain tensor fol-
lows the tensor-form notation.

For a long cable, there is a high risk that a wire may be broken
inside the cable, and how the load in the wire is transferred to the
neighboring cables is a very challenging task for structural analysis
and modeling. Because the contact area between wires increases
with the wrapping force, the longitudinal force transfer will be
affected by the wrapping force as well. If the effective stiffness
of the homogenized cylinder in Fig. 2(b) is given, the broken wire
can be simulated as a hexagonal-shaped crack in the transversely
isotropic solid, which can provide insight into the force transfer
from the broken wire to other wires. Therefore, the correlation
between the transversely isotropic tensor C and the cable configu-
ration, including material constants and wrapping force, will be
critical for the stress transfer of cables with wire head-tail connec-
tions (Gjelsvik 1991).

In this paper, the material properties of the steel wires purchased
fromMcMaster-Carr Supply Company with Part Number 8920K48
considered are shown in Table 1. To formulate the problem, the
following assumptions are used:
1. The deformation in the wires is elastic-perfectly plastic;
2. The wires interact through the Hertz contact model with small

contact areas;

3. The wires can roll, but no slip occurs in the axial direction;
4. The yielding zone is localized in the neighborhood of the small

contact areas, and the effect of permanent deformation on the
wire is disregarded so that the wire’s overall deformation is still
linear elastic during the service.
In our analysis, we will begin by examining the elastic behavior

within the cross section. Based on Assumption 3, despite the pres-
ence of shear forces along the axial direction, the cross section
experiences only normal stress, resulting in interaction forces
between the wires being directed along the center-center line. When
unloading is considered, in the context of Assumption 4, one can
superimpose an elastic analysis onto the existing solution for clas-
sic elastoplastic analysis, which leads to permanent deformation
or residual stresses. However, for simplicity, this paper does not
consider material and geometric changes resulting from the cyclic
load’s residual stress and permanent deformation due to the small
contact area. In the actual applications, Assumptions 3 and 4 can be
released with specific constitutive modeling parameters.

Therefore, with the increase of wrapping force, the contact
deformation is divided into two stages: (1) the elastic state for
the whole domain and (2) the elastoplastic stage with a yielding
zone. The elastic perfectly plastic model is used for steel wire.
Our previous paper (Yin et al. 2023) has studied the first stage,
which will be reviewed in the next section, while the second
stage will be studied with the FEM analysis to generate the load-
ing curve.

© ASCE 04024073-3 J. Eng. Mech.
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Along the axial direction, the effective area ratio of wire in the
cross section of a hexagonal lattice is

ϕ ¼
ffiffiffi
3

p
π

6
≈ 0.9069 ð3Þ

Given a uniaxial test loading σ33 along x3 or a simple shearing
σ31 or σ32 in x1 − x3 or x2 − x3 plane, because the force is uni-
formly transferred in the cross section of the cable, the effective
Young’s modulus and shear modulus will be factored by ϕ and
the Poisson’s ratio will remain the same with the affine transforma-
tion. Therefore, one can obtain

Δ
C2
11 − C2

12

¼ C33 − 2C2
13

C11 þ C12

¼ ϕE;

ðC11 − C12ÞC13

C2
11 − C2

12

¼ C13

C11 þ C12

¼ ν; C44 ¼ ϕ
E

2ð1þ νÞ ð4Þ

If the stiffness in the cross section is obtained with two material
constants, we can predict the overall transversely isotropic stiffness
in the 3D space with the previous three elastic constants. Note that
the major and minor symmetry of the effective stiffness depends on
the nonslip condition and equilibrium of the wires (Yin and
Liu 2023).

In the cross section, due to the large stress variation at the
contacts, elastoplastic deformation should be considered. In the
following, we will begin by deriving the elasto-plastic contact of
cylinders. Following this, the singum model will be introduced for
the constitutive modeling.

This paper specifically addresses the characteristics of general
cables subjected to a uniform wrapping force. In a wire cable of
Fig. 1(c), the wrapping force is applied to the wires through bands
with a width of 91.4.cm (approximately 3 ft) and an interval of 6 m
(20 ft). It is crucial to note that the analysis presented herein is con-
fined to the section encompassed by these bands, and any stress
analysis beyond this area falls outside the purview of this paper.
The current investigation lays the foundation for a subsequent study
on high-strength wires of bridge cable, a study that is currently
underway.

Elastoplastic Contact of Cylinders

Most works on cylinder contact have focused on the elastic
relationship (Johnson 1987; Lankarani and Nikravesh 1989, 1994;
Goldsmith 1999; Radzimovsky 1953), only a few researchers have
accounted for the elastic-plastic behavior of the contact area by
using the FEM method and approximations (Dumas and Baronet
1971; Komvopoulos 1989; Guo et al. 2020; Cinar and Sinclair
1986; Sharma and Jackson 2017). In the following, a combination
of FEM and Johnson’s elasticity theory for two cylinders in contact
(Johnson 1987) are used to find analytical solutions for the elasto-
plastic contact of cylinders. The elastic stage of the contact is found
analytically using Johnson’s formula (Johnson 1987), which corre-
lates contact load, contact half width, and deformation (interfer-
ence) within the elastic range until plastic deformation begins.
The initiation of plastic deformation is found analytically by using
the existing formulation that was based on the von Mises yield
criterion (Green 2005). An FEM analysis is performed to find the
relationship between load and interference. Finally, the equations
are validated against experimental results, which will be elaborated
in the subsequent sections.

Elastic Contact Stage

In the context of cylindrical contact scenarios, two predominant
mechanical states are commonly considered to simplify the
three-dimensional (3D) configuration by a two-dimensional (2D)
problem: plane strain and plane stress (Cinar and Sinclair 1986;

(a) (b)

Fig. 2. Homogenization of packed wires into a uniform cylinder: (a) wire cable with a wrapping band; and (b) a homogenized cylinder with an
effective transversely isotropic stiffness tensor.

Table 1. Mechanical properties of steel wires

Property Value

Material Low carbon steel
Diameter 2R (mm) 50
Poisson’s ratio ν 0.3
Elastic modulus E (MPa) 200,000
Yield strength σy (MPa) 413.6

© ASCE 04024073-4 J. Eng. Mech.
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Johnson 1987; Ghaednia et al. 2017). Plane strain is often appli-
cable when the cylindrical ends are rigidly held, leading to negli-
gible strain beyond the cross sectional plane perpendicular to the
cylinder’s axis of symmetry. Conversely, lubricated cylinders that
lack end restraints exhibit characteristics akin to the plane stress
state due to the absence of end confinement, resulting in limited
stress propagation outside the plane perpendicular to the cylinder’s
axis of symmetry. Ghaednia et al. (2017) argues that even when
significant friction is introduced, the interaction between identical
cylinders in contact does not result in relative motion. Conse-
quently, the contact of unconstrained identical cylinders leans
toward the plane stress state. However, mathematically, plane
strain and plane stress can share the same form of formulation by
replacing Young’s modulus and Poisson’s ratio (Yin and Zhao
2016). Following Johnson (1987), we can define the effective
elastic modulus E� as

E� ¼ E
2ð1 − ν2Þ and

E
2

ð5Þ

for plane strain or plane stress, respectively.
When two identical cylinders with un-deformed radius R are

compressed by a given load Pe per unit length, the relationship
between the interference δe and the force Pe is given by Yin et al.
(2023) as

δe ¼
Pe

πE�

�
ln
8πE�R
Pe

− 1

�
ð6Þ

Note that in the literature, R� is used in place of R in this paper,
which leads to a difference of the coefficient of 2. Defining the
change in center-center distance in this elastic range as λe ¼
1 − ðδe=2RÞ, which is also called the stretch ratio of the center-
center bond. Hence, we can rewrite Eq. (6) as:

λe ¼ 1 − Pe

2πE�R

�
ln
8πE�R
Pe

− 1

�
ð7Þ

Although the force-interference (P − λ) equation Johnson
(1987) has been implicitly given in the previous equation, by using
the Lambert W function, denoted as W(z), which is the inverse
function of z ¼ WeW , the force can be written in term of λe as
follows:

Pe ¼ − πδeE�

W−1
h−eδe

8R

i ¼ 2πE�Rðλe − 1Þ
W−1½0.25eðλe − 1Þ� ð8Þ

whereW−1ðzÞ function is the second branch of LambertW function
with z ¼ 0.25eðλe − 1Þ. Note that for the linear elastic contact
problem, we can write −1=e < z < 0. In this range, there exist
two branches of the W function. When z → 0, the main branch
ofWðzÞ → 0; whereas the second branch ofW−1ðzÞ → −∞. Here
the second branch shall be applied, because when λe → 1,
W−1½0.25eðλe − 1Þ� → −∞ to make Pe → 0. Herein, the sub-
script of −1 in W−1 is to differentiate it from the main branch.
Its derivative can be written as ðdW−1=dzÞ ¼ fW−1ðzÞ=
z½1þW−1ðzÞ�g, which is applicable to both branches.

Fig. 3 shows the comparison between Johnson (1987)’s contact
model, experimental test, and FEM results for the elastic contact of
cylinders. It can be seen that the analytical formulation is a good fit
for the FEM results with 3% error. The experiment results are close
to the plane strain assumption with an error of 5% compared with
the FEM and analytical results.

The experimental testing configuration and procedure have been
introduced in Appendix I. With the increase of δe, the difference
between the modeling and testing results increases as well because
of the elasto-plastic behavior of the low-carbon steel.

Elastoplastic Contact Stage

Green (2005) expressed the critical mean contact pressure at which
yielding of the contact model starts by using the von Mises stress
criteria and Hertz (1882) stress state, which provides the interference
δc and the force per unit length Pc at the initiation of yielding as

Fig. 3. Elastic contact of two cylinders in plane stress and plane strain assumptions for 100 mm long cylinders: Johnson (1987) analytical solution
compared to the FEM and experimental results.

© ASCE 04024073-5 J. Eng. Mech.
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δc ¼
R
2

�
Cσy

E�

�
2
�
2 ln

4E�

Cσy
− 1

�
ð9Þ

and

Pc ¼
πRðCσyÞ2

2E� ð10Þ

where σy the maximum von Mises stress and C is a constant value
that depends on Poisson’s ratio, and it is given by Green (2005) as
(1) for the plane stress condition, C ¼ 1, and (2) for the plane strain
condition

C ¼

8><
>:

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ðν − 1Þνp ν ≤ 0.1938

1.164þ 2.975ν − 2.906ν2 ν > 0.1938

ð11Þ

where ν is the Poisson’s ratio. The derivation of Pc, δc, and C is
reviewed in Appendix II (Green 2005), which exhibits a minor
difference of δc from the original solution of Green (2005).

The critical stretch ratio at the initiation of yielding can be
written as

λc ¼ 1 − 1

4

�
Cσy

E�

�
2
�
2 ln

4E�

Cσy
− 1

�
ð12Þ

For example, the low carbon steel wires in Table 1 exhibit the
corresponding parameters shown in Table 2 (Green 2005).

As the normal load P increases, the contact exceeds the initial
yield point interference δc. The elastoplastic phase is the stage after
the initiation of yield, δc, and before fully plastic with interference δp.
Therefore, the elastoplastic interference δep is in the range of
δc < δep < δp, in which δp is the critical displacement of the
cylinder to reach the fully plastic stage, at which no additional load
can be sustained.

During the elastoplastic stage, since both elastic and plastic de-
formations occur, it is impossible to obtain an analytical solution

(Guo et al. 2020, 2022). Subsequently, we will assume that the con-
tact will be in the plastic stage after the initial yielding. In this study,
we will only assume two stages: the elastic stage and the plastic
stage. FEM analysis is conducted to study the elastic-plastic contact
mechanics of two cylinders, and an explicit relation between the
interference and the contact force will be formulated subsequently
in the next section.

As the force pressing the cylinder continues to increase, the
yielding zone in the material increases. Eventually, the cylinders
may exhibit the complete plastic deformation stage, in which the
average contact pressure is close to the yield strength. Some
researchers have performed FEM of cylindrical contacts with flat
surfaces (Dumas and Baronet 1971; Sharma and Jackson 2017;
Cinar and Sinclair 1986), and particularly Cinar and Sinclair (1986)
found that the pressure in the plastic range for cylindrical contacts
in plane strain was approximately 2.24σy.

The next section aims to fill a gap in the existing knowledge by
developing empirical relationships for elastic, perfectly plastic
cylindrical contacts under both plane strain and plane stress con-
ditions. This is important because while there are models for elastic
contacts (Johnson 1987) and some insight into plastic deformation
initiation (Green 2005), currently, there is a lack of comprehensive
models for situations where both elastic and plastic deformations
occur in cylindrical contacts under the plane strain assumption.

Numerical Analysis of Cylindrical Contacts

ABAQUS is used as a tool to perform the FEM analysis of the
contact between two frictionless elastic–plastic cylindrical bodies.
A symmetrical cylindrical model was used for a faster converging
analysis. Normal surface-to-surface interaction is used to define the
contact property, and since the cylinders are assumed to be friction-
less, the tangential interaction was set to frictionless. The analysis is
done under static loading conditions.

Finer mesh is used near the contact area, and relatively larger
meshes were used for the rest of the model to reduce the computa-
tional time, as seen in Fig. 4. The symmetry of the cylinders was
taken into account for the modeling, and the nodes at the bottom
of the bottom cylinder were fully restrained, and only horizontal
translation was constrained for the top cylinder. A static load
was applied to the top cylinder. The total number of elements used
for the analysis is 180,514, of which 175,040 is a linear quadrilat-
eral element of type CPE4R and 5,474 are linear triangle elements
of type CPE3 for the plane strain model. For the plane stress model,
140,494 linear quadrilateral elements of type CPS4R and 4,446

Fig. 4. Meshed FEM model of two cylinders in contact.

Table 2. Yielding parameters for low carbon steel wires in Table 1

2D assumption C δc (m) λc Pc (kN=m)

Plane strain 1.795 6.7134 × 10−6 0.99986 196.96
Plane stress 1 2.726 × 10−6 0.999945 67.177

© ASCE 04024073-6 J. Eng. Mech.
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linear triangle elements of type CPS3 are used, totaling 144,940
elements and 143,622 nodes.

The von Mises stress distribution results from the FEM analysis
are shown in Figs. 5 and 6 for plane strain and plane stress,
respectively.

As anticipated, the rise in stress aligns with the increase in
deflection. The cylinders are assumed to possess elastic-perfectly

plastic behavior, resulting in the maximum von Mises stress equat-
ing to the cylinder’s yield strength of 413.6 MPa. Upon comparing
the diagrams of plane strain depicted in Fig. 5 with the assumptions
of plane stress shown in Fig. 6, a noteworthy distinction emerges.
Taking a closer examination of the stress contours at the onset of
yielding, where the interference equals δc, as depicted in Figs. 5(b)
and 6(a) for plane strain and plane stress, respectively, reveals

Fig. 5. The vonMises stress distributions for cylindrical contact in plane strain, GPa: (a) δ ¼ 0.004 mm; (b) δc ¼ 0.0067 mm; (c) δ ¼ 0.05 mm; and
(d) δ ¼ 0.1 mm.

Fig. 6. von Mises stress distributions for cylindrical contact in plane stress, GPa: (a) δc ¼ 0.0027 mm; (b) δ ¼ 0.01 mm; (c) δ ¼ 0.05 mm; and
(d) δ ¼ 0.1 mm.
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distinct patterns in the evolution of plastic region formation. As the
stresses increase, yielding initiates at the point of maximum von
Mises stress (Jackson and Green 2005; Kogut and Etsion 2002).
Under the plane strain assumption, as illustrated in Fig. 5(b), yield-
ing commences below the contact surface, while under plane stress,
as demonstrated in Fig. 6(a), yielding initiates on the contact area.
In the case of plane strain, an elastic enclave materializes, following
the concept introduced by Cinar and Sinclair (1986). The onset of
plastic deformation initiates beneath the surface and advances with
the increasing load. This enclave of elastic material takes the shape
of an inside circle as the material undergoing plastic deformation
encircles a central portion of the contact surface. With increasing
interference, the plastic region expands until it reaches the surface
of the cylinder, as shown in Fig. 5(d).

The range of deformation depicted in Figs. 5(b) and 6(a) under-
scores the absence of this elastic material enclave for cylindrical
contacts subjected to plane stress conditions. The occurrence of this
enclave in plane strain configurations is attributed to the prevalence
of hydrostatic stress in the vicinity just beneath the central point
of contact(Cinar and Sinclair 1986; Sharma and Jackson 2017).
Achieving a hydrostatic stress state necessitates equality among
the principal stresses in all three dimensions. In contrast, for the
plane stress scenario, one direction of strain lacks constraints, re-
sulting in zero stress along that axis. Consequently, hydrostatic
stress cannot manifest, and the elastic enclave does not manifest
in stress distributions for plane stress scenarios involving cylindri-
cal contacts. Additionally, this variance dictates that the point of
initial yielding in plane stress scenarios consistently transpires
on the surface rather than below it, as elucidated by Cinar and
Sinclair (1986), Green (2005), and Sharma and Jackson (2017).

Sharma and Jackson (2017) studied the elastoplastic contact of
cylinders against rigid plates with bilinear hardening in plane stress
conditions and gave an empirical relationship for the contact width
as a function of displacement and force by fitting FEM results as
follows:

�
P
Pc

�
0.463

¼ 7.1

�
E�

σy

�
0.01

��
δ
δc

�
0.1 − 1

�
þ 1 ð13Þ

which is given for σy=E ¼ 0.002. Eq. (13) is for plane stress
assumption, and for parallel wire cables used in aerial tramways,
transmission lines, and bridges, a plane strain assumption is better

fitted since these structures span for very long distances. Although
this concise equation can fit the FEM results very well and exhibit
continuity with for the P − δ curve at δc, the derivative of P;δ is
discontinuous. Actually, because the yielding zone continuously
increases from one point to an area (Fig. 5) at λ ¼ λc, P;λ shall
continuously change with λ as well. This is different from the
uniaxial loading of a specimen with a uniform cross section, where
the slope of the load-displacement curve exhibits a discontinuity
because the cross-sectional area reaches the yield point at the same
time. The smooth continuity can be observed in Fig. 7 or the curves
shown in Sharma and Jackson (2017).

With the elastoplastic contact loading curve rendered by
the FEM in Fig. 7, we can use a polynomial function to fit the
P − λ curve as follows:
1. Determine C, λc, and Pc from Eqs. (9)–(12).
2. Calculate the derivative of k1 ¼ ðdP=dλÞ at λc.
3. Fit the FEM results for the data with P > Pc by the function of

P ¼ Pc þ
P

N
i¼1 kiðλ − λcÞi. Here depending on the required

accuracy, we can use three terms to obtain good accuracy with
k2 and k3 to be determined by curve fitting.

4. Evaluate the deviation of the curve from the fitting function.
The contact force-displacement diagram for the plastic FEM

analysis of two cylinders in plane strain is shown in Fig. 7(a) along
with the fitted curves with the polynomial with N ¼ 2, 3, and 4, in
which N ¼ 4 provides the best fitting and is used for the following
analysis. Fig. 7(b) shows the P − λ curve of the elastic and per-
fectly plastic contact of two cylinders with the analytical function
of N ¼ 4 as follows:

P ¼

8><
>:

2πE�Rð1 − λÞ
W−1½0.25eð1 − λÞ� λc < λ < 1

Pc þ
P

N
i¼1 kiðλ − λcÞi λp ≤ λ ≤ λc

ð14Þ

where Pc ¼ 0.19697E6 (N=m) and λc ¼ 0.99987 are provided in
Table 2, and ki (i ¼ 1; 2; : : : ;N) are obtained by the curve fitting
with tailorable accuracy by the number N of the polynomial order
shown in Table 3 for three cases of N ¼ 2, 3, 4. Here, λp indicates
the limit of the elastoplastic deformation with the maximum contact
force. As shown in Fig. 7(b), λp is obtained when the slope of the
curve reaches zero. It shall be much higher than the range in this
figure. Because this paper assumes that the contact area is very
small, λp is far beyond the practical application of cables.

(a) (b)

Fig. 7. Elastoplastic contact modeling: (a) contact force versus interference (displacement) of two cylinders in plane strain; and (b) the P − λ relation-
ship for elastoplastic contact of two cylinders.
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Therefore, the mechanical behavior at this load limit is beyond
the scope of this paper. As a default range of λ ∈ ðλp; 1Þ, λc is
a critical point to divide the material behavior into elastic and
elastoplastic ranges. In the following, λ is compared with λc only.
Small N, say N ¼ 2 or 3, can provide a decent accuracy when the
load limit is not too far from λc. When the plastic load is as high
as P ¼ 6 MN=m, the case of N ¼ 4matches the FEM results with
an error of 1% in Fig. 7(a). At the neighborhood of λc, PðλÞ is
continuous up to the first derivative as shown in Fig. 7(a) for three
cases of N in comparison with the Hertzian model (Johnson
1987).

Note that the curve fitting is conducted for low-carbon steel
wires under an elastic and perfectly plastic assumption. For high-
strength wires, the previous procedure can be generalized to a new
form of PðλÞ in the elastoplastic range. Because of the smooth
continuity of the elastoplastic contact and a small range for allow-
able elastoplastic deformation in the high-strength wire, a few
polynomial terms (N ¼ 2 or 3) can provide a good fitting to
the curve.

Effective Stiffness of a Packed Cable

When many parallel wires are packed into a cable with wrapping
bands, the cable becomes an integrated structural member with a
certain stiffness and strength. This section aims at the prediction
of the stiffness of a packed cable with a certain wrapping force.
In the longitudinal direction, the stiffness has been provided in
Eq. (4). Therefore, we will focus on the stiffness in the x1 − x2
plane. Based on the recent work (Yin et al. 2023), when the wires
are packed in a hexagonal lattice, the effective elasticity is iso-
tropic in the cross section. Therefore, when C1,111 and C1,122 are
derived, the full transversely isotropic stiffness tensor can be
obtained.

The Singum Model for Stiffness in the Cross Section
of the Cable

Yin (2022) introduced the Singum model, which aims to establish a
connection between pairwise interactions between nodes of a lattice
structure and the effective elastic properties of solids. The cross
section of cable can be represented by a hexagonal lattice, in which
the wire’s center-center connections form the bonds of the lattice
structure with the force-displacement relationship given in Eq. (14),
for elastoplastic contact. The singum particle, or the Wigner-Seitz
(WS) cell of the lattice, can be generated through Voronoi decom-
position and perfectly fill the space of the lattice with a periodic
pattern, so the properties of the singum particle can represent
the lattice.

An example of this can be seen in Yin et al. (2023), Fig. 8(a)
depicts a hexagonal packing arrangement, where a unit cell con-
tains a central cylinder surrounded by six neighboring cylinders.
To create the singum representation for the central cylinder, as
shown in Fig. 8(b), the six bonds are cut by perpendicular lines
to form a hexagonal shape.

Each pair of the contacting wires forms a force path through the
center-center bond. The original bond length is 2R with zero force,
and the deformation can be described by the stretch ratio of λ ≤ 1
as the applied force increases from zero.

When the lattice is subjected to a uniform external load, the
force will be transferred through the lattice by the bonds, which
can be homogenized by the singum modeling (Yin 2023a; Yin and
Liu 2023). The stiffness based on the current configuration can be
derived by the incremental stress δσij caused by a strain variation
δεkl as follows:

δσij ¼ Cijklδεkl ð15Þ

where Cijkl is the stiffness tensor. In linear elasticity, given an
infinitesimal strain, the stress can be obtained through the stiffness

Table 3. The function of PðλÞ for the elastoplastic contact by curve fitting with a polynomial function with N ¼ 2, 3, 4

PðλÞ k1 (N=m) k2 (N=m) k3 (N=m) k4 (N=m) Error (%)

N ¼ 2 −1.60314 × 109 −104.393 NA NA 21
N ¼ 3 −1.60314 × 109 −180.863 −9,044.28 NA 6.13
N ¼ 4 −1.60314 × 109 −236.077 × 109 −23,916.1 × 109 −952,955 × 109 1.07

(a) (b)

Fig. 8. Singum construction: (a) Wigner-Seitz (WS) cell in dotted lines; and (b) singum particle with point loads.
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tensor. Nevertheless, because the force-interference relationship in
the Hertz’s model is highly non-linear, the tangential stiffness
tensor at the specific spatial coordinate shall be used to accurately
describe the elastic behavior (Yin 2022). When the contact between
wires becomes elastoplastic, the effective mechanical behavior will
be discussed in the next section.

The neighboring cylinders exert a point force represented as FI

at the position xI along each of the six edges of singum 0 shown in
Fig. 4 (Yin et al. 2023). In the absence of any external body forces,
this leads to the formulation of the boundary condition, ensuring
equilibrium, as follows:

σijðxÞniðxÞ ¼ Σ6
I¼1F

I
jδðx − xIÞ for x ∈ ∂VS ð16Þ

where δðxÞ is the Dirac Delta function; σij and ni are the Cauchy
stress tensor and surface out-normal vector of a continuum particle,
respectively. The stress integral with a Singum particle Sij can be
written as follows (Mura 1987; Yin et al. 2023):

Sij ¼
Z
Vs

σijðxÞdx ¼
Z
∂Vs

xiσkjnkdx ¼
X6
I¼1

xIiF
I
j ð17Þ

where Vs ¼ λ2V0
s is the deformed area of the singum particle with

the initial area V0
s ¼ 2

ffiffiffi
3

p ðRÞ2; the point force FI
i between two

smooth cylinders is expressed as the derivative of the pairwise
potential VI (Yin 2022) as

FI
i ¼

∂VI

∂xi ¼
VI
;λni
2R

ð18Þ

where the potential function can be obtained by the elastoplastic
contact model of the P − λ relationship in Eq. (14), which will
be elaborated in the next section.

The Cauchy stress within the singum particle can be computed
as the volume average of the stress integral

σij ¼
Sij
Vs

ð19Þ

To test the tangent stiffness of the overall structure, we apply an
incremental strain variation at every point x (Yin 2023b):

δujðxÞ ¼ xiδdij ð20Þ

where δdij ¼ δui;j represents a linear displacement gradient tensor,
which is related to the variation of the Eulerian strain at the current
configuration of a stretch ratio λ as (Yin 2023b):

δεij ¼
δdij þ δdji

2λ2
ð21Þ

The variation of Eq. (19) with the aid of Eq. (18) yields:

δσij ¼
1

Vs
Σ6

I¼1

�
xIiF

I
j;lδxl þ δxIiF

I
j − xIiF

I
j
δvs
vs

�

¼ 1

Vs
Σ6

I¼1ðxIiFI
j;lx

I
kδdkl þ FI

jδdkix
I
k − xIiF

I
jδdkkÞ

¼ 1

2Vs
Σ6

I¼1½ðλ2VI0
;λλ − λVI0

;λÞnIinIjnIknIl
þ λVI0

;λðδiknIlnIj þ δjknIln
I
i − δklnIin

I
jÞ�δdkl ð22Þ

By relating the variations in the Cauchy stress and Eulerian
strain with the aid of Eq. (21), the tangent stiffness tensor can
be evaluated (Yin 2023a, b) as

Cijkl ¼
λ2

2Vs

X6
I¼1

½ðλ2VI0
;λλ − λVI0

;λÞnIinIjnIknIl

þ λVI0
;λðδiknIlnIj þ δjknIln

I
i − δklnIin

I
jÞ� ð23Þ

where nIi ¼ ðxIi=jxI jÞ is the component of the unit vector from the
center of a singum particle to its neighbors, and the superscript
of I0 can be disregarded because each pair of the bond share
the same center-center distance and thus the same derivatives of
V ;λ and V ;λλ.

For hexagonal packing of wire cables, the relation between
stiffness tensor C of hexagonal lattice and pairwise potential can
be calculated using the identities of

P
6
I¼1 n

I
in

I
j ¼ 3δij andP

6
I¼1 n

I
in

I
jn

I
kn

I
l ¼ 3

4
ðδijδkl þ δikδjl þ δilδjkÞ (Yin et al. 2023) as

follows:

Cijkl ¼
ffiffiffi
3

p

16ðRÞ2 ½ðλ
2V ;λλ − 5λV ;λÞδijδkl

þ ðλ2V ;λλ þ 3λV ;λÞðδikδjl þ δilδjkÞ� ð24Þ
where the pairwise potential VðλÞ is obtained by the P − λ
function.

The Effective Elastic Constants Based on the
Elastoplastic Contact

Using Eq. (14) of the P − λ function, the potential function can be
written as

VðλÞ ¼ −2R
Z

λ

1

PðλÞdλ ð25Þ

which takes λ ¼ 1 as the reference point of the potential with Vð1Þ ¼ 0. Therefore, the derivatives of VðλÞ are as follows:

V ;λðλÞ ¼ −2RP ¼

8>>>>><
>>>>>:

− 4πE�R2ðλ − 1Þ
W−1½0.25 � eðλ − 1Þ� λc < λ

−9850.0þ 80.15 × 106ðλ − λcÞ þ 11.81 × 109ðλ − λcÞ2

þ1.196 × 1012ðλ − λcÞ3 þ 47.65 × 1012ðλ − λcÞ4 λ ≤ λc

ð26Þ

V ;λλðλÞ ¼ −2RP;λ ¼

8><
>:

− 4πE�R2

1þW−1½0.25eðλ − 1Þ� λc < λ

80.15 × 106 þ 23.61 × 109ðλ − λcÞ þ 3.588 × 1012ðλ − λcÞ2 þ 190.6 × 1012ðλ − λcÞ3 λ ≤ λc

ð27Þ
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Therefore, by substituting Eqs. (26) and (27) into Eq. (24),
we can obtain the stiffness tensor in the cross-sectional plane.
For example, for steel wires shown in Table 1, we can obtain when
λc ¼ 0.99987 at the critical deflection, V ;λðλcÞ ¼ −9847.8 J and
V ;λλðλcÞ ¼ 80.157 × 106 J. Therefore, we can obtain

C11 ¼
ffiffiffi
3

p

16R2
½3λ2V ;λλ þ λV ;λ� ¼ 41.638 GPa

C12 ¼
ffiffiffi
3

p

16R2
½λ2V ;λλ − 5λV ;λ� ¼ 13.888 GPa

C66 ¼
ffiffiffi
3

p

16R2
½λ2V ;λλ þ 3λV ;λ� ¼ 13.875 GPa ð28Þ

where C66 ¼ ðC11 − C12Þ=2.
Substituting the preceding equation into Eq. (4), we can obtain

C13 ¼ 16.658 GPa; C33 ¼ 191.37 GPa; C44 ¼ 69.762 GPa

ð29Þ

For different values of λ, the transversely isotropic stiffness
tensor of the cable will be different so that we can use the prestress
to tailor the effective stiffness of the cable.

To produce prestress in the cross section and control λ, bands
encircling the wire cable are used to exert wrapping forces upon the
wires. The bands are assumed to produce a uniform transverse com-
pression in the cable. A wire cable with a wrapping band around it
is shown in Fig. 9(a). For each inner wire, there exist six neighbor-
ing wires in Fig. 9(b) so that the wire can be represented by a
hexagonal prism in Fig. 9(c).

Notice that this is an ideal situation where the force is uniformly
transferred through the lattice by the center-center normal force.
When friction or lattice defects occur in an actual situation, the
force transfer may be slightly different. However, this paper focuses
on the ideal situation with a periodic force and displacement
distribution in the hexagonal lattice, which can be homogenized
into a transversely isotropic solid.

When a wrapping force denoted as F is applied in the unit length
of a band, it leads to a contact force P between the cylinders and a
change of the center-center distance in the wire cable. The change

in radius, which is expressed as λ, will reduce from its initial
value of 1 at the zero wrapping force condition. Consequently,
by expressing the stiffness tensor C in terms of λ, we can
establish a connection between the elastic modulus and the
wrapping force.

Given the force in the band of homogenized cable with the
radius Rd in Fig. 10, the force produces a hydrostatic pressure
σm in the cross section, which is related to the hoop stress σh as

σh ¼
σmRd

th
ð30Þ

where th = thickness of a band. The wrapping force F can be
computed as

F ¼ σhth ¼ σmRd ð31Þ

The hydrostatic pressure σm and the contact force P at each wire
contact point can be computed through the Singum model through
Eqs. (17) and (19) as follows:

(a)

(b) (c)

Fig. 9. Wire cable (a) cable cross section with wrapping wire; (b) a wire with 6 neighboring wires, and (c) Singum particle of the hexagonal prism
with dotted lines.

Fig. 10. Wire cables compressed by a wrapping band.
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Vsσmδij ¼
X6
I¼1

xIiF
I
j ¼ PRλ

X6
I¼1

nIin
I
j ð32Þ

Using the identity of
P

6
I¼1 n

I
in

I
j ¼ 3δij, we obtain

σm ¼ 3PRλ
Vs

or P ¼ Vsσm

3Rλ
¼ VsF

3RRdλ
ð33Þ

Given a wrapping force F, substituting P of Eq. (33) into
Eq. (14), we can calculate λ, which will be used to determine the
effective stiffness tensor in Eq. (24). Therefore, we can inversely
control the stiffness in the cross section by tailoring the wrapping
force.

Results and Discussion

As Singum modeling of the effective stiffness of packed cables
with wrapping forces has been validated by the experiments and
verified by the FEM analysis, we can use it to predict the mechani-
cal behavior of the cable and analyze the stress transfer when the
cable is subjected to a single wire breakage.

When the wire is still in the linear elastic range, Hertz’s model
provides a nonlinear P − λ curve in Fig. 3, and the Singum model
transfers the forces to stresses, which further increases the nonli-
nearity of the effective elasticity. When the wrapping force is higher
than Pc, the elastoplastic contact behavior leads to a lower effective
stiffness of the cable in the cross section.

For a homogenized cylinder with properties listed in Table 1, the
stiffness constants can be calculated using Eqs. (28) and (4), and
the results are shown in Fig. 11. The increasing trend indicates that

the stiffness of tightly packed cylindrical steel wires can be influ-
enced and adjusted by varying the magnitude of the wrapping
force, consequently, the ratio λ. There is a sudden and substantial
spike in the stiffness constants for a minimal λ, particularly in com-
parison to the initial loose configuration where no wrapping force is
applied and λ ¼ 1. This phenomenon underscores the substantial
impact that adjusting the wrapping force can have on enhancing the
overall stiffness of wire cables. Note that bridge cables typically use
high strength steel wire with a high yield strength at 1.2–1.5 GPa,
so that the stiffness can exhibit a much higher range changing with
the wrapping force.

In Fig. 11(a), the effective stiffness of the packed wire cable
increases in the elastic stage until the yield point and shows a
gradual decrease once yielding initiates. This is different from
the elastic perfectly plastic bulk material, which exhibits a constant
stiffness in the elastic range and a zero stiffness after yielding. For
the cable, the transition from the elastic range to the plastic stage is
marked by the sudden drop of the stiffness constants at the critical
λ, as shown in Figs. 11(b and c).

In order to demonstrate the effect of wrapping force on the
effective stiffness of a cable, we use the low-carbon steel wires with
material constants given in Tables 1 and 2 with a diameter of 5mm.
Approximately 36,275 wires are required to assemble a cable with a
diameter of 1m. The wrapping force F changing with λ is shown in
Fig. 12(a).

Using the relationship between the stiffness tensor and λ, we can
obtain the stiffness tensor changing with the wrapping force F in
Fig. 12(b). When F ≥ Fc ¼ 3.412 MN=m, Pc ¼ 197.0 kN=m is
reached, and the elastoplastic contact is applied. Different from
the elastic perfectly plastic bulk material, when the wrapping force
reaches Fc, the material can still sustain a much higher wrapping

(a)

(b)

(c)

Fig. 11. Stiffness constants varying with λ for a low-carbon steel cable: (a) λ ∈ ð0.992; 1Þ; (b) C11 for λ ∈ ð0.9997; 1Þ; and (c) C33 for
λ ∈ ð0.9997; 1Þ.
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force, which leads to the growth of the plastic zone in a wire from
one point to a larger area, which is not favorable in actual appli-
cation due to the permanent deformation and the loss of stiffness
shown in Fig. 12(b).

Note that the validation of the formulation requires many wires
to calculate the average stress and strain with precise control of the
loading conditions for a uniform loading transfer. As a qualitative
demonstration, a 61-wire cable has been set up in the laboratory
with a wrapping band for compressive testing, which is docu-
mented in the Supplemental Materials. Although it is not sufficient
to provide a quantitative relationship between the effective stiffness
and the prestress in the experiments, it clearly shows the effective
stiffness in the cross section increases with tightening of the band or
increasing the prestress.

When the cable is subjected to an additional axial tension, due to
the effect of Poisson’s ratio, the radius of wire R reduces, which
causes the redefinition of λ and the change of prestress. Therefore,
the effective stiffness in the cross section will change with the axial
loading as well. Because the size of bands cannot be changed
frequently, additional axial tension will lead to the decrease of the
wrapping force and, thus, lower the stiffness in the cross section,
which can be predicted by the present model. In general, the cable
is under infinitesimal elastic deformation, and the effect of
Poisson’s ratio on wrapping force shall be minimal. Alternatively,
the temperature change may also change the wrapping force, and
the method in the recent paper (Liu and Yin 2023) can be used to
analyze the thermoelastic behavior. A detailed analysis of bridge
cables is underway.

Conclusions

This study introduces the singum model as a novel approach for
analyzing the mechanical properties of packed wire cables featur-
ing cylindrical steel wires arranged in a two-dimensional hexagonal
lattice structure tightened by wrapping bands at a certain interval.
Within this framework, the behavior of an inner cylinder is repli-
cated using a continuous singum particle, while the interaction
forces between cylinders adhere to the Hertz contact model. An
elasto-plastic contact model for two cylinders is formulated, and
an empirical formula is provided by curve fitting the FEM results.
This formulation enables the determination of the effective constit-
utive relationship for the cross section of wire cables. Significantly,
variations in displacement result in configurational forces due to

wrapping, leading to a substantial modification in the effective stiff-
ness of the packed cylinders. This research investigates the effective
transverse stiffness of packed wire cables, employing the singum
model, FEM, and experimental tests. The impact of wrapping force
on effective transverse stiffness is illustrated, and experiments are
conducted to validate the model’s potential function. The compari-
son with experimental results highlights the model’s capability.
However, it is crucial to acknowledge some limitations: the empiri-
cal formula derived from curve fitting is based on low-carbon steel
wires and assumes an elastic and perfectly plastic behavior. In ad-
dition, the assumption of uniform compression induced by the
wrapping bands represents an idealized scenario. In reality, factors
such as friction or lattice defects may lead to variations in force
transfer within the cable structure.

Appendix I. Experimental Testing of the Cylinderical
Contact

Experimental tests were conducted at the Carleton Laboratory,
Columbia University, to investigate the elastoplastic contact param-
eters of cylinders in contact. In the experiment, only one cylinder is
used, and it is sandwiched in between two hardened steel platens;
these steel platens can be considered to be rigid Surfaces and, with
mirror symmetry, can reproduce the deformation pattern of the
contact of two identical cylinders. The experimental setup is shown
in Fig. 13.

A universal testing machine (Instron 600DX UTM) with a
maximum capacity of 135 kips (600 kN) was used to apply a com-
pression load, and the load-displacement (P − δ) relationship was
identified.

Three different samples of Low carbon cylinders of diameter
50 mm (1.92′′) and length 100.7 mm (4′′) were tested, and the
material properties are seen in the Table 1. The hardened steel
plates are 15.24 × 15.24 cm (6′′ × 6′′) plates with a thickness of
2.54 cm (1′′) and a yield strength of 1,379 MPa (200,000 psi).
The specimens were laid in the horizontal direction and held
in place using steel plates that were oiled to prevent friction,
as shown in Fig. 10. The specimens were loaded uniaxially using
a displacement control of 0.254 mm=min. The time, load, and
deflection values for all tests were recorded through a data
acquisition system.

To determine the displacement of the specimen only, machine
compliance (deformations associated with the load frame, load cell,

(a) (b)

Fig. 12. Effect of wrapping force on wire cables: (a) wrapping force varying with λ; and (b) stiffness constants varying with Wrapping force.
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and grips) must be removed from this measurement. When a test’s
total displacement is small, machine compliance can be a signifi-
cant portion of the output displacement given by the software.
Accordingly, the values from the experimental test were corrected
by conducting a compliance test. The results obtained from the
experimental test are shown in Fig. 3. Note that when the load is
higher than the yielding limit, the experimental results of the force
versus the interference does not follow Fig. 7 due to our assumption
of elastic perfectly plastic materials, and further investigation is still
needed to release the elastic perfectly plastic assumption of the wire
under compression.

Appendix II. Derivation of the Critical Contact Load
and Interference

A short summary of Green (2005)’s analysis for critical contact
and interference is provided as follows. For a load per unit
length, P, maximum Hertzian pressure p0 and the half-width
b is given by

p0 ¼
2P
πb

ð34Þ

b ¼
ffiffiffiffiffiffiffiffiffi
2PR
πE�

r
ð35Þ

Note that here the radius R of two cylinders is only the twice “R”
that Green (2005) used with the same symbol of R. Therefore, the
formulation will exhibit a difference of this coefficient of 2.

Assuming that the x1-axis aligns with the contact line, the
x2-axis is tangent to both cylinders, and the x3-axis corresponds
to the loading direction, the stress under the contact at ζ ¼ jx3=bj
is given by

σ3 ¼ − p0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ζ2

p ð36Þ

σ2 ¼ p0

��
2ζ −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ζ2

q ��
2 − 1

1þ ζ2

��
ð37Þ

For plane strain the transverse stress is given by

σ1 ¼ νðσz þ σyÞ ¼ 2

�
ζ −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ζ2

q �
νp0 ð38Þ

The von Mises stress, σe, is given by

σe

p0

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih
1 − 2ζ

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ζ2

p − ζ
�i

½1þ 4ζ2 − 4ð1þ ζ2Þð1 − νÞν�
1þ ζ2

vuut

ð39Þ

which is not necessarily maximized at ζ ¼ 0. From the equation, it
can be seen that the maximum von Mises stress varies with ζ,
Hence, the maximum von Mises stress is obtained from taking
the derivative of the von Mises stress as ðdσc=dζÞ ¼ 0. Using the
von Mises theory to predict yielding onset, we can derive
the critical values for force per unit length, interference, and
half-width as

Pc ¼
πRðCσyÞ2

2E� ð40Þ

bc ¼
Rcσy

E� ð41Þ

δc ¼
R
2

�
Cσy

E�

�
2
�
2 ln

4E�

Cσy
− 1

�
ð42Þ

where constant C is defined as C ¼ ðp0=σyÞ with the maximum
value of σe at the yield stress, which is explicitly written as

C ¼

8>><
>>:

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ðν − 1Þνp ν ≤ 0.1938

1.164þ 2.975ν − 2.906ν2 ν > 0.1938

ð43Þ

where ν is the Poisson’s ratio.
Note that δc exhibits a minor difference from Green (2005) in

terms of “4E�” instead of “2E 0.” For the wire given in Table 1, we
can obtain C ¼ 1.795, Pc ¼ 197.0 kN=m, δc ¼ 6.713 × 10−6 m,
λc ¼ 0.99987 for the plane strain case, which has been verified
by the FEM results.

Data Availability Statement

All data, models, or code that support the findings of this study are
available from the corresponding author upon reasonable request.
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Fig. 13. Experimental setup for cylindrical contacting compression
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The Supplemental Materials package is available online in the
ASCE Library (www.ascelibrary.org).
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