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A B S T R A C T

The particle size effect on the overall thermoelastic behavior of a composite containing many identical spherical

particles reduces with the specimen-particle size ratio (SPR). When SPR is large enough, the effective stiffness

converges, and the homogenized properties can represent the composite. This paper addresses two challenging

questions: How large of an SPR is enough to reach the convergent results for different loading conditions, and

whether is the critical SPR obtained from a uniform loading condition applicable to a nonuniform loading

condition? When a uniform load is applied to a composite beam, the elastic moduli and thermal expansion

coefficients can be calculated from the material’s response. When the beam is subjected to pure or thermal

bending, the deflection can be predicted by the heterogeneous or homogenized beams. The inclusion-based

boundary element method (iBEM) is developed for high-fidelity simulation of many-particle systems. Given

a volume fraction of particles, particle and beam size, and beam geometry, the local fields and the effective

deformation are calculated for uniform and nonuniform loading conditions. The comparative study between

a homogenized beam by the micromechanical approach and the numerical simulation of the heterogeneous

particle system shows that a much larger SPR is required for thermal bending to reach a convergent result

between the heterogeneous and homogenized beam. When the SPR is moderate, a cross-scale modeling method

shall replace the micromechanical modeling to achieve accurate results.

1. Introduction

Composite materials combine two or more distinct constituent materials, such as fibers or particles in a matrix, and may achieve enhanced

properties that a single-material phase cannot. Particulate composites have been widely used in machinery components like brake pads and

engine components for improved durability and thermo-mechanical performance (Mura, 1987; Nemat-Nasser and Hori, 2013; Prasad et al., 1994;

Campanella and Mitchell, 1968). The microstructure of composite materials, including particle size, volume fraction, and distribution, is crucial

for determining their performance. Micromechanics of composites uses a representative volume element (RVE) to calculate the local field of a

heterogeneous material system and predict the effective material behavior as a homogenized material (Hori and Nemat-Nasser, 1999; Yin and

Zhao, 2016). Theoretically, the size of an RVE can be extended indefinitely to avoid the size effect. Numerically, the RVE should be constrained

to a critical size that minimizes computational cost and secures a convergent solution.

The micromechanics-based approach typically involves two steps in applications: (1) use a uniform load, such as uniform far-field stress (Mura,

1987) in an RVE or uniform traction or displacement in a unit cell (Wu and Yin, 2021), to predict the effective material properties by the overall

material response. Generally, the volume averages of the local fields are used to calculate the constitutive constants. (2) Homogenize the composite

into a uniform material with the calculated constants for the actual design and analysis of the structure (Lee et al., 2019), so that the traditional

structural design and analysis methods, such as the finite element method (FEM), can be used. Therefore, the design and applications of a complex

material system can be simplified with micromechanical modeling. Two fundamental questions shall be addressed in this micromechanics-based

approach: (1) What is the critical size of the RVE, which provides the minimal size of composite materials to assure the applicability of the

micromechanical model? (2) Whether the critical RVE size under the uniform test loading condition applies to general loading conditions as well,

which implies that the micromechanical model may still fail in some loading conditions if the required RVE size is larger?
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Several studies have addressed these questions. Hill (1963) first proposed that a composite sample, such as an RVE, should contain adequate

microstructural details to sufficiently represent the composite. On the basis of Hill’s concept, numerical studies have investigated size effects on

RVE and mainly minimized its dimensions. Kanit et al. (2003) used a statistical approach to obtain RVE with tailorable and acceptable precision.

In addition, a variational scheme (Terada et al., 2000) was applied to the homogenization process, examining the differences and convergences

of parameters at macro and micro scales. Dirrenberger et al. (2014) concluded that larger RVEs generally exhibit slower convergence, causing

difficulties in obtaining convergent results.

In actual applications, a composite can never be infinitely large, and the testing specimen and particle size difference can be quantified by

the smallest dimension of the specimen versus the particle diameter, namely the specimen-particle size ratio (SPR). Recently, Wu and Yin (2021)

conducted virtual experiments to investigate how microstructure affects overall homogenized properties, such as size variation and distribution of

inhomogeneities. Specifically, Wu and Yin (2021) changed the number of stiffer inhomogeneities to understand the size effects, i.e., 8, 64, 125,

512, 1000 to 3375, while maintaining a constant volume fraction of 40%. The results of the virtual experiments indicate that the convergence

of homogenized properties, such as elastic moduli, gradually decreases with smaller dimensions of inhomogeneities. In Wu’s work (Wu and Yin,

2021), when the SPR is greater than 10, the difference in homogenized elastic moduli is below 1.4%.

Although some studies suggest that a greater SPR can improve the accuracy of homogenized properties, its applicability to general cases still

needs to be investigated. Ostoja-Starzewski (1998) pointed out that improper selection and consideration of boundary conditions, especially scaling

effects, can significantly alter local fields. Following this work, Alzebdeh et al. (1998) conducted several numerical studies on boundary conditions.

Since homogenized properties are generally obtained from either virtual experiments or micromechanical theories, applications of the results to

other loading conditions are open to question. Recently, Wu et al. (2023b) compared the deflection of a simply supported bilayered solar panel

under downward pressure. The deflections are obtained through the substrate’s actual microstructure or homogenized layer with uniform elastic

constants obtained by micromechanical modeling. Surprisingly, the two solutions are fairly different, particularly in the maximum deflection, which

motivates us to systematically investigate the applicability of micromechanical models at different SPR or RVE sizes.

Size effects in elasticity refer to the phenomenon in which the mechanical properties of a material or structure change as a function of its size,

even when the material or structure is geometrically similar at different size scales. Three primary types of size effects are commonly observed: (1)

For structural size effect, the size of a specimen affects the measured property, such as a decrease in strength or stiffness with increasing specimen

size under an identical test condition (Wisnom, 1999; Bažant, 1999); (2) for surface-to-volume size effect, as the size of a material decreases, the

ratio of its surface area to volume increases (Pan and Feng, 2008), which significantly influences properties such as thermal conductivity, electrical

properties, and mechanical strength (Zhang et al., 2012); (3) microstructure size effect, which occurs when the characteristic size of microstructures,

such as grains in a polycrystalline metal (Li et al., 2016) or fibers in a composite material (Xu et al., 1994), is so small that it creates different

strain gradients and effective mechanical behavior.

This paper focuses on the microstructure size effect, quantified by the SPR for simplicity. The novelty of this study in comparison with the

existing homogenization theory is the cross-scale modeling to determine the material behavior based on the actual microstructure and loading

conditions, which does not satisfy the classic micromechanics assumptions but is too computationally expensive to be solved by existing numerical

methods. It is discovered that a notably larger SPR is required to achieve convergent results between heterogeneous and homogenized beams

for thermoelastic problems in comparison with the elastic or thermal problem. This shed light on limits of traditional homogenization theory on

different boundary value problems. Note that in general continuum mechanics provides the same prediction of the effective material properties

of particulate composites with the same distribution and volume fraction of particles but different size scales. Therefore, classic micromechanical

models commonly avoid the microstructure size effect by assuming an infinitely large RVE. However, the particle size effect plays an important

role in the experimental testing of composites due to particle interactions and boundary effects when SPR is moderate or relatively small (Barmouz

et al., 2011).

Understanding how the size of particles or inclusions influences the overall behavior of the composite is vital for accurately characterizing

and predicting its mechanical properties. Research has been conducted to estimate the influence of inclusion interaction on the macroscopic

stiffness of the composite. This is achieved by considering multiple inclusion models, which serve as representative fragments of periodic

inhomogeneities (Kushch, 1997, 2020). When particles are distributed in the form of a certain lattice, the composite inherently deviates from the

isotropic assumption and the precise microstructure can be examined. By incorporating both the matrix and an adequate count of inhomogeneities,

the cross-scale modeling considers any actual particle distribution.

This paper examines the effect of microstructure size in composite specimens under various loading conditions. For simplicity and repeatability,

the periodic distribution of particles is studied. Section 2 introduces one composite sample containing inhomogeneities subjected to various thermal

and mechanical loads in the remainder of the paper. Section 3 presents thermal, thermoelastic, and elastic fundamental solutions, and local fields

disturbed by one inclusion with polynomial-form eigen-temperature gradient (ETG) and eigenstrain. Subsequently, the equivalent stress conditions

of dual EIM (Wu et al., 2023a, 2024) are briefly introduced and implemented into the global matrix of the iBEM. Section 4 aims to validate

the algorithm mentioned above by FEM by comparing local thermoelastic fields. Section 5 conducts virtual experiments to investigate the size

effect where inhomogeneities exhibit uniform distribution with varying radii under the same volume fraction. Section 6 demonstrates the issue

of homogenized properties with different test loads, where solutions with the actual microstructure exhibit significant differences. Finally, some

conclusive remarks highlight the contrast in behavior between pure and thermal bending in homogenized and heterogeneous beams.

2. Problem statement

This study investigates the effect of particle size on the overall material behavior by analyzing a cuboid domain 𝐷 containing multiple spherical

inclusions 𝛺𝐼 embedded in an isotropic matrix. Fig. 1 illustrates a beam of dimensions (𝑏 × ℎ × 𝑙) containing spherical particles with a radius of

𝑎 (𝑎 < 𝑏 = ℎ < 𝑙) at a volume fraction of 𝜙. As the particle radius 𝑎 decreases, the number of particles increases. The SPR is defined as 𝑏∕𝑎.
The beam is the union of the inhomogeneities 𝛺𝐼 and the matrix 𝐷 −

⋃
𝑁𝐼

𝛺𝐼 . Each domain exhibits independent material properties, and its

stiffness is denoted by 𝐶𝑚
𝑖𝑗𝑘𝑙
, where 𝑚 = 0 means the matrix, and 𝑚 = 1, 2,… , 𝑁𝐼 refer to the 𝑚th type of inhomogeneities. In actual composites,

the inhomogeneities may exhibit the same radius and stiffness for simplicity, so 𝑚 = 0, 1. Consider the matrix as an example. Its stiffness tensor 𝐶0

is defined as 𝐶0 = 𝜆0𝛿𝑖𝑗𝛿𝑘𝑙 + 𝜇0(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘), where 𝜆0 and 𝜇0 are the Lamé parameters of the matrix. Similarly, 𝐾0 is the thermal conductivity

of the matrix, and the thermal modulus 𝛾0 is given by 𝛾0 = (3𝜆0 + 2𝜇0)𝛼0, where 𝛼0 is the coefficient of thermal expansion (CTE).
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Fig. 1. Schematic illustration of a composite beam containing multiple spherical particles, where particles are arranged in a regular or random pattern.

Table 1

Material properties of aluminum and high-density polyethylene (HDPE).

Property Aluminum HDPE

Thermal conductivity (W/mK) 204 0.53

Coefficient of thermal expansion (CTE) (m/mK) 2.3 × 10−5 1.2 × 10−4
Young’s modulus (GPa) 6.9 1.5

Shear modulus (GPa) 25.94 0.517

When the beam domain 𝐷 is subjected to a specific load on the boundary, the load will be transferred to the particles and matrix. Assume that

the inhomogeneities are perfectly bonded. The continuity of displacements, traction, temperature, and heat flux along the interfaces is written as:

𝜎+
𝑖𝑗
(𝐱)𝑛+

𝑗
= 𝜎−

𝑖𝑗
(𝐱)𝑛−

𝑗
; 𝑢+

𝑖
(𝐱) = 𝑢−

𝑖
(𝐱); 𝑇 +(𝐱) = 𝑇 −(𝐱); 𝑞+

𝑖
(𝐱) = 𝑞−

𝑖
(𝐱) on 𝜕𝛺𝐼 (1)

where 𝑛𝑗 is the normal vector of the inclusion interfaces 𝜕𝛺
𝐼 ; the superscripts ‘−’ and ‘+’ indicate the inward and outward sides of the interfaces;

𝑢𝑖, 𝜎𝑖𝑗 , 𝑇 and 𝑞𝑖 denote the displacement, stress, temperature, and heat flux, respectively.

For demonstration purposes, this paper follows our previous work using aluminum particles in a high-density polyethylene (HDPE) matrix for

solar panel applications (Liu et al., 2015; Zhang et al., 2020; Yin et al., 2021). The material constants are provided in Table 1 (Haynes, 2014;

Kováčik et al., 2018; Tavman, 1996). Following Mura’s terminology (Mura, 1987), in this paper, inclusions denote material subdomains with the

same material as the matrix but with a source field such as eigenstrain. In contrast, inhomogeneities encompass mismatches of material properties

from the matrix.

Four loading conditions will be considered for the deformation of the beam:

(a) uniaxial loading with uniform stress at the two ends;

(b) pure bending with the moment applied at the two ends;

(c) uniform temperature change in the beam; and

(d) uniform transverse heat flow from the top to the bottom.

Loading (a) and (c) are uniform loading conditions. The average deformation can predict the elastic constants and thermal expansion coefficient,

respectively, which can predict material behavior in loading (b) and (d) based on the micromechanics-based approach when the SPR is

sufficiently large. However, the accuracy of this approach depends on the critical SPR value. The deflection of the beam will be investigated

for both homogenized and heterogeneous material systems for conditions (b) and (d), which demonstrate the critical SPR value to make the

micromechanics-based approach applicable.

Depending on the loading condition and the material’s response, one can formulate the problem in three cases:

Case 1. The temperature field and heat flux caused by heat sources on the inhomogeneities or thermal loading on the boundary;

Case 2. The elastic fields caused by eigenstrain or force on the inhomogeneities or mechanical loading on the boundary;

Case 3. The thermoelastic field, such as thermal stress and strain, caused by heat sources on the inhomogeneities or thermal loading on the boundary.

3. Formulation of the problem

Eshelby’s equivalent inclusion method (EIM) uses Green’s function technique to solve the inclusion problem with an eigenstrain efficiently and

thus set up the equivalence between an inclusion and an inhomogeneity by introducing an eigenstrain to simulate the material mismatch (Eshelby,

1957, 1959). Based on Eshelby’s work on the elastic field in an ellipsoidal inclusion, the method is widely applied in composite material behavior

and heterogeneous material property prediction.

3.1. Elastic and thermal fundamental solutions for a point source in the infinite domain

The EIM employs the Green’s function technique based on the fundamental solutions. This method provides an elegant way to formulate

complicated boundary value problems via superposition or integral of the response on the field caused by a distributed source field. Furthermore,
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fundamental solutions yield valuable perspectives on the material’s mechanical and thermal properties at the microscale level. In the field of

isotropic thermoelasticity, Biot (1956) extended the Papkovitch–Neuber solution and obtained a solution comprising four potential functions.

The completeness of Biot’s general solution was subsequently proven by Verruijt (1969). Nowacki (1986) derived the full-space fundamental

solution for a concentrated point heat source, and Barber (1992) provided a summary of the derivation for both two-dimensional (2D) and three-

dimensional (3D) problems. Considering these fundamental solutions, the current approach initially reviews the formulation for thermal, elastic,

and thermoelastic cases. In an infinite domain, fundamental solutions are obtained from a point heat source and a point force source, corresponding

to the temperature field 𝑇 and the displacement field 𝐮, respectively. Specifically, the heat source influences 𝑇 and 𝐮, whereas the point force source
exclusively affects 𝐮. It is essential to highlight that the interaction between the heat source and 𝐮 represents the thermoelastic coupling behavior,
and it has commonly been solved with a thermal strain associated with the temperature field. Therefore, thermal and elastic analyses are completed.

However, with the fundamental solution, the analysis can be significantly simplified.

Case 1: Thermal problem with a point heat source in the infinite domain

The temperature change can be written regarding the fundamental solution, known as the thermal Green’s function. Let 𝐱′ = (𝑥′1, 𝑥
′
2, 𝑥

′
3) be the

source point and 𝐱 = (𝑥1, 𝑥2, 𝑥3) be the field point of interest. In the steady state with homogeneous thermal conductivity 𝐾0, the governing equation

in terms of the temperature field 𝑇 is expressed as follows:

𝐾0𝑇,𝑖𝑖 + 𝑞̇𝑉 (𝐱) = 0 (2)

where 𝑞̇𝑉 represents the volumetric heat source. In the absence of 𝑞̇𝑉 , the heat conduction equation simplifies to the Laplace equation for a uniform

material domain with constant 𝐾0. For an arbitrarily distributed heat source 𝑞̇𝑉 (𝐱′), the temperature field is obtained by the integral of the Green’s
function as (Yin et al., 2022):

𝑇 (𝐱) = ∫𝛺 𝐺(𝐱, 𝐱′)𝑞̇𝑉 (𝐱′)𝑑𝐱′ (3)

where 𝐺(𝐱, 𝐱′) is the Green’s function caused by a point heat source at 𝐱′ as Eq. (4) and 𝜙 = |𝐱 − 𝐱′|−1 is the Newton potential.
𝐺(𝐱, 𝐱′) = 𝜙

4𝜋𝐾0 (4)

Case 2: Elastic problem with a point force in the infinite domain

The Navier equations describe the behavior of a uniform infinite domain subjected to a distributed force. The governing equation for this

situation can be expressed as follows:

(𝜆0 + 𝜇0)𝑢𝑖,𝑖𝑗 + 𝜇0𝑢𝑗,𝑖𝑖 + 𝑏𝑗 (𝐱) = 0 (5)

where 𝜆0 and 𝜇0 denote the two Lamé constants of the elastic matrix material; 𝑢𝑖 represents the 𝑖th displacement component; and 𝑏𝑗 (𝐱) indicates
the body force acting at 𝐱 in 𝑗th direction. The displacement at any interior point can be expressed through the elastic Green’s function 𝐺𝑖𝑗 (𝐱, 𝐱′)
as Eq. (6),

𝑢𝑖(𝐱) = ∫𝛺 𝐺𝑖𝑗 (𝐱, 𝐱′)𝑏𝑗 (𝐱′)𝑑𝐱′ (6)

and

𝐺𝑖𝑗 (𝐱, 𝐱′) =
1

4𝜋𝜇0 𝛿𝑖𝑗𝜙 − 1
16𝜋𝜇0(1 − 𝜈0)

𝜓,𝑖𝑗 (7)

where 𝜈0 denotes the Poisson’s ratio of the elastic matrix material; 𝛿𝑖𝑗 represents the Kronecker Delta, and; the function 𝜓 = |𝐱 − 𝐱′| is the biharmonic
potential.

Case 3: Thermoelastic problem with a point heat source in the infinite domain

The temperature change caused by a point heat source in the infinite domain will produce thermal stress in the infinite domain. The constitutive

relation is also known as the Duhamel–Neumann relation (Nowacki, 1986), written as:

𝜎𝑖𝑗 = 2𝜇0𝜀𝑖𝑗 + (𝜆0𝜀𝑘𝑘 − 𝛾0𝛥𝑇 )𝛿𝑖𝑗 (8)

and the strain tensor is defined as 𝜀𝑖𝑗 =
1
2 (𝑢𝑖,𝑗 + 𝑢𝑗,𝑖). Using the following thermoelastic governing equation in coupling with Eq. (2):

(𝜆0 + 𝜇0)𝑢𝑖,𝑖𝑗 + 𝜇0𝑢𝑗,𝑖𝑖 − 𝛾0𝑇,𝑗 = 0 (9)

where 𝛾0 = (3𝜆0 + 2𝜇0)𝛼0 with 𝛼0 indicating the CTE of the matrix, one can obtain:

(𝜆0 + 2𝜇0)𝑢𝑖,𝑖𝑗𝑗 +
𝛾0

𝐾0 𝑞̇𝑉 (𝐱) = 0 (10)

Subsequently, the displacement field can be written as:

𝑢𝑖(𝐱) = ∫𝛺 𝐺𝑖(𝐱, 𝐱′)𝑞̇𝑉 (𝐱′)𝑑𝐱′ (11)

where 𝐺𝑖(𝐱, 𝐱′) is the thermoelastic Green’s function caused by a point force at 𝐱′ as:

𝐺𝑖(𝐱, 𝐱′) =
𝛼0

8𝜋𝐾0
1 + 𝜈0

1 − 𝜈0
𝜓,𝑖 (12)

where 𝜈0 = 𝜆0

2(𝜇0+𝜆0) (Yin et al., 2022).
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3.2. Thermomechanical fields caused by an inclusion with polynomial form sources

When a differentiable, continuous source field is applied in an inclusion, it can be approximately written in a polynomial form. For example, a

polynomial form approximates the continuously distributed body force in the inclusion 𝛺𝐼 as follows:

𝑏𝑗 (𝐱) =
{

𝐵𝐼0
𝑗

+ 𝑥𝑘𝐵
𝐼1
𝑗𝑘

+ 𝑥𝑘𝑥𝑙𝐵
𝐼2
𝑗𝑘𝑙

+⋯ , 𝐱 ∈ 𝛺𝐼

0, 𝐱 ∈ 𝐷 −𝛺𝐼

(13)

where the local coordinate is set with the origin at the center of the inclusion. The displacement field can be obtained by substituting Eq. (13) into

Eq. (6) as follows:

𝑢𝑖(𝐱) = ∫𝛺𝐼

𝐺𝑖𝑗 (𝐱, 𝐱′)𝑏𝑗 (𝐱′)𝑑𝐱′ = ∫𝛺𝐼

𝐺𝑖𝑗

(
𝐵𝐼0
𝑗

+ 𝐵𝐼1
𝑗𝑘
𝑥′
𝑘
+ 𝐵𝐼2

𝑗𝑘𝑙
𝑥′
𝑘
𝑥′
𝑙
+⋯

)
𝑑𝐱′

= 1
4𝜋𝜇0 𝛿𝑖𝑗 (𝛷𝐵

𝐼0
𝑗

+𝛷𝑘𝐵
𝐼1
𝑗𝑘

+𝛷𝑘𝑙𝐵
𝐼2
𝑗𝑘𝑙

+⋯) − 1
16𝜋𝜇0

(
1 − 𝑣0

) (𝛹,𝑖𝑗𝐵
𝐼0
𝑗

+ 𝛹𝑘,𝑖𝑗𝐵
𝐼1
𝑗𝑘

+ 𝛹𝑘𝑙,𝑖𝑗𝐵
𝐼2
𝑗𝑘𝑙

+⋯)
(14)

where 𝛷,𝛷𝑘,𝛷𝑘𝑙, 𝛹,𝑖𝑗 , 𝛹𝑘,𝑖𝑗 , and 𝛹𝑘𝑙,𝑖𝑗 are the integrals of 𝜙, 𝜙𝑥
′
𝑘
, 𝜙𝑥′

𝑘
𝑥′
𝑙
, 𝜓,𝑖𝑗 , 𝜓,𝑖𝑗𝑥

′
𝑘
and 𝜓,𝑖𝑗𝑥

′
𝑘
𝑥′
𝑙
over the inclusion 𝛺𝐼 , respectively (Yin et al., 2022).

See Appendix for a spherical inclusion.

Given an ETG in the following polynomial form in the inclusion 𝛺𝐼 :

𝑇 ∗
𝑖
(𝐱) = 𝑇 𝐼0∗

𝑖
+ 𝑥𝑘𝑇

𝐼1∗
𝑖𝑘

+ 𝑥𝑘𝑥𝑙𝑇
𝐼2∗
𝑖𝑘𝑙

+⋯ (15)

where 𝑇 𝐼0∗𝑖, 𝑇 𝐼1∗𝑖𝑘, and 𝑇 𝐼2∗
𝑖𝑘𝑙

correspond to the uniform, linear, and quadratic terms of the ETG, respectively, we can then derive the resulting

temperature field in terms of the ETG as follows

𝑇 (𝐱) = −∫𝛺𝐼

𝐺(𝐱, 𝐱′)𝑇 ∗
𝑖,𝑖′ (𝐱

′)𝐾(𝐱′) 𝑑𝐱′

= −∫𝜕𝛺𝐼

𝐺(𝐱, 𝐱′)𝑛′
𝑖
𝑇 ∗
𝑖
(𝐱′)𝐾(𝐱′) 𝑑𝐱′ + ∫𝛺𝐼

𝜕𝐺(𝐱, 𝐱′)
𝜕𝑥′

𝑖

𝑇 ∗
𝑖
(𝐱′)𝐾(𝐱′) 𝑑𝐱′

= −∫𝛺𝐼

𝜕𝐺(𝐱, 𝐱′)
𝜕𝑥𝑖

𝑇 ∗
𝑖
(𝐱′)𝐾(𝐱′) 𝑑𝐱′

= −∫𝛺𝐼

𝐺,𝑖𝐾
0(𝑇 𝐼0∗

𝑖
+ 𝑥′

𝑘
𝑇 𝐼1∗
𝑖𝑘

+ 𝑥′
𝑘
𝑥′
𝑙
𝑇 𝐼2∗
𝑖𝑘𝑙

+⋯) 𝑑𝐱′

= 𝑓𝐼0
𝑖
𝑇 𝐼0∗
𝑖

+ 𝑓𝐼1
𝑖𝑘
𝑇 𝐼1∗
𝑖𝑘

+ 𝑓𝐼2
𝑖𝑘𝑙
𝑇 𝐼2∗
𝑖𝑘𝑙

+⋯

(16)

in which 𝑓𝐼0
𝑖

= − ∫
𝛺
𝐺,𝑖𝐾

0𝑑𝐱′, 𝑓𝐼1
𝑖𝑘

= − ∫
𝛺
𝐺,𝑖𝐾

0𝑥′
𝑘
𝑑𝐱′, and 𝑓𝐼2

𝑖𝑘𝑙
= − ∫

𝛺
𝐺,𝑖𝐾

0𝑥′
𝑘
𝑥′
𝑙
𝑑𝐱′ are defined corresponding to the thermal Green’s functions in

Eq. (4). For a spherical inclusion, they are explicitly provided in Appendix.

Following the same fashion, given an eigenstrain as a source field in polynomial form in the inclusion 𝛺𝐼 :

𝜀∗
𝑖𝑗
(𝐱) = 𝜀𝐼0∗

𝑖𝑗
+ 𝑥𝑝𝜀

𝐼1∗
𝑖𝑗𝑝

+ 𝑥𝑝𝑥𝑞𝜀
𝐼2∗
𝑖𝑗𝑝𝑞

+⋯ (17)

we can derive the resulting displacement field as the integral of the eigenstrain:

𝑢𝑖(𝐱) = −∫𝛺𝐼

𝐺𝑖𝑗 (𝐱, 𝐱′)𝜀∗𝑘𝑙,𝑚′ (𝐱′)𝐶𝑗𝑚𝑘𝑙(𝐱′) 𝑑𝐱′

= −∫𝛺𝐼

𝜕𝐺𝑖𝑗 (𝐱, 𝐱)
𝜕𝑥′

𝑚

𝜀∗
𝑘𝑙
(𝐱′)𝐶𝑗𝑚𝑘𝑙(𝐱′) 𝑑𝐱′

= −∫𝛺𝐼

𝐺𝑖𝑗,𝑚𝐶
0
𝑗𝑚𝑘𝑙

𝜀∗
𝑘𝑙
(𝐱′)(𝜀𝐼0∗

𝑘𝑙
+ 𝑥′

𝑝
𝜀𝐼1∗
𝑘𝑙𝑝

+ 𝑥′
𝑝
𝑥′
𝑞
𝜀𝐼2∗
𝑘𝑙𝑝𝑞

+⋯) 𝑑𝐱′

= 𝑔𝐼0
𝑖𝑘𝑙
𝜀𝐼0∗
𝑘𝑙

+ 𝑔𝐼1
𝑖𝑘𝑙𝑝

𝜀𝐼1∗
𝑘𝑙𝑝

+ 𝑔𝐼2
𝑖𝑘𝑙𝑝𝑞

𝜀𝐼2∗
𝑘𝑙𝑝𝑞

+⋯

(18)

where 𝑔𝐼0
𝑖𝑘𝑙

= − ∫
𝛺
𝐺𝑖𝑗,𝑚𝐶

0
𝑗𝑚𝑘𝑙

𝑑𝐱′, 𝑔𝐼1
𝑖𝑘𝑙𝑝

= − ∫
𝛺
𝐺𝑖𝑗,𝑚𝐶

0
𝑗𝑚𝑘𝑙

𝑥′
𝑝
𝑑𝐱′, and 𝑔𝐼2

𝑖𝑘𝑙𝑝𝑞
= − ∫

𝛺
𝐺𝑖𝑗,𝑚𝐶

0
𝑗𝑚𝑘𝑙

𝑥′
𝑝
𝑥′
𝑞
𝑑𝐱′. See Appendix for a spherical inclusion.

Similarly, the displacement field caused by ETG in Eq. (15) can be written as:

𝑢𝑖(𝐱) = −∫𝛺𝐼

𝐺𝑖(𝐱, 𝐱′)𝑇 ∗
𝑘,𝑘′ (𝐱

′)𝐾(𝐱′) 𝑑𝐱′ = −∫𝛺𝐼

𝜕𝐺𝑖(𝐱, 𝐱′)
𝜕𝑥𝑘

𝑇 ∗
𝑘
(𝐱′)𝐾(𝐱′) 𝑑𝐱′

= −∫𝛺𝐼

𝐺𝑖,𝑘𝐾
0(𝑇 𝐼0∗

𝑘
+ 𝑥′

𝑝
𝑇 𝐼1∗
𝑘𝑝

+ 𝑥′
𝑝
𝑥′
𝑞
𝑇 𝐼2∗
𝑘𝑝𝑞

+⋯) 𝑑𝐱′

= 𝑤𝐼0
𝑖𝑘
𝑇 𝐼0∗
𝑘

+𝑤𝐼1
𝑖𝑘𝑝

𝑇 𝐼1∗
𝑘𝑝

+𝑤𝐼2
𝑖𝑘𝑝𝑞

𝑇 𝐼2∗
𝑘𝑝𝑞

+⋯

(19)

where 𝑤𝐼0
𝑖𝑘

= − ∫
𝛺
𝐺𝑖,𝑘𝐾

0𝑑𝐱′, 𝑤𝐼1
𝑖𝑘𝑝

= − ∫
𝛺
𝐺𝑖,𝑘𝐾

0𝑥′
𝑝
𝑑𝐱′ and 𝑤𝐼2

𝑖𝑘𝑝𝑞
= − ∫

𝛺
𝐺𝑖,𝑘𝐾

0𝑥′
𝑝
𝑥′
𝑞
𝑑𝐱′ correspond to the thermoelastic Green’s functions connecting

ETG to displacement field, respectively. See Appendix for a spherical inclusion. Note that when the local coordinate is arbitrary, the polynomial

form of 𝐱′ should be referred to the center of the inclusion 𝐱𝐼𝑐 , so 𝑥′
𝑝
becomes 𝑥′

𝑝
− 𝑥𝐼𝑐

𝑝
.

3.3. Thermomechanical fields in a bounded material system with an inhomogeneity

Thanks to the technique of Green’s function, BEM becomes a powerful tool for solving thermomechanical boundary value problems, including

thermal and mechanical local fields. Using the thermal Green’s function, the temperature field of the system can be determined, and temperature-

induced mechanical effects are coupled through the boundary integral equations of thermoelastic Green’s functions. This method is effective for

materials as it greatly diminishes the need for extensive temperature volume integrals. For a heterogeneous material system, material mismatches
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among inhomogeneities and matrix are simulated by the polynomial eigenstrain through continuously distributed fields. Due to the material

mismatch between the inhomogeneity and the matrix, a disturbed field will be induced in the neighborhood of the inhomogeneity.

Eshelby (1957, 1959) proposed EIMs to solve the elastic inhomogeneity problem with the inclusion problem by introducing an eigenstrain

on the inclusion to simulate the material mismatch. This approach can be extended to multiple inhomogeneities with the eigenstrain assumed

in polynomial form. Wu and Yin (2021) proposed the iBEM algorithm for 2D and 3D linear elastic problems. Due to the versatility of Green’s

function, the authors (Yin et al., 2022) illustrate the iBEM algorithm with several multi-physical problems, such as steady-state heat transfer,

Stokes flow. Recently, Yin’s group (Wu et al., 2023a; Wang et al., 2022) derived modified bimaterial thermoelastic Green’s functions, and proposed

the dual equivalent inclusion method (DEIM) for handling thermoelastic inhomogeneities in a bi-material domain. When multiple particles are

considered with boundary effects, the spatial variations of eigen-fields are not uniform anymore (Mura, 1987; Yin et al., 2022). However, they are

still continuous and differentiable in the inhomogeneity domain with the material continuity in the particle. The polynomial form of eigen-fields

can simulate the material mismatch with tailorable accuracy. Therefore, the Taylor series expansion of eigen-field in Eqs. (15) and (17), including

uniform, linear and quadratic terms will be used in the calculation of local field. Moreover, Eshelby’s equivalent conditions will be applied to

determine the eigen-fields. Given that the equivalent inclusion involves mismatches in thermal and mechanical properties, the iBEM transforms

temperature volume integrals into boundary integral equations and restricts domain integrals of ETG and eigenstrain to the inhomogeneity domains.

Case 1: iBEM for thermal problems

Combining the boundary integral equation of thermal Green’s function and the disturbance from equivalent inclusions, the following thermal

boundary integral equation can be formulated as (Yin et al., 2022):

𝑇 (𝐱) = ∫𝜕𝐷 𝐺(𝐱, 𝐱′)𝑞(𝐱′)𝑑𝐱′ − ∫𝜕𝐷 𝐻(𝐱, 𝐱′)𝑇 (𝐱′)𝑑𝐱′ − ∫𝐷 𝐺,𝑖(𝐱, 𝐱′)𝑇 ∗
𝑗
(𝐱′)𝐾(𝐱′)𝑑𝐱′

= ∫𝜕𝐷 𝐺(𝐱, 𝐱′)𝑞(𝐱′)𝑑𝐱′ − ∫𝜕𝐷 𝐻(𝐱, 𝐱′)𝑇 (𝐱′)𝑑𝐱′ + 𝑓𝐼0
𝑖
(𝐱)𝑇 𝐼0∗

𝑖
+ 𝑓𝐼1

𝑖𝑝
(𝐱)𝑇 𝐼1∗

𝑖𝑝
+⋯

(20)

where 𝐻 = 𝐾𝐺,𝑖′ (𝐱, 𝐱′)𝑛𝑖(𝐱′) is the second fundamental solution of the thermal problem; the identities 𝐺,𝑖 = −𝐺,𝑖′ and 𝐻,𝑖 = −𝐻,𝑖′ are applied, and

𝑞 = 𝑞𝑖𝑛𝑖 represents the heat flux across the interface. Subsequently, the temperature gradients can be derived through further partial differentiation

as Eq. (21),

𝑇,𝑖(𝐱) = ∫𝜕𝐷 𝐺,𝑖(𝐱, 𝐱′)𝑞(𝐱′)𝑑𝐱′ − ∫𝜕𝐷 𝐻,𝑖(𝐱, 𝐱′)𝑇 (𝐱′)𝑑𝐱′ + 𝑓𝐼0
𝑗,𝑖
𝑇 𝐼0∗
𝑗

+ 𝑓𝐼1
𝑗𝑝,𝑖

𝑇 𝐼1∗
𝑗𝑝

+⋯ (21)

The equivalent inclusion condition in terms of heat flux can be explicitly written in any order of the polynomial term as follows:

𝐾0 (𝑇,𝑖 (𝟎) − 𝑇 𝐼0∗
𝑖

)
= 𝐾𝐼𝑇,𝑖 (𝟎)

𝐾0 (𝑇,𝑖𝑟 (𝟎) − 𝑇 𝐼1∗
𝑖𝑟

)
= 𝐾𝐼𝑇,𝑖𝑟 (𝟎)

(22)

which can be extended to higher-order terms straightforwardly. Therefore, the ETG terms can be determined, and the temperature field can be

obtained from Eq. (20).

Case 2: iBEM for elastic problems

Combining the boundary integral equation of elastic Green’s function and the disturbance from equivalent inclusions, the following elastic

boundary integral equation can be formulated,

𝑢𝑖(𝐱) = ∫𝜕𝐷 𝐺𝑖𝑗 (𝐱, 𝐱′)𝑡𝑗 (𝐱′)𝑑𝐱′ − ∫𝜕𝐷 𝐻𝑖𝑗 (𝐱, 𝐱′)𝑢𝑗 (𝐱′)𝑑𝐱′ − ∫𝐷 𝐺𝑖𝑗,𝑚(𝐱, 𝐱′)𝜀𝑘𝑙(𝐱′)𝐶𝑗𝑚𝑘𝑙(𝐱′)𝑑𝐱′

= ∫𝜕𝐷 𝐺𝑖𝑗 (𝐱, 𝐱′)𝑡𝑗 (𝐱′)𝑑𝐱′ − ∫𝜕𝐷 𝐻𝑖𝑗 (𝐱, 𝐱′)𝑢𝑗 (𝐱′)𝑑𝐱′ + 𝑔𝐼0
𝑖𝑘𝑙
𝜀𝐼0∗
𝑘𝑙

+ 𝑔𝐼1
𝑖𝑘𝑙𝑝

𝜀𝐼1∗
𝑘𝑙𝑝

+ 𝑔𝐼2
𝑖𝑘𝑙𝑝𝑞

𝜀𝐼2∗
𝑘𝑙𝑝𝑞

+⋯
(23)

where the conventional boundary integral equations are retained, and the Eshelby tensors 𝒈 involve disturbances from inclusions. Subsequently,

the strain field can be derived based on the constitutive law as Eq. (24),

𝜀𝑖𝑗 (𝐱) = ∫𝜕𝐷
1
2
{
𝐺𝑚𝑖,𝑗 (𝐱, 𝐱′) + 𝐺𝑚𝑗,𝑖(𝐱, 𝐱′)

}
𝑡𝑚

(
𝐱′
)
𝑑𝐱′ − ∫𝜕𝐷

1
2
{
𝐻𝑚𝑖,𝑗

(
𝐱, 𝐱′

)
+𝐻𝑚𝑗,𝑖

(
𝐱, 𝐱′

)}
𝑢𝑚

(
𝐱′
)
𝑑𝐱′

+ 𝑆𝐼0
𝑖𝑗𝑘𝑙

𝜀𝐼0∗
𝑘𝑙

+ 𝑆𝐼1
𝑖𝑗𝑘𝑙𝑝

𝜀𝐼1∗
𝑘𝑙𝑝

+⋯
(24)

where 𝑆𝑖𝑗𝑘𝑙 = 𝑔𝑖𝑘𝑙,𝑗+𝑔𝑗𝑘𝑙,𝑖
2 , 𝑆𝑖𝑗𝑘𝑙𝑝 = 𝑔𝑖𝑘𝑙𝑝,𝑗+𝑔𝑗𝑘𝑙𝑝,𝑖

2 . Following the same fashion, the equivalence can be established for each order of polynomial-form

terms at the center of the particles,

𝐶0
𝑖𝑗𝑚𝑛

(
𝜀𝑚𝑛 (𝟎) − 𝜀𝐼0∗

𝑚𝑛

)
= 𝐶𝐼

𝑖𝑗𝑚𝑛
𝜀𝑚𝑛 (𝟎)

𝐶0
𝑖𝑗𝑚𝑛

(
𝜀𝑚𝑛,𝑟 (𝟎) − 𝜀𝐼1∗

𝑚𝑛𝑟

)
= 𝐶𝐼

𝑖𝑗𝑚𝑛
𝜀𝑚𝑛,𝑟 (𝟎)

(25)

Although higher accuracy can be achieved by introducing higher-order terms, such as quadratic ones, for simplicity, this section only presents

linear terms, although the quadratic terms have been implemented in the iBEM code.

Case 3: iBEM for thermoelastic problems

Thanks to the thermoelastic Green’s function, the thermal induced effects are involved through boundary integral equations of boundary

responses and domain integrals of ETG as Eq. (19),

𝑢𝑖(𝐱) = ∫𝜕𝐷 𝐺𝑖(𝐱, 𝐱′)𝑞(𝐱′)𝑑𝐱′ − ∫𝜕𝐷 𝐻𝑖(𝐱, 𝐱′)𝑇 (𝐱′)𝑑𝐱′ + ∫𝜕𝐷 𝐺𝑖𝑗 (𝐱, 𝐱′)𝑡𝑗 (𝐱′)𝑑𝐱′

− ∫𝜕𝐷 𝐻𝑖𝑗 (𝐱, 𝐱′)𝑢𝑗 (𝐱′)𝑑𝐱′ + ∫𝛺𝐼

𝐺𝑖,𝑘(𝐱, 𝐱′)𝑇 ∗
𝑘
(𝐱′)𝐾(𝐱′) 𝑑𝐱′ + ∫𝛺𝐼

𝐺𝑖𝑗,𝑚(𝐱, 𝐱′)𝜀∗𝑘𝑙(𝐱
′)𝐶𝑗𝑚𝑘𝑙(𝐱′) 𝑑𝐱′

= ∫𝜕𝐷 𝐺𝑖(𝐱, 𝐱′)𝑞(𝐱′)𝑑𝐱′ − ∫𝜕𝐷 𝐻𝑖(𝐱, 𝐱′)𝑇 (𝐱′)𝑑𝐱′ + ∫𝜕𝐷 𝐺𝑖𝑗 (𝐱, 𝐱′)𝑡𝑗 (𝐱′)𝑑𝐱′

− ∫𝜕𝐷 𝐻𝑖𝑗 (𝐱, 𝐱′)𝑢𝑗 (𝐱′)𝑑𝐱′ +𝑤𝑖𝑘𝑇
𝐼0∗
𝑘

+𝑤𝑖𝑘𝑝𝑇
𝐼1∗
𝑘𝑝

+ 𝑔𝑖𝑘𝑙𝜀
𝐼0∗
𝑘𝑙

+ 𝑔𝑖𝑘𝑙𝑝𝜀
𝐼1∗
𝑘𝑙

(26)
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where 𝐻𝑖(𝐱, 𝐱′) = 𝐾(𝐱′)𝐺𝑖,𝑗 (𝐱, 𝐱′)𝑛𝑗 (𝐱′); 𝑔𝑖𝑘𝑙𝑝𝑞 and 𝑤𝑖𝑘𝑝𝑞 have been defined in Eqs. (18) and (19), respectively. By employing the compatibility

relationship, the mechanical strain at the interior point 𝐱 can be derived:

𝜀𝑚
𝑖𝑗
(𝐱) = ∫𝜕𝐷

{
𝐺𝑖,𝑗 (𝐱, 𝐱′) + 𝐺𝑗,𝑖(𝐱, 𝐱′)

}
𝑞(𝐱′)𝑑𝐱′ − ∫𝜕𝐷

{
𝐻𝑖,𝑗 (𝐱, 𝐱′) +𝐻𝑗,𝑖(𝐱, 𝐱′)

}
𝑇 (𝐱′)𝑑𝐱′

+ ∫𝜕𝐷
1
2
{
𝐺𝑚𝑖,𝑗 (𝐱, 𝐱′) + 𝐺𝑚𝑗,𝑖(𝐱, 𝐱′)

}
𝑡𝑚

(
𝐱′
)
𝑑𝐱′ − ∫𝜕𝐷

1
2
{
𝐻𝑚𝑖,𝑗

(
𝐱, 𝐱′

)
+𝐻𝑚𝑗,𝑖

(
𝐱, 𝐱′

)}
𝑢𝑚

(
𝐱′
)
𝑑𝐱′

+
{
𝑅𝐼0
𝑖𝑗𝑘
𝑇 𝐼0∗
𝑘

+ 𝑅𝐼1
𝑖𝑗𝑘𝑝

𝑇 𝐼1∗
𝑘𝑝

}
+
{
𝑆𝐼0
𝑖𝑗𝑘𝑙

𝜀𝐼0∗
𝑘𝑙

+ 𝑆𝐼1
𝑖𝑗𝑘𝑙𝑝

𝜀𝐼1∗
𝑘𝑙𝑝

}
− 𝛼𝛿𝑖𝑗

{
𝑓𝐼0
𝑘
𝑇 𝐼0∗
𝑘

+ 𝑓𝐼1
𝑘𝑝
𝑇 𝐼1∗
𝑘𝑝

} (27)

where 𝑅𝑖𝑗𝑘 = 𝑤𝑖𝑘,𝑗+𝑤𝑗𝑘,𝑖

2 , 𝑅𝑖𝑗𝑘𝑝 =
𝑤𝑖𝑘𝑝,𝑗+𝑤𝑗𝑘𝑝,𝑖

2 and 𝑅𝑖𝑗𝑘𝑝𝑞 =
𝑤𝑖𝑘𝑝𝑞,𝑗+𝑤𝑗𝑘𝑝𝑞,𝑖

2 . The ETG terms can be determined in Eq. (22). The equivalent stress conditions

for 𝜺𝑚 are expressed as follows:

𝐶0
𝑖𝑗𝑘𝑙

(
𝜀𝑚
𝑘𝑙
(𝟎) − 𝜀𝐼0∗

𝑘𝑙

)
− 𝛾0𝑇 (𝟎)𝛿𝑖𝑗 = 𝐶𝐼

𝑖𝑗𝑘𝑙
𝜀𝑘𝑙 (𝟎) − 𝛾1𝑇 (𝟎)𝛿𝑖𝑗

𝐶0
𝑖𝑗𝑘𝑙

(
𝜀𝑚
𝑘𝑙,𝑟

(𝟎) − 𝜀𝐼1∗
𝑘𝑙𝑟

)
− 𝛾0𝑇,𝑟(𝟎)𝛿𝑖𝑗 = 𝐶𝐼

𝑖𝑗𝑘𝑙
𝜀𝑘𝑙,𝑟 (𝟎) − 𝛾1𝑇,𝑟(𝟎)𝛿𝑖𝑗

(28)

Note that the equivalent inclusion conditions in Eqs. (22), (25), and (28) can be extended to multiple inhomogeneities with the local coordinates

set at the center of each inhomogeneity (Yin et al., 2022).

In micromechanics, thermal strain induced by temperature fluctuations is typically perceived as an eigenstrain. However, a common miscon-

ception is that the ETG generates a temperature modification over the entire domain, thereby leading to an eigenstrain across the whole domain,

which subsequently results in the inefficiency of the thermoelastic solution. The thermoelastic Green’s function directly deals with the strain caused

by ETG through 𝐑 tensors rather than an eigenstrain with 𝐒 tensors as illustrated in Eq. (27). Therefore, the volume integral is confined to the
inclusion only, which enables an analytical solution (Wu et al., 2023a).

Although only up to linear terms of eigen-fields are provided in the above formulation, we can easily extend to higher-order terms similarly.

The iBEM code has been implemented with constant, linear, and quadratic terms (Yin et al., 2022), and the corresponding tensors can be obtained

in Appendix.

4. Numerical demonstration and verification of the iBEM

The iBEM algorithm has been implemented by the C++ code for the simulation of many particles for thermal, elastic, and thermoelastic problems,

which has been extended to other multiphysical problems (Song et al., 2015; Yin et al., 2022; Wu and Yin, 2021). Because the interaction between

particles reduces with the particle’s center-center distance (𝑟) rapidly, a cut-off distance is chosen to accelerate the computational process while

maintaining accuracy. This section will demonstrate the iBEM results, verify them with FEM results, and evaluate the effect of the cut-off distance

on the convergence of the results.

4.1. Verification of the iBEM with FEM

To verify the aforementioned algorithm for thermoelastic problems, shown as Fig. 1, the beam is specified with dimensions 𝑏 × ℎ × 𝑙 =
0.025 m× 0.025 m× 0.050 m. One aluminum particle is embedded in the HDPE matrix with its center at (0.025, 0, 0) as 0.01% volume fraction, so

the radius 𝑎 = 0.91 mm.
To provide precise simulation of local fields around inhomogeneities by iBEM, the surface of the beam has been discretized into 4000 equal-sized

quadrilateral elements, each with a length is 1.25 mm. For FEM, a total of 99,500 tetrahedral elements are used with element sizes of 0.2 mm within

the inhomogeneity, 0.4 mm around the inhomogeneity, and up to 2 mm in the other areas.

Firstly, a steady state heat transfer is considered with the boundary conditions as follows: On the left side of 𝑥1 = 0, displacement 𝑢1 = 0 with
𝑢2(0, 𝑏∕2, ℎ∕2) = 𝑢3(0, 𝑏∕2, ℎ∕2) = 0, free shear stress 𝜎12 = 𝜎13 = 0, and all other sides with free traction (𝜎𝑖𝑗𝑛𝑖 = 0) and insulated boundary (𝑞𝑖𝑛𝑖 = 0)
unless a temperature boundary condition is applied to the left (𝑇𝐿), right (𝑇𝑅), top (𝑇𝑇 ), bottom (𝑇𝐵) sides, as follows:

1. Uniform temperature change 𝛥𝑇 = 𝑇𝐿 = 𝑇𝑅 = 𝑇𝑇 = 𝑇𝐵 = 20 K;
2. Uniform temperature gradient from the left to the right as 𝑇𝐿 = 0 K, 𝑇𝑅 = 20 K;
3. Uniform temperature gradient (thermal bending) from the bottom to the top as 𝑇𝐵 = 0 K, 𝑇𝑇 = 20 K;

In Case 1, Fig. 2 shows the displacement 𝑢1, normal stress 𝜎11 and 𝜎22 along the centerline 𝑥1 passing the center of particle (𝑥2 = 0.0125, 𝑥3 =
0.0125). The curves labeled ’iBEM UNI’, ’iBEM LIN’, and ’iBEM QUA’ represent approximations incorporating the uniform, linear, and quadratic

terms of the ETG and eigenstrain, respectively. These results show very good agreement with those obtained by FEM, although the FEM cannot

well catch the stress discontinuity of 𝜎22 on the interface. Under this uniform temperature change with zero temperature gradient, the presence of

inhomogeneity introduces discontinuities in the local fields surrounding the particle, which can be clearly explained by the discontinuous features

of Eshelby’s tensor across the particle surface. However, because the thermal strain on the inhomogeneity is uniform, the eigenstrain caused by the

stiffness mismatch is also uniform for a single particle embedded in an infinite domain. Therefore, the higher-order terms of eigenstrain disappear,

and the three curves of iBEM results almost overlap with each other.

Case 2 studies the effect of temperature gradient in the horizontal direction. Fig. 3 displays the temperature 𝑇 , displacement 𝑢1, normal stresses

𝜎11 and 𝜎22 along the centerline 𝑥1. The results from the ’iBEM UNI’, ’iBEM LIN’, and ’iBEM QUA’ models agree well with those obtained via FEM.

Because the aluminum particles exhibit a much higher thermal conductivity than the HDPE matrix, the temperature variation in the particle is

much lower than the matrix but linearly changes along 𝑥1 direction, which leads to linearly distributed eigenstrain and stress on the inhomogeneity.

Although ’iBEM UNI’ uses a uniform eigenstrain, the difference among the three iBEM curves is fairly small because the linear temperature change

plays a dominant role. From the insets, the local field on the inhomogeneity is clarified, and the ’iBEM LIN’ and ’iBEM QUA’ provide better

comparisons with FEM. Indeed, the linear eigenstrain can capture the exact solution for a single particle in an infinite domain under a uniform

heat flux in the far field (Wu et al., 2023a), so that the ’iBEM LIN and ’iBEM QUA’ provide similar accuracy.

Fig. 4 shows Case 3 for the thermal bending due to the temperature gradient from the bottom to the top. The iBEM results of deflections and

normal stresses are compared with those obtained by the FEM. Fig. 4(a) shows the deflection of the neutral axis of the beam, which is similar to
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Fig. 2. Local fields of the beam under a uniform temperature change: (a) displacement 𝑢1, (b) normal stress 𝜎11, and (c) 𝜎22 along the centerline 𝑥1 ∈ [0.00, 0.05] m.

Fig. 3. Local fields of the beam under a horizontal temperature gradient: (a) temperature 𝑇 , (b) displacement 𝑢1, (c) normal stress 𝜎11, (d) normal stress 𝜎22, along the centerline

𝑥1 ∈ [0.00, 0.05] m.

the one caused by pure bending and shall produce a uniform stress in 𝑥1 direction. However, due to the inhomogeneity, the stress significantly
differs from the matrix.

Fig. 5 shows the stress and temperature changes in 𝑥3 direction passing through the center of the particle at (𝑥1 = 0.025, 𝑥2 = 0.0125). The
stresses of 𝜎11 and 𝜎22 exhibit the same trend with very similar values, as the boundary effects of the four sides play a minor role on the stress
along the central line in Fig. 5(a) and (b), respectively. In Fig. 5(c), temperature field 𝑇 exhibits an approximately linear variation in the matrix
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Fig. 4. Local fields along the centerline 𝑥1 ∈ [0.00, 0.05] m of the beam under thermal bending caused by a vertical temperature gradient: (a) deflection 𝑢3, (b) normal stress 𝜎22,

(c) normal stress 𝜎11.

Fig. 5. Local fields along 𝑥3 ∈ [0.00, 0.025] m of the beam passing the particle center under thermal bending caused by a vertical temperature gradient: (a) Temperature 𝑇 , (b)

normal stress 𝜎11.

with very small variation in the particle due to its high thermal conductivity. Since both Case 2 and Case 3 investigate the effects of temperature

gradients, Fig. 5(a), (b) and Fig. 3(b) exhibit similar patterns in terms of distribution and discontinuity. However, the variation of stress in the

particle is much more uniform in 3(c) compared to Fig. 5(b), because the thermal bending creates a linearly distributed thermal strain in the matrix.

’iBEM LIN’ and ’iBEM QUA’ provide similar predictions, which fit the FEM results much better than the ’iBEM UNI’.

When a temperature difference is applied to two opposite boundary edges without the spherical particle, the temperature field should exhibit

a linear distribution at the steady state. Due to the disturbance of the particle, specifically, the aluminum has much greater thermal conductivity

than the HDPE, the variation of temperature within the particle is comparatively small in Fig. 3(a) and 5(a), which causes a nearly uniform thermal

strain as well although a temperature gradient exists. For a uniform temperature change, the uniform eigenstrain with iBEM can provide accurate

results, whereas a temperature gradient requires a linear eigenstrain in the iBEM. Particularly, the thermal bending of a beam exhibits a large

linear eigenstrain, and the uniform eigenstrain cannot capture this feature and produces considerable errors in stress distribution. Verification by

FEM demonstrates the accuracy, robustness, and efficiency of the modeling approach and provides flexibility in choosing the most suitable method

for specific applications. Although ’iBEM QUA’ provides the highest accuracy in general, ’iBEM LIN’ offers comparable accuracy for the present

thermoelastic behavior but faster computing speed. ’iBEM UNI’ still provides good accuracy in the matrix with the fastest speed. When many

particles are simulated for effective thermoelastic behavior, ’iBEM UNI’ provides an advantage. However, the three orders of eigenstrains can be

used together in one simulation of a many-particle system: uniform eigenstrain for particles in the central region and linear or quadratic eigenstrain

for particles in the boundary region.
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Fig. 6. Comparative analysis of five distinct cut-off ratios (1, 5, 10, 20,∞) across four different scenarios with the volume fraction 𝜙 = 1%: (a) displacement 𝑢1 resulting from uniaxial

loading, (b) deflection 𝑢3 caused by pure bending, (c) displacement 𝑢1 due to uniform temperature change, and (d) deflection 𝑢3 arising from thermal bending.

4.2. The effect of cut-off ratio for particle interactions

When many particles are considered, the equivalent inclusion conditions in Eqs. (22), (25), and (28) will be expanded to all particles, leading to

a time-consuming process to construct and solve the large linear equation system for the eigen-fields (Wu and Yin, 2021; Wu et al., 2022). Green’s

function describes the response at a field point caused by the excitation at a source point. As mentioned in Section 2, the thermal and elastic Green’s

function exhibits a decaying factor 𝑟−1, which leads to the heat flux and stress caused by the ETG and eigenstrain, respectively, decaying with the

distance at 𝑟−3. Therefore, the effect of the long-range particle interaction rapidly decays with the increase of 𝑟. We have used a cut-off distance,

which leads to a significant increase in the computational speed without loss of convergence of the results. According to the decaying feature of

Green’s function, the cut-off ratio is defined as the distance between the field point and the center of the particle and the characteristic length

of the particle. For spherical particles, the characteristic length is the radius, and 𝜌 = 𝑟∕𝑎 ∈ (15, 20) has been used to accelerate the computation
without considerable loss of accuracy (Wu et al., 2022, 2023b). However, for thermoelastic Green’s function, the decaying factor of stress is one

order higher at 𝑟−2, so that the convergence of the results is open to question when a cut-off ratio is applied to form the linear equation system.

This section conducts a numerical analysis of the effects of the cut-off ratio, which aims at a balance of computational efficiency and accuracy.

Four cut-off ratios are investigated as 1, 5, 10, and 20 in the following. In addition, when no cut-off is applied, we use cut-off = ∞ to represent

it. To ease reproducing the results, 2000 inhomogeneities are uniformly distributed within the composite beam with the volume fraction 𝜙 = 1%
forming a simple cubic lattice. In this specific scenario, the radius of the particles is set at 𝑎 = 0.00033 m, with the shortest distance between a
particle and the boundary being 𝑑𝑒 = 0.00125 m, and the minimum distance between particles being 𝑑𝑝 = 0.0025 m. The parameter 𝜌 defines the
level of interaction: at 𝜌 = 1, no particle interaction or boundary effect is considered in the linear equation system because of 𝑟 = 𝑎 × 𝜌 < 𝑑𝑒 < 𝑑𝑝;

at 𝜌 = 5, so 𝑑𝑒 < 𝑟 < 𝑑𝑝, so only interactions between the nearest particles and boundary elements are considered, and the internal particle–particle

interactions are disregarded; at 𝜌 ≥ 10, 𝑑𝑝 < 𝑟, both particle interactions and boundary effects are considered with a certain region around each

particle; and at 𝜌 = ∞, full interaction among all particles and boundary elements is taken into account.
Fig. 6(a) shows uniaxial loading, in which the elastic boundary conditions are considered without temperature variation: (i) constrained

displacement at the surface 𝑥1 = 0; (ii) uniaxial load at the surface 𝑥1 = 𝑙 = 0.05 m with pressure 10−2 MPa and; (iii) all side surfaces are
free of traction. Fig. 6(b) displays the pure bending test, applying identical elastic boundary conditions and a bending moment of 0.325 N/m. The

cases of uniform temperature change and thermal bending are shown in Fig. 6(c) and (d), respectively, with the same boundary conditions and

loadings as detailed in Figs. 2 and 4.

Fig. 6(a) and (c) show the comparison of the displacements 𝑢1 along the centerline 𝑥1 ∈ [0.025, 0.05] m. The displacement 𝑢1 within the range
𝑥1 ∈ [0.0, 0.025] m follows a similar trend and diminishes to 0 at the end of the beam. In a comparison of the four cases of the cut-off with the case

without cut-off, they are very close to each other, although the case of cut-off= 20 and ∞ are almost overlapped. Long-range particle interactions

play a minor role in the displacement field. Note that the eigenstrain in both cases is uniform for a single particle in an infinite matrix.

On the other hand, Fig. 6(b) and (d) plot the variation of deflection 𝑢3 when 𝑥1 ∈ [0.010, 0.040] m. Greater discrepancies can be observed
between curves of cut-off= 1, 5, 10 and ∞; while the difference between curves with 20 and ∞ becomes negligible. Note that the eigenstrain in

these cases is linearly distributed for a single particle in an infinite matrix. In addition, the boundary effects can also accumulate as the distance

from the fix-end (𝑥1 = 0) becomes smaller. Although local fields near the boundary are sensitive to the cut-off ratio, the cut-off ratio strategy works
well for the internal aspects. Therefore, careful consideration is demanded when involving intensive boundary effects.
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Fig. 7. Comparative analysis of distinct cut-off ratios across four different scenarios for the volume fraction 𝜙 = 10%: (a) displacement 𝑢1 resulting from uniaxial loading, (b)

deflection 𝑢3 caused by pure bending, (c) displacement 𝑢1 due to uniform temperature change, and (d) deflection 𝑢3 arising from thermal bending.

When the volume fraction 𝜙 increases, the relative distance between particles decreases, the particle interactions will further increase the

variation of eigenstrain in the particles, and a higher cut-off is required to reach a convergent 𝜙 = 10%, Fig. 7 shows the four cases of cut-off, where
the increased radius of the particles, while preserving the same spacing between their centers as in the 2000 particle setup, effectively reduces the

actual distance between the particles. So, this increase in particle size results in a heightened level of interaction among the particles. Fig. 7(a), (b),

and (c) confirm that a cut-off ratio of 20 is appropriate for uniaxial loading, pure bending, and uniform temperature change, as anticipated. However,

Fig. 7(d) reveals that in the case of thermal bending, a substantially higher cut-off ratio= 100 is used to ensure the convergence, which indeed takes
into account most particles. It reveals that the thermoelastic Green’s function with one order lower singularity leads to higher long-range particle

interaction. Therefore, no cut-off shall be used unless the particle interactions are negligible for dilute composites such as 𝜙 = 1% in Fig. 6.

5. Size effects of a composite beam under thermoelastic loading

After the iBEM algorithm is verified, we can use it to study the effects of SPR under different loading conditions. Given a volume fraction of

particles in a specimen with the geometric dimension, a larger number of identical particles will be used with the decrease of particle size. From

the uniform loading condition, the effective stiffness and CTE can be calculated. When the specimen is subjected to a pure bending or thermal

bending, the deflection can be calculated from the actual heterogeneous specimen and the homogenized specimen, respectively. The difference can

show the size effect on the applicability of the micromechanics convention.

5.1. Case 1: Uniaxial tensile loading

This subsection aims to investigate the size effects on the effective modulus, Young’s modulus, and Poisson’s ratio of the composite beam. To

control microstructural effects, such as different distributions, the composite beam is evenly divided into 16 × 𝑠3 sub-cells, where 𝑠 refers to the

number of divisions along the 𝑥1 direction. Each equal-sized spherical particle is located at the center of each sub-cell, and the number of particles

can be modified by changing the radius of the particles. Similarly to the previous work (Wu and Yin, 2021), the effective moduli are evaluated

through uniaxial loading applied at the surface (𝑥1 = 𝑙) and constrained longitudinal displacement at the surface (𝑥1 = 0). The effective moduli
can be calculated by averaging the displacements at the surface (𝑥1 = 𝑙 = 0.05 m) and the lateral surfaces.

Fig. 8(a) and (b) show the variations of effective Young’s modulus and Poisson’s ratio with particles of decreasing radius. When the number

of particles starts to increase, the effective moduli change accordingly. For example, when the volume fraction is equal to 10%, the effective

Young’s modulus slowly increases from 1.45 GPa to 1.49 GPa, and the effective Poisson’s ratio fluctuates around the value 0.44. A similar trend

can be observed when the volume fraction equals 30%. When the number of particles reaches 16,000, the microstructure of the composite beam

becomes sufficiently refined; as a result, the results converge to the constants. As the volume fraction rises from 10% to 30%, there is a noticeable

development of a peak. For the 10% volume fraction, a subtle peak at 1024 particles was detected. With 2000 particles, this value slightly decreased

to 1.39 × 109 and then showed subtle fluctuations around 1.40 × 109.
Due to the symmetric distribution of inhomogeneities, the local stress fields are also periodic, following the symmetric mechanical load along

the 𝑥1 direction. Fig. 9(a) and (b) present a symmetric distribution of normal stress 𝜎11 and 𝜎22, respectively. As the size of the particles decreases,

there is a corresponding slight reduction in the amplitude of the local stress fields.
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Fig. 8. Effective elastic properties: (a) Young’s modulus and (b) Poisson’s ratio calculated from the composite beam with 10% and 30% volume fractions under uniaxial load,

embedded with 2 × (2𝑛)3 (n = 1, 2, . . . ,10) spherical particles.

Fig. 9. Variation of normal stresses along the centerline 𝑥1 when the number of particles is 1024,2000 or 16,000 with the volume fraction 𝜙 = 10% for (a) 𝜎11 and (b) 𝜎22.

Fig. 10. Effective thermomechanical properties: (a) thermal conductivity calculated under uniform temperature gradient and (b) CTE calculated under uniform temperature change

from the composite beam with 10% and 30% volume fractions, embedded with 16 × 𝑛2 (n = 1, 2, . . . ,10) spherical particles.

5.2. Case 2: uniform temperature boundary condition

This subsection investigates the size effects on effective thermal conductivity and the CTE. Following the same fashion as the elastic test of

the preceding subsection, to control the effect of microstructures, the inhomogeneities are evenly distributed. Effective thermal conductivity and

CTE are determined by applying uniform temperature boundary conditions. For effective thermal conductivity, a uniform temperature gradient

is simulated using a uniform heat flux. Meanwhile, under a uniform temperature change with no temperature gradient, the resulting uniform

thermal expansion from a temperature change 𝛥𝑇 facilitates the measurement of CTE across the entire beam. Fig. 10(a) and (b) plot the variation

of thermal conductivity and CTE versus the number of inhomogeneities, respectively. Similar trends can be observed in both figures: when the

number of inhomogeneities is large enough, say 12,000, the effective thermal properties converge. Compared to Fig. 8(a) and (b), composites with

smaller volume fractions show a more rapid convergent trend, and the effective thermal properties require a greater number of inhomogeneities

to obtain a convergent solution (from 8000 to 12,000). Such a phenomenon can be explained as different decaying factors of the Green’s function.

For example, elastic Green’s function for interior stress decays as 𝑟−3 while thermoelastic Green’s function for interior stress decays as 𝑟−1.
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Fig. 11. Variation of thermomechanical local fields along the centerline 𝑥1 ∈ [0.02, 0.03] m when the number of particles is 1024,2000 and 16,000 with the volume fraction

𝜙 = 10%, (a) heat flux 𝑞1, (b) normal stress 𝜎11, (c) normal stress 𝜎22 and (d) normal stress 𝜎33.

Fig. 11(a–d) shows the local thermomechanical fields along the centerline 𝑥1 ∈ [0.02, 0.03] m when the volume fraction is 10%. As indicated

in Fig. 11(a), when the number of inhomogeneities increases, the amplitude of the heat flux does not change obviously, which can be interpreted

as a consequence caused by the uniform thermal boundary condition. Fig. 11(b) shows that although the overall amplitude of 𝜎11 changes slightly

with the number of inhomogeneities, the maximum thermal stress decreases for smaller inhomogeneities.

6. Virtual experiments of composite beams versus the homogenized beams

Considering the different size effects on beam bending, we conduct virtual experiments of composite beams with spherical inhomogeneities in

comparison to the homogeneous beam with the elastic constants and CTE obtained by the homogenization with uniform testing load.

6.1. Deflection of pure bending

When a beam is subjected to pure bending, a linear stress field will be induced with a constant curvature for the deformation. However, when

many inhomogeneities are embedded in a composite beam, the local field is highly disturbed by the material mismatch. With the increase of the

SPR, the deflection converges to a constant value as it achieves a refined microstructure state.

By keeping the volume fraction 𝜙 = 10% with the same dimension of the beam, increasing the number of inhomogeneities from 128 to 2000 will

lead to the reduction of the particle diameter to 40%. Interestingly, the effective Young’s modulus of the beam remains the similar value obtained

by uniaxial loading, but the deflection of the composite beam may change considerably.

Fig. 12 shows how deflection varies under pure bending for the heterogeneous and homogeneous beams, following the same boundary conditions

and loading as in Fig. 7(b). In the homogeneous beam with the effective Young’s modulus, because the simulations are based on the effective Young’s

modulus, the difference of deflection between three particle sizes is slight, suggesting that size effects are negligible in this SPR range. In contrast,

there is a sharp decrease in deflection in the heterogeneous case, from −1.5 × 10−5 m to −0.5 × 10−5 m, highlighting the significance of size effects.
However, when the particle number reaches 2000, the composite beam converges to the three cases of the homogeneous beam, and the size effects

can be disregarded. This figure illustrates when SPR = 6.95 the uniaxial loading can provide a convergent result for effective material behavior.

However, this critical SPR is not applicable to the pure bending, but SPR = 17.36 is required to achieve the convergent result.

The above discovery imposes a challenge for the applicability of the homogenization-based micromechanical method. When SPR is small or

moderate, the effect of the actual microstructure cannot be taken lightly, particularly under non-uniform loading conditions. A detailed analysis

considering the actual microstructures is necessary.

6.2. Deflection in thermal bending with a temperature gradient along the thickness

Similarly, thermal bending can be considered with a temperature gradient along the thickness. For the homogenized beam with the CTE and

Young’s modulus obtained by a uniform temperature and a uniaxial loading, respectively, a few particles are enough to generate the convergent

result of the deflection curve. However, the actual heterogeneous beam with the same number of particles may yield a much different result from

the homogenized beam.
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Fig. 12. Variation of deflection 𝑢3 vs. the centerline 𝑥1 ∈ [0.01, 0.04] m under pure bending with the volume fraction 𝜙 = 10% for 128, 432, 2000, and 3456 particles.

Fig. 13. Variation of deflection 𝑢3 vs. the centerline 𝑥1 ∈ [0.01, 0.04] m under thermal bending with the volume fraction 𝜙 = 10% for 128, 432, 2000, and 3456 particles.

Fig. 13 shows the deflection of the beam under thermal bending, consistent with the settings in Fig. 7(d). Interestingly, increasing the number

of particles leads to greater deflection in thermal bending until a convergent result is obtained, which is opposite to the trend that observed in

pure bending. As for pure bending, more particles are located at the surface edge, higher flexural rigidity can be reached, so smaller deflection is

observed.

In the homogeneous case, based on the effective material constants obtained by the three cases of 128, 432, 2000, and 3456 particles, very

similar deflection curves are obtained, which means that SPR = 20.84 yields the convergent result. However, for heterogeneous composite beam,

much higher SPR is required to reach the convergent result.

The heterogeneous case shows a substantial increase in deflection, in which the maximum deflection moves from −0.3 × 10−4 m for 𝑛 = 126 to
−0.6 × 10−4 m for 𝑛 = 3456.

Overall, Figs. 12 and 13 show the convergence of deflection in both pure bending and thermal cases through the virtual experiments by the

iBEM for beams with different SPRs. Although a small SPR can provide convergent CTE and Young’s modulus, the heterogeneous composite beams

exhibit significantly different behavior from the corresponding homogenized beams under beam bending.

7. Conclusions

Conventional micromechanics approaches have utilized large RVEs under uniform loads to determine the effective elastic moduli for modeling

the structural behavior of particulate composites. However, two issues limit the applicability of micromechanical models: firstly, the actual stress

states exhibit stress variations, such as a linear change in pure bending of beams, which are not taken into account in the homogenization models

under uniform loads; secondly, the size of the structure members may not be large enough, making it challenging to achieve convergent effective

stiffness values that simultaneously consider particle size and beam length. As a result, the effects of particle size significantly influence the overall

structural behavior. The paper uses iBEM to simulate the thermoelastic behavior of many aluminum particles filled in an HDPE matrix with a

periodic distribution with the following highlights:

1. For a volume fraction of 10%, although 432 particles (SPR = 6.95) are enough to obtain convergent elastic constants and thermal expansion
coefficient, 2000 and 12,000 particles (SPR = 17.36 and 20.84) are required to reach a convergent solution for pure and thermal bending,

respectively;
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2. The thermoelastic Green’s function exhibits one order lower singularity than thermal or elastic Green’s functions, which leads to the

divergence of the volume integral in composites with a high volume fraction of particles. The homogenization for thermoelastic problems

may not always be applicable, and an actual heterogeneous material system should be used;

3. Although the iBEM is much faster than FEM, it may still require significant computational resources, especially when dealing with complex

geometries or large datasets. The cut-off of particle interactions can significantly save computational cost, but the accuracy changes with

particle size and problem type.

4. When the volume fraction of particles is small, such as 1%, or a single small particle is embedded in the matrix, the particle interactions

or boundary effects play a minor role, and the higher-order terms of eigen-fields in the iBEM can be disregarded; whereas for high volume

fractions, such as 30%, higher-order terms of eigen-fields are required.

5. For a small or moderate SPR, the conventional homogenization method with a uniform test loading may not be applicable to predict the

material behavior under non-uniform loading conditions. The actual microstructure shall be used for simulation and modeling.

The iBEM can be a powerful tool to simulate actual material samples for digital twins through virtual experiments of the materials in parallel to

the physical material testing or actual loading.
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Appendix. Explicit form of Eshelby’s tensor of spherical inclusion

Let 𝑟 denote the distance between field and source points, 𝑟 = |𝐱 − 𝐱𝐼𝑐 | and 𝑟𝑖 represent its 𝑖th component.

A.1. The integrals of harmonic potential

𝛷 = 2𝜋

{
𝑎2 − 𝑟2

3 𝑎 ≥ 𝑟

2𝑎3
3𝑟 𝑎 < 𝑟

(A.1)

𝛷𝑛 =
2𝜋
15

{(
5𝑎2 − 3𝑟2

)
𝑟𝑛 𝑎 ≥ 𝑟

2𝑎5𝑟𝑛
𝑟3

𝑎 < 𝑟
(A.2)

𝛷𝑚𝑛 =
𝜋

315

{
(105𝑎4 − 42𝑎2𝑟2 + 9𝑟4)𝛿𝑚𝑛 + (90𝑎2 − 70𝑟2)𝑟𝑚𝑟𝑛 𝑎 ≥ 𝑟

4
𝑟7
(−3𝑎5𝑟4(𝑎2 − 7𝑟2)𝛿𝑚𝑛 + 5𝑎7𝑟𝑚𝑟𝑛) 𝑎 < 𝑟

(A.3)

𝛷,𝑖 =
4𝜋
3

{
−𝑟𝑖 𝑎 ≥ 𝑟

− 𝑎3𝑟𝑖
𝑟3

𝑎 < 𝑟
(A.4)

𝛷𝑛,𝑖 =
2𝜋
15

{
(5𝑎2 − 3𝑟2)𝛿𝑖𝑛 − 6𝑟𝑖𝑟𝑛 𝑎 ≥ 𝑟

2𝑎5
𝑟5

(𝑟2𝛿𝑖𝑛 − 3𝑟𝑖𝑟𝑛) 𝑎 < 𝑟
(A.5)

𝛷𝑚𝑛,𝑖 =
2𝜋
105

{
3(7𝑎2 − 5𝑟2)(𝛿𝑖𝑛𝑟𝑚 + 𝛿𝑖𝑚𝑟𝑛) − 2(7𝑎2 − 3𝑟2)𝛿𝑚𝑛𝑟𝑖 + 15𝑟𝑚𝑟𝑛𝑟𝑖 𝑎 ≥ 𝑟

2𝑎5
𝑟7

[3𝑎2𝑟2(𝛿𝑖𝑛𝑟𝑚 + 𝛿𝑖𝑚𝑟𝑛) + 𝑟2(3𝑎2 − 7𝑟2)𝛿𝑚𝑛𝑟𝑖 − 15𝑎2𝑟𝑚𝑟𝑛𝑟𝑖] 𝑎 < 𝑟
(A.6)

𝛷,𝑖𝑗 =
4𝜋
3

{
−𝛿𝑖𝑗 𝑎 ≥ 𝑟

−𝑎3( 𝛿𝑖𝑗
𝑟3

− 3𝑟𝑖𝑟𝑗
𝑟5

) 𝑎 < 𝑟
(A.7)

𝛷𝑛,𝑖𝑗 =
2𝜋
15

{
−6(𝑟𝑖𝛿𝑗𝑛 + 𝑟𝑗𝛿𝑖𝑛 + 𝑟𝑛𝛿𝑖𝑗 ) 𝑎 ≥ 𝑟

−2𝑎5𝑟𝑗
𝑟7

(𝑟2𝛿𝑖𝑛 − 3𝑟𝑖𝑟𝑛) +
2𝑎5
𝑟5

(2𝑟𝑗𝛿𝑖𝑛 − 3𝑟𝑖𝛿𝑗𝑛 − 3𝛿𝑖𝑛𝑟𝑛) 𝑎 < 𝑟
(A.8)
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𝛷𝑚𝑛,𝑖𝑗 =
2𝜋
105

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(−30𝑟𝑗 )(𝛿𝑖𝑛𝑟𝑚 + 𝛿𝑖𝑚𝑟𝑛) + (21𝑎2 − 15𝑟2)(𝛿𝑖𝑛𝛿𝑚𝑗 + 𝛿𝑖𝑚𝛿𝑛𝑗 ) + 12𝑟𝑗𝛿𝑚𝑛𝑟𝑖
−(14𝑎2 − 6𝑟2)𝛿𝑚𝑛𝛿𝑖𝑗 + 15(𝛿𝑚𝑗𝑟𝑛𝑟𝑖 + 𝛿𝑛𝑗𝑟𝑚𝑟𝑖 + 𝛿𝑖𝑗𝑟𝑚𝑟𝑛) 𝑎 ≥ 𝑟

2𝑎5[ −15𝑎
2

𝑟7
(𝛿𝑖𝑛𝑟𝑚 + 𝛿𝑖𝑚𝑟𝑛 + 𝛿𝑚𝑛𝑟𝑖) +

3𝑎2
𝑟5

(𝛿𝑖𝑛𝛿𝑚𝑗 + 𝛿𝑖𝑚𝛿𝑛𝑗 + 𝛿𝑚𝑛𝛿𝑖𝑗 )
+ 21

𝑟5
𝛿𝑚𝑛𝑟𝑖 +

−7
𝑟3
𝛿𝑚𝑛𝛿𝑖𝑗 +

105𝑎2
𝑟9

𝑟𝑚𝑟𝑛𝑟𝑖 −
15𝑎2
𝑟7

(𝛿𝑚𝑗𝑟𝑛𝑟𝑖 + 𝛿𝑛𝑗𝑟𝑚𝑟𝑖 + 𝛿𝑖𝑗𝑟𝑚𝑟𝑛)] 𝑎 < 𝑟

(A.9)

A.2. The integrals of biharmonic potential

𝛹,𝑖 =
4𝜋
15

{
(5𝑎2 − 𝑟2)𝑟𝑖 𝑎 ≥ 𝑟

− 𝑟𝑖

𝑟3
(𝑎5 − 5𝑎3𝑟2) 𝑎 < 𝑟

(A.10)

𝛹𝑛,𝑖 =
𝜋

105

{
(−35𝑎4 + 14𝑎2𝑟2 − 3𝑟4)𝛿𝑖𝑛 + 4(7𝑎2 − 3𝑟2)𝑟𝑖𝑟𝑛 𝑎 ≥ 𝑟

4𝑎5
𝑟5

[𝑟2(𝑎2 − 7𝑟2)𝛿𝑖𝑛 + (−3𝑎2 + 7𝑟2)𝑟𝑖𝑟𝑛] 𝑎 < 𝑟
(A.11)

𝛹𝑚𝑛,𝑖 =
𝜋

315

⎧⎪⎪⎨⎪⎪⎩

−(21𝑎4 − 18𝑎2𝑟2 + 5𝑟4)(𝛿𝑖𝑛𝑟𝑚 + 𝛿𝑖𝑚𝑟𝑛)
+4(21𝑎4 − 6𝑎2𝑟2 + 𝑟4)𝛿𝑚𝑛𝑟𝑖 + (9𝑎2 − 5𝑟2)𝑟𝑚𝑟𝑛𝑟𝑖 𝑎 ≥ 𝑟

4𝑎5
𝑟7

[𝑎2𝑟2(𝑎2 − 3𝑟2)(𝛿𝑖𝑛𝑟𝑚 + 𝛿𝑖𝑚𝑟𝑛)
+𝑟2(𝑎4 − 6𝑎2𝑟2 + 21𝑟4)𝛿𝑚𝑛𝑟𝑖 + 𝑎2(−5𝑎2 + 9𝑟2)𝑟𝑚𝑟𝑛𝑟𝑖] 𝑎 < 𝑟

(A.12)

𝛹,𝑖𝑗 =
4𝜋
15

{
(5𝑎2 − 𝑟2)𝛿𝑖𝑗 − 2𝑟𝑖𝑟𝑗 𝑎 ≥ 𝑟

𝑎3

𝑟5
[𝑟2(−𝑎2 + 5𝑟2)𝛿𝑖𝑗 + (3𝑎2 − 5𝑟2)𝑟𝑖𝑟𝑗 ] 𝑎 < 𝑟

(A.13)

𝛹𝑛,𝑖𝑗 =
4𝜋
105

{
(7𝑎2 − 3𝑟2)(𝛿𝑖𝑛𝑟𝑗 + 𝛿𝑖𝑗𝑟𝑛 + 𝛿𝑗𝑛𝑟𝑖) − 6𝑟𝑖𝑟𝑗𝑟𝑛 𝑎 ≥ 𝑟

𝑎5

𝑟7
[𝑟2(−3𝑎2 + 7𝑟2)(𝛿𝑖𝑛𝑟𝑗 + 𝛿𝑖𝑗𝑟𝑛 + 𝛿𝑗𝑛𝑟𝑖) + 3(5𝑎2 − 7𝑟2)𝑟𝑖𝑟𝑗𝑟𝑛] 𝑎 < 𝑟

(A.14)

𝛹𝑚𝑛,𝑖𝑗 =
𝜋

315

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(−21𝑎4 + 18𝑎2𝑟2 − 5𝑟4)(𝛿𝑖𝑚𝛿𝑗𝑛 + 𝛿𝑖𝑛𝛿𝑗𝑚) + (84𝑎8 − 24𝑎6𝑟2 + 4𝑎4𝑟4)𝛿𝑖𝑗𝛿𝑚𝑛
+(36𝑎2 − 20𝑟2)𝛿𝑖𝑚𝑟𝑛𝑟𝑗 + 4(9𝑎2 − 5𝑟2)(𝛿𝑖𝑛𝑟𝑚𝑟𝑗 + 𝛿𝑖𝑗𝑟𝑚𝑟𝑛

+𝛿𝑖𝑚𝑟𝑗𝑟𝑛 + 𝛿𝑗𝑛𝑟𝑚𝑟𝑖 + 𝛿𝑗𝑚𝑟𝑛𝑟𝑖) − 16(3𝑎2 − 𝑟2)𝛿𝑚𝑛𝑟𝑖𝑟𝑗 − 40𝑟𝑖𝑟𝑗𝑟𝑚𝑟𝑛 𝑎 ≥ 𝑟

4𝑎5
𝑟9

{𝑟4𝑎2[(𝑎2 − 3𝑟2)(𝛿𝑖𝑛𝛿𝑗𝑚 + 𝛿𝑖𝑚𝛿𝑗𝑛) + 𝑎2(𝑎4 − 6𝑎2𝑟2 + 21𝑟4)𝛿𝑖𝑗𝛿𝑚𝑛]
−𝑟2𝑎2(5𝑎2 − 9𝑟2)(𝛿𝑖𝑚𝑟𝑗𝑟𝑛 + 𝛿𝑖𝑛𝑟𝑗𝑟𝑚 + 𝛿𝑖𝑗𝑟𝑛𝑟𝑚 + 𝛿𝑗𝑛𝑟𝑚𝑟𝑖 + 𝛿𝑗𝑚𝑟𝑛𝑟𝑖)
+𝑟2(−5𝑎4 + 18𝑎2𝑟2 − 21𝑟4)𝛿𝑚𝑛𝑟𝑖𝑟𝑗 + 5𝑎2(7𝑎2 − 9𝑟2)𝑟𝑖𝑟𝑗𝑟𝑚𝑟𝑛} 𝑎 < 𝑟

(A.15)

𝛹,𝑖𝑗𝑘 = 4𝜋
15

{
−2(𝛿𝑗𝑘𝑟𝑖 + 𝛿𝑖𝑘𝑟𝑗 + 𝛿𝑖𝑗𝑟𝑘) 𝑎 ≥ 𝑟

𝑎3

𝑟7
[𝑟2(3𝑎2 − 5𝑟2)(𝛿𝑖𝑗𝑟𝑘 + 𝛿𝑖𝑘𝑟𝑗 + 𝛿𝑗𝑘𝑟𝑖) − 15(𝑎2 − 𝑟2)𝑟𝑖𝑟𝑗𝑟𝑘] 𝑎 < 𝑟

(A.16)

𝛹𝑛,𝑖𝑗𝑘 = 4𝜋
105

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(7𝑎2 − 3𝑟2)(𝛿𝑖𝑛𝛿𝑗𝑘 + 𝛿𝑖𝑘𝛿𝑗𝑛 + 𝛿𝑖𝑗𝛿𝑘𝑛)
−6(𝛿𝑗𝑘𝑟𝑖𝑟𝑛 + 𝛿𝑗𝑛𝑟𝑖 + 𝛿𝑖𝑛𝑟𝑗𝑟𝑘 + 𝛿𝑖𝑗𝑟𝑛𝑟𝑘 + 𝛿𝑘𝑛𝑟𝑖𝑟𝑗 + 𝛿𝑖𝑘𝑟𝑛𝑟𝑗 ) 𝑎 ≥ 𝑟

1
𝑟9
𝑎5[𝑟4(−3𝑎2 + 7𝑟2)(𝛿𝑖𝑛𝛿𝑗𝑘 + 𝛿𝑖𝑘𝛿𝑗𝑛 + 𝛿𝑖𝑗𝛿𝑘𝑛)

+3𝑟2(5𝑎2 − 7𝑟2)(𝛿𝑖𝑘𝑟𝑗𝑟𝑛 + 𝛿𝑖𝑛𝑟𝑗𝑟𝑘 + 𝛿𝑖𝑗𝑟𝑛𝑟𝑘 + 𝛿𝑗𝑛𝑟𝑘𝑟𝑖 + 𝛿𝑗𝑘𝑟𝑖𝑟𝑛 + 𝛿𝑘𝑛𝑟𝑖𝑟𝑗 )
−105(𝑎2 − 𝑟2)𝑟𝑖𝑟𝑗𝑟𝑘𝑟𝑛] 𝑎 < 𝑟

(A.17)

𝛹𝑚𝑛,𝑖𝑗𝑘 = 4𝜋
315

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9𝑎2 − 5𝑟2)(𝛿𝑗𝑛𝛿𝑘𝑚𝑟𝑖 + 𝛿𝑗𝑚𝛿𝑘𝑛𝑟𝑖 + 𝛿𝑖𝑛𝛿𝑗𝑘𝑟𝑚 + 𝛿𝑖𝑘𝛿𝑗𝑛𝑟𝑚 + 𝛿𝑖𝑗𝛿𝑘𝑛𝑟𝑚

+𝛿𝑖𝑗𝛿𝑚𝑛𝑟𝑛 + 𝛿𝑖𝑚𝛿𝑘𝑛𝑟𝑗 + 𝛿𝑖𝑛𝛿𝑘𝑚𝑟𝑗 + 𝛿𝑖𝑛𝛿𝑗𝑚𝑟𝑘 + 𝛿𝑖𝑚𝛿𝑗𝑛𝑟𝑘)
−(12𝑎6 − 4𝑎4𝑟2)(𝛿𝑗𝑘𝛿𝑚𝑛𝑟𝑖 + 𝛿𝑖𝑘𝛿𝑚𝑛𝑟𝑗 + 𝛿𝑖𝑗𝛿𝑚𝑛𝑟𝑘)
−10(𝛿𝑗𝑘𝑟𝑖𝑟𝑚𝑟𝑛 + 𝛿𝑘𝑚𝑟𝑖𝑟𝑗𝑟𝑛 + 𝛿𝑘𝑛𝑟𝑖𝑟𝑗𝑟𝑚 + 𝛿𝑖𝑘𝑟𝑛𝑟𝑗𝑟𝑚

+𝛿𝑗𝑛𝑟𝑘𝑟𝑚𝑟𝑖 + 𝛿𝑖𝑛𝑟𝑘𝑟𝑚𝑟𝑗 + 𝛿𝑖𝑗𝑟𝑘𝑟𝑚𝑟𝑛 + 𝛿𝑗𝑚𝑟𝑘𝑟𝑖𝑟𝑛 + 𝛿𝑖𝑚𝑟𝑛𝑟𝑗𝑟𝑘)
+8𝑎4𝛿𝑚𝑛𝑟𝑖𝑟𝑗𝑟𝑘 𝑎 ≥ 𝑟

𝑎7

𝑟11
[𝑟4(−5𝑎2 + 9𝑟2)(𝛿𝑖𝑛𝛿𝑗𝑘𝑟𝑚 + 𝛿𝑖𝑘𝛿𝑗𝑛𝑟𝑚 + 𝛿𝑖𝑗𝛿𝑘𝑛𝑟𝑚 + 𝛿𝑖𝑚𝛿𝑗𝑘𝑟𝑛 + 𝛿𝑖𝑘𝛿𝑗𝑚𝑟𝑛

+𝛿𝑖𝑗𝛿𝑘𝑚𝑟𝑛 + 𝛿𝑖𝑛𝛿𝑘𝑚𝑟𝑗 + 𝛿𝑖𝑚𝛿𝑘𝑛𝑟𝑗 + 𝛿𝑖𝑛𝛿𝑗𝑚𝑟𝑘 + 𝛿𝑖𝑚𝛿𝑗𝑛𝑟𝑘 + 𝛿𝑗𝑛𝛿𝑘𝑚𝑟𝑖 + 𝛿𝑗𝑚𝛿𝑘𝑛𝑟𝑖)
−𝑟4𝑎2(5𝑎4 − 18𝑎2𝑟2 + 21𝑟4)(𝛿𝑖𝑘𝛿𝑚𝑛𝑟𝑗 + 𝛿𝑖𝑗𝛿𝑚𝑛𝑟𝑘 + 𝛿𝑗𝑘𝛿𝑚𝑛𝑟𝑖)
+5𝑟2(7𝑎2 − 9𝑟2)(𝛿𝑖𝑘𝑟𝑚𝑟𝑛𝑟𝑗 + 𝛿𝑖𝑚𝑟𝑗𝑟𝑛𝑟𝑘 + 𝛿𝑖𝑛𝑟𝑗𝑟𝑚𝑟𝑘 + 𝛿𝑖𝑗𝑟𝑛𝑟𝑚𝑟𝑘 + 𝛿𝑗𝑚𝑟𝑘𝑟𝑛𝑟𝑖

+𝛿𝑗𝑛𝑟𝑖𝑟𝑘𝑟𝑚 + 𝛿𝑗𝑘𝑟𝑖𝑟𝑛𝑟𝑚 + 𝛿𝑘𝑛𝑟𝑖𝑟𝑗𝑟𝑚 + 𝛿𝑘𝑚𝑟𝑖𝑟𝑗𝑟𝑛)
+𝑎2(35𝑎4 − 90𝑎2𝑟2 + 63𝑟4)𝛿𝑚𝑛𝑟𝑖𝑟𝑗𝑟𝑘 − 315(𝑎2 − 𝑟2)𝑟𝑚𝑟𝑛𝑟𝑖𝑟𝑗𝑟𝑘] 𝑎 < 𝑟

(A.18)

𝛹,𝑖𝑗𝑘𝑙 =
4𝜋
15

⎧⎪⎪⎨⎪⎪⎩
−2(𝛿𝑗𝑘𝛿𝑖𝑙 + 𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑗𝛿𝑘𝑙) 𝑎 ≥ 𝑟

𝑎3[( −15𝑎
2𝑟𝑙

𝑟7
− −15𝑟𝑙

𝑟5
)(𝛿𝑖𝑗𝑟𝑘 + 𝛿𝑖𝑘𝑟𝑗 + 𝛿𝑗𝑘𝑟𝑖)

+(− 15𝑎2
𝑟7

3𝑎2+15
𝑟5

− 5
𝑟3
)(𝛿𝑖𝑗𝛿𝑘𝑙 + 𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑗𝑘𝛿𝑖𝑙) + ( 105𝑎

2

𝑟9
− 75

𝑟7
)𝑟𝑖𝑟𝑗𝑟𝑘] 𝑎 < 𝑟

(A.19)
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Table A.2

Eshelby’s tensors.

Term Thermal Thermoelastic

Uniform: 𝑓𝐼0
𝑖

= − 𝛷,𝑖

4𝜋
𝑤𝐼0

𝑖𝑘
= − 𝛼0

8𝜋
1+𝜈0

1−𝜈0
𝛹,𝑖𝑘

Linear: 𝑓𝐼1
𝑖𝑘

= − 𝛷𝑘,𝑖

4𝜋
𝑤𝐼1

𝑖𝑘𝑝
= − 𝛼0

8𝜋
1+𝜈0

1−𝜈0
𝛹𝑝,𝑖𝑘

Quadratic: 𝑓𝐼2
𝑖𝑘𝑙

= − 𝛷𝑘𝑙,𝑖

4𝜋
𝑤𝐼2

𝑖𝑘𝑝𝑞
= − 𝛼0

8𝜋
1+𝜈0

1−𝜈0
𝛹𝑝𝑞,𝑖𝑘

Elastic

Uniform: 𝑔𝐼0
𝑖𝑘𝑙

= −( 1
4𝜋𝜇0 𝛿𝑖𝑗𝛷,𝑚 − 1

16𝜋𝜇0 (1−𝜈0 )
𝛹,𝑖𝑗𝑚)𝐶0

𝑗𝑚𝑘𝑙

Linear: 𝑔𝐼1
𝑖𝑘𝑙𝑝

= −( 1
4𝜋𝜇0 𝛿𝑖𝑗𝛷𝑝,𝑚 − 1

16𝜋𝜇0 (1−𝜈0 )
𝛹𝑝,𝑖𝑗𝑚)𝐶0

𝑗𝑚𝑘𝑙

Quadratic: 𝑔𝐼2
𝑖𝑘𝑙𝑝𝑞

= −( 1
4𝜋𝜇0 𝛿𝑖𝑗𝛷𝑝𝑞,𝑚 − 1

16𝜋𝜇0 (1−𝜈0 )
𝛹𝑝𝑞,𝑖𝑗𝑚)𝐶0

𝑗𝑚𝑘𝑙

𝛹𝑛,𝑖𝑗𝑘𝑙 =
4𝜋
105

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−6(𝛿𝑖𝑛𝛿𝑗𝑘𝑟𝑙 + 𝛿𝑖𝑘𝛿𝑗𝑛𝑟𝑙 + 𝛿𝑖𝑗𝛿𝑘𝑛𝑟𝑙 + 𝛿𝑗𝑘𝛿𝑖𝑙𝑟𝑛 + 𝛿𝑗𝑛𝛿𝑖𝑙𝑟𝑘 + 𝛿𝑖𝑛𝛿𝑗𝑙𝑟𝑘 + 𝛿𝑖𝑗𝛿𝑛𝑙𝑟𝑘

+𝛿𝑘𝑛𝛿𝑖𝑙𝑟𝑗 + 𝛿𝑖𝑘𝛿𝑛𝑙𝑟𝑗 + 𝛿𝑗𝑘𝛿𝑛𝑙𝑟𝑖 + 𝛿𝑗𝑛𝛿𝑘𝑙𝑟𝑖 + 𝛿𝑖𝑛𝛿𝑘𝑙𝑟𝑗 + 𝛿𝑖𝑗𝛿𝑘𝑙𝑟𝑛 + 𝛿𝑘𝑛𝛿𝑗𝑙𝑟𝑖 + 𝛿𝑖𝑘𝛿𝑗𝑙𝑟𝑛) 𝑎 ≥ 𝑟

𝑎5{( 15𝑎
2

𝑟7
− 21𝑎2

𝑟5
)(𝛿𝑖𝑛𝛿𝑗𝑘𝑟𝑙 + 𝛿𝑖𝑘𝛿𝑗𝑛𝑟𝑙 + 𝛿𝑖𝑗𝛿𝑘𝑛𝑟𝑙 + 𝛿𝑖𝑘𝛿𝑗𝑙𝑟𝑛 + 𝛿𝑖𝑛𝛿𝑗𝑙𝑟𝑘 + 𝛿𝑖𝑗𝛿𝑛𝑙𝑟𝑘

+𝛿𝑗𝑛𝛿𝑘𝑙𝑟𝑖 + 𝛿𝑗𝑘𝛿𝑖𝑙𝑟𝑛 + 𝛿𝑘𝑛𝛿𝑖𝑙𝑟𝑗 + 𝛿𝑖𝑘𝛿𝑛𝑙𝑟𝑗 + 𝛿𝑖𝑛𝛿𝑘𝑙𝑟𝑗 + 𝛿𝑖𝑗𝛿𝑘𝑙𝑟𝑛 + 𝛿𝑗𝑛𝛿𝑖𝑙𝑟𝑘 + 𝛿𝑗𝑘𝛿𝑛𝑙𝑟𝑖 + 𝛿𝑘𝑛𝛿𝑗𝑙𝑟𝑖)
−105( 𝑎

2

𝑟9
+ 1

𝑟7
)(𝛿𝑖𝑘𝑟𝑗𝑟𝑛𝑟𝑙 + 𝛿𝑖𝑛𝑟𝑗𝑟𝑘𝑟𝑙 + 𝛿𝑖𝑗𝑟𝑛𝑟𝑘𝑟𝑙 + 𝛿𝑗𝑛𝑟𝑘𝑟𝑖𝑟𝑙

+𝛿𝑗𝑘𝑟𝑖𝑟𝑛𝑟𝑙 + 𝛿𝑘𝑛𝑟𝑖𝑟𝑗𝑟𝑙 + 𝛿𝑖𝑙𝑟𝑗𝑟𝑘𝑟𝑛 + 𝛿𝑗𝑙𝑟𝑖𝑟𝑘𝑟𝑛 + 𝛿𝑘𝑙𝑟𝑖𝑟𝑗𝑟𝑛 + 𝛿𝑛𝑙𝑟𝑖𝑟𝑗𝑟𝑘) + 105( 9𝑎
2

𝑟11
− 7

𝑟9
)𝑟𝑖𝑟𝑗𝑟𝑘𝑟𝑛𝑟𝑙} 𝑎 < 𝑟

(A.20)

𝛹𝑚𝑛,𝑖𝑗𝑘𝑙 =
4𝜋
315

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−10(𝛿𝑗𝑛𝛿𝑘𝑚𝑟𝑖𝑟𝑙 + 𝛿𝑗𝑚𝛿𝑘𝑛𝑟𝑖𝑟𝑙 + 𝛿𝑖𝑛𝛿𝑗𝑘𝑟𝑚𝑟𝑙 + 𝛿𝑖𝑘𝛿𝑗𝑛𝑟𝑚𝑟𝑙 + 𝛿𝑖𝑗𝛿𝑘𝑛𝑟𝑚𝑟𝑙

+𝛿𝑖𝑗𝛿𝑚𝑛𝑟𝑛𝑟𝑙 + 𝛿𝑖𝑚𝛿𝑘𝑛𝑟𝑗𝑟𝑙 + 𝛿𝑖𝑛𝛿𝑘𝑚𝑟𝑗𝑟𝑙 + 𝛿𝑖𝑛𝛿𝑗𝑚𝑟𝑘𝑟𝑙 + 𝛿𝑖𝑚𝛿𝑗𝑛𝑟𝑘𝑟𝑙

+𝛿𝑗𝑘𝛿𝑖𝑙𝑟𝑚𝑟𝑛 + 𝛿𝑘𝑚𝛿𝑖𝑙𝑟𝑗𝑟𝑛 + 𝛿𝑘𝑛𝛿𝑖𝑙𝑟𝑗𝑟𝑚 + 𝛿𝑖𝑘𝛿𝑛𝑙𝑟𝑗𝑟𝑚

+𝛿𝑗𝑛𝛿𝑘𝑙𝑟𝑚𝑟𝑖 + 𝛿𝑖𝑛𝛿𝑘𝑙𝑟𝑚𝑟𝑗 + 𝛿𝑖𝑗𝛿𝑘𝑙𝑟𝑚𝑟𝑛 + 𝛿𝑗𝑚𝛿𝑘𝑙𝑟𝑖𝑟𝑛 + 𝛿𝑖𝑚𝛿𝑛𝑙𝑟𝑗𝑟𝑘

+𝛿𝑗𝑘𝛿𝑚𝑙𝑟𝑖𝑟𝑛 + 𝛿𝑘𝑚𝛿𝑗𝑙𝑟𝑖𝑟𝑛 + 𝛿𝑘𝑛𝛿𝑗𝑙𝑟𝑖𝑟𝑚 + 𝛿𝑖𝑘𝛿𝑗𝑙𝑟𝑛𝑟𝑚

+𝛿𝑗𝑛𝛿𝑚𝑙𝑟𝑘𝑟𝑖 + 𝛿𝑖𝑛𝛿𝑚𝑙𝑟𝑘𝑟𝑗 + 𝛿𝑖𝑗𝛿𝑚𝑙𝑟𝑘𝑟𝑛 + 𝛿𝑗𝑚𝛿𝑖𝑙𝑟𝑘𝑟𝑛 + 𝛿𝑖𝑚𝛿𝑗𝑙𝑟𝑛𝑟𝑘

+𝛿𝑗𝑘𝛿𝑛𝑙𝑟𝑖𝑟𝑚 + 𝛿𝑘𝑚𝛿𝑛𝑙𝑟𝑖𝑟𝑗 + 𝛿𝑘𝑛𝛿𝑚𝑙𝑟𝑖𝑟𝑗 + 𝛿𝑖𝑘𝛿𝑚𝑙𝑟𝑛𝑟𝑗

+𝛿𝑗𝑛𝛿𝑖𝑙𝑟𝑘𝑟𝑚 + 𝛿𝑖𝑛𝛿𝑗𝑙𝑟𝑘𝑟𝑚 + 𝛿𝑖𝑗𝛿𝑛𝑙𝑟𝑘𝑟𝑚 + 𝛿𝑗𝑚𝛿𝑛𝑙𝑟𝑘𝑟𝑖 + 𝛿𝑖𝑚𝛿𝑘𝑙𝑟𝑛𝑟𝑗 )
+8𝑎4(𝛿𝑗𝑘𝛿𝑚𝑛𝑟𝑖𝑟𝑙 + 𝛿𝑖𝑘𝛿𝑚𝑛𝑟𝑗𝑟𝑙 + 𝛿𝑖𝑗𝛿𝑚𝑛𝑟𝑘𝑟𝑙 + 𝛿𝑚𝑛𝛿𝑖𝑙𝑟𝑗𝑟𝑘 + 𝛿𝑚𝑛𝛿𝑗𝑙𝑟𝑖𝑟𝑘 + 𝛿𝑚𝑛𝛿𝑘𝑙𝑟𝑖𝑟𝑗 )
−(12𝑎6 − 4𝑎4𝑟2)(𝛿𝑗𝑘𝛿𝑚𝑛𝛿𝑖𝑙 + 𝛿𝑖𝑘𝛿𝑚𝑛𝛿𝑗𝑙 + 𝛿𝑖𝑗𝛿𝑚𝑛𝛿𝑘𝑙) 𝑎 ≥ 𝑟

𝑎7[( −5𝑎
2

𝑟7
+ 9

𝑟5
)(𝛿𝑖𝑛𝛿𝑗𝑘𝛿𝑚𝑙 + 𝛿𝑖𝑘𝛿𝑗𝑛𝛿𝑚𝑙 + 𝛿𝑖𝑗𝛿𝑘𝑛𝛿𝑚𝑙 + 𝛿𝑖𝑚𝛿𝑗𝑘𝛿𝑛𝑙 + 𝛿𝑖𝑘𝛿𝑗𝑚𝛿𝑛𝑙 + 𝛿𝑖𝑗𝛿𝑘𝑚𝛿𝑛𝑙

+𝛿𝑖𝑛𝛿𝑘𝑚𝛿𝑗𝑙 + 𝛿𝑖𝑚𝛿𝑘𝑛𝛿𝑗𝑙 + 𝛿𝑖𝑛𝛿𝑗𝑚𝛿𝑘𝑙 + 𝛿𝑖𝑚𝛿𝑗𝑛𝛿𝑘𝑙 + 𝛿𝑗𝑛𝛿𝑘𝑚𝛿𝑖𝑙 + 𝛿𝑗𝑚𝛿𝑘𝑛𝛿𝑖𝑙)

+(− 5𝑎6
𝑟7

+ 18𝑎4
𝑟5

− 21𝑎2
𝑟3

)(𝛿𝑖𝑘𝛿𝑚𝑛𝛿𝑗𝑙 + 𝛿𝑖𝑗𝛿𝑚𝑛𝛿𝑘𝑙 + 𝛿𝑗𝑘𝛿𝑚𝑛𝛿𝑖𝑙)

+( 35𝑎
2

𝑟9
− 45

𝑟7
)(𝛿𝑖𝑛𝛿𝑗𝑘𝑟𝑚𝑟𝑙 + 𝛿𝑖𝑘𝛿𝑗𝑛𝑟𝑚𝑟𝑙 + 𝛿𝑖𝑗𝛿𝑘𝑛𝑟𝑚𝑟𝑙 + 𝛿𝑖𝑚𝛿𝑗𝑘𝑟𝑛𝑟𝑙 + 𝛿𝑖𝑘𝛿𝑗𝑚𝑟𝑛𝑟𝑙

+𝛿𝑖𝑗𝛿𝑘𝑚𝑟𝑛𝑟𝑙 + 𝛿𝑖𝑛𝛿𝑘𝑚𝑟𝑗𝑟𝑙 + 𝛿𝑖𝑚𝛿𝑘𝑛𝑟𝑗𝑟𝑙 + 𝛿𝑖𝑛𝛿𝑗𝑚𝑟𝑘𝑟𝑙 + 𝛿𝑖𝑚𝛿𝑗𝑛𝑟𝑘𝑟𝑙 + 𝛿𝑗𝑛𝛿𝑘𝑚𝑟𝑖𝑟𝑙

+𝛿𝑗𝑚𝛿𝑘𝑛𝑟𝑖𝑟𝑙 + 𝛿𝑚𝑙𝛿𝑖𝑘𝑟𝑛𝑟𝑗 + 𝛿𝑛𝑙𝛿𝑖𝑘𝑟𝑚𝑟𝑗 + 𝛿𝑗𝑙𝛿𝑖𝑘𝑟𝑚𝑟𝑛 + 𝛿𝑗𝑙𝛿𝑖𝑚𝑟𝑛𝑟𝑘 + 𝛿𝑛𝑙𝛿𝑖𝑚𝑟𝑗𝑟𝑘

+𝛿𝑘𝑙𝛿𝑖𝑚𝑟𝑗𝑟𝑛 + 𝛿𝑖𝑛𝛿𝑗𝑙𝑟𝑚𝑟𝑘 + 𝛿𝑖𝑛𝛿𝑚𝑙𝑟𝑗𝑟𝑘 + 𝛿𝑖𝑛𝛿𝑘𝑙𝑟𝑗𝑟𝑚 + 𝛿𝑖𝑗𝛿𝑛𝑙𝑟𝑚𝑟𝑘 + 𝛿𝑖𝑗𝛿𝑚𝑙𝑟𝑛𝑟𝑘

+𝛿𝑖𝑗𝛿𝑘𝑙𝑟𝑛𝑟𝑚 + 𝛿𝑗𝑚𝛿𝑘𝑙𝑟𝑛𝑟𝑖 + 𝛿𝑗𝑚𝛿𝑛𝑙𝑟𝑖𝑟𝑘 + 𝛿𝑗𝑚𝛿𝑖𝑙𝑟𝑘𝑟𝑛 + 𝛿𝑗𝑛𝛿𝑖𝑙𝑟𝑘𝑟𝑚 + 𝛿𝑗𝑛𝛿𝑘𝑙𝑟𝑚𝑟𝑖

+𝛿𝑗𝑛𝛿𝑚𝑙𝑟𝑖𝑟𝑘 + 𝛿𝑗𝑘𝛿𝑖𝑙𝑟𝑛𝑟𝑚 + 𝛿𝑗𝑘𝛿𝑛𝑙𝑟𝑖𝑟𝑚 + 𝛿𝑗𝑘𝛿𝑚𝑙𝑟𝑖𝑟𝑛 + 𝛿𝑘𝑛𝛿𝑖𝑙𝑟𝑗𝑟𝑚 + 𝛿𝑘𝑛𝛿𝑗𝑙𝑟𝑖𝑟𝑚

+𝛿𝑚𝑙𝛿𝑘𝑛𝑟𝑖𝑟𝑗 + 𝛿𝑘𝑚𝛿𝑖𝑙𝑟𝑗𝑟𝑛 + 𝛿𝑗𝑙𝛿𝑘𝑚𝑟𝑖𝑟𝑛 + 𝛿𝑛𝑙𝛿𝑘𝑚𝑟𝑖𝑟𝑗 ) + ( 35𝑎
6

𝑟9
− 90𝑎4

𝑟7
+ 63𝑎2

𝑟5
)(𝛿𝑖𝑘𝛿𝑚𝑛𝑟𝑗𝑟𝑙

+𝛿𝑖𝑗𝛿𝑚𝑛𝑟𝑘𝑟𝑙 + 𝛿𝑗𝑘𝛿𝑚𝑛𝑟𝑖𝑟𝑙 + 𝛿𝑚𝑛𝛿𝑖𝑙𝑟𝑗𝑟𝑘 + 𝛿𝑚𝑛𝛿𝑗𝑙𝑟𝑖𝑟𝑘 + 𝛿𝑘𝑙𝛿𝑚𝑛𝑟𝑖𝑟𝑗 )

+5( −63𝑎
2

𝑟11
+ 63

𝑟9
)(𝛿𝑖𝑘𝑟𝑙𝑟𝑚𝑟𝑛𝑟𝑗 + 𝛿𝑖𝑚𝑟𝑙𝑟𝑗𝑟𝑛𝑟𝑘 + 𝛿𝑖𝑛𝑟𝑙𝑟𝑗𝑟𝑚𝑟𝑘 + 𝛿𝑖𝑗𝑟𝑙𝑟𝑛𝑟𝑚𝑟𝑘 + 𝛿𝑗𝑚𝑟𝑙𝑟𝑘𝑟𝑛𝑟𝑖

+𝛿𝑗𝑛𝑟𝑙𝑟𝑖𝑟𝑘𝑟𝑚 + 𝛿𝑗𝑘𝑟𝑙𝑟𝑖𝑟𝑛𝑟𝑚 + 𝛿𝑘𝑛𝑟𝑙𝑟𝑖𝑟𝑗𝑟𝑚 + 𝛿𝑘𝑚𝑟𝑙𝑟𝑖𝑟𝑗𝑟𝑛 + 𝛿𝑚𝑙𝑟𝑛𝑟𝑖𝑟𝑗𝑟𝑘 + 𝛿𝑛𝑙𝑟𝑚𝑟𝑖𝑟𝑗𝑟𝑘

+𝛿𝑖𝑙𝑟𝑚𝑟𝑛𝑟𝑗𝑟𝑘 + 𝛿𝑗𝑙𝑟𝑚𝑟𝑛𝑟𝑖𝑟𝑘 + 𝛿𝑘𝑙𝑟𝑚𝑟𝑛𝑟𝑖𝑟𝑗 )

+( −385𝑎
6

𝑟13
+ 810𝑎4

𝑟11
+ −441𝑎2

𝑟9
)𝛿𝑚𝑛𝑟𝑖𝑟𝑗𝑟𝑘𝑟𝑙 + 315( 11𝑎

2

𝑟13
− 9

𝑟11
)𝑟𝑚𝑟𝑛𝑟𝑖𝑟𝑗𝑟𝑘𝑟𝑙] 𝑎 < 𝑟

(A.21)

A.3. Eshelby’s tensor in terms of the integrals of the potentials

For a distributed source field on a spherical inclusion, the material’s response can be shown with Eshelby’s tensors at the different orders in

polynomial form, which can be written in terms of the integrals of the potentials (see Table A.2).

Classical Eshelby’s tensor is defined by:

𝑆𝑖𝑗𝑘𝑙 =
𝑔𝑖𝑘𝑙,𝑗+𝑔𝑗𝑘𝑙,𝑖

2 , 𝑆𝑖𝑗𝑘𝑙𝑝 =
𝑔𝑖𝑘𝑙𝑝,𝑗+𝑔𝑗𝑘𝑙𝑝,𝑖

2 , 𝑆𝑖𝑗𝑘𝑙𝑝𝑞 =
𝑔𝑖𝑘𝑙𝑝𝑞,𝑗+𝑔𝑗𝑘𝑙𝑝𝑞,𝑖

2 ,

Thermoelastic Eshelby’s tensor as:

𝑅𝑖𝑗𝑘 = 𝑤𝑖𝑘,𝑗+𝑤𝑗𝑘,𝑖

2 , 𝑅𝑖𝑗𝑘𝑝 =
𝑤𝑖𝑘𝑝,𝑗+𝑤𝑗𝑘𝑝,𝑖

2 , 𝑅𝑖𝑗𝑘𝑝𝑞 =
𝑤𝑖𝑘𝑝𝑞,𝑗+𝑤𝑗𝑘𝑝𝑞,𝑖

2 .
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