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ARTICLE INFO ABSTRACT

Keywords: The particle size effect on the overall thermoelastic behavior of a composite containing many identical spherical
Size effect of inhomogeneity particles reduces with the specimen-particle size ratio (SPR). When SPR is large enough, the effective stiffness
Eshelby’s equivalent inclusion method (EIM) converges, and the homogenized properties can represent the composite. This paper addresses two challenging

Thermoelastic behavior

Inclusion-based boundary element method
(iBEM)

Representative volume element (RVE)

questions: How large of an SPR is enough to reach the convergent results for different loading conditions, and
whether is the critical SPR obtained from a uniform loading condition applicable to a nonuniform loading
condition? When a uniform load is applied to a composite beam, the elastic moduli and thermal expansion
coefficients can be calculated from the material’s response. When the beam is subjected to pure or thermal
bending, the deflection can be predicted by the heterogeneous or homogenized beams. The inclusion-based
boundary element method (iBEM) is developed for high-fidelity simulation of many-particle systems. Given
a volume fraction of particles, particle and beam size, and beam geometry, the local fields and the effective
deformation are calculated for uniform and nonuniform loading conditions. The comparative study between
a homogenized beam by the micromechanical approach and the numerical simulation of the heterogeneous
particle system shows that a much larger SPR is required for thermal bending to reach a convergent result
between the heterogeneous and homogenized beam. When the SPR is moderate, a cross-scale modeling method
shall replace the micromechanical modeling to achieve accurate results.

1. Introduction

Composite materials combine two or more distinct constituent materials, such as fibers or particles in a matrix, and may achieve enhanced
properties that a single-material phase cannot. Particulate composites have been widely used in machinery components like brake pads and
engine components for improved durability and thermo-mechanical performance (Mura, 1987; Nemat-Nasser and Hori, 2013; Prasad et al., 1994;
Campanella and Mitchell, 1968). The microstructure of composite materials, including particle size, volume fraction, and distribution, is crucial
for determining their performance. Micromechanics of composites uses a representative volume element (RVE) to calculate the local field of a
heterogeneous material system and predict the effective material behavior as a homogenized material (Hori and Nemat-Nasser, 1999; Yin and
Zhao, 2016). Theoretically, the size of an RVE can be extended indefinitely to avoid the size effect. Numerically, the RVE should be constrained
to a critical size that minimizes computational cost and secures a convergent solution.

The micromechanics-based approach typically involves two steps in applications: (1) use a uniform load, such as uniform far-field stress (Mura,
1987) in an RVE or uniform traction or displacement in a unit cell (Wu and Yin, 2021), to predict the effective material properties by the overall
material response. Generally, the volume averages of the local fields are used to calculate the constitutive constants. (2) Homogenize the composite
into a uniform material with the calculated constants for the actual design and analysis of the structure (Lee et al., 2019), so that the traditional
structural design and analysis methods, such as the finite element method (FEM), can be used. Therefore, the design and applications of a complex
material system can be simplified with micromechanical modeling. Two fundamental questions shall be addressed in this micromechanics-based
approach: (1) What is the critical size of the RVE, which provides the minimal size of composite materials to assure the applicability of the
micromechanical model? (2) Whether the critical RVE size under the uniform test loading condition applies to general loading conditions as well,
which implies that the micromechanical model may still fail in some loading conditions if the required RVE size is larger?
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Several studies have addressed these questions. Hill (1963) first proposed that a composite sample, such as an RVE, should contain adequate
microstructural details to sufficiently represent the composite. On the basis of Hill’s concept, numerical studies have investigated size effects on
RVE and mainly minimized its dimensions. Kanit et al. (2003) used a statistical approach to obtain RVE with tailorable and acceptable precision.
In addition, a variational scheme (Terada et al., 2000) was applied to the homogenization process, examining the differences and convergences
of parameters at macro and micro scales. Dirrenberger et al. (2014) concluded that larger RVEs generally exhibit slower convergence, causing
difficulties in obtaining convergent results.

In actual applications, a composite can never be infinitely large, and the testing specimen and particle size difference can be quantified by
the smallest dimension of the specimen versus the particle diameter, namely the specimen-particle size ratio (SPR). Recently, Wu and Yin (2021)
conducted virtual experiments to investigate how microstructure affects overall homogenized properties, such as size variation and distribution of
inhomogeneities. Specifically, Wu and Yin (2021) changed the number of stiffer inhomogeneities to understand the size effects, i.e., 8, 64, 125,
512, 1000 to 3375, while maintaining a constant volume fraction of 40%. The results of the virtual experiments indicate that the convergence
of homogenized properties, such as elastic moduli, gradually decreases with smaller dimensions of inhomogeneities. In Wu’s work (Wu and Yin,
2021), when the SPR is greater than 10, the difference in homogenized elastic moduli is below 1.4%.

Although some studies suggest that a greater SPR can improve the accuracy of homogenized properties, its applicability to general cases still
needs to be investigated. Ostoja-Starzewski (1998) pointed out that improper selection and consideration of boundary conditions, especially scaling
effects, can significantly alter local fields. Following this work, Alzebdeh et al. (1998) conducted several numerical studies on boundary conditions.
Since homogenized properties are generally obtained from either virtual experiments or micromechanical theories, applications of the results to
other loading conditions are open to question. Recently, Wu et al. (2023b) compared the deflection of a simply supported bilayered solar panel
under downward pressure. The deflections are obtained through the substrate’s actual microstructure or homogenized layer with uniform elastic
constants obtained by micromechanical modeling. Surprisingly, the two solutions are fairly different, particularly in the maximum deflection, which
motivates us to systematically investigate the applicability of micromechanical models at different SPR or RVE sizes.

Size effects in elasticity refer to the phenomenon in which the mechanical properties of a material or structure change as a function of its size,
even when the material or structure is geometrically similar at different size scales. Three primary types of size effects are commonly observed: (1)
For structural size effect, the size of a specimen affects the measured property, such as a decrease in strength or stiffness with increasing specimen
size under an identical test condition (Wisnom, 1999; Bazant, 1999); (2) for surface-to-volume size effect, as the size of a material decreases, the
ratio of its surface area to volume increases (Pan and Feng, 2008), which significantly influences properties such as thermal conductivity, electrical
properties, and mechanical strength (Zhang et al., 2012); (3) microstructure size effect, which occurs when the characteristic size of microstructures,
such as grains in a polycrystalline metal (Li et al., 2016) or fibers in a composite material (Xu et al., 1994), is so small that it creates different
strain gradients and effective mechanical behavior.

This paper focuses on the microstructure size effect, quantified by the SPR for simplicity. The novelty of this study in comparison with the
existing homogenization theory is the cross-scale modeling to determine the material behavior based on the actual microstructure and loading
conditions, which does not satisfy the classic micromechanics assumptions but is too computationally expensive to be solved by existing numerical
methods. It is discovered that a notably larger SPR is required to achieve convergent results between heterogeneous and homogenized beams
for thermoelastic problems in comparison with the elastic or thermal problem. This shed light on limits of traditional homogenization theory on
different boundary value problems. Note that in general continuum mechanics provides the same prediction of the effective material properties
of particulate composites with the same distribution and volume fraction of particles but different size scales. Therefore, classic micromechanical
models commonly avoid the microstructure size effect by assuming an infinitely large RVE. However, the particle size effect plays an important
role in the experimental testing of composites due to particle interactions and boundary effects when SPR is moderate or relatively small (Barmouz
et al., 2011).

Understanding how the size of particles or inclusions influences the overall behavior of the composite is vital for accurately characterizing
and predicting its mechanical properties. Research has been conducted to estimate the influence of inclusion interaction on the macroscopic
stiffness of the composite. This is achieved by considering multiple inclusion models, which serve as representative fragments of periodic
inhomogeneities (Kushch, 1997, 2020). When particles are distributed in the form of a certain lattice, the composite inherently deviates from the
isotropic assumption and the precise microstructure can be examined. By incorporating both the matrix and an adequate count of inhomogeneities,
the cross-scale modeling considers any actual particle distribution.

This paper examines the effect of microstructure size in composite specimens under various loading conditions. For simplicity and repeatability,
the periodic distribution of particles is studied. Section 2 introduces one composite sample containing inhomogeneities subjected to various thermal
and mechanical loads in the remainder of the paper. Section 3 presents thermal, thermoelastic, and elastic fundamental solutions, and local fields
disturbed by one inclusion with polynomial-form eigen-temperature gradient (ETG) and eigenstrain. Subsequently, the equivalent stress conditions
of dual EIM (Wu et al., 2023a, 2024) are briefly introduced and implemented into the global matrix of the iBEM. Section 4 aims to validate
the algorithm mentioned above by FEM by comparing local thermoelastic fields. Section 5 conducts virtual experiments to investigate the size
effect where inhomogeneities exhibit uniform distribution with varying radii under the same volume fraction. Section 6 demonstrates the issue
of homogenized properties with different test loads, where solutions with the actual microstructure exhibit significant differences. Finally, some
conclusive remarks highlight the contrast in behavior between pure and thermal bending in homogenized and heterogeneous beams.

2. Problem statement

This study investigates the effect of particle size on the overall material behavior by analyzing a cuboid domain D containing multiple spherical
inclusions 2! embedded in an isotropic matrix. Fig. 1 illustrates a beam of dimensions (b X h X [) containing spherical particles with a radius of
a(a < b= h < 1) at avolume fraction of ¢. As the particle radius a decreases, the number of particles increases. The SPR is defined as b/a.
The beam is the union of the inhomogeneities 2/ and the matrix D — | J, €'. Each domain exhibits independent material properties, and its
stiffness is denoted by Cl,’;’k ,» where m = 0 means the matrix, and m = 1,2,..., N, refer to the mth type of inhomogeneities. In actual composites,
the inhomogeneities may exhibit the same radius and stiffness for simplicity, so m = 0, 1. Consider the matrix as an example. Its stiffness tensor C°
is defined as C* = 4%5,;6;; + 1°(6,,6;; + 6,6;;.), where A° and 4° are the Lamé parameters of the matrix. Similarly, K is the thermal conductivity

of the matrix, and the thermal modulus y° is given by y* = (34° + 24°)a®, where o is the coefficient of thermal expansion (CTE).
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Fig. 1. Schematic illustration of a composite beam containing multiple spherical particles, where particles are arranged in a regular or random pattern.

Table 1
Material properties of aluminum and high-density polyethylene (HDPE).
Property Aluminum HDPE
Thermal conductivity (W/mK) 204 0.53
Coefficient of thermal expansion (CTE) (m/mK) 23%x107° 1.2%x10™*
Young’s modulus (GPa) 6.9 1.5
Shear modulus (GPa) 25.94 0.517

When the beam domain D is subjected to a specific load on the boundary, the load will be transferred to the particles and matrix. Assume that
the inhomogeneities are perfectly bonded. The continuity of displacements, traction, temperature, and heat flux along the interfaces is written as:

oot =onon; wf M =u;(0; THO=T"(X); ¢f®) =g;(x) on og! M

where n; is the normal vector of the inclusion interfaces 0Q!; the superscripts ‘~’ and ‘+’ indicate the inward and outward sides of the interfaces;
u;, 0, T and g; denote the displacement, stress, temperature, and heat flux, respectively.

For demonstration purposes, this paper follows our previous work using aluminum particles in a high-density polyethylene (HDPE) matrix for
solar panel applications (Liu et al., 2015; Zhang et al., 2020; Yin et al., 2021). The material constants are provided in Table 1 (Haynes, 2014;
Kovéacik et al., 2018; Tavman, 1996). Following Mura’s terminology (Mura, 1987), in this paper, inclusions denote material subdomains with the
same material as the matrix but with a source field such as eigenstrain. In contrast, inhomogeneities encompass mismatches of material properties
from the matrix.

Four loading conditions will be considered for the deformation of the beam:

(a) uniaxial loading with uniform stress at the two ends;

(b) pure bending with the moment applied at the two ends;
(c) uniform temperature change in the beam; and

(d) uniform transverse heat flow from the top to the bottom.

Loading (a) and (c) are uniform loading conditions. The average deformation can predict the elastic constants and thermal expansion coefficient,
respectively, which can predict material behavior in loading (b) and (d) based on the micromechanics-based approach when the SPR is
sufficiently large. However, the accuracy of this approach depends on the critical SPR value. The deflection of the beam will be investigated
for both homogenized and heterogeneous material systems for conditions (b) and (d), which demonstrate the critical SPR value to make the
micromechanics-based approach applicable.

Depending on the loading condition and the material’s response, one can formulate the problem in three cases:

Case 1. The temperature field and heat flux caused by heat sources on the inhomogeneities or thermal loading on the boundary;
Case 2. The elastic fields caused by eigenstrain or force on the inhomogeneities or mechanical loading on the boundary;
Case 3. The thermoelastic field, such as thermal stress and strain, caused by heat sources on the inhomogeneities or thermal loading on the boundary.
3. Formulation of the problem

Eshelby’s equivalent inclusion method (EIM) uses Green’s function technique to solve the inclusion problem with an eigenstrain efficiently and
thus set up the equivalence between an inclusion and an inhomogeneity by introducing an eigenstrain to simulate the material mismatch (Eshelby,
1957, 1959). Based on Eshelby’s work on the elastic field in an ellipsoidal inclusion, the method is widely applied in composite material behavior
and heterogeneous material property prediction.

3.1. Elastic and thermal fundamental solutions for a point source in the infinite domain

The EIM employs the Green’s function technique based on the fundamental solutions. This method provides an elegant way to formulate
complicated boundary value problems via superposition or integral of the response on the field caused by a distributed source field. Furthermore,
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fundamental solutions yield valuable perspectives on the material’s mechanical and thermal properties at the microscale level. In the field of
isotropic thermoelasticity, Biot (1956) extended the Papkovitch-Neuber solution and obtained a solution comprising four potential functions.
The completeness of Biot’s general solution was subsequently proven by Verruijt (1969). Nowacki (1986) derived the full-space fundamental
solution for a concentrated point heat source, and Barber (1992) provided a summary of the derivation for both two-dimensional (2D) and three-
dimensional (3D) problems. Considering these fundamental solutions, the current approach initially reviews the formulation for thermal, elastic,
and thermoelastic cases. In an infinite domain, fundamental solutions are obtained from a point heat source and a point force source, corresponding
to the temperature field T and the displacement field u, respectively. Specifically, the heat source influences T" and u, whereas the point force source
exclusively affects u. It is essential to highlight that the interaction between the heat source and u represents the thermoelastic coupling behavior,
and it has commonly been solved with a thermal strain associated with the temperature field. Therefore, thermal and elastic analyses are completed.
However, with the fundamental solution, the analysis can be significantly simplified.

Case 1: Thermal problem with a point heat source in the infinite domain

The temperature change can be written regarding the fundamental solution, known as the thermal Green’s function. Let x’ = (x, x’z, xg) be the
source point and x = (x,, x,, x3) be the field point of interest. In the steady state with homogeneous thermal conductivity K, the governing equation
in terms of the temperature field T is expressed as follows:

KT, + gy (x) =0 )

where ¢, represents the volumetric heat source. In the absence of §;,, the heat conduction equation simplifies to the Laplace equation for a uniform
material domain with constant K°. For an arbitrarily distributed heat source ¢, (x'), the temperature field is obtained by the integral of the Green’s
function as (Yin et al., 2022):

T(x)= / G(x,x")gy (x)dx’ (3)
Q
where G(x,x’) is the Green’s function caused by a point heat source at x" as Eq. (4) and ¢ = |x — x’ |~! is the Newton potential.
¢
G(x,x') = 4
(x,x") 12K0 4

Case 2: Elastic problem with a point force in the infinite domain
The Navier equations describe the behavior of a uniform infinite domain subjected to a distributed force. The governing equation for this
situation can be expressed as follows:
A%+ WOy + Wluj i+ ;%) = 0 )
where 4° and 4° denote the two Lamé constants of the elastic matrix material; u; represents the ith displacement component; and b ;(x) indicates
the body force acting at x in jth direction. The displacement at any interior point can be expressed through the elastic Green’s function G;;(x,x’)

as Eq. (6),

u;(x) = / G, (x,x")b;(x)dx’ 6)
Q
and
Gyxx) = ——6,0 - ——1—y, @
440 16701 —v0) ™

where ¥ denotes the Poisson’s ratio of the elastic matrix material; 5, ; represents the Kronecker Delta, and; the function y = |x — x| is the biharmonic
potential.

Case 3: Thermoelastic problem with a point heat source in the infinite domain
The temperature change caused by a point heat source in the infinite domain will produce thermal stress in the infinite domain. The constitutive
relation is also known as the Duhamel-Neumann relation (Nowacki, 1986), written as:

oy =2 + (A% — y°AT)S;; €))
and the strain tensor is defined as ¢;; = %(u,-y j +u; ). Using the following thermoelastic governing equation in coupling with Eq. (2):
20+ 1O

iij T Mouj,ii - YOT.j =0 )

where y? = (34° + 2u°)a® with ° indicating the CTE of the matrix, one can obtain:
0 0 7’
(A7 + 20wy 55 + qu(x) =0 (10)
Subsequently, the displacement field can be written as:
ui(x) = / G (x,x")gy (x')dx’ an
Q

where G;(x,x’) is the thermoelastic Green’s function caused by a point force at x’ as:

a 1T+

, 12
BzKO 1— 0 4 (12)

G,(x,x') =

where W = (Yin et al., 2022).

AO
2(u0+40)
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3.2. Thermomechanical fields caused by an inclusion with polynomial form sources

When a differentiable, continuous source field is applied in an inclusion, it can be approximately written in a polynomial form. For example, a
polynomial form approximates the continuously distributed body force in the inclusion Q' as follows:

13)

10 I 2
b(x) = Bj +kajk +xkxlBjk1+"" X € Q;
! 0, xeD-Q,

where the local coordinate is set with the origin at the center of the inclusion. The displacement field can be obtained by substituting Eq. (13) into
Eq. (6) as follows:

u,.(x)=/ Gij(x,x’)bj(x’)dx’=/ G,.j(B;°+Bj,jx;+3;,f,x;x;+---)dx’
2 2

=L 5. @B+ B 4 B2 4y — 1 o
0 AT Ik 16740 (1 —09)

10 11 2
dzp ki (VB[ + Wy By + Wi Big + )

AJ
where @, @, ¥,
See Appendix for a spherical inclusion.

Given an ETG in the following polynomial form in the inclusion Q':

¥j» and ¥y ;; are the integrals of ¢, ¢x}, px) x), v, ;) and w;;x} x] over the inclusion Q7, respectively (Yin et al., 2022).

T (x) =T/ + x, T + x,x,T7" + - (15)

i

where T1%i, T'*ik, and T,ﬁ* correspond to the uniform, linear, and quadratic terms of the ETG, respectively, we can then derive the resulting
temperature field in terms of the ETG as follows

T(x)=— / G, x"T*, (x)K(x") dx’
Qr ’

!
= / Gx, X T )K(x) dx' + / MT}.*(X’)K(X’) dx’
092 Q ox;
!
_ _/ 0G§X7X )T;*(X,)K(X/) dx’ (16)
Qr X

‘/ G KO 4+ X TR+ XX T ) dx!
2

_ 10710 Il 1212
=T A L Ty + LT+
in which f/0 = - [, G,K%x/, fi! = - [, G ;K| dx', and ! = — [, G ,K'x] x|dx are defined corresponding to the thermal Green’s functions in
Eq. (4). For a spherical inclusion, they are explicitly provided in Appendix.
Following the same fashion, given an eigenstrain as a source field in polynomial form in the inclusion @/:

* _ 10 I1x 12%
s,.j(x) =E i XpE XX E 17)
we can derive the resulting displacement field as the integral of the eigenstrain:

u;(x) = —/ G (x.x)ey,  (X)Cpy (X)) dx
2 ’

=- / 00,9 . &)C;p (X dx'
==/, 11X C i
I

ox! 18)
— 0 * V(0% 7 Tl 7 2% /
= —/Q G,-j,ijmklsk[(x )(gk] + XpEpip + XpX 1€ king + -2)dx
s
_ IO 10% | 01 _Tlx 12 2%
=8k T 8ikip€uip T BikipgEuipg T
10 _ _ 0 ! I _ _ 0 ! ! n _ _ 0 ) ! : 5 : :
where g9 = - [, GijmCpia ¥’ 81, = Jo GijmClpXypdx’s and gl = Jo GijmCpiXpxydx'. See Appendix for a spherical inclusion.
Similarly, the displacement field caused by ETG in Eq. (15) can be written as:
0G;(x,x") .
u;(x) = —/ G(x,x"T; ,(x)Kx')dx' = —/ QT;(X/)K(X/)Q'X/
Q ? Qp 0xy
_ 0 IOk | Il o 1 Jpd2% o\ 7o) 19)
= /9, Gy KOO 4+ XTIV 4 X! X T2 4 o) dx
ST (V5 1 P Sy C P § Ry O
=wy T + Wi, Ty™ + Wiy Ty +
where w!? = - [, G, K'dx/, whl == [o G K x)dx" and w]? = - [, G; K°x)x! dx' correspond to the thermoelastic Green’s functions connecting

ETG to displacement field, respectively. See Appendix for a spherical inclusion. Note that when the local coordinate is arbitrary, the polynomial
form of x’ should be referred to the center of the inclusion x¢, so x; becomes x; — x!{ ‘.
3.3. Thermomechanical fields in a bounded material system with an inhomogeneity

Thanks to the technique of Green’s function, BEM becomes a powerful tool for solving thermomechanical boundary value problems, including
thermal and mechanical local fields. Using the thermal Green’s function, the temperature field of the system can be determined, and temperature-
induced mechanical effects are coupled through the boundary integral equations of thermoelastic Green’s functions. This method is effective for
materials as it greatly diminishes the need for extensive temperature volume integrals. For a heterogeneous material system, material mismatches



J. Zhang et al. Mechanics of Materials 198 (2024) 105106

among inhomogeneities and matrix are simulated by the polynomial eigenstrain through continuously distributed fields. Due to the material
mismatch between the inhomogeneity and the matrix, a disturbed field will be induced in the neighborhood of the inhomogeneity.

Eshelby (1957, 1959) proposed EIMs to solve the elastic inhomogeneity problem with the inclusion problem by introducing an eigenstrain
on the inclusion to simulate the material mismatch. This approach can be extended to multiple inhomogeneities with the eigenstrain assumed
in polynomial form. Wu and Yin (2021) proposed the iBEM algorithm for 2D and 3D linear elastic problems. Due to the versatility of Green’s
function, the authors (Yin et al., 2022) illustrate the iBEM algorithm with several multi-physical problems, such as steady-state heat transfer,
Stokes flow. Recently, Yin’s group (Wu et al., 2023a; Wang et al., 2022) derived modified bimaterial thermoelastic Green’s functions, and proposed
the dual equivalent inclusion method (DEIM) for handling thermoelastic inhomogeneities in a bi-material domain. When multiple particles are
considered with boundary effects, the spatial variations of eigen-fields are not uniform anymore (Mura, 1987; Yin et al., 2022). However, they are
still continuous and differentiable in the inhomogeneity domain with the material continuity in the particle. The polynomial form of eigen-fields
can simulate the material mismatch with tailorable accuracy. Therefore, the Taylor series expansion of eigen-field in Eqgs. (15) and (17), including
uniform, linear and quadratic terms will be used in the calculation of local field. Moreover, Eshelby’s equivalent conditions will be applied to
determine the eigen-fields. Given that the equivalent inclusion involves mismatches in thermal and mechanical properties, the iBEM transforms
temperature volume integrals into boundary integral equations and restricts domain integrals of ETG and eigenstrain to the inhomogeneity domains.

Case 1: iBEM for thermal problems
Combining the boundary integral equation of thermal Green’s function and the disturbance from equivalent inclusions, the following thermal
boundary integral equation can be formulated as (Yin et al., 2022):

T(x) = / G(x,x")g(x")dx" - / Hx,x"T(x)dx' — / G ,(x, X" TF(x)K(x')dx’'
B J
oD oD D (20)
= / G(x,x)g(x")dx' — / Hx,xXT)dx' + f000T™ + I 0T +
aD
where H = KG ;(x,x")n;(x") is the second fundamental solution of the thermal problem; the identities G, = -G and H; = —H , are applied, and

q = g;n; represents the heat flux across the interface. Subsequently, the temperature gradients can be derlved through further partial differentiation
as Eq. (21),

T,(x) = / G,(x,x)q(x")dx’ — / H ;(x,xT(x")dx' + fj{?Tj"’*+ FrOopI 1)
oD oD

iritip
The equivalent inclusion condition in terms of heat flux can be explicitly written in any order of the polynomial term as follows:
KO (T, (0)-T!%) =K'T, (0
(T; (0 = T/%) i (0 2
KO (T, O =T;1") = K'T;, 0

which can be extended to higher-order terms straightforwardly. Therefore, the ETG terms can be determined, and the temperature field can be
obtained from Eq. (20).

Case 2: iBEM for elastic problems
Combining the boundary integral equation of elastic Green’s function and the disturbance from equivalent inclusions, the following elastic
boundary integral equation can be formulated,

u,-(x):/ Gij(x,x’)tj(x’)dx’—/ H,-j(x,x’)uj(x’)dx’—/ Gij X, X (X)C; gy (X)X
oD oD D (23)
= /{)D G(x, X/)l,-(X/)dX' - /dD H;(x, x’)uj(x/)dx' + g,’k(;ei?* + g,k[peli}p* +g1k1pq£,€,2;q + e

where the conventional boundary integral equations are retained, and the Eshelby tensors g involve disturbances from inclusions. Subsequently,
the strain field can be derived based on the constitutive law as Eq. (24),

£, (%) :/ 1 {Gmi’j(x,x’)+Gm/-‘,-(x,x')} ty (x')dx' - /BD % {Hm,-,j (x.x") + H,;,; (x,x')}um (x") ax’

(24)
+ SiuEd” + Sy +
where S;;; = Skl e Sijkip = w. Following the same fashion, the equivalence can be established for each order of polynomial-form
terms at the center of the particles,
Ciimn (&mn @ = €0,7) = Cijmn () 25
Ciimn (Emnr @ = €0s) = Clppmnr ©)

Although higher accuracy can be achieved by introducing higher-order terms, such as quadratic ones, for simplicity, this section only presents
linear terms, although the quadratic terms have been implemented in the iBEM code.

Case 3: iBEM for thermoelastic problems
Thanks to the thermoelastic Green’s function, the thermal induced effects are involved through boundary integral equations of boundary
responses and domain integrals of ETG as Eq. (19),

u,-(x):/ G,-(x,x')q(x')dx’—/ H,-(x,x')T(x’)dx’+/ Gy (x,x")t;(x")dx'
oD oD oD
—/ H,.j(x,x’)uj(x’)dx’+/ Giyk(x,x’)T:(x’)K(x’)dx’+/ Gij XX )Eg (X)C g () dx
D Qr Qr (26)
= / G;(x,x")g(x")dx' — / H;(x,x)T(x")dx" + / G;;(x,x")t;(x")dx’
oD oD oD

/ / / 10% Il I0x Ilx
—/dDH,-j(X,X)u,-(X )X+ wi T + wi, T™ + g€y + 8ikipei

6
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where H;(x,x') = K&)G; ;(x,x")n;(x'); gip, and wyy,, have been defined in Eqs. (18) and (19), respectively. By employing the compatibility
relationship, the mechanical strain at the interior point x can be derived:

s;';(x)=/ {G,-,j(x,x')+ij,-(x,x’)}q(x’)dx’—/ {H, ;(x.x')+ H; ;(x,x")} T(x")dx’
oD oD

1 1 27
+ /,w 5 {Guiy X+ Gy XD} 1y, () ax' = /w 5 {Hoiy (x.X') + Hyyy (x.X') Y, (X) dX 27)
10 10 11 T1s 10 _10% 11 I1x 10105 I1pI 1
+ {Rijka + R T }+ {Sijklekl + S ikipExip ) - “‘Sij{fk T+ fip Thy }
where R, = w, Ry = w and Ry, = M The ETG terms can be determined in Eq. (22). The equivalent stress conditions

for £™ are expressed as follows:

c,.ojk, (g1 ) = £,) = y°T0)5,; = cl!jk,gk, ) —7'T0)s5;

(28)
Chur (e, O =37 ) =T, 006, = Cl e, ) = /' T, (03,

Note that the equivalent inclusion conditions in Egs. (22), (25), and (28) can be extended to multiple inhomogeneities with the local coordinates
set at the center of each inhomogeneity (Yin et al., 2022).

In micromechanics, thermal strain induced by temperature fluctuations is typically perceived as an eigenstrain. However, a common miscon-
ception is that the ETG generates a temperature modification over the entire domain, thereby leading to an eigenstrain across the whole domain,
which subsequently results in the inefficiency of the thermoelastic solution. The thermoelastic Green’s function directly deals with the strain caused
by ETG through R tensors rather than an eigenstrain with S tensors as illustrated in Eq. (27). Therefore, the volume integral is confined to the
inclusion only, which enables an analytical solution (Wu et al., 2023a).

Although only up to linear terms of eigen-fields are provided in the above formulation, we can easily extend to higher-order terms similarly.
The iBEM code has been implemented with constant, linear, and quadratic terms (Yin et al., 2022), and the corresponding tensors can be obtained
in Appendix.

4. Numerical demonstration and verification of the iBEM

The iBEM algorithm has been implemented by the C++ code for the simulation of many particles for thermal, elastic, and thermoelastic problems,
which has been extended to other multiphysical problems (Song et al., 2015; Yin et al., 2022; Wu and Yin, 2021). Because the interaction between
particles reduces with the particle’s center-center distance (r) rapidly, a cut-off distance is chosen to accelerate the computational process while
maintaining accuracy. This section will demonstrate the iBEM results, verify them with FEM results, and evaluate the effect of the cut-off distance
on the convergence of the results.

4.1. Verification of the iBEM with FEM

To verify the aforementioned algorithm for thermoelastic problems, shown as Fig. 1, the beam is specified with dimensions b X h x | =
0.025 m x 0.025 m X 0.050 m. One aluminum particle is embedded in the HDPE matrix with its center at (0.025, 0, 0) as 0.01% volume fraction, so
the radius ¢ = 0.91 mm.

To provide precise simulation of local fields around inhomogeneities by iBEM, the surface of the beam has been discretized into 4000 equal-sized
quadrilateral elements, each with a length is 1.25 mm. For FEM, a total of 99,500 tetrahedral elements are used with element sizes of 0.2 mm within
the inhomogeneity, 0.4 mm around the inhomogeneity, and up to 2 mm in the other areas.

Firstly, a steady state heat transfer is considered with the boundary conditions as follows: On the left side of x; = 0, displacement u; = 0 with
uy(0,b/2, h/2) = u3(0,b/2, h/2) = 0, free shear stress o), = 5,3 = 0, and all other sides with free traction (¢;;n; = 0) and insulated boundary (g;n; = 0)
unless a temperature boundary condition is applied to the left (7)), right (T%), top (T), bottom (T) sides, as follows:

1. Uniform temperature change AT =T; =Tr =Ty =T =20 K;
2. Uniform temperature gradient from the left to the right as T, =0 K, T =20 K;
3. Uniform temperature gradient (thermal bending) from the bottom to the top as T =0 K, Ty = 20 K;

In Case 1, Fig. 2 shows the displacement u,, normal stress ¢, and o,, along the centerline x, passing the center of particle (x, = 0.0125,x; =
0.0125). The curves labeled ’iBEM UNP’, ’iBEM LIN’, and ’iBEM QUA’ represent approximations incorporating the uniform, linear, and quadratic
terms of the ETG and eigenstrain, respectively. These results show very good agreement with those obtained by FEM, although the FEM cannot
well catch the stress discontinuity of ¢, on the interface. Under this uniform temperature change with zero temperature gradient, the presence of
inhomogeneity introduces discontinuities in the local fields surrounding the particle, which can be clearly explained by the discontinuous features
of Eshelby’s tensor across the particle surface. However, because the thermal strain on the inhomogeneity is uniform, the eigenstrain caused by the
stiffness mismatch is also uniform for a single particle embedded in an infinite domain. Therefore, the higher-order terms of eigenstrain disappear,
and the three curves of iBEM results almost overlap with each other.

Case 2 studies the effect of temperature gradient in the horizontal direction. Fig. 3 displays the temperature T, displacement u,, normal stresses
o1, and o5, along the centerline x,. The results from the ’iBEM UNI’, iBEM LIN’, and "iBEM QUA’ models agree well with those obtained via FEM.
Because the aluminum particles exhibit a much higher thermal conductivity than the HDPE matrix, the temperature variation in the particle is
much lower than the matrix but linearly changes along x, direction, which leads to linearly distributed eigenstrain and stress on the inhomogeneity.
Although ’iBEM UNTI’ uses a uniform eigenstrain, the difference among the three iBEM curves is fairly small because the linear temperature change
plays a dominant role. From the insets, the local field on the inhomogeneity is clarified, and the iBEM LIN’ and 'iBEM QUA’ provide better
comparisons with FEM. Indeed, the linear eigenstrain can capture the exact solution for a single particle in an infinite domain under a uniform
heat flux in the far field (Wu et al., 2023a), so that the ’iBEM LIN and ’iBEM QUA’ provide similar accuracy.

Fig. 4 shows Case 3 for the thermal bending due to the temperature gradient from the bottom to the top. The iBEM results of deflections and
normal stresses are compared with those obtained by the FEM. Fig. 4(a) shows the deflection of the neutral axis of the beam, which is similar to
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the one caused by pure bending and shall produce a uniform stress in x, direction. However, due to the inhomogeneity, the stress significantly
differs from the matrix.

Fig. 5 shows the stress and temperature changes in x; direction passing through the center of the particle at (x; = 0.025,x, = 0.0125). The
stresses of ¢,; and o,, exhibit the same trend with very similar values, as the boundary effects of the four sides play a minor role on the stress
along the central line in Fig. 5(a) and (b), respectively. In Fig. 5(c), temperature field T exhibits an approximately linear variation in the matrix
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with very small variation in the particle due to its high thermal conductivity. Since both Case 2 and Case 3 investigate the effects of temperature
gradients, Fig. 5(a), (b) and Fig. 3(b) exhibit similar patterns in terms of distribution and discontinuity. However, the variation of stress in the
particle is much more uniform in 3(c) compared to Fig. 5(b), because the thermal bending creates a linearly distributed thermal strain in the matrix.
’IBEM LIN’ and 'iBEM QUA’ provide similar predictions, which fit the FEM results much better than the 'iBEM UNI’.

When a temperature difference is applied to two opposite boundary edges without the spherical particle, the temperature field should exhibit
a linear distribution at the steady state. Due to the disturbance of the particle, specifically, the aluminum has much greater thermal conductivity
than the HDPE, the variation of temperature within the particle is comparatively small in Fig. 3(a) and 5(a), which causes a nearly uniform thermal
strain as well although a temperature gradient exists. For a uniform temperature change, the uniform eigenstrain with iBEM can provide accurate
results, whereas a temperature gradient requires a linear eigenstrain in the iBEM. Particularly, the thermal bending of a beam exhibits a large
linear eigenstrain, and the uniform eigenstrain cannot capture this feature and produces considerable errors in stress distribution. Verification by
FEM demonstrates the accuracy, robustness, and efficiency of the modeling approach and provides flexibility in choosing the most suitable method
for specific applications. Although iBEM QUA’ provides the highest accuracy in general, ’iBEM LIN’ offers comparable accuracy for the present
thermoelastic behavior but faster computing speed. iBEM UNI still provides good accuracy in the matrix with the fastest speed. When many
particles are simulated for effective thermoelastic behavior, iBEM UNI’ provides an advantage. However, the three orders of eigenstrains can be
used together in one simulation of a many-particle system: uniform eigenstrain for particles in the central region and linear or quadratic eigenstrain
for particles in the boundary region.
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4.2. The effect of cut-off ratio for particle interactions

When many particles are considered, the equivalent inclusion conditions in Egs. (22), (25), and (28) will be expanded to all particles, leading to
a time-consuming process to construct and solve the large linear equation system for the eigen-fields (Wu and Yin, 2021; Wu et al., 2022). Green’s
function describes the response at a field point caused by the excitation at a source point. As mentioned in Section 2, the thermal and elastic Green’s
function exhibits a decaying factor r~!, which leads to the heat flux and stress caused by the ETG and eigenstrain, respectively, decaying with the
distance at r—3. Therefore, the effect of the long-range particle interaction rapidly decays with the increase of r. We have used a cut-off distance,
which leads to a significant increase in the computational speed without loss of convergence of the results. According to the decaying feature of
Green’s function, the cut-off ratio is defined as the distance between the field point and the center of the particle and the characteristic length
of the particle. For spherical particles, the characteristic length is the radius, and p = r/a € (15,20) has been used to accelerate the computation
without considerable loss of accuracy (Wu et al., 2022, 2023b). However, for thermoelastic Green’s function, the decaying factor of stress is one
order higher at =2, so that the convergence of the results is open to question when a cut-off ratio is applied to form the linear equation system.

This section conducts a numerical analysis of the effects of the cut-off ratio, which aims at a balance of computational efficiency and accuracy.
Four cut-off ratios are investigated as 1,5, 10, and 20 in the following. In addition, when no cut-off is applied, we use cut-off = co to represent
it. To ease reproducing the results, 2000 inhomogeneities are uniformly distributed within the composite beam with the volume fraction ¢ = 1%
forming a simple cubic lattice. In this specific scenario, the radius of the particles is set at a = 0.00033 m, with the shortest distance between a
particle and the boundary being d, = 0.00125 m, and the minimum distance between particles being d, = 0.0025 m. The parameter p defines the
level of interaction: at p = 1, no particle interaction or boundary effect is considered in the linear equation system because of r = ax p <d, < d,;
at p=35,s0d, <r<d, soonly interactions between the nearest particles and boundary elements are considered, and the internal particle—particle
interactions are disregarded; at p > 10, d, < r, both particle interactions and boundary effects are considered with a certain region around each
particle; and at p = oo, full interaction among all particles and boundary elements is taken into account.

Fig. 6(a) shows uniaxial loading, in which the elastic boundary conditions are considered without temperature variation: (i) constrained
displacement at the surface x; = 0; (ii) uniaxial load at the surface x; = / = 0.05 m with pressure 10~> MPa and; (iii) all side surfaces are
free of traction. Fig. 6(b) displays the pure bending test, applying identical elastic boundary conditions and a bending moment of 0.325 N/m. The
cases of uniform temperature change and thermal bending are shown in Fig. 6(c) and (d), respectively, with the same boundary conditions and
loadings as detailed in Figs. 2 and 4.

Fig. 6(a) and (c) show the comparison of the displacements u; along the centerline x; € [0.025,0.05] m. The displacement u; within the range
x, € [0.0,0.025] m follows a similar trend and diminishes to O at the end of the beam. In a comparison of the four cases of the cut-off with the case
without cut-off, they are very close to each other, although the case of cut-off= 20 and c are almost overlapped. Long-range particle interactions
play a minor role in the displacement field. Note that the eigenstrain in both cases is uniform for a single particle in an infinite matrix.

On the other hand, Fig. 6(b) and (d) plot the variation of deflection u; when x; € [0.010,0.040] m. Greater discrepancies can be observed
between curves of cut-off= 1,5,10 and oo; while the difference between curves with 20 and o becomes negligible. Note that the eigenstrain in
these cases is linearly distributed for a single particle in 