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Abstract

Motivation: Deep learning models have achieved remarkable success in a wide range of natural-world tasks, such as vision, language, and
speech recognition. These accomplishments are largely attributed to the availability of open-source large-scale datasets. More importantly,
pre-trained foundational model learnings exhibit a surprising degree of transferability to downstream tasks, enabling efficient learning even with
limited training examples. However, the application of such natural-domain models to the domain of tiny Cryo-Electron Tomography (Cryo-ET)
images has been a relatively unexplored frontier. This research is motivated by the intuition that 3D Cryo-ET voxel data can be conceptually
viewed as a sequence of progressively evolving video frames.

11 Xingjian Li

Results: Leveraging the above insight, we propose a novel approach that involves the utilization of 3D models pre-trained on large-scale video data-
sets to enhance Cryo-ET subtomogram classification. Our experiments, conducted on both simulated and real Cryo-ET datasets, reveal compelling
results. The use of video initialization not only demonstrates improvements in classification accuracy but also substantially reduces training costs.
Further analyses provide additional evidence of the value of video initialization in enhancing subtomogram feature extraction. Additionally, we observe
that video initialization yields similar positive effects when applied to medical 3D classification tasks, underscoring the potential of cross-domain

knowledge transfer from video-based models to advance the state-of-the-art in a wide range of biological and medical data types.

Availability and implementation: https://github.com/xulabs/aitom.

1 Introduction

Cryo-electron tomography (Cryo-ET) (Gan and Jensen 2012)
has emerged as a powerful tool, offering researchers an un-
precedented glimpse into the microscopic world of biological
particles with remarkable clarity and in near-native conditions.
This groundbreaking technique involves the reconstruction of
multi-angle projections, resulting in high-resolution 3D tomo-
grams. These tomograms serve as invaluable windows into the
intricate structures that underlie biological mechanisms, in-
cluding the complex interactions and dynamic behaviors of
macromolecules (Murata and Wolf 2018). Among the myriad
applications of Cryo-ET, this article places a particular empha-
sis on subtomogram classification, a pivotal component for
unraveling the mysteries of the entire cellular environment. By
honing in on the classification of individual macromolecular
structures within the subtomograms, researchers pave the way
for a deeper understanding of the fundamental processes gov-
erning life at the cellular level.

Achieving reliable subtomogram classification poses a sig-
nificant challenge, primarily stemming from the scarcity of
high-quality labeled data. This challenge can be broken down

into several critical aspects. Firstly, the acquisition of Cryo-
ET images is cost-prohibitive because of the expensive nature
of the required equipment, limiting the availability of large
datasets. Secondly, to preserve cellular integrity, the electron
dose during imaging must be constrained, leading to lower
signal-to-noise ratios (SNRs) in the captured data (Turk and
Baumeister 2020). Thirdly, inherent physical constraints of
both the instrument and sample thickness result in a phenom-
enon known as the “missing wedge,” further complicating
data acquisition (Kudryashev et al. 2012, Luci¢ et al. 2013).
Consequently, the scarcity of data increases the risk of over-
fitting, a classic and ongoing concern in the realm of machine
learning. While most existing solutions resort to data simula-
tion (Pei et al. 2016, Liu et al. 2020a) to augment the training
set or few-shot learning algorithms (Yu et al. 2021), the com-
plex algorithmic requirements pose challenges for biologists,
necessitating extensive design and debugging efforts.

On the other hand, the large-scale natural image datasets
like ImageNet (Deng et al. 2009) and COCO (Lin et al.
2014) have played a pivotal role in the remarkable success of
deep learning on diverse computer vision tasks (Krizhevsky
et al. 2012, He et al. 2016). The striking transferability of
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models well-trained on these expansive general datasets has
propelled fine-tuning into a prevalent paradigm, which has
also been applied in fields of medicine and biology. Despite
these achievements, the practical solutions that have thrived
in 2D images have yet to be explored comprehensively for 3D
Cryo-ET data. This gap can be attributed to lack of powerful
general pre-trained models for 3D vision. To the best of our
knowledge, existing studies in the realm of subtomogram
classification rely on random initialization, rendering deep
learning less reliable and inefficient in the absence of a large-
scale dataset. Closing this gap and unlocking the potential of
deep learning in Cryo-ET data analysis remain piv-
otal challenges.

Motivated by the notable success of the “pre-training and
fine-tuning” paradigm within 2D domains, our empirical explo-
ration extends this concept to the realm of 3D subtomogram
data. In particular, we leverage pre-trained weights from video
data as the initialization for our model. The framework is dem-
onstrated in Fig. 1. The reason of this choice lies in 2-folds.
Firstly, it is rational to consider subtomogram slices as sequen-
tially evolving video frames since they share the fundamental at-
tribute of continuity. Secondly, video datasets offer distinct
advantages, including low annotation costs, data richness, and
fewer privacy concerns when compared to specialized domains
such as medical and biological fields.

Our experiments encompassed both simulated (Figure 2)
and privately acquired real datasets for subtomogram classifi-
cation. Leveraging video initialization yielded clear advan-
tages in both performance and efficiency. Notably, it
outperformed the baseline (i.e. random initialization) by an
impressive 19.19%, 17.67% in absolute accuracy on 5% and
10% of real training dataset, respectively, and 16% in abso-
lute accuracy on 25% of the simulated dataset with 50% re-
duction in the training efforts. Furthermore, such
performance improvements require no additional coding
efforts. Our adaptation of the “pre-training and fine-tuning”
paradigm opens doors to enhanced insights and efficiency in
the analysis of 3D subtomogram data, fostering opportunities
for groundbreaking discoveries in various scientific and re-
search endeavors.
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Figure 1. lllustration of subtomogram classification with video-based
deep models as initialization. Channel replication is used to adapt 3D
video models on single channel subtomogram data. The video sample is
from Kinetics-400 (Kay et al. 2017).
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2 Related work
2.1 Subtomogram classification

Identifying particles of interest is a critical step for in situ Cryo-
ET image analysis. One typical example is the study of virus-host
interactions, where viruses interact with host cells in highly spe-
cific ways, involving complex molecular machinery and dynamic
interactions. In order to understand these interactions and the
mechanisms underlying viral infection, it is crucial to accurately
identify the viral particles within the cellular context.

Existing techniques such as template matching have been
extensively applied for particle recognition. However, their
performance is far from satisfactory given the highly noisy
images and conformational changes of biological structures
(Moebel et al. 2021). For example, to construct a 3D tomo-
gram, rotations of the sample axis yield 2D projections from
various angles. However, high rotation angles thicken the
sample, hindering imaging. Consequently, reconstructed 3D
tomograms exhibit missing information in the affected
wedge-shaped regions, named the missing wedge effect.

Machine learning-based subtomogram classification allows
researchers to categorize and distinguish these variations
within the data through more robust feature learning. This
classification process not only enhances our understanding of
fundamental biological processes, but also facilitates drug
discovery and the development of targeted therapies by re-
vealing molecular mechanisms with unprecedented detail.

Deep neural networks (DNNs, Simonyan and Zisserman
2014, He et al. 2016) have been successfully applied on subto-
mogram classification (Che et al. 2018, Gupta et al. 2022).
Further efforts have been made to address the challenge caused
by data limitation. Existing work have taken two primary direc-
tions. One approach involves data augmentation to expand the
labeled dataset. Researchers leverage their understanding of bi-
ology to create simulated Cryo-ET tomograms and subtomo-
grams with predefined structures (Pei et al. 2016, Liu et al.
2020a). The advantage here is that manually designed strategies
ensure accuracy of generated labels by exposing all details.
However, a notable drawback is the significant feature discrep-
ancy between simulated and real data, limiting its real-world ap-
plicability, particularly for novel structures. Additionally, the
heavy reliance on existing biological knowledge and predefined
rules constrains its versatility. The other prevalent approach
aims to enhance learning performance with limited examples,
incorporating techniques like few-shot/one-shot learning (Yu
et al. 2021), active learning (Du et al. 2021), and semi-
supervised learning (Liu ez al. 2019b). Inspired by the success of
self-supervised learning on natural images (Gupta et al. 2022),
extends the fashion to subtomogram classification, achieving
state-of-the-art (SOTA) accuracy on both simulated and
real data.

Although the aforementioned approaches also aim to solve
the issue of data scarcity, they are based on additional assump-
tions, which have limited their applications. For example, few-
shot/one-shot learning (Yu et al. 2021) and semi-supervised
learning (Liu ef al. 2019b) solutions require a large amount of
unlabeled data with a similar distribution to the labeled set.
Active learning (Du et al. 2021) involves selecting the most in-
formative examples for annotation; however, it assumes that we
already have an adapted model to extract accurate features.

2.2 Pre-training and fine-tuning

The rational of the fine-tuning paradigm lies in the finding of
the impressive transferability of DNNs trained on large-scale
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Figure 2. Synthetic structures in the simulated dataset (Liu et al. 2020a). The names of the structures from left to right are 1bxn, 1f1b, 1yg6, 2byu, 2h12
in the first row, and 2Idb, 3gl1, 3hhb, 4d4r, 6t3e in the second row.

general-purpose datasets across a range of downstream tasks
(Yosinski et al. 2014). Consequently, fine-tuning pre-trained
models for adapting to new tasks has gained popularity in
real-world applications. To further enhance knowledge trans-
fer, various methods have been explored to optimize the utili-
zation of pre-trained models during fine-tuning. A significant
portion of such research adopted a common idea referred to

s “shrinking towards chosen parameters,” which aims to
overcome the risk of catastrophic forgetting of the general
knowledge contained in pre-trained models. Building upon
this assumption, several algorithms have been developed,
implementing different constraints on model parameters such
as L2-SP (Xuhong et al. 2018), DELTA (Li et al. 2019), and
MARS (Gouk et al. 2021). These algorithms show clear bene-
fits especially when the source and target domain are similar,
e.g. both are natural images.

Previous research works have also investigated transfer
learning, especially the pre-training and fine-tuning para-
digm, in biomedical image analysis. Several review papers
(Cheplygina 2019, Kim et al. 2022, Kora et al. 2022) summa-
rized the approaches in recent papers and confirmed the value
of deep transfer learning in solving biomedical problems. For
example (Hon and Khan 2017), improved the accuracy of
Alzheimer’s disease classification from MRI images by utiliz-
ing ImageNet pre-trained models. However, previous studies
mostly focused on 2D medical images or slices and consid-
ered only 2D natural images as the source dataset. For 3D
biomedical image analysis, the rich video resources in the nat-
ural vision domain have not been exploited before.

2.3 Video analysis with deep learning

Deep learning represents a powerful approach to extract
meaningful information from dynamic visual data (Karpathy
et al. 2014, Arnab et al. 2021). DNNs tailored for video
analysis leverage the temporal dimension inherent in videos
to capture motion patterns, temporal dependencies, and spa-
tio—temporal interactions. Similar to the solutions for other
spatial and temporal data types, deep models for video analy-
sis typically employ convolutional neural networks (CNNs,
Karpathy et al. 2014), recurrent neural networks (RNNs,
Yang et al. 2017), or the combined architectures like Conv-
LSTM (Ge et al. 2019), to effectively process sequential data.
Popular video analysis tasks include action recognition, activ-
ity detection, video segmentation, and video captioning and
so on. In this article, we will adopt the 3D-CNN (Hara et al.

2018) and Video Vision Transformer (ViViT Arnab et al.
2021) architecture, and reuse the pre-trained weights learned
from large-scale video data to facilitate biological im-
age analysis.

3 Method

We use DNNs as the machine learning model in our transfer
learning approach. The network consists of a general-
purpose feature extractor f and a classification head g. In
deep transfer learning, f aims to learn data features with a
task-agnostic architecture. g is responsible for the final pre-
diction based on deep features provided by f. We denote the
whole model by z = g°f parameterized with = (6, ¢), where
0 and ¢ are associated with f and g, respectively.

For both pre-training and fine-tuning, we adopt the princi-
ple of Structural Risk Minimization (SRM) to train the model
over labeled training dataset D = {(x,y)}. Specifically, we
will minimize the cross entropy loss between predicted proba-
bilities and ground truth as

|D| Z Lee(z(x; @),

(x,y)eD

y) +Q(w), (1)

where Q is a regularizer to prevent over-fitting, and A is used
to balance the effect of empirical risk minimization and
model complexity restriction. We adopt standard weight de-
cay to realize the regularizer, i.e. Q(w) = ||o|[*.

To enhance robustness of deep learning, we adopt stochas-
tic gradient descent (SGD) to minimize the learning objective
of Equation (1). Therefore, the learnable parameter o will be
iteratively updated on a random batch of examples at each
stept=1,2,...,T as

8L3(a)t_1)

don_ (2)

Wy = Wi-1—1N

where 7 refers to the learning rate.

To making use of general vision features from natural vid-
eos, the network z is first trained over large-scale datasets. It
is worth noting that we don’t need to repeat this process due
to the availability of open-source pre-trained models. Denote
6% as the parameter of the pre-trained feature extractor f. In
the fine-tuning stage, we initialize the target network with
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0y =6 and ¢, with random initialization. Then the whole
parameter @ will be solved according to Equation (2). Based
on the above transfer learning framework, we will introduce
our specific choices of source/target datasets and model archi-
tectures in the following section.

4 Experimental setting

Our approach primarily revolves around fine-tuning several 3D
deep learning models pre-trained on the large-scale video data-
set (video initialization), such as Kinetics-400 (video action clas-
sification dataset Kay et al. 2017), for subtomogram
classification and other 3D biomedical image classifica-
tion tasks.

4.1 Pre-trained dataset and models

4.1.1 Kinetics-400 dataset

It is a large-scale, high-quality dataset of video clips covering
400 human action classes. These videos encompass a wide ar-
ray of human activities, spanning from interactions between
humans and objects, such as playing musical instruments, to
interpersonal human-to-human interactions, including ges-
tures like handshakes and hugs. We leverage a range of mod-
els pre-trained on this dataset for tasks like subtomogram
and MedMNIST3D classification.

4.1.2 3D ResNets for action classification

The adoption of 3D convolution has become increasingly
popular with the inception of large-scale video datasets, as it
can capture spatio-temporal features. Notably, the introduc-
tion of the 3D ResNet architecture, as proposed in Hara et al.
(2017), has showcased remarkable accuracy in the Kinetics-
400 action classification task. In our research, we leveraged a
pre-trained 3D ResNet-34 model as a fundamental compo-
nent in our experiments.

4.1.3 Video vision transformer

Vision transformer models have recently achieved SOTA
results for various computer vision tasks. The ViViT pro-
posed in Arnab et al. (2021) uses a pure-transformer-based
approach to extract the spatio-temporal features from the in-
put video. For our research, we employed the pre-trained
“google/vivit-b-16x2-kinetics400” ViViT model as a founda-
tional element in our experimentation. Specifically, it
adopted the 12-layer basic ViViT Factorised Encoder pro-
posed in the article and used 16 X 16 X 2 as the input patch
size for Transformers. The model was trained over the
Kinetics 400 dataset for 30 epochs as suggested by the article.

4.2 Target datasets

4.2.1 Simulated Cyro-ET data

Numerous approaches are available for simulating Cryo-ET
data. In this study, we adopt the framework developed by Liu
et al. (2019b). Their method employs an efficient gradient
descent-based technique to generate 3D Cryo-ET subtomogram
images of a target macromolecule situated in a crowded envi-
ronment with randomly positioned neighboring macromole-
cules. The macromolecules undergo random rotations and
translations. Furthermore, the simulation process incorporates
tomographic artifacts, such as the missing wedge effect and elec-
tron optical factors, to emulate experimentally acquired Cryo-
ET images.

Jain et al.

In the experiments, we followed previous practice (Gupta
et al. 2022) to select 10 simulated structures including 1bxn,
1f1b, 1yg6, 2byu, 2h12, 2ldb, 3gl1, 3hhb, 4d4r, and 6t3e.
We used simulated data with an SNR of 0.03 for our experi-
mentation. The dataset consists of 10 classes with 500 sam-
ples per class, and each subtomogram is of size 32° (32 x 32
X 32). The 5000 samples are divided into a 60:20:20 ratio
for training, validation, and test split.

4.2.2 Real Cryo-ET data

The real-world dataset utilized in this study was derived from
the Noble single-particle dataset (Noble er al. 2018). We used
the approach outlined in Gupta et al. (2022). In this method,
potential structural regions were extracted from each tomogram
within the Noble single-particle dataset employing the
Difference-of-Gaussians (DoG) method. The particle structures
are rabbit muscle aldolase, hemagglutinin, T20S proteasome,
DNAB helicase-helicase, glutamate dehydrogenase, insulin-
bound insulin receptor, and apoferritin. Subsequently, the top
1000 sub-volumes were chosen based on cross-correlation
scores, and for each class, a manual selection process was un-
dertaken to pick 400 subtomograms.

The final real-world dataset comprises seven classes, each
consisting of 400 samples. Each subtomogram has a size of
28% (28 x 28x 28). To facilitate model training and evalua-
tion, the 2800 samples are partitioned in a 3:1:1 ratio for
training, validation, and testing, for comparison with Gupta
et al. (2022) and 1:1 ratio for training and testing for com-
parison with Liu ez al. (2020b).

4.2.3 MedMNIST3D

We use MedMNIST3D as an additional dataset, which is a
large-scale MNIST like collection of standardized 3D biomedi-
cal images. This dataset encompasses six distinct collections,
namely OrganMNIST3D, NoduleMNIST3D, Adrenal MNIST
3D, FractureMNIST3D, VesselMNIST3D, and SynapseMNI
ST3D. All images are pre-processed into 28> (28 x 28x 28)
with the corresponding classification labels.

4.3 Deep learning strategies

This part describes the strategies for training our target data-
sets, i.e. subtomograms and other 3D biomedical images.

4.3.1 Data pre-processing and augmentation

We perform pre-processing to ensure the shape of our Cryo-
ET data fits the video pre-trained models. Specifically, each
subtomogram is resized into the shape of (32 x 128 x 128)
for consistency with video clips. The new pixels in the last
two dimensions are generated by interpolation. For data aug-
mentation, we follow the approach presented in Gupta et al.
(2022), which comprises two main steps. First, a random
resized crop is taken with a 50% probability, where the ini-
tial image is scaled between 0.5 and 1. Second, a random af-
fine transformation is applied with a 50% probability,
involving rotation within —45 to 45° along the z-axis, hori-
zontal translation up to 10% of the image’s width, vertical
translation up to 10% of the image’s height, and potential
scaling by a factor up to 10%.

Note that the 3D subtomogram data have three symmetric
spatial axes, which is different from video data. Therefore, it
does not matter which axis acts as the temporal dimension
when reusing the video model. In our implementation, we use
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Figure 3. 2D visualization of the embeddings generated using random initialization (left), video initialization (middle), and the fine-tuned model using
3D-ResNet-34 as the architecture. The categories represent Tbxn, 1f1b, 1yg6, 2byu, 2h12, 2Idb, and 3gl1, respectively. Noisy structures are generated to
simulate real environments. It can be seen that the video-initialized model has similar subtomograms clustered together.

the first axis of subtomogram to fit the temporal axis in the
video model and treat the remaining two as the spatial axes.

4.3.2 Optimization

When employing our video initialization strategy, we train
the model with a batch size of 32 for 25% and 100% of data-
set and 16 for 5% and 10% of dataset over 30 epochs, with a
learning rate starting from le-4 and delaying it by 0.1 after
15 and 22 epochs. To ensure sufficient adaptation from the
video domain to the Cryo-ET data domain, all the model
parameters are updated during the fine-tuning process. For
the random initialization, we undertake an extended training
regimen spanning 100 epochs. In this scenario, the learning
rate begins at 1e-3 and is scheduled for reduction by 0.1 after
50 and 75 epochs. All the models are trained using the cate-
gorical cross-entropy loss and we used Accuracy and AUC
(Area under the ROC Curve) as the evaluation metrics.

4.4 Hardware and software environments

All of our experiments are conducted on a single NVIDIA
GeForce RTX 3090 GPU card. The version of Nvidia driver
is 535.161.07 and CUDA is 12.2. We use Python 3.8 and
Pytorch 1.10 on a Ubuntu 22.04 system.

5 Main findings
5.1 Results of feature extraction

In deep transfer learning, the quality of the pre-trained fea-
tures is a key factor to estimate the potential value of transfer
learning. There are both theoretical and practical evidence in
previous studies. For example, Liu ef al. (2019a) reveals that
good pre-trained weights provide a flatter initial loss surface
for the target task. Another direction of work (Gouk et al.
2021, Li and Zhang 2021) indicates that an initial model
with relevant features is helpful to constrain the upper bound
of the generalization error on the target task. In complex Al
systems which consist of both DNNs and traditional hand-
crafted features (Lai and Deng 2018), the features extracted
from pre-trained models are directly applied in the system
without fine-tuning the feature extractor. In those applica-
tions, the quality of pre-trained embeddings is critical to the
performance of the overall system.

To evaluate whether pre-trained video models provide bet-
ter initialization for subtomograms, we perform a prelimi-
nary experiment on feature extraction. Specifically, we feed
subtomograms into the fixed pre-trained video model and ex-
tract the deep embedding for each subtomogram. Random

examples from seven classes are selected in this experiment.
The deep embeddings are then projected onto a 2D space for
visualization using t-SNE (Van der Maaten and Hinton
2008). t-SNE is a dimensionality reduction technique com-
monly used for visualizing high-dimensional data in lower-
dimensional spaces, particularly effective in revealing clusters
and patterns in complex data. It aims to preserve the local
and global structure of the data by modeling pairwise similar-
ities between data points in the high-dimensional space and
mapping them to a lower-dimensional space. The 2D visuali-
zation results are shown in Fig. 3, where each color refers to
a class. It can be seen that the video pre-trained model has
similar subtomogram samples clustered together, i.e. the
points belonging to the same category occur closely in the 2D
space. We also show the results of our fine-tuned model as a
reference. As seen in Fig. 3, after fine-tuning, the samples
from different classes are separated clearly.

5.2 Results of fine-tuning

We further conducted a series of experiments aimed at fine-
tuning the 3D-ResNet-34 model for subtomogram classifica-
tion using both random and video initialization approaches.
We randomly sampled 25% and 100% of the training size
for the simulated dataset and 5%, 10%, 25%, and 100% of
the training size for real-world data. Each experiment was re-
peated five times to capture variations in performance, and
we reported the average accuracy and AUC (Area under the
ROC Curve). The results of our investigations are presented
in Table 1. (Note that the SSP paper Gupta et al. 2022 aims
to design self-supervised learning to improve DNN training,
which is different from our objective. The SSP code may not
adopt the optimal hyperparameters in model training, leading
to poor performance. We reported the performance of SSP as
a reference, showing that our paper achieved the SOTA per-
formance in terms of subtomogram classification.) We ob-
served that the video initialization approach outperforms
random initialization for both simulated and real Cryo-ET
data. This difference in accuracy becomes even more pro-
nounced when we use limited data (5%, 10% for Real Data
and 25% for Simulated Data) for training the model. When
more training data, the performance difference decreases.
This can be mostly attributed to the nature of catastrophic
forgetting in the context of DNNs (French 1999, Chen et al.
2019). Using the video initialization approach, we achieved
the highest accuracy of 87.38% on the simulated data and
99.57% on the real data. Through the confusion matrix pre-
sented in Fig. 4, we observed that on the most challenging
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Table 1. Comparison of subtomogram classification accuracy (%) and AUC on real and simulated Cryo-ET data.?
Dataset (%) labelled Initialization Accuracy AUC
Simulated data 25 Random 65.88 0.9237
25 Ours 81.88 (+16.00) 0.9733
25 SSP (Gupta et al. 2022) 31.4
100 Random 85.34 0.9885
100 Ours 87.38 (+2.04) 0.9905
100 SSP (Gupta et al. 2022) 58.8
Real data N Random 68.71 0.91173
5 Ours 87.90 (+19.19) 0.982
N Semi-supervised (Liu e al. 2019b) 78.21
10 Random 77.55 0.95792
10 Ours 95.22 (+17.67) 0.9976
10 Semi-supervised (Liu et al. 2019b) 84.64
25 Random 90.78 0.9923
25 Ours 98.5 (+7.72) 0.9989
25 SSP (Gupta et al. 2022) 98.4
100 Random 98.67 0.9998
100 Ours 99.57 (+0.9) 0.9999
100 SSP (Gupta et al. 2022) 98.5

? Classifier (3D-ResNet-34) with Video initialization performs much better than classifier with random initialized weights. Gupta et al. (2022) presents the
results of best self-supervised pretraining (SSP) strategy using the RB3D model, and Liu ez al. (2019b) presents semi-supervised approach using 3D

Autoencoding Classifier.
Bold value refers to the best one among each experimental group.
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Figure 4. Confusion matrix for models trained on 5% real data. The seven classes are C1 =rabbit muscle aldolase, C2 =hemagglutinin, C3=T20S
proteasome, C4 = DNAB helicase-helicase, C5 = glutamate dehydrogenase, C6 = insulin-bound insulin receptor, and C7 = apoferritin. (a) Random

initialization. (b) Video initialization.

Table 2. Comparison of classification accuracy (%) and AUC on
MedMNIST3D datasets.

Dataset Initialization ~ Accuracy AUC
OrganMNIST3D Random 90.26 0.9937

Ours 96.52 0.9988 (+0.0051)
SynapseMNIST3D  Random 82.89 0.8674

Ours 90.45 0.9352 (+0.0678)
VesselMNIST3D Random 94.34 0.917

Ours 94.03 0.9509 (+0.0339)
NoduleMNIST3D Random 86.25 0.8786

Ours 87.16 0.883 (+0.0044)
AdrenalMNIST3D  Random 82.88 0.8615

Ours 83.28 0.8634 (+0.0019)
FractureMNIST3D  Random 52.83 0.696

Ours 51 0.6991 (+0.0031)

Bold value refers to the best one among each experimental group.

5% real data as the training set, our video initialization
method delivered a much more accurate discrimination be-
tween complex structures including DNAB helicase-helicase
(C4) and insulin-bound insulin receptor (C6) compared to
random initialization. Additionally, we conducted experi-
ments on 3D biomedical datasets from MedMNIST3D, as
shown in Table 2. Notably, our video initialization approach
demonstrated remarkable performance improvements, partic-
ularly for the SynapseMNIST3D, VesselMNIST3D and
OrganMNIST3D datasets.

Furthermore, in Fig. 5, we present the Grad-CAM visualiza-
tions (Selvaraju et al. 2017) for a sample subtomogram image,
roughly illustrating the regions crucial for classification deci-
sions. These visualizations were generated using M3d-CAM
(Gotkowski et al. 2021). Evidently, the model fine-tuned with
video initialization captures the subtomogram region with
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Figure 5. Grad-Cam visualization of layer3 of 3D-ResNet-34. Video initialization captures the subtomogram region with greater accuracy in comparison to
the randomly initialized model. (a) Cryo-ET subtomogram sample. (b) Random initialization. (c) Video initialization. (d) 3D density map of the sample. (e)

Fine-tuning baseline. (f) Fine-tuning (ours).
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Figure 6. Train and validation loss curves for Video initialization and
Random initialization.

significantly greater accuracy in comparison to the randomly
initialized model. A similar phenomenon can be discovered
when comparing the video initialized model (without fine-
tuning) with a random initialized model. compared to random

initialization. These observations confirm that our model does
not only deliver more accurate predictions, its decision logic is
also more reliable. We additionally chart the training and vali-
dation loss curves (Fig. 6) during the training of the 3D-ResNet-
34 model on simulated Cryo-ET data. Clearly, the video initiali-
zation approach exhibits significantly faster convergence, re-
quiring fewer epochs than the random initialization.

We also conducted experiments applying our video initiali-
zation technique to ViViT. More specifically, we utilized a
pre-trained ViViT model, which had been trained on the
Kinetics-400  dataset  (“google/vivit-b-16x2-kinetics400”
Arnab et al. 2021), as the basis for video initialization. Our
approach achieved an overall accuracy of 86.6% on 100%
Simulated Cryo-ET test data. In contrast, when we attempted
to train a model with random initialization, we faced chal-
lenges due to limited data availability (only 3000 samples for
training) and scanty compute resources (only able to train the
model with batch size 1 due to GPU memory constraints),
resulting in a significantly lower test accuracy of 32.3%.

6 Conclusion

This article introduces an innovative example of cross-
domain transfer learning, facilitating knowledge transfer
from the extensive domain of large-scale video datasets to the
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highly specialized domains of microbiology and biomedicine.
Our findings reveal that, in general, the video initialization
approach exhibits superior performance and higher effi-
ciency, and the difference becomes much more significant
when we have fewer training samples. Thus, reusing the
spatio-temporal features learned from extensive video
domains can be a practical approach for deep learning on mi-
crobiological and biomedical domains.
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