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Abstract
Motivation: Deep learning models have achieved remarkable success in a wide range of natural-world tasks, such as vision, language, and 
speech recognition. These accomplishments are largely attributed to the availability of open-source large-scale datasets. More importantly, 
pre-trained foundational model learnings exhibit a surprising degree of transferability to downstream tasks, enabling efficient learning even with 
limited training examples. However, the application of such natural-domain models to the domain of tiny Cryo-Electron Tomography (Cryo-ET) 
images has been a relatively unexplored frontier. This research is motivated by the intuition that 3D Cryo-ET voxel data can be conceptually 
viewed as a sequence of progressively evolving video frames.
Results: Leveraging the above insight, we propose a novel approach that involves the utilization of 3D models pre-trained on large-scale video data
sets to enhance Cryo-ET subtomogram classification. Our experiments, conducted on both simulated and real Cryo-ET datasets, reveal compelling 
results. The use of video initialization not only demonstrates improvements in classification accuracy but also substantially reduces training costs. 
Further analyses provide additional evidence of the value of video initialization in enhancing subtomogram feature extraction. Additionally, we observe 
that video initialization yields similar positive effects when applied to medical 3D classification tasks, underscoring the potential of cross-domain 
knowledge transfer from video-based models to advance the state-of-the-art in a wide range of biological and medical data types.
Availability and implementation: https://github.com/xulabs/aitom.

1 Introduction
Cryo-electron tomography (Cryo-ET) (Gan and Jensen 2012) 
has emerged as a powerful tool, offering researchers an un
precedented glimpse into the microscopic world of biological 
particles with remarkable clarity and in near-native conditions. 
This groundbreaking technique involves the reconstruction of 
multi-angle projections, resulting in high-resolution 3D tomo
grams. These tomograms serve as invaluable windows into the 
intricate structures that underlie biological mechanisms, in
cluding the complex interactions and dynamic behaviors of 
macromolecules (Murata and Wolf 2018). Among the myriad 
applications of Cryo-ET, this article places a particular empha
sis on subtomogram classification, a pivotal component for 
unraveling the mysteries of the entire cellular environment. By 
honing in on the classification of individual macromolecular 
structures within the subtomograms, researchers pave the way 
for a deeper understanding of the fundamental processes gov
erning life at the cellular level.

Achieving reliable subtomogram classification poses a sig
nificant challenge, primarily stemming from the scarcity of 
high-quality labeled data. This challenge can be broken down 

into several critical aspects. Firstly, the acquisition of Cryo- 
ET images is cost-prohibitive because of the expensive nature 
of the required equipment, limiting the availability of large 
datasets. Secondly, to preserve cellular integrity, the electron 
dose during imaging must be constrained, leading to lower 
signal-to-noise ratios (SNRs) in the captured data (Turk and 
Baumeister 2020). Thirdly, inherent physical constraints of 
both the instrument and sample thickness result in a phenom
enon known as the “missing wedge,” further complicating 
data acquisition (Kudryashev et al. 2012, Lu�ci�c et al. 2013). 
Consequently, the scarcity of data increases the risk of over
fitting, a classic and ongoing concern in the realm of machine 
learning. While most existing solutions resort to data simula
tion (Pei et al. 2016, Liu et al. 2020a) to augment the training 
set or few-shot learning algorithms (Yu et al. 2021), the com
plex algorithmic requirements pose challenges for biologists, 
necessitating extensive design and debugging efforts.

On the other hand, the large-scale natural image datasets 
like ImageNet (Deng et al. 2009) and COCO (Lin et al. 
2014) have played a pivotal role in the remarkable success of 
deep learning on diverse computer vision tasks (Krizhevsky 
et al. 2012, He et al. 2016). The striking transferability of 
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models well-trained on these expansive general datasets has 
propelled fine-tuning into a prevalent paradigm, which has 
also been applied in fields of medicine and biology. Despite 
these achievements, the practical solutions that have thrived 
in 2D images have yet to be explored comprehensively for 3D 
Cryo-ET data. This gap can be attributed to lack of powerful 
general pre-trained models for 3D vision. To the best of our 
knowledge, existing studies in the realm of subtomogram 
classification rely on random initialization, rendering deep 
learning less reliable and inefficient in the absence of a large- 
scale dataset. Closing this gap and unlocking the potential of 
deep learning in Cryo-ET data analysis remain piv
otal challenges.

Motivated by the notable success of the “pre-training and 
fine-tuning” paradigm within 2D domains, our empirical explo
ration extends this concept to the realm of 3D subtomogram 
data. In particular, we leverage pre-trained weights from video 
data as the initialization for our model. The framework is dem
onstrated in Fig. 1. The reason of this choice lies in 2-folds. 
Firstly, it is rational to consider subtomogram slices as sequen
tially evolving video frames since they share the fundamental at
tribute of continuity. Secondly, video datasets offer distinct 
advantages, including low annotation costs, data richness, and 
fewer privacy concerns when compared to specialized domains 
such as medical and biological fields.

Our experiments encompassed both simulated (Figure 2) 
and privately acquired real datasets for subtomogram classifi
cation. Leveraging video initialization yielded clear advan
tages in both performance and efficiency. Notably, it 
outperformed the baseline (i.e. random initialization) by an 
impressive 19.19%, 17.67% in absolute accuracy on 5% and 
10% of real training dataset, respectively, and 16% in abso
lute accuracy on 25% of the simulated dataset with 50% re
duction in the training efforts. Furthermore, such 
performance improvements require no additional coding 
efforts. Our adaptation of the “pre-training and fine-tuning” 
paradigm opens doors to enhanced insights and efficiency in 
the analysis of 3D subtomogram data, fostering opportunities 
for groundbreaking discoveries in various scientific and re
search endeavors.

2 Related work
2.1 Subtomogram classification
Identifying particles of interest is a critical step for in situ Cryo- 
ET image analysis. One typical example is the study of virus–host 
interactions, where viruses interact with host cells in highly spe
cific ways, involving complex molecular machinery and dynamic 
interactions. In order to understand these interactions and the 
mechanisms underlying viral infection, it is crucial to accurately 
identify the viral particles within the cellular context.

Existing techniques such as template matching have been 
extensively applied for particle recognition. However, their 
performance is far from satisfactory given the highly noisy 
images and conformational changes of biological structures 
(Moebel et al. 2021). For example, to construct a 3D tomo
gram, rotations of the sample axis yield 2D projections from 
various angles. However, high rotation angles thicken the 
sample, hindering imaging. Consequently, reconstructed 3D 
tomograms exhibit missing information in the affected 
wedge-shaped regions, named the missing wedge effect.

Machine learning-based subtomogram classification allows 
researchers to categorize and distinguish these variations 
within the data through more robust feature learning. This 
classification process not only enhances our understanding of 
fundamental biological processes, but also facilitates drug 
discovery and the development of targeted therapies by re
vealing molecular mechanisms with unprecedented detail.

Deep neural networks (DNNs, Simonyan and Zisserman 
2014, He et al. 2016) have been successfully applied on subto
mogram classification (Che et al. 2018, Gupta et al. 2022). 
Further efforts have been made to address the challenge caused 
by data limitation. Existing work have taken two primary direc
tions. One approach involves data augmentation to expand the 
labeled dataset. Researchers leverage their understanding of bi
ology to create simulated Cryo-ET tomograms and subtomo
grams with predefined structures (Pei et al. 2016, Liu et al. 
2020a). The advantage here is that manually designed strategies 
ensure accuracy of generated labels by exposing all details. 
However, a notable drawback is the significant feature discrep
ancy between simulated and real data, limiting its real-world ap
plicability, particularly for novel structures. Additionally, the 
heavy reliance on existing biological knowledge and predefined 
rules constrains its versatility. The other prevalent approach 
aims to enhance learning performance with limited examples, 
incorporating techniques like few-shot/one-shot learning (Yu 
et al. 2021), active learning (Du et al. 2021), and semi- 
supervised learning (Liu et al. 2019b). Inspired by the success of 
self-supervised learning on natural images (Gupta et al. 2022), 
extends the fashion to subtomogram classification, achieving 
state-of-the-art (SOTA) accuracy on both simulated and 
real data.

Although the aforementioned approaches also aim to solve 
the issue of data scarcity, they are based on additional assump
tions, which have limited their applications. For example, few- 
shot/one-shot learning (Yu et al. 2021) and semi-supervised 
learning (Liu et al. 2019b) solutions require a large amount of 
unlabeled data with a similar distribution to the labeled set. 
Active learning (Du et al. 2021) involves selecting the most in
formative examples for annotation; however, it assumes that we 
already have an adapted model to extract accurate features.

2.2 Pre-training and fine-tuning
The rational of the fine-tuning paradigm lies in the finding of 
the impressive transferability of DNNs trained on large-scale 

Figure 1. Illustration of subtomogram classification with video-based 
deep models as initialization. Channel replication is used to adapt 3D 
video models on single channel subtomogram data. The video sample is 
from Kinetics-400 (Kay et al. 2017).
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general-purpose datasets across a range of downstream tasks 
(Yosinski et al. 2014). Consequently, fine-tuning pre-trained 
models for adapting to new tasks has gained popularity in 
real-world applications. To further enhance knowledge trans
fer, various methods have been explored to optimize the utili
zation of pre-trained models during fine-tuning. A significant 
portion of such research adopted a common idea referred to 
as “shrinking towards chosen parameters,” which aims to 
overcome the risk of catastrophic forgetting of the general 
knowledge contained in pre-trained models. Building upon 
this assumption, several algorithms have been developed, 
implementing different constraints on model parameters such 
as L2-SP (Xuhong et al. 2018), DELTA (Li et al. 2019), and 
MARS (Gouk et al. 2021). These algorithms show clear bene
fits especially when the source and target domain are similar, 
e.g. both are natural images.

Previous research works have also investigated transfer 
learning, especially the pre-training and fine-tuning para
digm, in biomedical image analysis. Several review papers 
(Cheplygina 2019, Kim et al. 2022, Kora et al. 2022) summa
rized the approaches in recent papers and confirmed the value 
of deep transfer learning in solving biomedical problems. For 
example (Hon and Khan 2017), improved the accuracy of 
Alzheimer’s disease classification from MRI images by utiliz
ing ImageNet pre-trained models. However, previous studies 
mostly focused on 2D medical images or slices and consid
ered only 2D natural images as the source dataset. For 3D 
biomedical image analysis, the rich video resources in the nat
ural vision domain have not been exploited before.

2.3 Video analysis with deep learning
Deep learning represents a powerful approach to extract 
meaningful information from dynamic visual data (Karpathy 
et al. 2014, Arnab et al. 2021). DNNs tailored for video 
analysis leverage the temporal dimension inherent in videos 
to capture motion patterns, temporal dependencies, and spa
tio–temporal interactions. Similar to the solutions for other 
spatial and temporal data types, deep models for video analy
sis typically employ convolutional neural networks (CNNs, 
Karpathy et al. 2014), recurrent neural networks (RNNs, 
Yang et al. 2017), or the combined architectures like Conv- 
LSTM (Ge et al. 2019), to effectively process sequential data. 
Popular video analysis tasks include action recognition, activ
ity detection, video segmentation, and video captioning and 
so on. In this article, we will adopt the 3D-CNN (Hara et al. 

2018) and Video Vision Transformer (ViViT Arnab et al. 
2021) architecture, and reuse the pre-trained weights learned 
from large-scale video data to facilitate biological im
age analysis.

3 Method
We use DNNs as the machine learning model in our transfer 
learning approach. The network consists of a general- 
purpose feature extractor f and a classification head g. In 
deep transfer learning, f aims to learn data features with a 
task-agnostic architecture. g is responsible for the final pre
diction based on deep features provided by f. We denote the 
whole model by z¼ g�f parameterized with ω¼ ðθ;ϕÞ, where 
θ and ϕ are associated with f and g, respectively.

For both pre-training and fine-tuning, we adopt the princi
ple of Structural Risk Minimization (SRM) to train the model 
over labeled training dataset D¼ fðx;yÞg. Specifically, we 
will minimize the cross entropy loss between predicted proba
bilities and ground truth as 

LðωÞ ¼
1
jDj

X

ðx;yÞ2D

Lceðzðx; ωÞ; yÞþ λΩðωÞ; (1) 

where Ω is a regularizer to prevent over-fitting, and λ is used 
to balance the effect of empirical risk minimization and 
model complexity restriction. We adopt standard weight de
cay to realize the regularizer, i.e. ΩðωÞ ¼ jjωjj2.

To enhance robustness of deep learning, we adopt stochas
tic gradient descent (SGD) to minimize the learning objective 
of Equation (1). Therefore, the learnable parameter ω will be 
iteratively updated on a random batch of examples at each 
step t ¼ 1;2; . . . ;T as 

ωt ¼ ωt − 1 − η
@LBðωt − 1Þ

@ωt − 1
; (2) 

where η refers to the learning rate.
To making use of general vision features from natural vid

eos, the network z is first trained over large-scale datasets. It 
is worth noting that we don’t need to repeat this process due 
to the availability of open-source pre-trained models. Denote 
θS as the parameter of the pre-trained feature extractor f. In 
the fine-tuning stage, we initialize the target network with 

Figure 2. Synthetic structures in the simulated dataset (Liu et al. 2020a). The names of the structures from left to right are 1bxn, 1f1b, 1yg6, 2byu, 2h12 
in the first row, and 2ldb, 3gl1, 3hhb, 4d4r, 6t3e in the second row.
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θ0 ¼ θS and ϕ0 with random initialization. Then the whole 
parameter ω will be solved according to Equation (2). Based 
on the above transfer learning framework, we will introduce 
our specific choices of source/target datasets and model archi
tectures in the following section.

4 Experimental setting
Our approach primarily revolves around fine-tuning several 3D 
deep learning models pre-trained on the large-scale video data
set (video initialization), such as Kinetics-400 (video action clas
sification dataset Kay et al. 2017), for subtomogram 
classification and other 3D biomedical image classifica
tion tasks.

4.1 Pre-trained dataset and models
4.1.1 Kinetics-400 dataset
It is a large-scale, high-quality dataset of video clips covering 
400 human action classes. These videos encompass a wide ar
ray of human activities, spanning from interactions between 
humans and objects, such as playing musical instruments, to 
interpersonal human-to-human interactions, including ges
tures like handshakes and hugs. We leverage a range of mod
els pre-trained on this dataset for tasks like subtomogram 
and MedMNIST3D classification.

4.1.2 3D ResNets for action classification
The adoption of 3D convolution has become increasingly 
popular with the inception of large-scale video datasets, as it 
can capture spatio-temporal features. Notably, the introduc
tion of the 3D ResNet architecture, as proposed in Hara et al. 
(2017), has showcased remarkable accuracy in the Kinetics- 
400 action classification task. In our research, we leveraged a 
pre-trained 3D ResNet-34 model as a fundamental compo
nent in our experiments.

4.1.3 Video vision transformer
Vision transformer models have recently achieved SOTA 
results for various computer vision tasks. The ViViT pro
posed in Arnab et al. (2021) uses a pure-transformer-based 
approach to extract the spatio-temporal features from the in
put video. For our research, we employed the pre-trained 
“google/vivit-b-16x2-kinetics400” ViViT model as a founda
tional element in our experimentation. Specifically, it 
adopted the 12-layer basic ViViT Factorised Encoder pro
posed in the article and used 16 × 16 × 2 as the input patch 
size for Transformers. The model was trained over the 
Kinetics 400 dataset for 30 epochs as suggested by the article.

4.2 Target datasets
4.2.1 Simulated Cyro-ET data
Numerous approaches are available for simulating Cryo-ET 
data. In this study, we adopt the framework developed by Liu 
et al. (2019b). Their method employs an efficient gradient 
descent-based technique to generate 3D Cryo-ET subtomogram 
images of a target macromolecule situated in a crowded envi
ronment with randomly positioned neighboring macromole
cules. The macromolecules undergo random rotations and 
translations. Furthermore, the simulation process incorporates 
tomographic artifacts, such as the missing wedge effect and elec
tron optical factors, to emulate experimentally acquired Cryo- 
ET images.

In the experiments, we followed previous practice (Gupta 
et al. 2022) to select 10 simulated structures including 1bxn, 
1f1b, 1yg6, 2byu, 2h12, 2ldb, 3gl1, 3hhb, 4d4r, and 6t3e. 
We used simulated data with an SNR of 0.03 for our experi
mentation. The dataset consists of 10 classes with 500 sam
ples per class, and each subtomogram is of size 323 (32 × 32 
× 32). The 5000 samples are divided into a 60:20:20 ratio 
for training, validation, and test split.

4.2.2 Real Cryo-ET data
The real-world dataset utilized in this study was derived from 
the Noble single-particle dataset (Noble et al. 2018). We used 
the approach outlined in Gupta et al. (2022). In this method, 
potential structural regions were extracted from each tomogram 
within the Noble single-particle dataset employing the 
Difference-of-Gaussians (DoG) method. The particle structures 
are rabbit muscle aldolase, hemagglutinin, T20S proteasome, 
DNAB helicase–helicase, glutamate dehydrogenase, insulin- 
bound insulin receptor, and apoferritin. Subsequently, the top 
1000 sub-volumes were chosen based on cross-correlation 
scores, and for each class, a manual selection process was un
dertaken to pick 400 subtomograms.

The final real-world dataset comprises seven classes, each 
consisting of 400 samples. Each subtomogram has a size of 
283 (28 × 28× 28). To facilitate model training and evalua
tion, the 2800 samples are partitioned in a 3:1:1 ratio for 
training, validation, and testing, for comparison with Gupta 
et al. (2022) and 1:1 ratio for training and testing for com
parison with Liu et al. (2020b).

4.2.3 MedMNIST3D
We use MedMNIST3D as an additional dataset, which is a 
large-scale MNIST like collection of standardized 3D biomedi
cal images. This dataset encompasses six distinct collections, 
namely OrganMNIST3D, NoduleMNIST3D, AdrenalMNIST 
3D, FractureMNIST3D, VesselMNIST3D, and SynapseMNI 
ST3D. All images are pre-processed into 283 (28 × 28× 28) 
with the corresponding classification labels.

4.3 Deep learning strategies
This part describes the strategies for training our target data
sets, i.e. subtomograms and other 3D biomedical images.

4.3.1 Data pre-processing and augmentation
We perform pre-processing to ensure the shape of our Cryo- 
ET data fits the video pre-trained models. Specifically, each 
subtomogram is resized into the shape of (32 × 128 × 128) 
for consistency with video clips. The new pixels in the last 
two dimensions are generated by interpolation. For data aug
mentation, we follow the approach presented in Gupta et al. 
(2022), which comprises two main steps. First, a random 
resized crop is taken with a 50% probability, where the ini
tial image is scaled between 0.5 and 1. Second, a random af
fine transformation is applied with a 50% probability, 
involving rotation within −45 to 45� along the z-axis, hori
zontal translation up to 10% of the image’s width, vertical 
translation up to 10% of the image’s height, and potential 
scaling by a factor up to 10%.

Note that the 3D subtomogram data have three symmetric 
spatial axes, which is different from video data. Therefore, it 
does not matter which axis acts as the temporal dimension 
when reusing the video model. In our implementation, we use 
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the first axis of subtomogram to fit the temporal axis in the 
video model and treat the remaining two as the spatial axes.

4.3.2 Optimization
When employing our video initialization strategy, we train 
the model with a batch size of 32 for 25% and 100% of data
set and 16 for 5% and 10% of dataset over 30 epochs, with a 
learning rate starting from 1e-4 and delaying it by 0.1 after 
15 and 22 epochs. To ensure sufficient adaptation from the 
video domain to the Cryo-ET data domain, all the model 
parameters are updated during the fine-tuning process. For 
the random initialization, we undertake an extended training 
regimen spanning 100 epochs. In this scenario, the learning 
rate begins at 1e-3 and is scheduled for reduction by 0.1 after 
50 and 75 epochs. All the models are trained using the cate
gorical cross-entropy loss and we used Accuracy and AUC 
(Area under the ROC Curve) as the evaluation metrics.

4.4 Hardware and software environments
All of our experiments are conducted on a single NVIDIA 
GeForce RTX 3090 GPU card. The version of Nvidia driver 
is 535.161.07 and CUDA is 12.2. We use Python 3.8 and 
Pytorch 1.10 on a Ubuntu 22.04 system.

5 Main findings
5.1 Results of feature extraction
In deep transfer learning, the quality of the pre-trained fea
tures is a key factor to estimate the potential value of transfer 
learning. There are both theoretical and practical evidence in 
previous studies. For example, Liu et al. (2019a) reveals that 
good pre-trained weights provide a flatter initial loss surface 
for the target task. Another direction of work (Gouk et al. 
2021, Li and Zhang 2021) indicates that an initial model 
with relevant features is helpful to constrain the upper bound 
of the generalization error on the target task. In complex AI 
systems which consist of both DNNs and traditional hand
crafted features (Lai and Deng 2018), the features extracted 
from pre-trained models are directly applied in the system 
without fine-tuning the feature extractor. In those applica
tions, the quality of pre-trained embeddings is critical to the 
performance of the overall system.

To evaluate whether pre-trained video models provide bet
ter initialization for subtomograms, we perform a prelimi
nary experiment on feature extraction. Specifically, we feed 
subtomograms into the fixed pre-trained video model and ex
tract the deep embedding for each subtomogram. Random 

examples from seven classes are selected in this experiment. 
The deep embeddings are then projected onto a 2D space for 
visualization using t-SNE (Van der Maaten and Hinton 
2008). t-SNE is a dimensionality reduction technique com
monly used for visualizing high-dimensional data in lower- 
dimensional spaces, particularly effective in revealing clusters 
and patterns in complex data. It aims to preserve the local 
and global structure of the data by modeling pairwise similar
ities between data points in the high-dimensional space and 
mapping them to a lower-dimensional space. The 2D visuali
zation results are shown in Fig. 3, where each color refers to 
a class. It can be seen that the video pre-trained model has 
similar subtomogram samples clustered together, i.e. the 
points belonging to the same category occur closely in the 2D 
space. We also show the results of our fine-tuned model as a 
reference. As seen in Fig. 3, after fine-tuning, the samples 
from different classes are separated clearly.

5.2 Results of fine-tuning
We further conducted a series of experiments aimed at fine- 
tuning the 3D-ResNet-34 model for subtomogram classifica
tion using both random and video initialization approaches. 
We randomly sampled 25% and 100% of the training size 
for the simulated dataset and 5%, 10%, 25%, and 100% of 
the training size for real-world data. Each experiment was re
peated five times to capture variations in performance, and 
we reported the average accuracy and AUC (Area under the 
ROC Curve). The results of our investigations are presented 
in Table 1. (Note that the SSP paper Gupta et al. 2022 aims 
to design self-supervised learning to improve DNN training, 
which is different from our objective. The SSP code may not 
adopt the optimal hyperparameters in model training, leading 
to poor performance. We reported the performance of SSP as 
a reference, showing that our paper achieved the SOTA per
formance in terms of subtomogram classification.) We ob
served that the video initialization approach outperforms 
random initialization for both simulated and real Cryo-ET 
data. This difference in accuracy becomes even more pro
nounced when we use limited data (5%, 10% for Real Data 
and 25% for Simulated Data) for training the model. When 
more training data, the performance difference decreases. 
This can be mostly attributed to the nature of catastrophic 
forgetting in the context of DNNs (French 1999, Chen et al. 
2019). Using the video initialization approach, we achieved 
the highest accuracy of 87.38% on the simulated data and 
99.57% on the real data. Through the confusion matrix pre
sented in Fig. 4, we observed that on the most challenging 

Figure 3. 2D visualization of the embeddings generated using random initialization (left), video initialization (middle), and the fine-tuned model using 
3D-ResNet-34 as the architecture. The categories represent 1bxn, 1f1b, 1yg6, 2byu, 2h12, 2ldb, and 3gl1, respectively. Noisy structures are generated to 
simulate real environments. It can be seen that the video-initialized model has similar subtomograms clustered together.
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5% real data as the training set, our video initialization 
method delivered a much more accurate discrimination be
tween complex structures including DNAB helicase-helicase 
(C4) and insulin-bound insulin receptor (C6) compared to 
random initialization. Additionally, we conducted experi
ments on 3D biomedical datasets from MedMNIST3D, as 
shown in Table 2. Notably, our video initialization approach 
demonstrated remarkable performance improvements, partic
ularly for the SynapseMNIST3D, VesselMNIST3D and 
OrganMNIST3D datasets.

Furthermore, in Fig. 5, we present the Grad-CAM visualiza
tions (Selvaraju et al. 2017) for a sample subtomogram image, 
roughly illustrating the regions crucial for classification deci
sions. These visualizations were generated using M3d-CAM 
(Gotkowski et al. 2021). Evidently, the model fine-tuned with 
video initialization captures the subtomogram region with 

Table 1. Comparison of subtomogram classification accuracy (%) and AUC on real and simulated Cryo-ET data.a

Dataset (%) labelled Initialization Accuracy AUC

Simulated data 25 Random 65.88 0.9237
25 Ours 81.88 (þ16.00) 0.9733
25 SSP (Gupta et al. 2022) 31.4

100 Random 85.34 0.9885
100 Ours 87.38 (þ2.04) 0.9905
100 SSP (Gupta et al. 2022) 58.8

Real data 5 Random 68.71 0.91173
5 Ours 87.90 (þ19.19) 0.982
5 Semi-supervised (Liu et al. 2019b) 78.21

10 Random 77.55 0.95792
10 Ours 95.22 (þ17.67) 0.9976
10 Semi-supervised (Liu et al. 2019b) 84.64
25 Random 90.78 0.9923
25 Ours 98.5 (þ7.72) 0.9989
25 SSP (Gupta et al. 2022) 98.4

100 Random 98.67 0.9998
100 Ours 99.57 (þ0.9) 0.9999
100 SSP (Gupta et al. 2022) 98.5

a Classifier (3D-ResNet-34) with Video initialization performs much better than classifier with random initialized weights. Gupta et al. (2022) presents the 
results of best self-supervised pretraining (SSP) strategy using the RB3D model, and Liu et al. (2019b) presents semi-supervised approach using 3D 
Autoencoding Classifier.
Bold value refers to the best one among each experimental group.

Figure 4. Confusion matrix for models trained on 5% real data. The seven classes are C1¼ rabbit muscle aldolase, C2¼ hemagglutinin, C3¼ T20S 
proteasome, C4¼DNAB helicase-helicase, C5¼ glutamate dehydrogenase, C6¼ insulin-bound insulin receptor, and C7¼ apoferritin. (a) Random 
initialization. (b) Video initialization.

Table 2. Comparison of classification accuracy (%) and AUC on 
MedMNIST3D datasets.

Dataset Initialization Accuracy AUC

OrganMNIST3D Random 90.26 0.9937
Ours 96.52 0.9988 (þ0.0051)

SynapseMNIST3D Random 82.89 0.8674
Ours 90.45 0.9352 (þ0.0678)

VesselMNIST3D Random 94.34 0.917
Ours 94.03 0.9509 (þ0.0339)

NoduleMNIST3D Random 86.25 0.8786
Ours 87.16 0.883 (þ0.0044)

AdrenalMNIST3D Random 82.88 0.8615
Ours 83.28 0.8634 (þ0.0019)

FractureMNIST3D Random 52.83 0.696
Ours 51 0.6991 (þ0.0031)

Bold value refers to the best one among each experimental group.
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significantly greater accuracy in comparison to the randomly 
initialized model. A similar phenomenon can be discovered 
when comparing the video initialized model (without fine- 
tuning) with a random initialized model. compared to random 

initialization. These observations confirm that our model does 
not only deliver more accurate predictions, its decision logic is 
also more reliable. We additionally chart the training and vali
dation loss curves (Fig. 6) during the training of the 3D-ResNet- 
34 model on simulated Cryo-ET data. Clearly, the video initiali
zation approach exhibits significantly faster convergence, re
quiring fewer epochs than the random initialization.

We also conducted experiments applying our video initiali
zation technique to ViViT. More specifically, we utilized a 
pre-trained ViViT model, which had been trained on the 
Kinetics-400 dataset (“google/vivit-b-16x2-kinetics400” 
Arnab et al. 2021), as the basis for video initialization. Our 
approach achieved an overall accuracy of 86.6% on 100% 
Simulated Cryo-ET test data. In contrast, when we attempted 
to train a model with random initialization, we faced chal
lenges due to limited data availability (only 3000 samples for 
training) and scanty compute resources (only able to train the 
model with batch size 1 due to GPU memory constraints), 
resulting in a significantly lower test accuracy of 32.3%.

6 Conclusion
This article introduces an innovative example of cross- 
domain transfer learning, facilitating knowledge transfer 
from the extensive domain of large-scale video datasets to the 

Figure 5. Grad-Cam visualization of layer3 of 3D-ResNet-34. Video initialization captures the subtomogram region with greater accuracy in comparison to 
the randomly initialized model. (a) Cryo-ET subtomogram sample. (b) Random initialization. (c) Video initialization. (d) 3D density map of the sample. (e) 
Fine-tuning baseline. (f) Fine-tuning (ours).

Figure 6. Train and validation loss curves for Video initialization and 
Random initialization.
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highly specialized domains of microbiology and biomedicine. 
Our findings reveal that, in general, the video initialization 
approach exhibits superior performance and higher effi
ciency, and the difference becomes much more significant 
when we have fewer training samples. Thus, reusing the 
spatio-temporal features learned from extensive video 
domains can be a practical approach for deep learning on mi
crobiological and biomedical domains.
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