
Lines: 500

Fully Dynamic Maximum Independent Sets of
Disks in Polylogarithmic Update Time
Sujoy Bhore ! �

Department of Computer Science and Engineering, Indian Institute of Technology Bombay,
Mumbai, India

Martin Nöllenburg !�

Institute of Logic and Computation, Algorithms and Complexity Group, TU Wien, Vienna, Austria

Csaba D. Tóth !�

Department of Mathematics, California State University Northridge, Los Angeles, CA; and
Department of Computer Science, Tufts University, Medford, MA, USA

Jules Wulms ! �

Department of Mathematics and Computer Science, TU Eindhoven, Eindhoven, Netherlands

Abstract1

A fundamental question is whether one can maintain a maximum independent set (MIS) in polylog-2

arithmic update time for a dynamic collection of geometric objects in Euclidean space. For a set of3

intervals, it is known that no dynamic algorithm can maintain an exact MIS in sublinear update4

time. Therefore, the typical objective is to explore the trade-off between update time and solution5

size. Substantial efforts have been made in recent years to understand this question for various6

families of geometric objects, such as intervals, hypercubes, hyperrectangles, and fat objects.7

We present the first fully dynamic approximation algorithm for disks of arbitrary radii in the8

plane that maintains a constant-factor approximate MIS in polylogarithmic expected amortized9

update time. Moreover, for a fully dynamic set of n unit disks in the plane, we show that a10

12-approximate MIS can be maintained with worst-case update time O(logn), and optimal output-11

sensitive reporting. This result generalizes to fat objects of comparable sizes in any fixed dimension d,12

where the approximation ratio depends on the dimension and the fatness parameter. Further, we13

note that, even for a dynamic set of disks of unit radius in the plane, it is impossible to maintain14

O(1 + ε)-approximate MIS in truly sublinear update time, under standard complexity assumptions.15

Our results build on two recent technical tools: (i) The MIX algorithm by Cardinal et al.16

(ESA 2021) that can smoothly transition from one independent set to another; hence it suffices to17

maintain a family of independent sets where the largest one is an O(1)-approximate MIS. (ii) A18

dynamic nearest/farthest neighbor data structure for disks by Kaplan et al. (DCG 2020) and Liu19

(SICOMP 2022), which generalizes the dynamic convex hull data structure by Chan (JACM 2010),20

and quickly yields a “replacement” disk (if any) when a disk in one of our independent sets is deleted.21

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Dynamic algorithm, Independent set, Geometric intersection graph

Related Version A full version of this paper is available at: arXiv:2308.00979

Funding Csaba D. Tóth: Research was partially supported by the NSF award DMS-2154347.

1 Introduction22

The maximum independent set (MIS) problem is one of the most fundamental problems in23

theoretical computer science, and it is one of Karp’s 21 classical NP-complete problems [29].24

In the MIS problem, we are given a graph G = (V,E), and the objective is to choose a25

subset of the vertices S ⊆ V of maximum cardinality such that no two vertices in S are26

adjacent. The intractability of MIS carries even under strong algorithmic paradigms. For27

instance, it is known to be hard to approximate: no polynomial-time algorithm can achieve28

© Sujoy Bhore, Martin Nöllenburg, Csaba D. Tóth, and Jules Wulms;
licensed under Creative Commons License CC-BY 4.0

40th International Symposium on Computational Geometry (SoCG 2024).
Editors: Wolfgang Mulzer and Jeff M. Phillips; Article No. 16; pp. 16:1–16:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sujoy@cse.iitb.ac.in
mailto:noellenburg@ac.tuwien.ac.at
mailto:csaba.toth@csun.edu
mailto:jwulms@ac.tuwien.ac.at
https://arxiv.org/abs/2308.00979
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Fully Dynamic Maximum Independent Sets of Disks in Polylogarithmic Update Time

an approximation factor n1−ε (for |V | = n and a constant ε > 0) unless P=ZPP [39]. In29

fact, even if the maximum degree of the input graph is bounded by 3, no polynomial-time30

approximation scheme (PTAS) is possible [7].31

Geometric Independent Set. In geometric settings, the input to the MIS problem is a32

collection L = {`1, . . . , `n} of geometric objects, e.g., intervals, disks, squares, rectangles,33

etc., and we wish to compute a maximum independent set in their intersection graph G.34

That is, each vertex in G corresponds to an object in L, and two vertices form an edge if35

and only if the two corresponding objects intersect. The objective is to choose a maximum36

cardinality subset L′ ⊆ L of independent (i.e., pairwise disjoint) objects.37

A large body of work has been devoted to geometric MIS problems, due to their wide38

range of applications in scheduling [4], VLSI design [26], map labeling [1], data mining [30, 6],39

and many others. Stronger theoretical results are known for the geometric MIS problem:40

For instance, even for unit disks in the plane, the problem remains NP-hard [18] and W[1]-41

hard [34], but it admits a PTAS [26]. Later, PTASs were also developed for arbitrary disks,42

squares, and more generally hypercubes and fat objects in constant dimensions [27, 14, 2, 21].43

In their seminal work, Chan and Har-Peled [17] showed that for an arrangement of45

pseudo-disks,1 a local-search-based approach yields a PTAS. However, for non-fat objects,46

the scenario is quite different. For instance, it had been a long-standing open problem to find47

a constant-factor approximation algorithm for the MIS problem on axis-aligned rectangles.48

In a recent breakthrough, Mitchell [36] answered this question in the affirmative. Through a49

refined analysis of the recursive partitioning scheme, a dynamic programming algorithm finds50

a constant-factor approximation. This constant factor was subsequently improved to 3 [22].51

Dynamic Geometric Independent Set. In dynamic settings, objects are inserted into or52

deleted from the collection L over time. The typical objective is to achieve (almost) the53

same approximation ratio as in the offline (static) case while keeping the update time, i.e.,54

the time to update the solution after insertion/deletion, as small as possible. We call it the55

Dynamic Geometric Maximum Independent Set problem (for short, DGMIS).56

Henzinger et al. [25] studied DGMIS for various geometric objects, such as intervals,57

hypercubes, and hyperrectangles. Many of their results extend to the weighted version58

of DGMIS, as well. Based on a lower bound of Marx [35] for the offline problem, they59

showed that any dynamic (1 + ε)-approximation for squares in the plane requires Ω(n1/ε)60

update time for any ε > 0, ruling out the possibility of sub-polynomial time dynamic61

approximation schemes. On the positive side, they obtained dynamic algorithms with update62

time polylogarithmic in both n and N , where the corners of the objects are in a [0, N]d63

integer grid, for any constant dimension d. Gavruskin et al. [23] studied DGMIS for intervals64

in R under the assumption that no interval is contained in another interval and obtained an65

optimal solution with O(logn) amortized update time. Bhore et al. [8] presented the first66

fully dynamic algorithms with polylogarithmic update time for DGMIS, where the input67

objects are intervals and axis-aligned squares. For intervals, they presented a fully dynamic68

(1 + ε)-approximation algorithm with logarithmic update time. Later, Compton et al. [19]69

achieved a faster update time for intervals, by using a new partitioning scheme. Recently,70

Bhore et al. [10] studied the MIS problem for intervals in the streaming settings, and obtained71

lower bounds. Very recently, Bhore and Chan [9] showed that the complement of DGMIS,72

i.e., dynamic vertex cover, can be maintained efficiently for a wide class of geometric objects.73

1 In an arrangement of pseudo-disks the boundaries of each pair of objects intersects at most twice.44

S. Bhore, M. Nöllenburg, C.D. Tóth, and J. Wulms 16:3

For axis-aligned squares in R2, Bhore et al. [8] presented a randomized algorithm with an75

expected approximation ratio of roughly 212 (generalizing to roughly 22d+5 for d-dimensional76

hypercubes) with amortized update time O(log5 n) (generalizing to O(log2d+1 n) for hyper-77

cubes). Moreover, Bhore et al. [11] studied the DGMIS problem in the context of dynamic78

map labeling and presented dynamic algorithms for several subfamilies of rectangles that also79

perform well in practice. Cardinal et al. [13] designed dynamic algorithms for fat objects in80

fixed dimension d with sublinear worst-case update time. Specifically, they achieved Õ(n3/4)81

update time2 for disks in the plane, and Õ(n1− 1
d+2) for Euclidean balls in Rd.82

However, despite the remarkable progress on the DGMIS problem in recent years, the83

following question remained unanswered.84

I Question 1. Does an algorithm exist that, for a given dynamic set of disks in the plane,85

maintains a constant-factor approximate MIS in polylogarithmic update time?86

Our Contributions In this paper, we answer Question 1 in the affirmative (Theorems 1–3);87

see Table 1. As a first step, we address the case of unit disks in the plane.88

Objects Approx. Ratio Update time Reference

89 Intervals 1 + ε O(ε−1 logn) [19]
90 Squares O(1) O(log5 n) amortized [8]
91 Arbitrary radii disks O(1) (logn)O(1) expec. amortized Theorem 3
92

Unit disks
O(1) O(logn) worst-case Theorem 1

93 1 + ε n(1/ε)Ω(1) Theorem 4
94 f -fat objects in Rd Of (1) Of (logn) worst-case Theorem 2
95 d-dimensional hypercubes (1 + ε) · 2d Od,ε(log2d+1 n · log2d+1 U) [25]

Table 1 Summary of results on dynamic independent sets for n geometric objects.96

I Theorem 1. For a fully dynamic set of unit disks in the plane, a 12-approximate MIS can97

be maintained with worst-case update time O(logn), and optimal output-sensitive reporting.98

We prove Theorem 1 in the full version [12]. Similarly to classical approximation algorithms99

for the static problem [26], we lay out four shifted grids such that any unit disk lies in a grid100

cell for at least one of the grids, see Figure 1. For each grid, we maintain an independent101

set that contains at most one disk from each grid cell, thus we obtain four independent102

sets S1, . . . , S4 at all times, where the largest one is a constant-factor approximation of the103

MIS. Using the MIX algorithm [13], we can maintain an independent set S ⊂
⋃4

i=1 Si of size104

Ω(max{|S1|, |S2|, |S3|, |S4|}) at all times, which is a O(1)-approximation of the MIS.105

Moreover, our dynamic data structure for unit disks easily generalizes to fat objects of110

comparable sizes in Rd for any constant dimension d ∈ N (see the full version [12]).111

I Theorem 2. For every d, f ∈ N and real parameters 0 < r1 < r2, there exists a constant112

C with the following property: For a fully dynamic collection of f-fat sets in Rd, each of113

size between r1 and r2, a C-approximate MIS can be maintained with worst-case update time114

O(logn), and optimal output-sensitive reporting.115

2 The Õ(·) notation ignores logarithmic factors.74

SoCG 2024

16:4 Fully Dynamic Maximum Independent Sets of Disks in Polylogarithmic Update Time

G1

G3

G2

G4

(a) (b)

Figure 1 (a) The four shifted grids G1, . . . , G4, which respectively do not intersect the blue,
green, yellow, and red disks. (b) The radius-1 squares inside grid cells, along with the center points
of the disks that lie completely inside grid cells, as crosses. In the bottom right, besides red squares
for G4, the squares of all other grids are added to show that the squares together partition the plane.

106

107

108

109

Our main result is a dynamic data structure for MIS of disks of arbitrary radii in R2.116

I Theorem 3. For a fully dynamic set of disks of arbitrary radii in the plane, an O(1)-117

approximate MIS can be maintained in polylogarithmic expected amortized update time.118

To prove Theorem 3, we extend the core ideas developed for unit disks with several new119

ideas, see Section 3. Specifically, we still maintain a constant number of “grids” such that120

every disk lies in one of the grid cells. Due to the different disk sizes, however, we need121

shifted grids at multiple scales, where each disk lies in a grid cell of comparable size. We122

achieve this with a new nonatree data structure, which recursively subdivides squares into123

3 × 3 congruent subsquares. For each shifted nonatree, we maintain an independent set124

Si that contains at most one disk from each cell. While the set Si can be computed in a125

bottom-up traversal of the nonatree using the greedy strategy [33, 20], the challenge is to126

perform dynamic updates in polylogarithmic update time even though ascending paths in the127

nonatrees can be of linear length. We address this challenge with a combination of techniques128

outlines in Section 3.2. One key component is the use of the dynamic farthest neighbor data129

structure by Kaplan et al. [28] (which generalizes Chan’s famous dynamic convex hull data130

structure [15, 16]). We adapt this data structure to work in concert with nonatrees to find131

the next level where we can add another disk of the same or larger size to greedily add to132

the independent set in polylogarithmic time, and with polylogarithmic expected amortized133

update time. Finally, we use again the MIX algorithm for disks in the plane [13] to maintain134

a single independent set S ⊂
⋃

i Si, which is a constant-factor approximation of the MIS.135

One bottleneck in this framework is the farthest neighbor data structure [28, 32], which136

provides expected amortized polylogarithmic update time and works only for families of “nice”137

objects in the plane (such as disks or homothets of a convex polygon, etc.). This is the only138

reason why our algorithm does not guarantee deterministic worst-case update time, and it139

does not extend to balls in Rd for d ≥ 3, or to arbitrary fat objects in the plane. All other140

steps of our machinery support deterministic polylogarithmic worst-case update time, as well141

as balls in Rd for any constant dimension d ∈ N, and fat objects in the plane.142

Another limitation for generalizing our framework is the MIX algorithm, which smoothly143

transitions from one independent set to another. It was established by Cardinal et al. [13] for144

fat objects in Rd for any constant d ∈ N and their proof heavily relies on separator theorems.145

However, they show, e.g., that a sublinear MIX algorithm is impossible for rectangles in R2.146

S. Bhore, M. Nöllenburg, C.D. Tóth, and J. Wulms 16:5

Finally, we note that, even for a dynamic set of unit disks in the plane, it is impossible147

to maintain a (1 + ε)-approximate MIS with amortized update time nO((1/ε)1−δ) for any ε,148

δ > 0, unless the Exponential Time Hypothesis (ETH) fails. This follows from a reduction to149

a result by Marx [35], resembling the same result for hypercubes by Henzinger et al. [25].150

I Theorem 4. For a fully dynamic set of unit disks in R2, no (1+ε)-approximation algorithm151

exists for DGMIS with amortized update time nO((1/ε)1−δ), for any ε, δ > 0, unless ETH fails.152

Due to space constraints, some details are deferred to the full paper on ArXiv [12].153

2 Preliminaries154

MIX Algorithm. A general strategy for computing an MIS is to maintain a small number155

of candidate independent sets S1, . . . , Sk with a guarantee that the largest set is a good156

approximation of an MIS, and each insertion and deletion incurs only constantly many changes157

in Si for all i = 1, . . . , k. To answer a query about the size of the MIS, we can simply report158

max{|S1|, . . . , |Sk|} in O(k) time. Similarly, we can report an entire (approximate) MIS by159

returning a largest candidate set. However, if we need to maintain a single (approximate)160

MIS at all times, we need to smoothly switch from one candidate to another. This challenge161

has recently been addressed by the MIX algorithm introduced by Cardinal et al. [13]:162

MIX algorithm: The algorithm receives two independent sets S1 and S2 whose sizes
sum to n as input, and smoothly transitions from S1 to S2 by adding or removing
one element at a time such that at all times the intermediate sets are independent
sets of size at least min{|S1|, |S2|} − o(n).

163

164

165

166

Cardinal et al. [13] constructed an O(n logn)-time MIX algorithm for fat objects in Rd,167

for constant dimension d ∈ N, which we use as follows. Assume that D is a fully dynamic168

set of disks in the plane, and we are given candidate independent sets S1, . . . , Sk with the169

guarantee that max{|S1|, . . . , |Sk|} ≥ c ·OPT at all times, where OPT is the size of the MIS170

and 0 < c ≤ 1 is a constant; further assume that the size of Si, i ∈ {1, . . . , k}, changes by at171

most a constant u ≥ 1 for each insertion or deletion in D. We show that MIX can be used to172

maintain a single approximate MIS S at all times, when we are allowed to make up to 10u173

changes in S for each insertion or deletion in D.174

I Lemma 5. For a collection of candidate independent sets S1, . . . , Sk, the largest of which175

is a c-approximate MIS at all times, we can dynamically maintain an O(c)-approximate MIS176

with O(1) changes per update.177

Dynamic Farthest Neighbor Data Structure. Given a set of functions F = {f1, . . . , fn},178

fi : R2 → R for i = 1, . . . , n, the upper envelope of F is the graph of the function U : R2 → R,179

L(p) = max{fi(p) | 1 ≤ i ≤ n}. A vertical stabbing query with respect to the upper envelope,180

for query point p ∈ R2, asks for the function fi such that U(p) = fi(p).181

Given a set D of n disks in the plane, we can use this machinery to find, for a query182

disk dq, the disk in D that is farthest from dq. Specifically, for each disk d ∈ D centered at cd183

with radius rd, define the signed Euclidean distance function fd : R2 → R, fd(p) = |pcd| − rd,184

which is negative if p is in the interior of d, positive if p is in the exterior of d and 0 if p is on185

the boundary of d. For F = {fd | d ∈ D} we have U(p) = fd(p) for a disk d ∈ D farthest186

from p. Importantly, for query disk dq, we find a farthest disk from dq by querying its center.187

SoCG 2024

16:6 Fully Dynamic Maximum Independent Sets of Disks in Polylogarithmic Update Time

In the fully dynamic setting, functions are inserted and deleted to/from F , and we wish188

to maintain a data structure that supports vertical stabbing queries w.r.t. the upper envelope189

of F . For linear functions fi (i.e., hyperplanes in R3), Chan [15] devised a fully dynamic190

randomized data structure with polylogarithmic query time and polylogarithmic amortized191

expected update time. After several incremental improvements, the current best version is192

a deterministic data structure for n hyperplanes in R3 with O(n logn) preprocessing time,193

O(log4 n) amortized update time, and O(log2 n) worst-case query time [16].194

Kaplan et al. [28] generalized Chan’s data structure for dynamic sets of functions F ,195

where the upper (or lower) envelope of any k functions has O(k) combinatorial complexity.196

This includes, in particular, the signed distance functions from disks [3]. Their data structure197

requires O(n log3 n) storage in expectation and supports insertions in O(λs(logn) log5 n)198

amortized expected time, deletions in O(λs(logn) log9 n) amortized expected time, and199

vertical stabbing queries in O(log2 n) worst-case deterministic time. Here n is the number of200

functions currently in F and λs(t) is the maximum length of a Davenport-Schinzel sequence201

[37] on t symbols of order s. Subsequently, Liu [32, Corollary 16] improved the deletion time202

to O(λs(logn) log7 n) amortized expected time. For signed Euclidean distances of disks, we203

have s = 6 [28] and λ6(t)� O(t log t)� O(t2). For simplicity, we assume O(log9 n) expected204

amortized update time and O(log2 n) worst-case query time. We obtain the following.205

I Lemma 6. For a dynamic set D of n disks of arbitrary radii in the plane, there is a206

randomized data structure that supports disk insertion in O(log7 n) amortized expected time,207

disk deletion in O(log9 n) amortized expected time, and the following disjointness query in208

O(log2 n) worst-case time: For a query disk dq, find a disk in D disjoint from dq, or report209

that all disks in D intersect dq.210

We refer to the data structure in Lemma 6 as the dynamic farthest neighbor (DFN)211

data structure. We remark that Chan [16] improved the update time when the functions212

F = {f1, . . . , fn} are distances from n point sites in R2. De Berg and Staals [5] generalized213

these results to dynamic k-nearest neighbor data structures for n point sites in R2.214

3 Disks of Arbitrary Radii in the Plane215

In this section, we study the DGMIS problem for a set of disks of arbitrary radii. The216

general idea of our new data structure is to break the set of disks D into subsets of disks217

of comparable radius. We will use several instances of shifted grids Gi
1, . . . , G

i
4, as we also218

use in the unit disk case, where the grid cells now have side length 3i, and are shifted by 3i
2 ,219

for i ∈ Z. The resulting hierarchies of recursively 3× 3 subdivided grid cells forms so-called220

nonatrees. In Section 3.1, we explain how to compute a constant-factor approximation for221

static instances by bottom-up traversals of the nonatrees. We then make several changes in222

the static data structures, to support efficient updates, while maintaining a constant factor223

approximation. Since the height of a nonatree (even a compressed nonatree) may be Θ(n) for224

n disks (see Figure 2), we cannot afford to traverse ascending paths in their entirety with our225

polylogarithmic budget for the update time. We address this challenge with a combination of226

the techniques outlined in Section 3.2. One key component is the use of the dynamic farthest227

neighbor data structure of Lemma 6. Finally, in Section 3.3, we stitch all these ingredients228

together to show how to maintain a constant-factor approximate maximum independent set229

in a fully dynamic setting, with expected amortized polylogarithmic update time.230

S. Bhore, M. Nöllenburg, C.D. Tóth, and J. Wulms 16:7

Figure 2 A nonatree with height linear in the number of stored disks, whose radii decay
exponentially. A compressed nonatree (with compressed nodes) has linear height.

231

232

3.1 Static Hierarchical Data Structures233

Dividing Disks over Buckets. The shifted grids Gi
1, . . . , G

i
4 form the set Gi. In this set Gi234

we store disks with radius r, where 3i−1

4 < r ≤ 3i
4 . We refer to the data structures associated235

with one value i as the bucket i. Compared to the unit disk case, in which we consider only236

disks of radius 1
4 times the side length of the grid cells, we now have to deal with disks of237

varying sizes even in one set Gi of shifted grids. In both cases, every disk is completely inside238

at least one grid cell. To see this, observe that no two vertical or two horizontal grid lines239

in one grid of bucket i can intersect a single disk with a radius lying in the range (3i−1

4 , 3i
4].240

Indeed, such disks have a diameter at most 3i
2 , while grid lines are at least 3i apart.241

Furthermore, our choice for side length 3i for bucket i was not arbitrary: Consider also242

adjacent bucket i− 1 and observe that each cell c of grid Gi
1 is further subdivided into nine243

cells of grid Gi−1
1 , in a 3× 3 formation. We say that c is aligned with the nine cells in bucket244

i− 1. We define the same parent-child relations as in a quadtree: If a grid cell c in a lower245

bucket is inside a cell cp of an adjacent higher bucket, we say that c is a child (cell) of cp, or246

that cp is the parent (cell) of c. In general, we write c1 ≺ c2 if cell c1 is a descendant of cell247

c2; c1 � c2 if equality is allowed. We call the resulting structure a nonatree, and we will refer248

to the nonatree that relates all grids Gj
1 as N1. In Figure 3a we illustrate the grids of two249

consecutive buckets in a nonatree.250

Crucially, all grids Gj
2 also align, and the same holds for Gj

3 and Gj
4. This happens251

because horizontally and vertically, grid cells are subdivided into an odd number of cells252

(three in our case), and the shifted grids are displaced by half the side length of the grid253

cells. Thus, for Gj
2 and Gj

4, the horizontal shift in buckets i and i − 1 ensures that every254

third vertical grid line of bucket i− 1 aligns with a vertical grid line of bucket i. The exact255

same happens for the horizontal grid lines of Gj
3 and Gj

4, due to the vertical shift. Thus, the256

horizontally shifted grids also form a nonatree N2, and similarly, we define N3 and N4.257

For each bucket i, we maintain five self-balancing search trees. Let Di ⊆ D be the subset258

of disks stored in Gi and let S1, . . . , S4 be an independent set in Gi
1, . . . , G

i
4, then we maintain259

in T i
D all disks in Di and in T i

1, . . . , T
i
4 the disks in S1, . . . , S4.260

Approximating a Maximum Independent Set. We will now use the data structures to269

compute an approximate MIS for disks with arbitrary radii. Note that, we defined buckets270

for i ∈ Z, but we will use only those buckets that store any disks, which we call relevant271

buckets. Within these buckets, we call grid cells that contain disks the relevant grid cells.272

Figure 3 illustrates the concepts introduced in this paragraph and the upcoming paragraphs.273

Let B be the sequence of relevant buckets, ordered on their parameter i. To compute a274

solution, we will consider the buckets in B in ascending order, starting from the lowest bucket,275

which holds the smallest disk, and has grids with the smallest side length, up to the highest276

SoCG 2024

16:8 Fully Dynamic Maximum Independent Sets of Disks in Polylogarithmic Update Time

(a) (b)

i

i+ 1

i+ 2

bucket

Compressed nonatree N1Gi
1 Gi+1

1

Figure 3 (a) Two compatible grids in buckets i and i + 1, with (blue) disks of D in relevant
cells. In particular, the green cell in Gi

1 is relevant, but its (green) parent cell in Gi+1
1 is not. Three

(yellow) obstacle disks of Gi
1 are drawn in both grids. Only one blue disk in Gi+1

1 is disjoint from
an obstacle, and can be chosen in the greedy bottom-up strategy. (b) Part of the compressed
nonatree N1 corresponding to (a): The colored nodes of bucket i+ 2 correspond to colored squares
in (a) of the same color. Because the green cell in Gi+1

1 is not relevant, and does not have relevant
children in two subtrees, it is not represented in N1. Instead, the green node, corresponding to the
green relevant cell in Gi

1, directly connects to an ancestor in bucket i+ 2 (by the green edge).

261

262

263

264

265

266

267

268

bucket with the largest disks, and largest side lengths. We follow a greedy bottom-up strategy277

for finding a constant-factor approximation of an MIS of disks. To prevent computational278

overhead in this approach, our nonatrees are compressed, similar to compressed quadtrees [24,279

Chapter 2]: Each nonatree consists of a root cell, all relevant grid cells, and all cells that280

have relevant grid cells in at least two subtrees. As such, each (non-root) internal cell of281

our nonatrees either contains a disk, or merges at least two subtrees that contain disks, and282

hence the total number of cells in a compressed nonatree is linear in the number of disks it283

stores, which is upper bounded by O(n).284

Specifically, two high-level steps can be distinguished in our approach:285

1. In the lowest relevant bucket, we simply select an arbitrary disk from each relevant grid286

cell. In other relevant buckets, we consider for each grid cell c ∈ Gi
k the subdivision of287

c in Gj
k in the preceding relevant bucket j < i. We try to combine the independent set288

from the relevant child(ren) of c with at most one additional disk in c. To communicate289

upwards which disks have been included in our independent set, we use obstacle disks290

(these are not necessarily input disks; see the next step). Once all relevant cells have been291

handled, we output the largest independent set among the four sets computed for the292

shifted nonatrees N1, . . . , N4, to get an O(1)-approximation, as shown in Lemmata 7–9.293

2. The obstacle disk in the previous step may cover more area than the disks in the294

independent set of the children of c. Hence, we consider computing the obstacle disk295

only for independent sets originating from a single child cell. In this case, we choose296

as the obstacle the smallest disk covering the contributing child cell in question. The297

obstacle will then be of comparable size to that child cell, and hence also comparable to298

the contributed disk, intersecting at most a constant number of disks in the parent cell c.299

Otherwise, if the independent set of the children originates from more than one child, we300

simply do not add a disk from c, even if that may be possible. Lemmata 10 and 11 show301

that we still obtain a constant-factor approximate MIS under these constraints.302

We will now elaborate on the high-level steps, and provide a sequence of lemmata that303

can be combined to prove the approximation ratio of the computed independent set.304

S. Bhore, M. Nöllenburg, C.D. Tóth, and J. Wulms 16:9

In the first step, we deviate from an optimal solution in three ways: We follow a greedy305

bottom-up approach, we take at most one disk per grid cell, and we do not combine the306

solutions of the shifted nonatrees. We focus on the latter concern first, starting by defining307

the intersection between a disk and a nonatree, as follows. We say that a disk d intersects308

(the grid lines of) a nonatree Nk, if and only if its radius rd is in the range (3i−1

4 , 3i
4] and it309

intersects grid lines of Gi
k.310

I Lemma 7. For a set S of disks in R2, the grid lines of at least one nonatree, out of the311

shifted nonatrees N1, . . . , N4, do not intersect at least |S|/4 disks.312

We show that taking only a single disk per grid cell into our solution is a 35-approximation313

of a MIS, using a simple packing argument [31]; see also [38].314

I Lemma 8. If S is a MIS of the disks in a grid cell of a nonatree Nk, then |S| ≤ 35.315

To round out the first step, we prove that our greedy strategy contributes at most a316

factor 5 to our approximation factor.317

I Lemma 9. Let S be a maximum independent set of the disks in a nonatree Nk such that318

each grid cell in Nk contributes at most one disk. An algorithm that considers the grid cells319

in Nk in bottom-up fashion, and computes an independent set S′ by greedily adding at most320

one non-overlapping disk per grid cell to S′, is a 5-approximation of S.321

For the second step, we use several data structures and algorithmic steps that help us322

achieve polylogarithmic update and query times in the dynamic setting. For now we analyze323

solely the approximation factor incurred by these techniques. We start by analyzing the324

approximation ratio for not taking any disk from a cell c, if several of its children contribute325

disks to the computed independent set.326

I Lemma 10. Let S be a MIS of the disks in a nonatree Nk such that each grid cell in Nk327

contributes at most one disk. The independent set S′ ⊂ S, that contains all disks in S except328

disks from cells that have two relevant child cells, is a 2-approximation of S.329

Next we consider the obstacle disk that we compute when only one child cell contributes330

disks to the independent set. Before we elaborate on the approximation ratio of this331

algorithmic procedure, we first explain the steps in more detail.332

For the leaf cells of a nonatree, it is unnecessary to compute an obstacle disk, since these333

cells contribute at most a single disk, which can act as its own obstacle disk. For a cell c334

that is an internal node of the nonatree, with at most one relevant child that contributes to335

the independent set, we have two options for the obstacle disk of c. We use the obstacle disk336

of the child cell to determine whether there is a disk in c disjoint from the child obstacle, to337

either find a disjoint disk d or not. If we find such a disk d, we compute a new obstacle disk338

for c, by taking the smallest enclosing disk of c. If there is no such disk d, then we use the339

obstacle disk of the child as the obstacle disk for c. This ensures that the obstacle disk does340

not grow unnecessarily, which is relevant when proving the following approximation factor.341

I Lemma 11. Let c be a cell in bucket i of nonatree Nk that contributes a disk to an342

independent set. The computed obstacle disk do can overlap with no more than 23 pairwise343

disjoint disks in higher buckets.344

I Lemma 12. For a set of disks in the plane, one of our shifted nonatrees N1, . . . , N4345

maintains an independent set of size Ω(|OPT|), where OPT is a MIS.346

SoCG 2024

16:10 Fully Dynamic Maximum Independent Sets of Disks in Polylogarithmic Update Time

3.2 Modifications to Support Dynamic Maintenance347

In Section 3.1, we defined four hierarchical grids (nonatrees) N1, . . . , N4, described a greedy348

algorithm to compute independent sets S1, . . . , S4 that are consistent with the grids, and349

showed that a largest of the four independent sets is a constant-factor approximate MIS.350

In this section, we make several changes in the static data structures, to support efficient351

updates, while maintaining a constant-factor approximation. Then in Section 3.3, we show352

that the modified data structures can be maintained dynamically in expected amortized353

polylogarithmic update time. We start with a summary of the modifications:354

Sparsification. We split each nonatree Ni, i ∈ {1, . . . , 4}, into two trees Nodd
i and355

N even
i , one containing the odd levels and the other containing the even levels. As a result,356

the radii of disks at different (non-empty) levels differ by at least a factor of 3.357

Clearance. For a radius-r disk d, let 3d denote the concentric disk of radius 3r. Recall358

that our greedy strategy adds disks to an independent set S in a bottom-up traversal of359

a nonatree. When S contains a disk d ∈ D, then larger disks that intersect 3d cannot be360

added to S. In particular, we use obstacle disks of the form 3d′, where d′ is the smallest361

enclosing disk of a cell. A simple volume argument shows that this modification still362

yields a constant-factor approximation. As a result, if a new disk is added, it intersects363

at most one larger disk in S. This simplifies the update operation in Section 3.3.364

Obstacle Disks and Obstacle Cells. In Section 3.1, we defined obstacle disks for365

the disks in Sk. To support dynamic updates, we use slightly larger obstacle disks, to366

implement the clearance in our data structures. These obstacle disks are associated with367

cells of the nonatree Nk, which are called obstacle cells (true obstacles). Cells of the368

nonatree with two or more children are also considered as obstacle cells (merge obstacles),369

thus the obstacle cells decompose each nonatree into ascending paths.370

Barrier Disks. The naïve approach for a dynamic update of the independent set S in a371

nonatree N would work as follows: When a new disk d is inserted or deleted, we find a372

nonatree N and a cell c ∈ N associated with d; and then in an ascending path of N from373

c to the root, we re-compute the disks in S associated with the cells. Unfortunately, the374

height of the nonatree may be linear (recall Fig. 2), and we cannot afford to traverse an375

ascending path from c to the root. Instead, we run the greedy process only locally, on an376

ascending path of N between two cells c1 ≺ c2 that contain disks s1, s2 ∈ S, respectively.377

The greedy process guarantees that new disks added to S are disjoint from any smaller378

disk in S, including s1. However, the new disks might intersect the larger disk s2 ∈ S. In379

this case, we remove s2 from S, keep it as a ”placeholder” in a set B of barrier disks, and380

ensure that S ∪B remains a dominating set of D.381

Sparsification. Recall that for a set D of n disks, Di denoted the subset of disks of radius382

r, where 3i−1

4 < r ≤ 3i
4 , for all i ∈ Z. Let N1, . . . , N4, be the four nonatrees defined in383

Section 3.1. For every k ∈ {1, . . . , 4}, we create two copies of Nk, denoted N even
k and Nodd

k .384

For i even (resp., odd), we associate the disks in Di to the nonatrees N even
k (resp., Nodd

k).385

We state a simple corollary to Lemma 12.386

I Lemma 13. For a set of disks in R2, one of our shifted nonatrees N1, . . . , N8 maintains387

an independent set of size |OPT|/C, where OPT is a MIS and C is an absolute constant.388

The advantage of partitioning the nonatrees into odd and even levels is the following.389

I Lemma 14. Let d1, d2 ∈ D be disks of radii r1, r2 > 0, respectively, associated with cells390

c1 and c2 in a nonatree Nk, k ∈ {1, . . . , 8}. If c1 ≺ c2, then 3 r1 < r2.391

S. Bhore, M. Nöllenburg, C.D. Tóth, and J. Wulms 16:11

Clearance. The guiding principle of the greedy strategy is that, if we add a disk d to the392

independent set, we exclude all larger disks that intersect d. For our dynamic algorithm, we393

wish to maintain a stronger property:394

I Definition 15. Let S be an independent set of the disks in a nonatree Nk such that each395

grid cell in Nk contributes at most one disk. For λ ≥ 1, we say that S has λ-clearance if396

the following holds: If d1, d2 ∈ S are associated with cells c1 and c2, resp., and c1 ≺ c2, then397

d2 is disjoint from λ d′1, where d′1 is the smallest enclosing disk of c1.398

Note that d1 ⊂ d′1 and λ d1 ⊂ λ d′1. In particular λ-clearance implies that d2 is disjoint from399

λ d1. This weaker property suffices for some of our proofs (e.g., Lemma 16). An easy volume400

argument shows that a modified greedy algorithm that maintains 3-clearance still returns a401

constant-factor approximate MIS. The key advantage of an independent set with 3-clearance402

is the following property, which is helpful for our dynamic algorithm (see Figure 4a):403

I Lemma 16. Let S be an independent set of the disks in a nonatree Nk such that each grid407

cell in Nk contributes at most one disk; and assume that S has 3-clearance. Then every disk408

that lies in a cell in Nk intersects at most one larger disk in S.409

Obstacle Cells: Decomposing a Nonatree into Ascending Paths. A cell c ∈ Nk is an410

obstacle cell if it is associated with a disk in Sk (a true obstacle), or it has at least two411

children that each contain a disk in Sk (a merge obstacle). For every obstacle cell c, we412

define an obstacle disk as o(c) = 3d′, where d′ is the smallest enclosing disk of the cell c. The413

obstacle cells decompose the nonatree into ascending paths in which each cell has relevant414

descendants in only a single subtree (see Figure 5a). Inside an ascending path, disks either415

intersect the obstacle disk of the (closest) obstacle cell below them, or are part of Sk and416

therefore define a true obstacle cell (see Figures 5b and 5c). We show a useful property of417

the obstacle disks, that allows us to consider ascending paths independently.418

I Lemma 17. When a disk d in cell c ∈ Nk is added to Sk, it can intersect only the419

disk do ∈ Sk associated with the next obstacle cell co in the ascending path P (d) from c420

towards the root, if do even exists.421

Barrier Disks. For a set of disks D, we will maintain an independent set S ⊂ D, and a set431

B ⊂ D of barrier disks. When a disk d associated with a cell c ∈ Nk is inserted or deleted432

from D, we re-run the greedy process on the nonatree locally, between the cells c1 � c ≺ c2433

that contain disks s1, s2 ∈ S. If any of the new disks added to S intersects s2, then we remove434

(a) (b)

d0

d1

d2

Figure 4 Constructions for Lemmata 16 and 17, respectively: (a) The light yellow disk representing
3d1 is disjoint from d2 because of 3-clearance. (b) The light blue disk can intersect only a disk of Sk

in the red cell co; larger disks in Sk are disjoint from the yellow obstacle disk defined by co.

404

405

406

SoCG 2024

16:12 Fully Dynamic Maximum Independent Sets of Disks in Polylogarithmic Update Time

(a) (b) (c)

Figure 5 (a) Decomposition of a nonatree into ascending paths between merge obstacle cells.
Only relevant leaves are drawn and hence all leaves are obstacle cells (disks) as well. The (square)
root is not necessarily an obstacle cell. One ascending path between merge nodes is highlighted in
grey. The structure of the highlighted ascending path is shown (b) abstractly and (c) geometrically:
The merge obstacle cells at the top and bottom (with yellow obstacle disks) each have no disk of Sk

associated with them. Every other obstacle cell on the path also defines a brown obstacle disk. Each
such cell contains a (dark blue) disk of Sk, which is disjoint from the (closest) obstacle disk below it
(indicated by red crosses). All (light blue) disks on the (red) ascending path above an obstacle cell
are intersected by the obstacle below. Green colors identify cells between (b) and (c).

422

423

424

425

426

427

428

429

430

s2 from S, and add it to B as a barrier disk. Such a barrier disk defines a barrier clearance435

disk o(cb) = 3db, where db is the smallest enclosing disk of the barrier cell cb containing s2.436

This obstacle disk also implements the clearance (defined above), to guarantee that the new437

disks added to S in this process do not intersect any disk in S larger than s2. Importantly,438

we maintain the properties that (i) the obstacle disks, for all obstacle cells and barrier cells,439

form a dominating set for D, that is, all disks in D intersect an obstacle disk of some obstacle440

cell or the barrier clearance disk of a barrier cell; and (ii) on any ascending path there is441

always an obstacle cell between two barrier cells.442

The latter property ensures that |B| ≤ 2 |S| and is maintained as follows. We maintain443

an assignment β between barrier disks and the closest obstacle cells below them. Each444

barrier disk β(c1) lies in one of the cells of the nonatree along an ascending path between445

two obstacle cells c1 ≺ c2. Each path contains at most one barrier disk.446

In the full paper, we introduce six invariants that guarantee that the largest of the eight447

independent sets, S1, . . . , S8, is a constant-factor approximate MIS of D. It then suffices to448

show that the invariants can be efficiently maintained under dynamic changes.449

3.3 Dynamic Maintenance Using Farthest Neighbor Data Structures450

On a high level, for a dynamic set of disks D, we maintain eight nonatrees N1, . . . N8, and451

for each k ∈ {1, . . . , 8} two sets of disks: an independent set Sk and a set of barrier disks Bk.452

In this section, we sketch how to maintain these data structures with polylogarithmic update453

times. For that, we use the dynamic farthest neighbor (DFN) data structure (Lemma 6) to454

efficiently find disks that are disjoint from obstacle disks in ascending paths of our nonatrees.455

More specifically, when a disk d associated with a cell c ∈ Nk is inserted or deleted, then456

c lies in an ascending path P (d) between two obstacle cells, say c1 � c ≺ c2. To update the457

independent set Sk and the barrier disks Bk, in general we run the greedy algorithm in this458

path. The greedy process queries the DFN data structure to find disks that are disjoint from459

any smaller disk in Sk. Now we distinguish between three cases (see Figure 6): (a) If c2460

is a merge obstacle cell, then it does not contain a disk in Sk, and hence we are done. (b)461

S. Bhore, M. Nöllenburg, C.D. Tóth, and J. Wulms 16:13

(a) (c)(b)

c2

c2

c2

β(c2)

c1 c1 c1 c1

Figure 6 Greedy updates in an ascending path: (a) There is no disk s2 ∈ Sk in c2 that can
intersect the new (brown) obstacle disks in the gray ascending path. (b) The disk s2 ∈ Sk in c2 is
turned into a barrier if it overlaps the obstacle disk of the highest new disk in the light green cell.
(c) If β(c2) exists, remove c2 from Sk and run the greedy algorithm up to the dark green cell.

470

471

472

473

However, if c2 is a true obstacle cell, then the last disk added to Sk may intersect the disk462

s2 ∈ Sk associated with c2. If this is the case, we delete s2 from Sk, insert it into Bk, and463

assign it to the highest disk in Sk in P (d) below s2; this highest disk in P (d) is necessarily464

the disk added last to Sk, causing the intersection with s2. (c) Finally, if s2 was already465

associated with a barrier disk, β(c2), then adding s2 to Bk would result in two barrier disks466

between consecutive obstacle cells, which is not allowed. For this reason, if β(c2) exists, we467

remove s2 from Sk, run the greedy algorithm on a longer path, up to the cell associated with468

β(c2), and then reassign β(c2) to the largest disk in Sk found by the greedy algorithm.469

Update Time Analysis. For maintaining our invariants, we show that it suffices to re-run474

the greedy algorithm on O(1) ascending paths; and in each such path, the greedy algorithm475

terminates after O(1) iterations, each of which adds one new disk to Sk that is disjoint from476

obstacle disks below. Thus each dynamic update involves only O(1) queries to the DFN data477

structure (Lemma 6); in fact, we use a hierarchical version of this data structure incurring478

extra logarithmic factors (see the full version [12]). As these queries dominate the update479

time, our algorithm achieves polylogarithmic amortized expected update time.480

By Lemma 5, we can smoothly transition from one independent set to another using the481

MIX algorithm, with amortized O(1) changes in the ultimate independent set per update in482

D, and conclude the following theorem.483

I Theorem 3. For a fully dynamic set of disks of arbitrary radii in the plane, an O(1)-484

approximate MIS can be maintained in polylogarithmic expected amortized update time.485

4 Conclusions486

We studied the dynamic geometric independent set problem for a collection of disks in the487

plane and presented the first fully dynamic algorithm with polylogarithmic update time.488

First, we showed that for a fully dynamic set of unit disks in the plane, a constant factor489

approximate maximum independent set can be maintained in polylogarithmic update time.490

Moreover, we showed that this result generalizes to fat objects in any fixed dimension. Our491

main result was a dynamic data structure that maintains a constant factor approximate492

maximum independent set in polylogarithmic amortized update time. One bottleneck in our493

framework is the nearest/farthest neighbor data structure [28, 32] (as discussed in Section 1),494

which provides only expected amortized polylogarithmic update time. This is the only reason495

SoCG 2024

16:14 Fully Dynamic Maximum Independent Sets of Disks in Polylogarithmic Update Time

why our algorithm does not guarantee deterministic worst-case update time, and it does not496

extend to balls in Rd for d ≥ 3, or to arbitrary fat objects in R2. It remains open whether497

there is a dynamic nearest/farthest neighbor data structure in constant dimensions d ≥ 2 with498

worst-case polylogarithmic update and query time: Any such result would immediately carry499

over to a fully dynamic algorithm for an approximate MIS for balls in higher dimensions.500

References501

1 Pankaj K Agarwal, Marc Van Kreveld, and Subhash Suri. Label placement by maxi-502

mum independent set in rectangles. Comput. Geom., 11(3-4):209–218, 1998. doi:10.1016/503

S0925-7721(98)00028-5.504

2 Jochen Alber and Jirí Fiala. Geometric separation and exact solutions for the parameterized505

independent set problem on disk graphs. J. Algorithms, 52(2):134–151, 2004. doi:10.1016/j.506

jalgor.2003.10.001.507

3 Franz Aurenhammer, Rolf Klein, and Der-Tsai Lee. Voronoi Diagrams and Delaunay Triangu-508

lations. World Scientific, 2013. doi:10.1142/8685.509

4 Reuven Bar-Yehuda, Magnús M Halldórsson, Joseph Naor, Hadas Shachnai, and Irina510

Shapira. Scheduling split intervals. SIAM J. Computing, 36(1):1–15, 2006. doi:10.1137/511

S0097539703437843.512

5 Sarita de Berg and Frank Staals. Dynamic data structures for k-nearest neighbor queries.513

Comput. Geom., 111:101976, 2023. doi:10.1016/j.comgeo.2022.101976.514

6 Piotr Berman, Bhaskar DasGupta, S. Muthukrishnan, and Suneeta Ramaswami. Efficient515

approximation algorithms for tiling and packing problems with rectangles. J. Algorithms,516

41(2):443–470, 2001. doi:10.1006/jagm.2001.1188.517

7 Piotr Berman and Toshihiro Fujito. On approximation properties of the independent set518

problem for low degree graphs. Theory Comput. Syst., 32:115–132, 1999. doi:10.1007/519

s002240000113.520

8 Sujoy Bhore, Jean Cardinal, John Iacono, and Grigorios Koumoutsos. Dynamic geometric521

independent set. In Abst. of 23rd Thailand-Japan Conference on Discrete and Computational522

Geometry, Graphs, and Games (TJCDCG’21), 2021. doi:10.48550/ARXIV.2007.08643.523

9 Sujoy Bhore and Timothy M. Chan. Fully dynamic geometric vertex cover and matching.524

CoRR, abs/2402.07441, 2024. doi:10.48550/ARXIV.2402.07441.525

10 Sujoy Bhore, Fabian Klute, and Jelle J. Oostveen. On streaming algorithms for ge-526

ometric independent set and clique. In Proc. 20th Workshop on Approximation and527

Online Algorithms (WAOA’22), volume 13538 of LNCS, pages 211–224. Springer, 2022.528

doi:10.1007/978-3-031-18367-6_11.529

11 Sujoy Bhore, Guangping Li, and Martin Nöllenburg. An algorithmic study of fully dynamic530

independent sets for map labeling. ACM J. Exp. Algorithmics, 27(1):1–36, 2022. doi:531

10.1145/3514240.532

12 Sujoy Bhore, Martin Nöllenburg, Csaba D. Tóth, and Jules Wulms. Fully dynamic maximum533

independent sets of disks in polylogarithmic update time. CoRR, abs/2308.00979, 2023.534

doi:10.48550/ARXIV.2308.00979.535

13 Jean Cardinal, John Iacono, and Grigorios Koumoutsos. Worst-case efficient dynamic geometric536

independent set. In Proc. 29th European Symposium on Algorithms (ESA’21), volume 204 of537

LIPIcs, pages 25:1–25:15, 2021. See also arXiv:2108.08050. doi:10.4230/LIPIcs.ESA.2021.25.538

14 Timothy M. Chan. Polynomial-time approximation schemes for packing and piercing fat539

objects. J. Algorithms, 46(2):178–189, 2003. doi:10.1016/S0196-6774(02)00294-8.540

15 Timothy M. Chan. A dynamic data structure for 3-D convex hulls and 2-D nearest neighbor541

queries. J. ACM, 57(3):16:1–16:15, 2010. doi:10.1145/1706591.1706596.542

16 Timothy M. Chan. Dynamic geometric data structures via shallow cuttings. Discret. Comput.543

Geom., 64(4):1235–1252, 2020. doi:10.1007/s00454-020-00229-5.544

https://doi.org/10.1016/S0925-7721(98)00028-5
https://doi.org/10.1016/S0925-7721(98)00028-5
https://doi.org/10.1016/S0925-7721(98)00028-5
https://doi.org/10.1016/j.jalgor.2003.10.001
https://doi.org/10.1016/j.jalgor.2003.10.001
https://doi.org/10.1016/j.jalgor.2003.10.001
https://doi.org/10.1142/8685
https://doi.org/10.1137/S0097539703437843
https://doi.org/10.1137/S0097539703437843
https://doi.org/10.1137/S0097539703437843
https://doi.org/10.1016/j.comgeo.2022.101976
https://doi.org/10.1006/jagm.2001.1188
https://doi.org/10.1007/s002240000113
https://doi.org/10.1007/s002240000113
https://doi.org/10.1007/s002240000113
https://doi.org/10.48550/ARXIV.2007.08643
https://doi.org/10.48550/ARXIV.2402.07441
https://doi.org/10.1007/978-3-031-18367-6_11
https://doi.org/10.1145/3514240
https://doi.org/10.1145/3514240
https://doi.org/10.1145/3514240
https://doi.org/10.48550/ARXIV.2308.00979
https://doi.org/10.4230/LIPIcs.ESA.2021.25
https://doi.org/10.1016/S0196-6774(02)00294-8
https://doi.org/10.1145/1706591.1706596
https://doi.org/10.1007/s00454-020-00229-5

S. Bhore, M. Nöllenburg, C.D. Tóth, and J. Wulms 16:15

17 Timothy M. Chan and Sariel Har-Peled. Approximation algorithms for maximum inde-545

pendent set of pseudo-disks. Discret. Comput. Geom., 48(2):373–392, 2012. doi:10.1007/546

s00454-012-9417-5.547

18 Brent N. Clark, Charles J. Colbourn, and David S. Johnson. Unit disk graphs. Discret. Math.,548

86(1-3):165–177, 1990. doi:10.1016/0012-365X(90)90358-O.549

19 Spencer Compton, Slobodan Mitrovic, and Ronitt Rubinfeld. New partitioning techniques and550

faster algorithms for approximate interval scheduling. In Proc. 50th International Colloquium551

on Automata, Languages, and Programming (ICALP’23), volume 261 of LIPIcs, pages 45:1–552

45:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPIcs.ICALP.553

2023.45.554

20 Alon Efrat, Matthew J. Katz, Frank Nielsen, and Micha Sharir. Dynamic data structures555

for fat objects and their applications. Comput. Geom., 15(4):215–227, 2000. doi:10.1016/556

S0925-7721(99)00059-0.557

21 Thomas Erlebach, Klaus Jansen, and Eike Seidel. Polynomial-time approximation schemes558

for geometric intersection graphs. SIAM J. Computing, 34(6):1302–1323, 2005. doi:10.1137/559

S0097539702402676.560

22 Waldo Gálvez, Arindam Khan, Mathieu Mari, Tobias Mömke, Madhusudhan Reddy Pittu,561

and Andreas Wiese. A 3-approximation algorithm for maximum independent set of rectangles.562

In Proc. 33rd Symposium on Discrete Algorithms (SODA’22), pages 894–905, 2022. doi:563

10.1137/1.9781611977073.38.564

23 Alexander Gavruskin, Bakhadyr Khoussainov, Mikhail Kokho, and Jiamou Liu. Dynamic565

algorithms for monotonic interval scheduling problem. Theor. Comput. Sci., 562:227–242,566

2015. doi:10.1016/j.tcs.2014.09.046.567

24 Sariel Har-Peled. Geometric Approximation Algorithms, volume 173 of Mathematical Surveys568

and Monographs. AMS, 2011. URL: https://bookstore.ams.org/surv-173/.569

25 Monika Henzinger, Stefan Neumann, and Andreas Wiese. Dynamic approximate maximum570

independent set of intervals, hypercubes and hyperrectangles. In Proc. 36th Symposium on571

Computational Geometry (SoCG’20), volume 164 of LIPIcs, pages 51:1–51:14. Schloss Dagstuhl572

– Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.SoCG.2020.51.573

26 Dorit S. Hochbaum and Wolfgang Maass. Approximation schemes for covering and packing574

problems in image processing and VLSI. J. ACM, 32(1):130–136, 1985. doi:10.1145/2455.575

214106.576

27 Harry B. Hunt III, Madhav V. Marathe, Venkatesh Radhakrishnan, S. S. Ravi, Daniel J.577

Rosenkrantz, and Richard Edwin Stearns. NC-approximation schemes for NP- and PSPACE-578

hard problems for geometric graphs. J. Algorithms, 26(2):238–274, 1998. doi:10.1006/jagm.579

1997.0903.580

28 Haim Kaplan, Wolfgang Mulzer, Liam Roditty, Paul Seiferth, and Micha Sharir. Dynamic581

planar Voronoi diagrams for general distance functions and their algorithmic applications.582

Discret. Comput. Geom., 64(3):838–904, 2020. doi:10.1007/s00454-020-00243-7.583

29 Richard M. Karp. Reducibility among combinatorial problems. In Complexity of Computer584

Computations, The IBM Research Symposia Series, pages 85–103. Springer, Boston, MA, 1972.585

doi:10.1007/978-1-4684-2001-2_9.586

30 Sanjeev Khanna, Shan Muthukrishnan, and Mike Paterson. On approximating rectangle tiling587

and packing. In Proc. 9th Symposium on Discrete Algorithms (SODA’98), pages 384–393,588

1998. doi:10.5555/314613.314768.589

31 Kerstin Kirchner and Gerhard Wengerodt. Die dichteste Packung von 36 Kreisen in einem590

Quadrat. Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry,591

25:147–160, 1987.592

32 Chih-Hung Liu. Nearly optimal planar k nearest neighbors queries under general distance593

functions. SIAM J. Comput., 51(3):723–765, 2022. doi:10.1137/20m1388371.594

SoCG 2024

https://doi.org/10.1007/s00454-012-9417-5
https://doi.org/10.1007/s00454-012-9417-5
https://doi.org/10.1007/s00454-012-9417-5
https://doi.org/10.1016/0012-365X(90)90358-O
https://doi.org/10.4230/LIPIcs.ICALP.2023.45
https://doi.org/10.4230/LIPIcs.ICALP.2023.45
https://doi.org/10.4230/LIPIcs.ICALP.2023.45
https://doi.org/10.1016/S0925-7721(99)00059-0
https://doi.org/10.1016/S0925-7721(99)00059-0
https://doi.org/10.1016/S0925-7721(99)00059-0
https://doi.org/10.1137/S0097539702402676
https://doi.org/10.1137/S0097539702402676
https://doi.org/10.1137/S0097539702402676
https://doi.org/10.1137/1.9781611977073.38
https://doi.org/10.1137/1.9781611977073.38
https://doi.org/10.1137/1.9781611977073.38
https://doi.org/10.1016/j.tcs.2014.09.046
https://bookstore.ams.org/surv-173/
https://doi.org/10.4230/LIPIcs.SoCG.2020.51
https://doi.org/10.1145/2455.214106
https://doi.org/10.1145/2455.214106
https://doi.org/10.1145/2455.214106
https://doi.org/10.1006/jagm.1997.0903
https://doi.org/10.1006/jagm.1997.0903
https://doi.org/10.1006/jagm.1997.0903
https://doi.org/10.1007/s00454-020-00243-7
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.5555/314613.314768
https://doi.org/10.1137/20m1388371

16:16 Fully Dynamic Maximum Independent Sets of Disks in Polylogarithmic Update Time

33 Madhav V. Marathe, Heinz Breu, Harry B. Hunt III, Sekharipuram S. Ravi, and Daniel J.595

Rosenkrantz. Simple heuristics for unit disk graphs. Networks, 25(2):59–68, 1995. doi:596

10.1002/net.3230250205.597

34 Dániel Marx. Efficient approximation schemes for geometric problems? In Proc. 13th European598

Symposium on Algorithms (ESA’05), volume 3669 of LNCS, pages 448–459. Springer, 2005.599

doi:10.1007/11561071_41.600

35 Dániel Marx. On the optimality of planar and geometric approximation schemes. In Proc.601

48th Symposium on Foundations of Computer Science (FOCS’07), pages 338–348, 2007.602

doi:10.1109/FOCS.2007.26.603

36 Joseph S.B. Mitchell. Approximating maximum independent set for rectangles in the plane.604

In Proc. 62nd Symposium on Foundations of Computer Science (FOCS’21), pages 339–350,605

2022. doi:10.1109/FOCS52979.2021.00042.606

37 Micha Sharir and Pankaj K. Agarwal. Davenport-Schinzel Sequences and their Geometric607

Applications. Cambridge University Press, 1995.608

38 Péter Gábor Szabó and Eckard Specht. Packing up to 200 equal circles in a square. In609

Models and Algorithms for Global Optimization: Essays Dedicated to Antanas Žilinskas on610

the Occasion of His 60th Birthday, pages 141–156. Springer, Boston, 2007. doi:10.1007/611

978-0-387-36721-7_9.612

39 David Zuckerman. Linear degree extractors and the inapproximability of max clique and613

chromatic number. Theory Comput., 3(1):103–128, 2007. doi:10.4086/toc.2007.v003a006.614

https://doi.org/10.1002/net.3230250205
https://doi.org/10.1002/net.3230250205
https://doi.org/10.1002/net.3230250205
https://doi.org/10.1007/11561071_41
https://doi.org/10.1109/FOCS.2007.26
https://doi.org/10.1109/FOCS52979.2021.00042
https://doi.org/10.1007/978-0-387-36721-7_9
https://doi.org/10.1007/978-0-387-36721-7_9
https://doi.org/10.1007/978-0-387-36721-7_9
https://doi.org/10.4086/toc.2007.v003a006

	1 Introduction
	2 Preliminaries
	3 Disks of Arbitrary Radii in the Plane
	3.1 Static Hierarchical Data Structures
	3.2 Modifications to Support Dynamic Maintenance
	3.3 Dynamic Maintenance Using Farthest Neighbor Data Structures

	4 Conclusions

