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Abstract—The data precision can significantly affect the
accuracy and overhead metrics of hardware accelerators for
different applications such as artificial neural networks
(ANNS). This paper evaluates the inference and training of
multi-layer perceptrons (MLPs), in which initially IEEE
standard floating-point (FP) precisions (half, single and
double) are utilized separately and then compared with mixed-
precision FP formats. The mixed-precision calculations are
investigated for three critical propagation modules (activation
functions, weight wupdates, and accumulation units).
Compared with applying a simple low-precision format, the
mixed-precision format prevents an accuracy loss and the
occurrence of overflow/underflow in the MLPs while
potentially incurring in less hardware overhead in terms of
area/power. As the multiply-accumulation is the most
dominant operation in trending ANNs, a fully pipelined
hardware implementation for the fused multiply-add units is
proposed for different IEEE FP formats to achieve a very high
operating frequency.

I. INTRODUCTION

Multi-layer perceptrons (MLPs) are a type of artificial
neural networks (ANNs) consisting of interconnected
neurons [1]. They have been extensively used in modeling
nonlinear problems due to their simplicity, because often the
implementation of an ANN can be complex for applications
requiring a large volume of data [2]. To improve the training
and then the accuracy of ANNSs, the floating-point (FP)
format has been widely used in hardware design; however,
the utilized precision of an FP implementation is often
application dependent as degradation and possible
overflows/underflows may occur. The IEEE FP standard
defines three formats (namely half, single, and double) that
are widely used for hardware design; the larger the bit width
of the FP format, the higher the range and better accuracy is
expected in the calculations of the ANN. The selection of a
data format can vary and is often based on different
operational tradeoffs;

Recently, a scheme using different precision formats (i.e.,
mixed-precision) has been studied [3]. In this scheme,
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different FP formats are utilized in specific parts of the
hardware, and it has been proven to achieve excellent
performance in many machine learning (ML) tasks.
Hardware implementations have also been proposed for
mixed-precision  operation  [3];  however, such
implementations have an operational frequency of at most
500 MHz while also incurring in a considerable power
dissipation.

This paper analyzes and evaluates the performance of
IEEE standard FP formats (half/single/double precision) in
MLP training; since overflow may occur during training,
networks with and without batch normalization are
considered. Moreover, the different stages of calculation in
MLP propagation have unique requirements on the data
format; based on their features, mixed-precision FP formats
are also discussed. The performance of these schemes is
verified by simulation on five widely used ML classification
datasets. Finally, a high performance fused multiply-add
(FMA) unit is proposed to perform multiply-accumulation
that is the most dominant operation in ANN computation.

The rest of the paper is organized as follows. Section II
reviews MLPs, IEEE FP formats, and the use of FMA for
implementing an MLP. Section III evaluates the
performance of MLPs using different FP formats. A fully
pipelined hardware design of FMA is presented in Section
IV. Finally, the paper ends with the conclusion in Section V.

II. PRELIMINARIES

A. Multi-layer perceptron (MLP)

The MLP is a fully connected feedforward ANN, that
has been extensively utilized in modeling highly nonlinear
functions; moreover, it also has a simple structure. These
features make an MLP suitable for many tasks. In general,
an MLP consists of an input layer, one or more hidden layers,
and an output layer. The size of the valid sample features
determines the number of neurons in the input layer, while
the number of valid classes in the dataset determines the
number of neurons in the output layer [1].

The interconnected layers can model a nonlinear transfer
of an input vector to an output vector due to the use of
nonlinear activation functions between the layers. This can
solve classification problems of linearly inseparable data
after backpropagation training [2]. Also, each neuron
computes a non-linear function of the sum of products. Let
ni** denote the value of neuron k in layer i+1, w/}" is the
weight of neuron j in layer i mapping to neuron & in layer
i+1, and m is the number of neurons in layer i. Also, b:*! is
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the bias value related to ni*! and @ is the activation
function (in this paper, ReLU is used as the activation
function in the hidden layers and softmax is applied in the

output layer). Then ni*! is computed as:

m
i+1 _ § i+1
nSt =0 Wik
j=1

Batch normalization is a technique for training ANNs
when a mini-batch is applied [4]; it normalizes the input
batch of any layer as:

nj‘ + b;'c“) (D

XiH

Yi=v
e

+p @)

where u and g2 are the mean and variance of the input batch.

€ is a small positive value to avoid a zero denominator. y and
p are the so-called scaling and shift factors that can be
determined by training. Batch normalization reduces the
discrepancy in the distribution between the mini-batch and
the entire dataset, i.e., dealing with the internal covariate
shift. It also accelerates convergence and rescales the
weights to avoid possible overflows in the training process.

B. IEEE 754 floating-point formats

Floating-point (FP) numbers based on the IEEE 754
standard are extensively utilized in modern processors. FP
numbers have different precisions which makes them
suitable for different applications due to their possible range.
An FP number consists of 3 parts: sign (S), exponent (E),
and mantissa (M). The value of an FP number is given in (3),
where H is the hidden bit and is calculated by a logic OR of
all bits in the biased exponent. H determines that a number
is normal (subnormal) when it has a value of 1 (0) [5].

FPValue = (—1)5 x 2E-bias) x (H.M) (3)

The number of bits for the different parts and the Bias
value are specified for each precision format. This paper
initially evaluates the three IEEE standard FP formats:
double-precision (DP), single-precision (SP), and half-
precision (HP).

C. Mixed-precision FP formats

To reduce computational complexity, low-precision
formats (such as HP or SP) are extensively used in ANNs
[6], [7]. mixed-precision FP formats have been proposed to
retain the advantages of a small bit width, but also to address
issues, such as accuracy loss. A mixed-precision format uses
a high-precision (such as DP) in some critical arithmetic
modules while keeping a low-precision in the remaining
parts of the ANN [8]. There are several implementations of
this combined FP format that apply high-precision
arithmetic to different modules. This paper mainly
investigates the following three cases:

e The high-precision arithmetic can be applied to
activation functions to avoid possible overflows (if
batch normalization is not applied). As per empirical
observations, overflow occasionally occurs with a
HP format when using activation functions including
exponential units (such as sigmoid and softmax). The

mixed-precision FP format can therefore prevent
accuracy loss or failure in training.

e The high-precision arithmetic can be applied to the
addition units to avoid the accumulation of rounding
errors caused by precision limitations [9]. A mixed-
precision FP format maintains high accuracy in
critical arithmetic modules used for MLP training.

e The high-precision arithmetic can be applied in the
gradient updates for weights to deal with underflow
[10]. A very small learning rate is usually applied as
a scaler, so underflows may either cause an accuracy
loss, or stop the convergence process. Therefore, a
mixed-precision FP format accomplishes more
accurate parameter updates.

D. Fused multiply-add (FMA)

The principle of FP fused multiply-add (FMA) units was
introduced in the IBM RS/6000 processors to increase
performance and accuracy of FP calculations by making
indivisible the multiply-accumulation operation [11]. This
feature made FMA suitable to be utilized in general-purpose
processors to calculate 4 + (B x C) (where 4, B, C are
numerical data). Although the main purpose of this unit is to
calculate the accumulation of products, independent FP
addition or multiplication can also be performed by setting
B =1 or C=1 for the potential FP addition, and by setting 4
= 0 for the potential multiplication [12]. Different from
conventional FP multiply-accumulate (MAC) units that use
a separate FP multiplier and adder to implement the
multiply-accumulation process, FMA units integrate these
operations in a single design.

Generally, the advantages of FMA over MAC are as
follows: 1) The FMA unit uses a single rounding at the end
of the multiply-accumulation process, while the MAC unit
uses two rounding units (so separate for the multiplier and
the adder). This reduction in the number of rounding units
decreases the overall delay and error. 2) The integration of
arithmetic units in FMA leads to a reduction in the overall
hardware overhead because some circuits are shared among
addition and multiplication [11], [12].

III. MLP wiTH DIFFERENT FP FORMATS

In this section, the evaluation of an MLP with both the
IEEE standard and mixed-precision FP formats is pursued.
A five-layer MLP is simulated in Matlab with 512 neurons
in the hidden layers and 10 neurons in the output layer. Five
commonly used ML datasets (MNIST [13], Fashion-MNIST
[14], Cifar-10 [15], SVHN [16], and STL-10 [17]) are
utilized in this paper.

A. IEEFE Standard FP Formats

The performance of an MLP with different FP formats is
assessed for classification accuracy. Two cases are initially
evaluated, i.e., with or without batch normalization. The
substitution method is applied when overflow occurs to
continue the training process; in this method, the overflow
value is replaced by the closest number within the applicable
range [18]. The results are summarized in Table I (the cases
in which overflow occurred, are labeled as “OV”). The
results reveal the following features:
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TABLEI
INFERENCE ACCURACY WITH DIFFERENT FP FORMATS
Dataset DP SP HP
MNIST 98.48% | 98.47% 98.43%
. Fashion MNIST | 91.22% | 91.19% 90.81%
11‘27;:1111 CIFAR-10 81.34% | 81.27% 80.52%
SVHN 86.38% | 86.37% 86.25%
STL-10 69.74% | 69.71% 68.87%
MNIST 98.06% | 97.84% 97.01%
Without Fashion MNIST | 90.76% | 90.63% [ 88.87%(0V)
norm. CIFAR-10 81.07% | 81.01% | 78.98%(0V)
SVHN 86.11% | 85.96% 85.33%
STL-10 69.15% | 68.84% | 66.39%(0OV)

1) For the case in which no overflow occurs, the FP
format with a larger number of bits in the
representation achieves the highest precision, but it
only leads to a rather marginal improvement; for
example, the SP format shows almost the same
performance compared with the DP format. The HP
format has a slightly lower accuracy compared to the
SP format.

2) If batch normalization is applied (and usually this is
a computationally intensive process executed
externally to the ANN), no overflow occurs; if batch
normalization is not applied, overflow is observed

when using the HP format.

These results show the feasibility of low-precision FP
formats in MLP training. The SP format achieves a very
close classification accuracy to the DP format, while the HP
format sacrifices accuracy. Moreover, overflow is shown as
a notable problem of low-precision FP formats, especially
when batch normalization is not applied. Even with
substitution, the overflowed values update the gradients
incorrectly and cause a large accuracy loss; in many
applications, it may cause more serious consequences such
as divergence or exploding gradients and thus, result in an
invalid model or system failure.

B. Mixed-precision FP Formats

The performance of mixed-precision FP formats has
been also assessed; the mixed-precision FP formats apply a
high-precision format (DP) in several critical computational
modules to achieve a high accuracy and then, use low-
precision formats (SP/HP) in the remaining parts. Three
cases of mixed-precision FP formats introduced in Section
I1.C are evaluated.

An advantage of mixed-precision FP formats is that they
can avoid possible overflow problems. The simulation
results of this paper show that no overflow occurs with
normalization after the mixed-precision FP format is applied

TABLE II
COMPARISON OF OVERFLOWED CASES WITH HP FORMAT AND RESULT
WITH MIXED-PRECISION FP FORMAT FOR ACTIVATION FUNCTION

Mixed-precision
HP (HP + DP for
Dataset activation function)
# Inference # Inference
overflows | accuracy |overflows| accuracy
Fashion MNIST 23 88.87% 0 90.14%
CIFAR-10 16 78.98% 0 80.67%
STL-10 41 66.09% 0 68.26%

to the activation functions including the exponential
operations. Table II compares the previous overflow cases
(dataset “Fashion MNIST”, “CIFAR-10”, and “STL-10”
without batch normalization) with the HP format and the
results with mixed-precision FP format (evaluated by the
inference accuracy and the average number of overflows in
each iteration). According to our simulation, the mixed-
precision FP format (specified high-precision format on the
activation function) can avoid overflows that occur when
using the HP format; therefore, when considering the
computationally intensive process of batch normalization,
the mixed-precision FP format is a feasible alternative to
solve potential overflow problems.

Next, the other two mixed-precision format schemes
that are performed for the weight-update and addition units
respectively, are assessed. As discussed previously, the use
of a mixed-precision FP format during weight updates can
overcome possible underflows when considering small
learning rates as scalers. One of the objectives when using a
mixed-precision format during additions is to reduce the
accumulation of rounding errors. The results for these two
scenarios are summarized in Table III. For all datasets, the
mixed-precision format during the weight update process
only brings a slightly higher accuracy, while the mixed-
precision format during accumulations leads to more
pronounced improvements. These results suggest that
rounding errors of low-precision FP formats are the main
reason for an accuracy loss; thus, by applying a high-
precision format only in critical accumulation modules
yields very good results. Such a scheme achieves a
performance very similar to the DP format in terms of
accuracy.

IV. FMA HARDWARE DESIGN

In this section, a novel fully pipelined FMA unit design
used to perform the multiply-accumulation operations in an
MLP is proposed; it supports different IEEE standard FP
formats. Fig. 1 shows the proposed design (note that both
addition and multiplication have the same precision).
Assume the input numbers have a width of p bits (as based

TABLE III
INFERENCE ACCURACY WHEN APPLYING MULTI-PRECISION FORMAT FOR WEIGHT UPDATE AND ACCUMULATION

Multi-precision | Multi-precision | Multi-precision Multi-precision
Dataset DP SP HP (SP + DP for (HP + DP for (SP + DP for (HP + DP for
weight update) weight update) addition) addition)
MNIST 98.48% | 98.45% | 98.04% 98.46% 98.11% 98.48% 98.42%
Fashion-MNIST | 91.22% | 91.19% | 90.81% 91.19% 90.88% 91.21% 91.14%
CIFAR-10 81.34% | 81.27% | 80.52% 81.29% 80.64% 81.31% 81.28%
SVHN 86.38% | 86.37% | 86.25% 86.37% 86.29% 86.38% 86.35%
STL-10 69.74% | 69.71% | 68.87% 69.72% 68.98% 69.74% 69.72%
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Fig. 1. Proposed FMA unit for IEEE standard precision format.

on the FP precision format), ep and mp denote the numbers
of bits for the exponent and the mantissa of the FP format.

The proposed FMA design consists of 4 stages. The first
stage extracts the different sectional parts of the input data
including sign, exponent, mantissa and calculates the hidden
bit for each number.

The second stage calculates the multiplication of H.M
(P) of the two input numbers 4 and B using a radix-4 Booth
array generator [19]. The result is in a carry-save format (i.e.,
in the carry-save adder, CSA, in Fig. 1). At the same time,
the add/sub detection unit compares the signs of (4 xB) and
C to check whether the required final operation is addition
or subtraction, i.e., it determines whether C needs to be
complemented during the alignment. For simplicity in the
design of the alignment unit, the H.M part of C is located to
the left of the most significant bit (MSB) of the
multiplication result. Two additional bits (including guard
and round bits) are also considered to account for the case
when H.. M, does not need to be shifted. Hence, the shift
operation results in d = (((e4 +eg) — ec) + mp+4)
where mp + 4 is the alignment offset due to placing P, to the
left of the multiplication result and added to the 3 bits

including guard, round and MSB of the multiplication bits.
Based on the number of shifts, the exp_diff sel unit chooses
the exponent (exp_sel) for the next processing step and a flag
which determines the selection of the exponent (AB_flag).
So, the largest exponent is set as the final exponent if it is 1;
then the exponent of the multiplication is chosen, else the
exponent of C is chosen. Also, the sub_det unit determines
if C is a subnormal number, because the input numbers are
not normalized during the input processing and based on
them, the multiplication result can be subnormal too.

The third stage adds the carry-save format of the Booth
array generator with the 2mp+2 least significant bits (LSBs)
of the aligned P, in carry-save format. Then, the result is
again in a carry-save format . The use of the LSB of the
aligned bit reduces the hardware required for the design of
the leading zero anticipators (LZA) unit; the LZA unit
estimates the number of leading zero bits prior to the
conversion of the carry-save format to a conventional binary
format (as performed by the carry-lookahead adder (CLA)
unit). In this paper, the LZA design of [13] is utilized. As the
sum (i.e., the result of the CLA) can be positive or negative,
then the LZA reports both the leading zero and leading one.
For k-bit operands A4 and B, the indicator (f) is generated to
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show the location of first one or zero. To generation of f'is
given as follows where T=A@B, G=A4B, Z=AB:

fe-1= fk—lTk—Z_
fi = Tisa(GiZiy + ZiG_i—l) (4)
+Ti41(ZiZi21 + GiGi_y), i < k-1

The MSB of the result of the CLA unit determines if the
mp+4 MSBs of the aligned result should be incremented;
moreover, the SGR_temp unit calculates the temporary SGR
value, because it may be required when d is greater than
3mp+S.

In the fourth stage, the MSB of the result of the CLA
determines if a complementing operation is needed. Also,
this MSB selects between the number of leading (0 or 1) bits
from the LZA unit. The normalization unit normalizes the
result of the complementor based on the result of the LZA;
it determines whether P, is shifted more than the aligning
offset. If so, the normalization is performed based on the
result of the LZA; LSB Sub determines if the result is
subnormal, otherwise MSB_sub determines if the number is
subnormal, and the normalization is equal to exp diff.
During normalization, the exponent is updated too. As
mentioned previously, normalization using the LZA unit
could be 1 bit off; then, the rounding unit is responsible to
address this probable error by shifting the result by one more
bit to the left. For rounding to the near/even, this is
accomplished based on the processing detailed in [5].

The proposed design is implemented using Verilog
HDL and then synthesized with Cadence Genus Synthesis
tool using a 32nm library (at 25°C and TT corner). As per
the synthesized hardware metrics reported in Table IV, the
proposed FMA design can achieve a very high operating
frequency due to the fully pipelining scheme.

V. CONCLUSION

This paper has investigated different floating-point (FP)
formats (double, single, half, and mixed precisions) applied
to the training and inference of multi-layer perceptrons
(MLPs). The simulation results have shown that that these
FP formats have advantages for different application
scenarios: i) The double-precision format is a safe choice
with the best classification performance, while it requires a
very large hardware. ii) The single-precision format is
appropriate in most cases if normalization is applied; it
achieves a slightly lower accuracy than the double-
precision format but at a significantly less hardware. iii) The
half-precision format requires the least hardware, but the
accuracy is reduced. iv) The mixed-precision format is a
feasible alternative to double-prevision format because it
prevents an accuracy loss in most cases (by avoiding the
overflow/underflow issues), while it potentially incurs in
less hardware overhead. A fully pipelined fused multiply-
add (FMA) unit design that supports all these formats has
been proposed to perform the multiply-accumulation
operations for the network. The hardware design of an FMA
utilizing mixed-precision format and the assessment of its
viability in ANN implementation are left for future work.

TABLEIV
Synthesis Results for the Proposed FMA Unit with Different FP Precisions
Precision Area (um?) Power (mw) Frequency (MHz)
HP 5549.23 4.48 934.58
SP 13894.56 9.63 800.00
DP 43340.96 24.23 666.66
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