
  

  

Abstract—The data precision can significantly affect the 
accuracy and overhead metrics of hardware accelerators for 
different applications such as artificial neural networks 
(ANNs). This paper evaluates the inference and training of 
multi-layer perceptrons (MLPs), in which initially IEEE 
standard floating-point (FP) precisions (half, single and 
double) are utilized separately and then compared with mixed-
precision FP formats. The mixed-precision calculations are 
investigated for three critical propagation modules (activation 
functions, weight updates, and accumulation units). 
Compared with applying a simple low-precision format, the 
mixed-precision format prevents an accuracy loss and the 
occurrence of overflow/underflow in the MLPs while 
potentially incurring in less hardware overhead in terms of 
area/power. As the multiply-accumulation is the most 
dominant operation in trending ANNs, a fully pipelined 
hardware implementation for the fused multiply-add units is 
proposed for different IEEE FP formats to achieve a very high 
operating frequency. 

I. INTRODUCTION 

Multi-layer perceptrons (MLPs) are a type of artificial 
neural networks (ANNs) consisting of interconnected 
neurons [1]. They have been extensively used in modeling 
nonlinear problems due to their simplicity, because often the 
implementation of an ANN can be complex for applications 
requiring a large volume of data [2]. To improve the training 
and then the accuracy of ANNs, the floating-point (FP) 
format has been widely used in hardware design; however, 
the utilized precision of an FP implementation is often 
application dependent as degradation and possible 
overflows/underflows may occur. The IEEE FP standard 
defines three formats (namely half, single, and double) that 
are widely used for hardware design; the larger the bit width 
of the FP format, the higher the range and better accuracy is 
expected in the calculations of the ANN. The selection of a 
data format can vary and is often based on different 
operational tradeoffs;  

Recently, a scheme using different precision formats (i.e., 
mixed-precision) has been studied [3]. In this scheme, 

 
 

different FP formats are utilized in specific parts of the 
hardware, and it has been proven to achieve excellent 
performance in many machine learning (ML) tasks. 
Hardware implementations have also been proposed for 
mixed-precision operation [3]; however, such 
implementations have an operational frequency of at most 
500 MHz while also incurring in a considerable power 
dissipation. 

This paper analyzes and evaluates the performance of 
IEEE standard FP formats (half/single/double precision) in 
MLP training; since overflow may occur during training, 
networks with and without batch normalization are 
considered. Moreover, the different stages of calculation in 
MLP propagation have unique requirements on the data 
format; based on their features, mixed-precision FP formats 
are also discussed. The performance of these schemes is 
verified by simulation on five widely used ML classification 
datasets. Finally, a high performance fused multiply-add 
(FMA) unit is proposed to perform multiply-accumulation 
that is the most dominant operation in ANN computation. 

The rest of the paper is organized as follows. Section II 
reviews MLPs, IEEE FP formats, and the use of FMA for 
implementing an MLP. Section III evaluates the 
performance of MLPs using different FP formats. A fully 
pipelined hardware design of FMA is presented in Section 
IV. Finally, the paper ends with the conclusion in Section V.  

II. PRELIMINARIES 

A. Multi-layer perceptron (MLP) 

The MLP is a fully connected feedforward ANN, that 
has been extensively utilized in modeling highly nonlinear 
functions; moreover, it also has a simple structure. These 
features make an MLP suitable for many tasks. In general, 
an MLP consists of an input layer, one or more hidden layers, 
and an output layer. The size of the valid sample features 
determines the number of neurons in the input layer, while 
the number of valid classes in the dataset determines the 
number of neurons in the output layer [1]. 

The interconnected layers can model a nonlinear transfer 
of an input vector to an output vector due to the use of 
nonlinear activation functions between the layers. This can 
solve classification problems of linearly inseparable data 
after backpropagation training [2]. Also, each neuron 
computes a non-linear function of the sum of products. Let 
!!"#$ denote the value of neuron k in layer i+1, "%,!"#$ is the 
weight of neuron j in layer i mapping to neuron k in layer 
i+1, and m is the number of neurons in layer i. Also, #!"#$ is 
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the bias value related to !!"#$  and $  is the activation 
function (in this paper, ReLU is used as the activation 
function in the hidden layers and softmax is applied in the 
output layer).  Then !!"#$ is computed as: 

																					!!"#$ = $&' "!,#$+1 ∙ !%"
'

!=1
+ %#$+1(																	(1) 

Batch normalization is a technique for training ANNs 
when a mini-batch is applied [4]; it normalizes the input 
batch of any layer as: 

																																							yi=γ
xi-μ

√σ2+ϵ
+β																																			(2)  

where - and .' are the mean and variance of the input batch. 
ϵ is a small positive value to avoid a zero denominator. / and 
0  are the so-called scaling and shift factors that can be 
determined by training. Batch normalization reduces the 
discrepancy in the distribution between the mini-batch and 
the entire dataset, i.e., dealing with the internal covariate 
shift. It also accelerates convergence and rescales the 
weights to avoid possible overflows in the training process. 

B. IEEE 754 floating-point formats 

Floating-point (FP) numbers based on the IEEE 754 
standard are extensively utilized in modern processors. FP 
numbers have different precisions which makes them 
suitable for different applications due to their possible range. 
An FP number consists of 3 parts: sign (S), exponent (E), 
and mantissa (M). The value of an FP number is given in (3), 
where H is the hidden bit and is calculated by a logic OR of 
all bits in the biased exponent. H determines that a number 
is normal (subnormal) when it has a value of 1 (0) [5]. 

12	34567	 = 	(−1)( 	×  2(*+,"-.) 	× 	(<.>) (3) 

The number of bits for the different parts and the Bias 
value are specified for each precision format. This paper 
initially evaluates the three IEEE standard FP formats: 
double-precision (DP), single-precision (SP), and half-
precision (HP).  

C. Mixed-precision FP formats 

To reduce computational complexity, low-precision 
formats (such as HP or SP) are extensively used in ANNs 
[6], [7]. mixed-precision FP formats have been proposed to 
retain the advantages of a small bit width, but also to address 
issues, such as accuracy loss. A mixed-precision format uses 
a high-precision (such as DP) in some critical arithmetic 
modules while keeping a low-precision in the remaining 
parts of the ANN [8]. There are several implementations of 
this combined FP format that apply high-precision 
arithmetic to different modules. This paper mainly 
investigates the following three cases: 

• The high-precision arithmetic can be applied to 
activation functions to avoid possible overflows (if 
batch normalization is not applied). As per empirical 
observations, overflow occasionally occurs with a 
HP format when using activation functions including 
exponential units (such as sigmoid and softmax). The 

mixed-precision FP format can therefore prevent 
accuracy loss or failure in training. 

• The high-precision arithmetic can be applied to the 
addition units to avoid the accumulation of rounding 
errors caused by precision limitations [9]. A mixed-
precision FP format maintains high accuracy in 
critical arithmetic modules used for MLP training. 

• The high-precision arithmetic can be applied in the 
gradient updates for weights to deal with underflow 
[10]. A very small learning rate is usually applied as 
a scaler, so underflows may either cause an accuracy 
loss, or stop the convergence process. Therefore, a 
mixed-precision FP format accomplishes more 
accurate parameter updates. 

D. Fused multiply-add (FMA)  
The principle of FP fused multiply-add (FMA) units was 

introduced in the IBM RS/6000 processors to increase 
performance and accuracy of FP calculations by making 
indivisible the multiply-accumulation operation [11]. This 
feature made FMA suitable to be utilized in general-purpose 
processors to calculate A + (B × C) (where A, B, C are 
numerical data). Although the main purpose of this unit is to 
calculate the accumulation of products, independent FP 
addition or multiplication can also be performed by setting 
B = 1 or C = 1 for the potential FP addition, and by setting A 
= 0 for the potential multiplication [12]. Different from 
conventional FP multiply-accumulate (MAC) units that use 
a separate FP multiplier and adder to implement the 
multiply-accumulation process, FMA units integrate these 
operations in a single design.  

Generally, the advantages of FMA over MAC are as 
follows: 1) The FMA unit uses a single rounding at the end 
of the multiply-accumulation process, while the MAC unit 
uses two rounding units (so separate for the multiplier and 
the adder). This reduction in the number of rounding units 
decreases the overall delay and error. 2) The integration of 
arithmetic units in FMA leads to a reduction in the overall 
hardware overhead because some circuits are shared among 
addition and multiplication [11], [12]. 

III. MLP WITH DIFFERENT FP FORMATS 

In this section, the evaluation of an MLP with both the 
IEEE standard and mixed-precision FP formats is pursued. 
A five-layer MLP is simulated in Matlab with 512 neurons 
in the hidden layers and 10 neurons in the output layer. Five 
commonly used ML datasets (MNIST [13], Fashion-MNIST 
[14], Cifar-10 [15], SVHN [16], and STL-10 [17]) are 
utilized in this paper. 

A.  IEEE Standard FP Formats 

The performance of an MLP with different FP formats is 
assessed for classification accuracy. Two cases are initially 
evaluated, i.e., with or without batch normalization. The 
substitution method is applied when overflow occurs to 
continue the training process; in this method, the overflow 
value is replaced by the closest number within the applicable 
range [18]. The results are summarized in Table I (the cases 
in which overflow occurred, are labeled as “OV”). The 
results reveal the following features: 
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1) For the case in which no overflow occurs, the FP 
format with a larger number of bits in the 
representation achieves the highest precision, but it 
only leads to a rather marginal improvement; for 
example, the SP format shows almost the same 
performance compared with the DP format. The HP 
format has a slightly lower accuracy compared to the 
SP format. 

2) If batch normalization is applied (and usually this is 
a computationally intensive process executed 
externally to the ANN), no overflow occurs; if batch 
normalization is not applied, overflow is observed 
when using the HP format. 

These results show the feasibility of low-precision FP 
formats in MLP training. The SP format achieves a very 
close classification accuracy to the DP format, while the HP 
format sacrifices accuracy. Moreover, overflow is shown as 
a notable problem of low-precision FP formats, especially 
when batch normalization is not applied. Even with 
substitution, the overflowed values update the gradients 
incorrectly and cause a large accuracy loss; in many 
applications, it may cause more serious consequences such 
as divergence or exploding gradients and thus, result in an 
invalid model or system failure. 

B. Mixed-precision FP Formats 

The performance of mixed-precision FP formats has 
been also assessed; the mixed-precision FP formats apply a 
high-precision format (DP) in several critical computational 
modules to achieve a high accuracy and then, use low-
precision formats (SP/HP) in the remaining parts. Three 
cases of mixed-precision FP formats introduced in Section 
II.C are evaluated. 

An advantage of mixed-precision FP formats is that they 
can avoid possible overflow problems. The simulation 
results of this paper show that no overflow occurs with 
normalization after the mixed-precision FP format is applied 

to the activation functions including the exponential 
operations. Table II compares the previous overflow cases 
(dataset “Fashion MNIST”, “CIFAR-10”, and “STL-10” 
without batch normalization) with the HP format and the 
results with mixed-precision FP format (evaluated by the 
inference accuracy and the average number of overflows in 
each iteration). According to our simulation, the mixed-
precision FP format (specified high-precision format on the 
activation function) can avoid overflows that occur when 
using the HP format; therefore, when considering the 
computationally intensive process of batch normalization, 
the mixed-precision FP format is a feasible alternative to 
solve potential overflow problems. 

 Next, the other two mixed-precision format schemes 
that are performed for the weight-update and addition units 
respectively, are assessed. As discussed previously, the use 
of a mixed-precision FP format during weight updates can 
overcome possible underflows when considering small 
learning rates as scalers. One of the objectives when using a 
mixed-precision format during additions is to reduce the 
accumulation of rounding errors. The results for these two 
scenarios are summarized in Table III. For all datasets, the 
mixed-precision format during the weight update process 
only brings a slightly higher accuracy, while the mixed-
precision format during accumulations leads to more 
pronounced improvements. These results suggest that 
rounding errors of low-precision FP formats are the main 
reason for an accuracy loss; thus, by applying a high-
precision format only in critical accumulation modules 
yields very good results. Such a scheme achieves a 
performance very similar to the DP format in terms of 
accuracy. 

IV. FMA HARDWARE DESIGN 

In this section, a novel fully pipelined FMA unit design 
used to perform the multiply-accumulation operations in an 
MLP is proposed; it supports different IEEE standard FP 
formats. Fig. 1 shows the proposed design (note that both 
addition and multiplication have the same precision). 
Assume the input numbers have a width of p bits (as based 

TABLE III 
INFERENCE ACCURACY WHEN APPLYING MULTI-PRECISION FORMAT FOR WEIGHT UPDATE AND ACCUMULATION 

Dataset DP SP HP 
Multi-precision 

(SP + DP for 
weight update) 

Multi-precision 
(HP + DP for 

weight update) 

Multi-precision 
(SP + DP for 

addition) 

Multi-precision 
(HP + DP for 

addition) 
MNIST 98.48% 98.45% 98.04% 98.46% 98.11% 98.48% 98.42% 

Fashion-MNIST 91.22% 91.19% 90.81% 91.19% 90.88% 91.21% 91.14% 

CIFAR-10 81.34% 81.27% 80.52% 81.29% 80.64% 81.31% 81.28% 

SVHN 86.38% 86.37% 86.25% 86.37% 86.29% 86.38% 86.35% 

STL-10 69.74% 69.71% 68.87% 69.72% 68.98% 69.74% 69.72% 

 
 
  

TABLE II 
COMPARISON OF OVERFLOWED CASES WITH HP FORMAT AND RESULT 

WITH MIXED-PRECISION FP FORMAT FOR ACTIVATION FUNCTION 

Dataset 
HP 

Mixed-precision 
(HP + DP for 

activation function) 
# 

overflows 
Inference 
accuracy 

# 
overflows 

Inference 
accuracy 

Fashion MNIST 23 88.87% 0 90.14% 

CIFAR-10 16 78.98% 0 80.67% 

STL-10 41 66.09% 0 68.26% 

 

 

TABLE I 
INFERENCE ACCURACY WITH DIFFERENT FP FORMATS  

Dataset DP SP HP 

With  
norm. 

MNIST 98.48% 98.47% 98.43% 

Fashion MNIST 91.22% 91.19% 90.81% 

CIFAR-10 81.34% 81.27% 80.52% 

SVHN 86.38% 86.37% 86.25% 

STL-10 69.74% 69.71% 68.87% 

Without 
norm. 

MNIST 98.06% 97.84% 97.01% 

Fashion MNIST 90.76% 90.63% 88.87%(OV) 

CIFAR-10 81.07% 81.01% 78.98%(OV) 

SVHN 86.11% 85.96% 85.33% 

STL-10 69.15% 68.84% 66.39%(OV) 
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on the FP precision format), ep and mp denote the numbers 
of bits for the exponent and the mantissa of the FP format. 

The proposed FMA design consists of 4 stages. The first 
stage extracts the different sectional parts of the input data 
including sign, exponent, mantissa and calculates the hidden 
bit for each number. 

The second stage calculates the multiplication of H.M 
(P) of the two input numbers A and B using a radix-4 Booth 
array generator [19]. The result is in a carry-save format (i.e., 
in the carry-save adder, CSA, in Fig. 1). At the same time, 
the add/sub detection unit compares the signs of (A×B) and 
C to check whether the required final operation is addition 
or subtraction, i.e., it determines whether C needs to be 
complemented during the alignment. For simplicity in the 
design of the alignment unit, the H.M part of C is located to 
the left of the most significant bit (MSB) of the 
multiplication result. Two additional bits (including guard 
and round bits) are also considered to account for the case 
when <0 . >0  does not need to be shifted. Hence, the shift 
operation results in @ = (((71 + 72) −	73) + BC + 4) 
where mp + 4 is the alignment offset due to placing 20 to the 
left of the multiplication result and added to the 3 bits 

including guard, round and MSB of the multiplication bits. 
Based on the number of shifts, the exp_diff_sel unit chooses 
the exponent (exp_sel) for the next processing step and a flag 
which determines the selection of the exponent (AB_flag). 
So, the largest exponent is set as the final exponent if it is 1; 
then the exponent of the multiplication is chosen, else the 
exponent of C is chosen. Also, the sub_det unit determines 
if C is a subnormal number, because the input numbers are 
not normalized during the input processing and based on 
them, the multiplication result can be subnormal too. 

The third stage adds the carry-save format of the Booth 
array generator with the 2mp+2 least significant bits (LSBs) 
of the aligned 20  in carry-save format. Then, the result is 
again in a carry-save format . The use of the LSB of the 
aligned bit reduces the hardware required for the design of 
the leading zero anticipators (LZA) unit; the LZA unit 
estimates the number of leading zero bits prior to the 
conversion of the carry-save format to a conventional binary 
format (as performed by the carry-lookahead adder (CLA) 
unit). In this paper, the LZA design of [13] is utilized. As the 
sum (i.e., the result of the CLA) can be positive or negative, 
then the LZA reports both the leading zero and leading one. 
For k-bit operands A and B, the indicator (f) is generated to 

 
Fig. 1. Proposed FMA unit for IEEE standard precision format. 
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show the location of first one or zero. To generation of f is 
given as follows where T=A⊕B, G=AB, Z=F̅HI : 

J!+$ = K!+$K!+'	  

J" = K"#$LM"N"+$ + N"M"+$O (4) 
																																			+K"#$LN"N"+$ + M"M"+$O, i < k-1 

The MSB of the result of the CLA unit determines if the 
mp+4 MSBs of the aligned result should be incremented; 
moreover, the SGR_temp unit calculates the temporary SGR 
value, because it may be required when d is greater than 
3mp+5.  

In the fourth stage, the MSB of the result of the CLA 
determines if a complementing operation is needed. Also, 
this MSB selects between the number of leading (0 or 1) bits 
from the LZA unit. The normalization unit normalizes the 
result of the complementor based on the result of the LZA; 
it determines whether 20  is shifted more than the aligning 
offset. If so, the normalization is performed based on the 
result of the LZA; LSB_Sub determines if the result is 
subnormal, otherwise MSB_sub determines if the number is 
subnormal, and the normalization is equal to exp_diff. 
During normalization, the exponent is updated too. As 
mentioned previously, normalization using the LZA unit 
could be 1 bit off; then, the rounding unit is responsible to 
address this probable error by shifting the result by one more 
bit to the left. For rounding to the near/even, this is 
accomplished based on the processing detailed in [5].  

 The proposed design is implemented using Verilog 
HDL and then synthesized with Cadence Genus Synthesis 
tool using a 32nm library (at 25°C and TT corner). As per 
the synthesized hardware metrics reported in Table IV, the 
proposed FMA design can achieve a very high operating 
frequency due to the fully pipelining scheme. 

V. CONCLUSION 

This paper has investigated different floating-point (FP) 
formats (double, single, half, and mixed precisions) applied 
to the training and inference of multi-layer perceptrons 
(MLPs). The simulation results have shown that that these 
FP formats have advantages for different application 
scenarios: i) The double-precision format is a safe choice 
with the best classification performance, while it requires a 
very large hardware. ii) The single-precision format is 
appropriate in most cases if normalization is applied; it 
achieves a slightly lower accuracy than the double-
precision format but at a significantly less hardware. iii) The 
half-precision format requires the least hardware, but the 
accuracy is reduced. iv) The mixed-precision format is a 
feasible alternative to double-prevision format because it 
prevents an accuracy loss in most cases (by avoiding the 
overflow/underflow issues), while it potentially incurs in 
less hardware overhead. A fully pipelined fused multiply-
add (FMA) unit design that supports all these formats has 
been proposed to perform the multiply-accumulation 
operations for the network. The hardware design of an FMA 
utilizing mixed-precision format and the assessment of its 
viability in ANN implementation are left for future work. 
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TABLE IV 

Synthesis Results for the Proposed FMA Unit with Different FP Precisions 

Precision Area (µ!!) Power (mw) Frequency (MHz) 
HP 5549.23 4.48 934.58 

SP 13894.56 9.63 800.00 

DP 43340.96 24.23 666.66 
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