2023 International Conference on Machine Learning and Applications (ICMLA) | 979-8-3503-4534-6/23/$31.00 ©2023 IEEE | DOI: 10.1109/ICMLA58977.2023.00079

2023 International Conference on Machine Learning and Applications (ICMLA)

Igniting Precision: Amplifying Wildfire Prediction
in Diverse Regions via Teacher-Student
Model Fusion

Michael Lindemann', Kathleen DeMichele?, Masoumeh Heidari Kapourchali?, Mohammad Heidari Kapourchali'#,
Christine Waigl3, Erin Trochim®*, Long Zhao®

" Department of Electrical Engineering, University of Alaska Anchorage, Anchorage, AK
2 Department of Computer Science and Engineering, University of Alaska Anchorage, Anchorage, AK
3 International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, AK
4 Alaska Center for Energy and Power, University of Alaska Fairbanks, Fairbanks, AK
SDepartment of Electrical Engineering and Computer Science, South Dakota School of Mines and Technology
I’2*3’4{rnlindemann, kmdemichele, mheidari2, mhkapourchali, cwaigl, edtrochim} @alaska.edu
3long.zhao @sdsmt.edu

Abstract—Accurate wildfire prediction in diverse and ge-
ographically dispersed areas is crucial for effective wildfire
management. However, the limited availability of labeled data
in data-challenged regions, along with the unique characteristics
of these areas, poses challenges for training robust prediction
models. This study investigates the performance of a convolu-
tional neural network (CNN) on datasets comprising Landsat
images from Canada and Alaska. Through principal component
analysis (PCA), the study uncovers distinct differences in data
distribution between the two regions. It is observed that the
reduced data size of the Alaskan dataset, along with its distinct
data distribution, leads to a decrease in the CNN’s accuracy to
75% compared to an impressive 98% achieved on the Canadian
dataset. To address this limitation, we propose a teacher-student
model approach, transferring knowledge from a CNN trained
on the larger Canadian dataset. The results demonstrate a
significant accuracy improvement to 88.96% on the Alaskan
dataset. Our findings highlight the effectiveness of the teacher-
student model in mitigating data scarcity challenges, enhancing
wildfire prediction capabilities in regions with limited training
data. This research contributes to improved wildfire monitoring
and prevention strategies in challenging geographical locations.

Index Terms—wildfire prediction, teacher-student, knowledge
transfer, Landsat, remote sensing

I. INTRODUCTION

Wildfires have increased in frequency and intensity in
recent years, posing new and emerging risks to infrastruc-
tures and communities. According to the National Climate
Assessment, the size of the area burned in Alaska’s wildfires
is projected to double by 2050 and triple by 2100 under
continued emissions and further warming [1]. The ability of
emergency management professionals and decision makers to
determine if an area is at higher risk of a fire breaking out
has never been greater [2]. In northern high-latitude regions

This work was supported by the U.S. National Science Foundation (NSF)
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like Alaska, where fires impact remote and sparsely populated
areas, decisions regarding site access and fire suppression are
marked by considerable complexity and cost [3]. Monitoring
forest conditions in Alaska also presents a significant challenge
due to its vast expanse of over 200,000 square miles of
forest and limited road infrastructure. In such areas, satellite
remote sensing is the sole avenue for acquiring data to support
decision-making [3]. Remotely sensed data has emerged as
a valuable tool for modeling risk zones of forest fires and
provide a fast, noninvasive, and expansive coverage compared
to traditional field-based observations [4], [5]. Landsat data has
become one the most comprehensive and longest running Earth
observation datasets in existence [6]. Therefore, it would be
extremely beneficial to utilize this extensive dataset to predict
areas of land in extreme northern latitudes that are at risk of
burning due to wildfires.

The availability of remotely sensed data is experiencing
a remarkable increase due to the reduction in launching
costs and the proliferation of satellites and mini-satellites
equipped with high-quality sensors [7]. Despite their immense
potential, these resources have been minimally utilized in
Alaska and other fire management settings in high latitude
northern regions [8]. While satellite technology holds great
promise, it is not without its limitations. Challenges such as
atmospheric opacity, revisit time, and sensor characteristics
still pose hurdles in its effective utilization [9]. During a forest
fire event, the presence of smoke and clouds can disrupt the
accurate observation of the burned area, thereby limiting the
selection of suitable satellite images. Additionally, the use of
coarse-resolution sensors in many satellites further compounds
these limitations [10].

In recent years, transfer learning [11]-[13] has gained
significant interest as an effective approach for improving pre-
diction models in diverse applications. It involves leveraging
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knowledge acquired from one task or domain and applying
it to a related but different task or domain. In the context of
wildfire prediction, transfer learning enables the transfer of
learned features, representations, or models from areas with
abundant data to areas with limited data availability or unique
characteristics. By utilizing transfer learning techniques, valu-
able knowledge can be adapted to enhance prediction accuracy
and decision-making capabilities in data-challenged regions,
such as high latitude northern areas like Alaska. In order to
address the challenges posed by the unique characteristics of
these areas, we developed a teacher-student model for knowl-
edge transfer. The model leverages the expertise gained from
a CNN trained on the extensive Canadian dataset, comprising
Landsat images of regions with historical fire occurrences and
regions without fire occurrences. The performance evaluation
demonstrated a significant improvement in accuracy, with the
model achieving 88.96% accuracy on the Alaskan dataset.
These findings highlight the effectiveness of the teacher-
student model in mitigating challenges associated with limited
training data, contributing to improved wildfire monitoring and
prevention strategies in challenging geographical locations.

While the smaller size of the Alaskan dataset demonstrates
the effectiveness of transfer learning, it is important to note
that the higher performance observed in the larger Canadian
dataset cannot be solely attributed to its size. The PCA analysis
revealed distinct data distribution patterns, suggesting that the
effectiveness of the model is influenced by a combination of
factors. These factors potentially include not only the larger
dataset size but also the presence of better characterization
features in the Canadian dataset. These features encompass
higher data quality, finer-resolution imagery, different vegeta-
tion types, the influence of historic fire management practices,
and a wider variety of land-use types. Therefore, our study
emphasizes the significance of both dataset size and the
availability of better characterization features in achieving
improved wildfire prediction accuracy.

The rest of this paper is organized as follows. Section
IT presents a concise literature review, discussing relevant
studies in the field. In Section III, we outline our methodology,
including details on the dataset used and the implementation of
the teacher-student model for knowledge transfer. Section IV
presents the experimental results, highlighting the performance
and accuracy achieved.

II. LITERATURE REVIEW

In this section, a brief literature review is provided to
explore the existing research and studies on wildfire prediction
and the application of transfer learning techniques in diverse
and geographically dispersed areas. The purpose of this sec-
tion is to provide an overview of the relevant literature and
methodologies employed in both wildfire prediction and trans-
fer learning. Wildfires pose significant challenges and have
far-reaching consequences in various regions, while transfer
learning offers a promising approach to leverage knowledge
from well-resourced regions for improved predictions in data-
challenged areas.
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In the field of wildfire prediction, numerous studies have
explored the utilization of satellite images and remote sensing
data to enhance prediction accuracy. A comprehensive survey
of wildfire prediction and detection is provided in [14], [15].
Traditional approaches, including support vector machine [16],
decision trees [17], random forest [18], and logistic regression
[19] have been applied to assess risk and predict wildfire
occurrences. Additionally, deep learning techniques [20] and
CNNs [21] have been explored for risk assessment and wild-
fire prediction. However, these methods suffer from certain
limitations. Traditional approaches often rely on manually
engineered features derived from satellite images, which may
not fully capture the complex and diverse characteristics of
fire-prone regions. The scarcity of labeled data in specific
geographic areas also hinders model generalization and ac-
curacy. Recent studies have proposed CNN architectures in-
spired by well-established models like AlexNet, incorporating
video-based datasets [22]. Alternatively, they explore transfer
learning approaches using pretrained models such as VGG or
ResNet, primarily through fine-tuning the network parameters
rather than adapting them to different locations [23]. However,
these studies primarily focus on active fire detection rather than
risk prediction, limiting their applicability in proactive wildfire
management.

Transfer learning [11] has emerged as a valuable technique
in various domains, offering the potential to improve pre-
diction models by leveraging knowledge from well-resourced
areas.

The teacher-student model, a notable approach in transfer
learning, involves distilling knowledge from a pre-trained
teacher model into a student model, resulting in enhanced
prediction capabilities across different domains [24], [25].
The teacher-student model has been successfully employed
in various domains, such as computer vision and natural
language processing, to transfer knowledge and improve model
performance [12], [26]. However, its application in the domain
of wildfire prediction, particularly for transferring knowledge
between regions, remains largely unexplored. Additionally,
the teacher-student model has been utilized for self-training
purposes, where an unlabeled dataset is used to train a larger
or equally-sized student model [27].

In contrast to existing approaches, our methodology goes
beyond retraining a single model and extends the application
of teacher-student models for knowledge transfer between dif-
ferent regions. We also use a model fusion technique involving
two specialized student models, each focusing on distinct
aspects, thereby enhancing the overall predictive capabilities
in wildfire prediction. By leveraging the teacher-student model
and incorporating transfer learning techniques, this research
contributes to the advancement of wildfire monitoring and
prevention strategies in high-latitude northern regions. It pro-
vides valuable insights into the application of transfer learning
methods for enhancing prediction accuracy and decision-
making capabilities in data-challenged areas. Moreover, this
study is the first known instance of employing a teacher-
student model to transfer knowledge between regions in the

Authorized licensed use limited to: UAA/APU Consortium Library. Downloaded on August 30,2024 at 19:36:50 UTC from IEEE Xplore. Restrictions apply.



domain of wildfire prediction, making a notable contribution
to the field.

III. MODELS AND METHODS

In this section, we outline the models and methods em-
ployed in our study for wildfire prediction using transfer
learning and the teacher-student model. Our approach aims to
leverage the knowledge acquired from a well-resourced region
to enhance wildfire prediction capabilities in data-challenged
areas. The proposed model consists of several steps. Firstly,
a teacher model f; is trained using a large labeled dataset
Dy. This model is then utilized to generate pseudo-labels
by applying it to a smaller and more challenging unlabeled
dataset Dg. These pseudo-labels indicate whether an area is
at risk of a wildfire or not. Next, two student models, fs,
and f,, are trained using the combined datasets, Dy and Dy,
where D, now includes labels based on the teacher model’s
predictions. Combining datasets provides a richer and more
diverse training set for the student models. The student model
fs, focuses on predicting wildfires, while f, is trained for
non-wildfire areas. By incorporating the knowledge obtained
from the teacher model, the teacher-student model aims to
enhance the accuracy of wildfire predictions on the challenging
and unlabeled dataset D,. The use of two student models
allows for specialized training and independent analysis for
each class, leading to improved performance evaluation and
model insights. An overview of our model is given in Fig. 1.

A. Training Teacher Model with Labeled Dataset

The teacher model, f;, employed in our work is a con-
volutional neural network (CNN) that serves as a pivotal
component in the knowledge transfer process for wildfire
prediction. This model consists of multiple layers designed to
capture spatial features inherent in the input images. During
the training process, f; effectively acquires knowledge and ex-
pertise in distinguishing areas at a higher risk of wildfires from
those with limited fire incidents. This acquired knowledge
serves as a foundation for the subsequent knowledge transfer to
the student models, empowering them to enhance their wildfire
prediction capabilities. By leveraging the insights gained by
the teacher model, the student models become equipped with
improved abilities to identify and assess the likelihood of
wildfires in different geographic regions. The architecture of
the CNN model is shown in Fig. 2. It includes a Conv2D
layer that performs two-dimensional convolution to extract
important features from the input data. The MaxPooling2D
layer applies downsampling, reducing the spatial dimensions
of the data. The Flatten layer converts the multidimensional
data into a one-dimensional vector for further processing.
Dense layers are fully connected layers where neurons in one
layer are connected to neurons in the previous layer. The model
architecture has been empirically determined and optimized
for our task, with ReLU activation functions introducing non-
linearity. In the output layer, a sigmoid activation function is
used for binary classification. The model is trained using the
‘adam’ optimizer and the binary cross-entropy loss function.
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B. Pseudo-Label Generation using the Teacher Model

In the pseudo-label generation step, we leverage the trained
teacher model, f;, to assign pseudo-labels to an unlabeled
dataset, D, indicating the likelihood of wildfire presence in
each area. These pseudo-labels are obtained by applying f:
to D, and thresholding the predictions. The pseudo-labeled
samples are then combined with the labeled dataset, D, to
create a more diverse training set for the student models, fs,
and f,,. By incorporating the teacher model’s knowledge, the
student models enhance their wildfire prediction capabilities.
This approach improves the accuracy of wildfire predictions
on the challenging and unlabeled dataset, Dy, and enables
specialized training and independent analysis for each class.

C. Training the Student Models

The student models, denoted as f,, and f,,, are trained
using the combined datasets, which include both labeled data
D; and pseudo-labeled data D,. The labeled dataset D,
contains a large number of labeled samples, while the smaller
and more challenging unlabeled dataset D, is used to generate
pseudo-labels using the teacher model. During the training
process, the student models benefit from both the labeled
and pseudo-labeled data. The labeled data provides ground
truth information for training, while the pseudo-labeled data
generated by the teacher model provides additional training
samples for the student models. This combination of labeled
and pseudo-labeled data enriches the training set and improves
the generalization capability of the student models.

Both student models, fs, and fs,, employ a similar CNN
architecture to the teacher model, f;. This design choice
is based on evaluating different architectures and selecting
the one that yields the best performance for the student
models. By utilizing a similar architecture, the student models
can effectively benefit from the learned representations and
spatial features captured by the teacher model. The training of
the student models involves optimizing their respective CNN
architectures using the combined dataset. This training process
allows the student models to learn and refine their predictive
abilities based on the combined knowledge from the teacher
model and the labeled and pseudo-labeled data.

Our approach aims to significantly enhance the accuracy
and reliability of wildfire predictions across diverse geographic
regions by harnessing the specialized capabilities of the stu-
dent models. By employing two distinct student models within
our framework, we leverage their unique characteristics and
expertise to address the challenges and variations present in
different areas. This enables us to effectively capture the
complex patterns and behaviors associated with wildfires,
leading to more precise and reliable predictions. Through
the combined efforts of the student models, our approach
offers an advanced solution for wildfire prediction that ex-
hibits improved performance and adaptability across various
geographic regions.
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Fig. 1. Block diagram of the proposed model for transferring knowledge from the Canadian dataset to the Alaskan dataset.
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Fig. 2. Architecture of the Convolutional Neural Network (CNN) model for the teacher model

D. Fusion of Student Models

Our late fusion technique combines the predictions of two
student models, represented by fs, and fs,, specializing in
wildfires and non-wildfire areas, respectively, to enhance the
accuracy of our wildfire prediction system. Initially, each
model independently makes a hard decision, denoted as ys,
and ys,, based on their respective expertise. In the case where
Ys, 7 Ys,, indicating a discrepancy or uncertainty, a fusion
process is initiated. The model that made the hard decision,
fs,, incorporates the soft decision made by f,,, refining
its prediction by combining the posterior probabilities. This
fusion-based approach harnesses the strengths and insights of
both models, resulting in a comprehensive and more reliable
prediction for wildfire detection.

Algorithm | summarizes the process of Section IIL.

IV. EXPERIMENTAL RESULTS

A. Dataset

The dataset used in this study consists of satellite images
from two different regions: Canada and Alaska. The Canadian
dataset [28] comprises 42,848 satellite images that have been
divided into training, testing, and validation sets. These images
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were generated using MapBox API and uploaded to Kaggle
[28]. Each image is a 350 pixel by 350 pixel RGB image
centered on either the location of a wildfire or a location where
there has never been a wildfire. The original wildfire points
data for Canada was obtained from the Canadian government
[29]. The dataset includes satellite images captured over a
period spanning from April 30, 1972, to October 31, 2021.

The Alaskan dataset used in this study comprises satellite
images collected by the research team from Landsat, a series
of Earth observation satellites operated by NASA and the U.S.
Geological Survey (USGS). The dataset covers a substantial
period from 2015 to 2021 and includes wildfire events. Fil-
tering criteria were applied to select wildfire locations based
on factors such as minimum acreage burned and exclusion
of false alarms, including points that are expected to expe-
rience wildfire occurrences. ArcGIS Pro [30], a geographic
information system (GIS) software developed by Esri, was
utilized for data processing, including the filtering of wildfire
locations and performing a nearest neighbor search. The re-
sulting dataset includes Landsat 8 satellite images obtained for
each selected wildfire location using the Google Earth Engine
API Images captured during the subsequent summer season
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Algorithm 1 Pseudocode for the proposed model.

Require:

Labeled images D: = {(z1,91), (¥2,92), ..., (Tn,Yn)} and unlabeled images Ds = {Z1, T2, ..., Tm }

1: 0% < Adam (2 37 loss(y;, fi(4,0)))
Generate pseudolabels for D using f; :
gi A ft(ilae*) Vi= 15 ey T

D¢y <+ Ds U Dy, = {(wi,y:) | (%4,9i) € D,y
Dcz — Ds Uth = {(xzvyz) | (xzayz) S Dt7yi

Combine labeled dataset D; with pseudo-labeled dataset Dy to create combined datasets D.s:
“Wildfire”}
“Nowildfire”}

4 07, « Adam (; > (wrynyen., 1088, fr(xi,05,)). 5 =1,2)

5: for each (z;,y;) € D. do > Model fusion

6: if fsl(xhe:l) # fsz (xi76;2) then

7: p1 & fo (4,0%)) > p stands for posterior probability

8: p2 fsz(xiaegz)

9: Py —a-pr+(1—a) ps
10: else
11: ?31 — fm('riae;)
12: end if
13: end for
with minimal snow and cloud cover were chosen. Additionally, PCA Visualization
“no-wildfire” images were generated using a nearest neighbor 400007 o canada No wildfire e
search approach implemented in ArcGIS Pro. This approach B SN W
involved identifying locations in close proximity to recorded i : i::z:: m"ﬂjﬁm
wildfire locations, ensuring the selection of suitable areas i3 %
without wildfire occurrences. E 20000 . o . a8
B. Data Distribution Analysis é‘ it »

To gain insights into the data distribution of the satellite =
images from Alaska and Canada, we performed PCA on the é‘ 0- .w ® o
dataset. PCA allows us to reduce the dimensionality of the & by e
data while retaining the most important variations present in ~10000 1 .
the dataset. The PCA analysis was conducted separately for the x R .... 2 2%
Alaska and Canadian datasets. Fig. 3 presents a scatter plot of prveren] " e &
the dataset projected onto the two principal components. The . . . . .

. . . ~40000 ~20000 0 20000 40000

x-axis represents the first principal component, and the y-axis principai Companent 1
represents the second principal component. Each point on the
plot corresponds to an image in the daaset, and the color of Fig. 3. Scatter plot of the Alaska and Canadian datasets projected onto the
the point indicates its label (fire or no wildfire). first two principal components.

From the scatter plot, we can observe distinct data distribu-
tion differences between the Alaska and Canadian datasets. In
the Canadian dataset, the fire and no wildfire classes exhibit ~ resolution imagery, diverse vegetation types, the impact of
relatively well-separated clusters, indicating a clear distinction ~historical fire management practices, and a broader range of
between the two classes. However, in the Alaska dataset, the land-use types.
separation between the fire and no wildfire classes is less The observed variations in data distribution and the com-
pronounced, with more overlap between the clusters. This sug- ~ plexities in wildfire classification tasks highlight the im-
gests that the classification task for Alaska is more challenging portance of exploring alternative approaches to address the
due to the similarity in data distribution between the fire and challenges of predicting wildfire in diverse environments.
no wildfire classes. The smaller size of the Alaskan dataset . . )
demonstrates the effectiveness of transfer learning, but the C‘, P erformal?ce. Analysis and Comp arative Evaluation of
higher performance in the larger Canadian dataset cannot be Wildfire Prediction: Study on Canadian and Alaskan Datasets:
solely attributed to its size. The PCA analysis reveals distinct This section presents the analysis and comparison of dif-
patterns in the data distribution which may be influenced  ferent methods for predicting wildfires on the Canadian
by superior characterization features in the Canadian dataset. ~ and Alaskan datasets. In our experimental setup, we allo-
These features potentially include enhanced data quality, finer- cated 30% of the dataset for testing purposes, ensuring a
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reliable evaluation of the models’ performance. Addition-
ally, we assigned equal importance (with alpha=0.5) to both
wildfire specialists and non-wildfire specialists during the
training process. The accuracy (%) results of various ap-
proaches, including Logistic Regression (LR), Multilayer Per-
ceptron (MLP), VGG19, ResNet-50, MobileNet, EfficientNet-
B4, EfficientNet-B7, CNN1, and the Teacher model, are
summarized in Table I. In the Canadian dataset, all models
achieved relatively high accuracies. Notably, the CNN1 model,
consisting of three convolutional layers with max pooling,
followed by a flatten layer, two dense layers, and a sigmoid
output layer, achieved the highest accuracy of 98.40% on the
Canadian dataset. This demonstrates the effectiveness of con-
volutional neural networks in accurately predicting wildfires
using satellite images in the Canadian region.

However, when these models were applied to the Alaskan
dataset, the performance significantly dropped. LR and MLP
achieved accuracies of 30.40% and 30.10%, respectively,
indicating poor performance. The deep learning models also
struggled to perform well on the Alaskan dataset, with ac-
curacies ranging from 51.23% to 60.89%. The CNN1 model
achieved an accuracy of 75.60%, which is higher compared to
other models but still relatively low. These findings underscore
the need for improved generalization capabilities of wildfire
prediction models, as even strong models demonstrate limited
performance due to variations in data distribution and the
unique characteristics of the Alaskan region. To address the
limitations of the models when applied to the Alaskan dataset,
we proposed the use of a teacher-student model for knowledge
transfer. By leveraging the knowledge acquired from the
teacher model trained on the larger Canadian dataset, we aim
to enhance the prediction capabilities on the Alaskan dataset.
The next section will discuss the evaluation of the teacher-
student model, demonstrating its effectiveness in mitigating the
challenges associated with limited training data and improv-
ing wildfire prediction accuracy in challenging geographical
locations.

TABLE I
COMPARISON OF ACCURACY (%) FOR DIFFERENT METHODS ON
CANADIAN AND ALASKAN DATASETS. LR CORRESPONDS TO LOGISTIC
REGRESSION, MLP REPRESENTS MULTILAYER PERCEPTRON.

[ Method | Canada data | Alaska data |
LR 88.90 30.40
MLP 89.40 30.10
VGG19 [31] 94.64 51.23
ResNet-50 [32] 95.84 50.00
MobileNet [33] 96.14 59.67
EfficientNet-B4 [34] 79.96 60.89
EfficientNet-B7 [34] 85.43 58.12
CNN1 98.40 75.60
Teacher model 94.23 72.23

D. Enhancing Wildfire Prediction in Data-Challenged Re-
gions: Results of Teacher-Student Model:

The teacher-student model was developed to tackle the
challenges stemming from limited training data and to en-
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hance wildfire prediction accuracy in data-challenged regions.
Leveraging the knowledge obtained from the teacher model
trained on the larger Canadian dataset, our objective was to
improve prediction capabilities on the Alaskan dataset. The
teacher model served as a valuable source of knowledge, while
the student model was specifically designed to learn from the
teacher’s predictions. In order to assess the performance of the
teacher-student model on the Alaskan dataset, we first present
the confusion matrix analysis.

The development of the teacher-student model aimed to
address the challenges arising from limited training data and
improve the accuracy of wildfire prediction in regions with
data limitations. By leveraging the knowledge gained from
the teacher model trained on the larger Canadian dataset,
our objective was to enhance prediction capabilities on the
Alaskan dataset. The teacher model played a crucial role as
a valuable source of knowledge, while the student model was
designed to learn from the teacher’s predictions. To evaluate
the performance of the teacher-student model on the Alaskan
dataset, the confusion matrix analysis is presented in Fig. 4.
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Fig. 4. Confusion matrix of the Teacher-Student model on the Alaskan dataset

Table II presents the results of different model configura-
tions for wildfire prediction on the Alaskan dataset, along with
various performance metrics. These metrics provide insights
into the effectiveness of each configuration and its implications
for wildfire prediction.

The first and third configurations involve a teacher-student
model with one student model learning from the teacher.
These configurations demonstrate the impact of incorporating
knowledge transferred from the teacher model, resulting in
improved prediction accuracy. The second and fourth configu-
rations utilize two student models with different specializations
and fusion. These configurations further enhance the accuracy
and Fl-score compared to the first and third configurations.
The fourth configuration, the proposed model, achieves the
highest accuracy of 88.96% and the highest Fl-score of
91.68%. This configuration, with two student models and
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TABLE 11
RESULTS OF DIFFERENT MODEL CONFIGURATIONS

\ Model Configuration

| Accuracy (%) | F1-Score (%) [ Precision (%) | Recall (%) |

CNNI (Teacher) + 1 CNNI (Student) 81.59 87.81 81.12 94.32

CNNI (Teacher) + 2 CNN1 (Students) + Fusion 81.87 85.13 100 74.19
Teacher Model + 1 Student 83.42 84.40 83.42 86.60

Teacher Model + 2 Students + Fusion (the proposed model) 88.96 91.68 97.00 86.90

fusion, demonstrates the strongest performance in terms of
accuracy and precision.

These results highlight the effectiveness of the teacher-
student model in enhancing wildfire prediction capabilities in
data-challenged regions like Alaska. By leveraging the knowl-
edge transferred from the teacher model to the student models,
substantial improvements in accuracy, precision, and overall
performance are achieved. The proposed model contributes
to the advancement of wildfire monitoring and prevention
strategies in challenging geographical locations.

V. CONCLUSION

The results of our study highlight the effectiveness of our
proposed model in improving wildfire prediction capabili-
ties in challenging geographical locations. By leveraging the
teacher-student model and transfer learning techniques, we
have successfully enhanced prediction accuracy by incorpo-
rating knowledge from a teacher model trained on a larger
Canadian dataset. Our research addresses the challenges of
accurate wildfire prediction in diverse environments, with a
specific focus on the unique characteristics of the Alaskan
region. This research significantly contributes to the advance-
ment of wildfire monitoring and prevention strategies by pro-
viding a valuable framework for knowledge transfer and model
adaptation in areas with varying data availability and distinct
geographical features. Furthermore, our Alaskan dataset and
the corresponding results serve as a valuable benchmark for
evaluating wildfire prediction models in diverse environments.
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