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Abstract—Accurate wildfire prediction in diverse and ge-
ographically dispersed areas is crucial for effective wildfire
management. However, the limited availability of labeled data
in data-challenged regions, along with the unique characteristics
of these areas, poses challenges for training robust prediction
models. This study investigates the performance of a convolu-
tional neural network (CNN) on datasets comprising Landsat
images from Canada and Alaska. Through principal component
analysis (PCA), the study uncovers distinct differences in data
distribution between the two regions. It is observed that the
reduced data size of the Alaskan dataset, along with its distinct
data distribution, leads to a decrease in the CNN’s accuracy to
75% compared to an impressive 98% achieved on the Canadian
dataset. To address this limitation, we propose a teacher-student
model approach, transferring knowledge from a CNN trained
on the larger Canadian dataset. The results demonstrate a
significant accuracy improvement to 88.96% on the Alaskan
dataset. Our findings highlight the effectiveness of the teacher-
student model in mitigating data scarcity challenges, enhancing
wildfire prediction capabilities in regions with limited training
data. This research contributes to improved wildfire monitoring
and prevention strategies in challenging geographical locations.

Index Terms—wildfire prediction, teacher-student, knowledge
transfer, Landsat, remote sensing

I. INTRODUCTION

Wildfires have increased in frequency and intensity in

recent years, posing new and emerging risks to infrastruc-

tures and communities. According to the National Climate

Assessment, the size of the area burned in Alaska’s wildfires

is projected to double by 2050 and triple by 2100 under

continued emissions and further warming [1]. The ability of

emergency management professionals and decision makers to

determine if an area is at higher risk of a fire breaking out

has never been greater [2]. In northern high-latitude regions

This work was supported by the U.S. National Science Foundation (NSF)
under Grants RISE-2220624, RISE-2220627 and RISE-2022705.

like Alaska, where fires impact remote and sparsely populated

areas, decisions regarding site access and fire suppression are

marked by considerable complexity and cost [3]. Monitoring

forest conditions in Alaska also presents a significant challenge

due to its vast expanse of over 200,000 square miles of

forest and limited road infrastructure. In such areas, satellite

remote sensing is the sole avenue for acquiring data to support

decision-making [3]. Remotely sensed data has emerged as

a valuable tool for modeling risk zones of forest fires and

provide a fast, noninvasive, and expansive coverage compared

to traditional field-based observations [4], [5]. Landsat data has

become one the most comprehensive and longest running Earth

observation datasets in existence [6]. Therefore, it would be

extremely beneficial to utilize this extensive dataset to predict

areas of land in extreme northern latitudes that are at risk of

burning due to wildfires.

The availability of remotely sensed data is experiencing

a remarkable increase due to the reduction in launching

costs and the proliferation of satellites and mini-satellites

equipped with high-quality sensors [7]. Despite their immense

potential, these resources have been minimally utilized in

Alaska and other fire management settings in high latitude

northern regions [8]. While satellite technology holds great

promise, it is not without its limitations. Challenges such as

atmospheric opacity, revisit time, and sensor characteristics

still pose hurdles in its effective utilization [9]. During a forest

fire event, the presence of smoke and clouds can disrupt the

accurate observation of the burned area, thereby limiting the

selection of suitable satellite images. Additionally, the use of

coarse-resolution sensors in many satellites further compounds

these limitations [10].

In recent years, transfer learning [11]–[13] has gained

significant interest as an effective approach for improving pre-

diction models in diverse applications. It involves leveraging
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knowledge acquired from one task or domain and applying

it to a related but different task or domain. In the context of

wildfire prediction, transfer learning enables the transfer of

learned features, representations, or models from areas with

abundant data to areas with limited data availability or unique

characteristics. By utilizing transfer learning techniques, valu-

able knowledge can be adapted to enhance prediction accuracy

and decision-making capabilities in data-challenged regions,

such as high latitude northern areas like Alaska. In order to

address the challenges posed by the unique characteristics of

these areas, we developed a teacher-student model for knowl-

edge transfer. The model leverages the expertise gained from

a CNN trained on the extensive Canadian dataset, comprising

Landsat images of regions with historical fire occurrences and

regions without fire occurrences. The performance evaluation

demonstrated a significant improvement in accuracy, with the

model achieving 88.96% accuracy on the Alaskan dataset.

These findings highlight the effectiveness of the teacher-

student model in mitigating challenges associated with limited

training data, contributing to improved wildfire monitoring and

prevention strategies in challenging geographical locations.

While the smaller size of the Alaskan dataset demonstrates

the effectiveness of transfer learning, it is important to note

that the higher performance observed in the larger Canadian

dataset cannot be solely attributed to its size. The PCA analysis

revealed distinct data distribution patterns, suggesting that the

effectiveness of the model is influenced by a combination of

factors. These factors potentially include not only the larger

dataset size but also the presence of better characterization

features in the Canadian dataset. These features encompass

higher data quality, finer-resolution imagery, different vegeta-

tion types, the influence of historic fire management practices,

and a wider variety of land-use types. Therefore, our study

emphasizes the significance of both dataset size and the

availability of better characterization features in achieving

improved wildfire prediction accuracy.

The rest of this paper is organized as follows. Section

II presents a concise literature review, discussing relevant

studies in the field. In Section III, we outline our methodology,

including details on the dataset used and the implementation of

the teacher-student model for knowledge transfer. Section IV

presents the experimental results, highlighting the performance

and accuracy achieved.

II. LITERATURE REVIEW

In this section, a brief literature review is provided to

explore the existing research and studies on wildfire prediction

and the application of transfer learning techniques in diverse

and geographically dispersed areas. The purpose of this sec-

tion is to provide an overview of the relevant literature and

methodologies employed in both wildfire prediction and trans-

fer learning. Wildfires pose significant challenges and have

far-reaching consequences in various regions, while transfer

learning offers a promising approach to leverage knowledge

from well-resourced regions for improved predictions in data-

challenged areas.

In the field of wildfire prediction, numerous studies have

explored the utilization of satellite images and remote sensing

data to enhance prediction accuracy. A comprehensive survey

of wildfire prediction and detection is provided in [14], [15].

Traditional approaches, including support vector machine [16],

decision trees [17], random forest [18], and logistic regression

[19] have been applied to assess risk and predict wildfire

occurrences. Additionally, deep learning techniques [20] and

CNNs [21] have been explored for risk assessment and wild-

fire prediction. However, these methods suffer from certain

limitations. Traditional approaches often rely on manually

engineered features derived from satellite images, which may

not fully capture the complex and diverse characteristics of

fire-prone regions. The scarcity of labeled data in specific

geographic areas also hinders model generalization and ac-

curacy. Recent studies have proposed CNN architectures in-

spired by well-established models like AlexNet, incorporating

video-based datasets [22]. Alternatively, they explore transfer

learning approaches using pretrained models such as VGG or

ResNet, primarily through fine-tuning the network parameters

rather than adapting them to different locations [23]. However,

these studies primarily focus on active fire detection rather than

risk prediction, limiting their applicability in proactive wildfire

management.

Transfer learning [11] has emerged as a valuable technique

in various domains, offering the potential to improve pre-

diction models by leveraging knowledge from well-resourced

areas.

The teacher-student model, a notable approach in transfer

learning, involves distilling knowledge from a pre-trained

teacher model into a student model, resulting in enhanced

prediction capabilities across different domains [24], [25].

The teacher-student model has been successfully employed

in various domains, such as computer vision and natural

language processing, to transfer knowledge and improve model

performance [12], [26]. However, its application in the domain

of wildfire prediction, particularly for transferring knowledge

between regions, remains largely unexplored. Additionally,

the teacher-student model has been utilized for self-training

purposes, where an unlabeled dataset is used to train a larger

or equally-sized student model [27].

In contrast to existing approaches, our methodology goes

beyond retraining a single model and extends the application

of teacher-student models for knowledge transfer between dif-

ferent regions. We also use a model fusion technique involving

two specialized student models, each focusing on distinct

aspects, thereby enhancing the overall predictive capabilities

in wildfire prediction. By leveraging the teacher-student model

and incorporating transfer learning techniques, this research

contributes to the advancement of wildfire monitoring and

prevention strategies in high-latitude northern regions. It pro-

vides valuable insights into the application of transfer learning

methods for enhancing prediction accuracy and decision-

making capabilities in data-challenged areas. Moreover, this

study is the first known instance of employing a teacher-

student model to transfer knowledge between regions in the
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domain of wildfire prediction, making a notable contribution

to the field.

III. MODELS AND METHODS

In this section, we outline the models and methods em-

ployed in our study for wildfire prediction using transfer

learning and the teacher-student model. Our approach aims to

leverage the knowledge acquired from a well-resourced region

to enhance wildfire prediction capabilities in data-challenged

areas. The proposed model consists of several steps. Firstly,

a teacher model ft is trained using a large labeled dataset

Dt. This model is then utilized to generate pseudo-labels

by applying it to a smaller and more challenging unlabeled

dataset Ds. These pseudo-labels indicate whether an area is

at risk of a wildfire or not. Next, two student models, fs1
and fs2 , are trained using the combined datasets, Ds and Dt,

where Ds now includes labels based on the teacher model’s

predictions. Combining datasets provides a richer and more

diverse training set for the student models. The student model

fs1 focuses on predicting wildfires, while fs2 is trained for

non-wildfire areas. By incorporating the knowledge obtained

from the teacher model, the teacher-student model aims to

enhance the accuracy of wildfire predictions on the challenging

and unlabeled dataset Ds. The use of two student models

allows for specialized training and independent analysis for

each class, leading to improved performance evaluation and

model insights. An overview of our model is given in Fig. 1.

A. Training Teacher Model with Labeled Dataset

The teacher model, ft, employed in our work is a con-

volutional neural network (CNN) that serves as a pivotal

component in the knowledge transfer process for wildfire

prediction. This model consists of multiple layers designed to

capture spatial features inherent in the input images. During

the training process, ft effectively acquires knowledge and ex-

pertise in distinguishing areas at a higher risk of wildfires from

those with limited fire incidents. This acquired knowledge

serves as a foundation for the subsequent knowledge transfer to

the student models, empowering them to enhance their wildfire

prediction capabilities. By leveraging the insights gained by

the teacher model, the student models become equipped with

improved abilities to identify and assess the likelihood of

wildfires in different geographic regions. The architecture of

the CNN model is shown in Fig. 2. It includes a Conv2D

layer that performs two-dimensional convolution to extract

important features from the input data. The MaxPooling2D

layer applies downsampling, reducing the spatial dimensions

of the data. The Flatten layer converts the multidimensional

data into a one-dimensional vector for further processing.

Dense layers are fully connected layers where neurons in one

layer are connected to neurons in the previous layer. The model

architecture has been empirically determined and optimized

for our task, with ReLU activation functions introducing non-

linearity. In the output layer, a sigmoid activation function is

used for binary classification. The model is trained using the

‘adam’ optimizer and the binary cross-entropy loss function.

B. Pseudo-Label Generation using the Teacher Model

In the pseudo-label generation step, we leverage the trained

teacher model, ft, to assign pseudo-labels to an unlabeled

dataset, Ds, indicating the likelihood of wildfire presence in

each area. These pseudo-labels are obtained by applying ft
to Ds and thresholding the predictions. The pseudo-labeled

samples are then combined with the labeled dataset, Dt, to

create a more diverse training set for the student models, fs1
and fs2 . By incorporating the teacher model’s knowledge, the

student models enhance their wildfire prediction capabilities.

This approach improves the accuracy of wildfire predictions

on the challenging and unlabeled dataset, Ds, and enables

specialized training and independent analysis for each class.

C. Training the Student Models

The student models, denoted as fs1 and fs2 , are trained

using the combined datasets, which include both labeled data

Dt and pseudo-labeled data Ds. The labeled dataset Dt

contains a large number of labeled samples, while the smaller

and more challenging unlabeled dataset Ds is used to generate

pseudo-labels using the teacher model. During the training

process, the student models benefit from both the labeled

and pseudo-labeled data. The labeled data provides ground

truth information for training, while the pseudo-labeled data

generated by the teacher model provides additional training

samples for the student models. This combination of labeled

and pseudo-labeled data enriches the training set and improves

the generalization capability of the student models.

Both student models, fs1 and fs2 , employ a similar CNN

architecture to the teacher model, ft. This design choice

is based on evaluating different architectures and selecting

the one that yields the best performance for the student

models. By utilizing a similar architecture, the student models

can effectively benefit from the learned representations and

spatial features captured by the teacher model. The training of

the student models involves optimizing their respective CNN

architectures using the combined dataset. This training process

allows the student models to learn and refine their predictive

abilities based on the combined knowledge from the teacher

model and the labeled and pseudo-labeled data.

Our approach aims to significantly enhance the accuracy

and reliability of wildfire predictions across diverse geographic

regions by harnessing the specialized capabilities of the stu-

dent models. By employing two distinct student models within

our framework, we leverage their unique characteristics and

expertise to address the challenges and variations present in

different areas. This enables us to effectively capture the

complex patterns and behaviors associated with wildfires,

leading to more precise and reliable predictions. Through

the combined efforts of the student models, our approach

offers an advanced solution for wildfire prediction that ex-

hibits improved performance and adaptability across various

geographic regions.
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Fig. 1. Block diagram of the proposed model for transferring knowledge from the Canadian dataset to the Alaskan dataset.

Fig. 2. Architecture of the Convolutional Neural Network (CNN) model for the teacher model

D. Fusion of Student Models

Our late fusion technique combines the predictions of two

student models, represented by fs1 and fs2 , specializing in

wildfires and non-wildfire areas, respectively, to enhance the

accuracy of our wildfire prediction system. Initially, each

model independently makes a hard decision, denoted as ys1
and ys2 , based on their respective expertise. In the case where

ys1 �= ys2 , indicating a discrepancy or uncertainty, a fusion

process is initiated. The model that made the hard decision,

fs1 , incorporates the soft decision made by fs2 , refining

its prediction by combining the posterior probabilities. This

fusion-based approach harnesses the strengths and insights of

both models, resulting in a comprehensive and more reliable

prediction for wildfire detection.

Algorithm 1 summarizes the process of Section III.

IV. EXPERIMENTAL RESULTS

A. Dataset

The dataset used in this study consists of satellite images

from two different regions: Canada and Alaska. The Canadian

dataset [28] comprises 42,848 satellite images that have been

divided into training, testing, and validation sets. These images

were generated using MapBox API and uploaded to Kaggle

[28]. Each image is a 350 pixel by 350 pixel RGB image

centered on either the location of a wildfire or a location where

there has never been a wildfire. The original wildfire points

data for Canada was obtained from the Canadian government

[29]. The dataset includes satellite images captured over a

period spanning from April 30, 1972, to October 31, 2021.

The Alaskan dataset used in this study comprises satellite

images collected by the research team from Landsat, a series

of Earth observation satellites operated by NASA and the U.S.

Geological Survey (USGS). The dataset covers a substantial

period from 2015 to 2021 and includes wildfire events. Fil-

tering criteria were applied to select wildfire locations based

on factors such as minimum acreage burned and exclusion

of false alarms, including points that are expected to expe-

rience wildfire occurrences. ArcGIS Pro [30], a geographic

information system (GIS) software developed by Esri, was

utilized for data processing, including the filtering of wildfire

locations and performing a nearest neighbor search. The re-

sulting dataset includes Landsat 8 satellite images obtained for

each selected wildfire location using the Google Earth Engine

API. Images captured during the subsequent summer season
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Algorithm 1 Pseudocode for the proposed model.

Require:
Labeled images Dt = {(x1, y1), (x2, y2), ..., (xn, yn)} and unlabeled images Ds = {x̃1, x̃2, ..., x̃m}

1: θ∗ ← Adam ( 1
n

∑n
i=1 loss(yi, ft(xi, θ)))

2: Generate pseudolabels for Ds using ft :
ỹi ← ft(x̃i, θ

∗) ∀i = 1, ...,m
3: Combine labeled dataset Dt with pseudo-labeled dataset Ds to create combined datasets Dcs:

Dc1 ← Ds ∪Dt1 = {(xi, yi) | (xi, yi) ∈ Dt, yi = “Wildfire”}
Dc2 ← Ds ∪Dt2 = {(xi, yi) | (xi, yi) ∈ Dt, yi = “Nowildfire”}

4: θ∗sj ← Adam ( 1
n

∑
(xi,yi)∈Dc1

loss(yi, ft(xi, θsj )), j = 1, 2)

5: for each (xi, yi) ∈ Dc do � Model fusion

6: if fs1(xi, θ
∗
s1) �= fs2(xi, θ

∗
s2) then

7: p1 ← fs1(xi, θ
∗
s1) � p stands for posterior probability

8: p2 ← fs2(xi, θ
∗
s2)

9: pŷi ← α · p1 + (1− α) · p2
10: else
11: ŷi ← fs1(xi, θ

∗
s1)

12: end if
13: end for

with minimal snow and cloud cover were chosen. Additionally,

“no-wildfire” images were generated using a nearest neighbor

search approach implemented in ArcGIS Pro. This approach

involved identifying locations in close proximity to recorded

wildfire locations, ensuring the selection of suitable areas

without wildfire occurrences.

B. Data Distribution Analysis

To gain insights into the data distribution of the satellite

images from Alaska and Canada, we performed PCA on the

dataset. PCA allows us to reduce the dimensionality of the

data while retaining the most important variations present in

the dataset. The PCA analysis was conducted separately for the

Alaska and Canadian datasets. Fig. 3 presents a scatter plot of

the dataset projected onto the two principal components. The

x-axis represents the first principal component, and the y-axis

represents the second principal component. Each point on the

plot corresponds to an image in the dataset, and the color of

the point indicates its label (fire or no wildfire).

From the scatter plot, we can observe distinct data distribu-

tion differences between the Alaska and Canadian datasets. In

the Canadian dataset, the fire and no wildfire classes exhibit

relatively well-separated clusters, indicating a clear distinction

between the two classes. However, in the Alaska dataset, the

separation between the fire and no wildfire classes is less

pronounced, with more overlap between the clusters. This sug-

gests that the classification task for Alaska is more challenging

due to the similarity in data distribution between the fire and

no wildfire classes. The smaller size of the Alaskan dataset

demonstrates the effectiveness of transfer learning, but the

higher performance in the larger Canadian dataset cannot be

solely attributed to its size. The PCA analysis reveals distinct

patterns in the data distribution which may be influenced

by superior characterization features in the Canadian dataset.

These features potentially include enhanced data quality, finer-

Fig. 3. Scatter plot of the Alaska and Canadian datasets projected onto the
first two principal components.

resolution imagery, diverse vegetation types, the impact of

historical fire management practices, and a broader range of

land-use types.

The observed variations in data distribution and the com-

plexities in wildfire classification tasks highlight the im-

portance of exploring alternative approaches to address the

challenges of predicting wildfire in diverse environments.

C. Performance Analysis and Comparative Evaluation of
Wildfire Prediction: Study on Canadian and Alaskan Datasets:

This section presents the analysis and comparison of dif-

ferent methods for predicting wildfires on the Canadian

and Alaskan datasets. In our experimental setup, we allo-

cated 30% of the dataset for testing purposes, ensuring a

532

Authorized licensed use limited to: UAA/APU Consortium Library. Downloaded on August 30,2024 at 19:36:50 UTC from IEEE Xplore.  Restrictions apply. 



reliable evaluation of the models’ performance. Addition-

ally, we assigned equal importance (with alpha=0.5) to both

wildfire specialists and non-wildfire specialists during the

training process. The accuracy (%) results of various ap-

proaches, including Logistic Regression (LR), Multilayer Per-

ceptron (MLP), VGG19, ResNet-50, MobileNet, EfficientNet-

B4, EfficientNet-B7, CNN1, and the Teacher model, are

summarized in Table I. In the Canadian dataset, all models

achieved relatively high accuracies. Notably, the CNN1 model,

consisting of three convolutional layers with max pooling,

followed by a flatten layer, two dense layers, and a sigmoid

output layer, achieved the highest accuracy of 98.40% on the

Canadian dataset. This demonstrates the effectiveness of con-

volutional neural networks in accurately predicting wildfires

using satellite images in the Canadian region.

However, when these models were applied to the Alaskan

dataset, the performance significantly dropped. LR and MLP

achieved accuracies of 30.40% and 30.10%, respectively,

indicating poor performance. The deep learning models also

struggled to perform well on the Alaskan dataset, with ac-

curacies ranging from 51.23% to 60.89%. The CNN1 model

achieved an accuracy of 75.60%, which is higher compared to

other models but still relatively low. These findings underscore

the need for improved generalization capabilities of wildfire

prediction models, as even strong models demonstrate limited

performance due to variations in data distribution and the

unique characteristics of the Alaskan region. To address the

limitations of the models when applied to the Alaskan dataset,

we proposed the use of a teacher-student model for knowledge

transfer. By leveraging the knowledge acquired from the

teacher model trained on the larger Canadian dataset, we aim

to enhance the prediction capabilities on the Alaskan dataset.

The next section will discuss the evaluation of the teacher-

student model, demonstrating its effectiveness in mitigating the

challenges associated with limited training data and improv-

ing wildfire prediction accuracy in challenging geographical

locations.

TABLE I
COMPARISON OF ACCURACY (%) FOR DIFFERENT METHODS ON

CANADIAN AND ALASKAN DATASETS. LR CORRESPONDS TO LOGISTIC

REGRESSION, MLP REPRESENTS MULTILAYER PERCEPTRON.

Method Canada data Alaska data
LR 88.90 30.40

MLP 89.40 30.10
VGG19 [31] 94.64 51.23

ResNet-50 [32] 95.84 50.00
MobileNet [33] 96.14 59.67

EfficientNet-B4 [34] 79.96 60.89
EfficientNet-B7 [34] 85.43 58.12

CNN1 98.40 75.60
Teacher model 94.23 72.23

D. Enhancing Wildfire Prediction in Data-Challenged Re-
gions: Results of Teacher-Student Model:

The teacher-student model was developed to tackle the

challenges stemming from limited training data and to en-

hance wildfire prediction accuracy in data-challenged regions.

Leveraging the knowledge obtained from the teacher model

trained on the larger Canadian dataset, our objective was to

improve prediction capabilities on the Alaskan dataset. The

teacher model served as a valuable source of knowledge, while

the student model was specifically designed to learn from the

teacher’s predictions. In order to assess the performance of the

teacher-student model on the Alaskan dataset, we first present

the confusion matrix analysis.
The development of the teacher-student model aimed to

address the challenges arising from limited training data and

improve the accuracy of wildfire prediction in regions with

data limitations. By leveraging the knowledge gained from

the teacher model trained on the larger Canadian dataset,

our objective was to enhance prediction capabilities on the

Alaskan dataset. The teacher model played a crucial role as

a valuable source of knowledge, while the student model was

designed to learn from the teacher’s predictions. To evaluate

the performance of the teacher-student model on the Alaskan

dataset, the confusion matrix analysis is presented in Fig. 4.

Fig. 4. Confusion matrix of the Teacher-Student model on the Alaskan dataset

Table II presents the results of different model configura-

tions for wildfire prediction on the Alaskan dataset, along with

various performance metrics. These metrics provide insights

into the effectiveness of each configuration and its implications

for wildfire prediction.
The first and third configurations involve a teacher-student

model with one student model learning from the teacher.

These configurations demonstrate the impact of incorporating

knowledge transferred from the teacher model, resulting in

improved prediction accuracy. The second and fourth configu-

rations utilize two student models with different specializations

and fusion. These configurations further enhance the accuracy

and F1-score compared to the first and third configurations.

The fourth configuration, the proposed model, achieves the

highest accuracy of 88.96% and the highest F1-score of

91.68%. This configuration, with two student models and
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TABLE II
RESULTS OF DIFFERENT MODEL CONFIGURATIONS

Model Configuration Accuracy (%) F1-Score (%) Precision (%) Recall (%)
CNN1 (Teacher) + 1 CNN1 (Student) 81.59 87.81 81.12 94.32

CNN1 (Teacher) + 2 CNN1 (Students) + Fusion 81.87 85.13 100 74.19
Teacher Model + 1 Student 83.42 84.40 83.42 86.60

Teacher Model + 2 Students + Fusion (the proposed model) 88.96 91.68 97.00 86.90

fusion, demonstrates the strongest performance in terms of

accuracy and precision.

These results highlight the effectiveness of the teacher-

student model in enhancing wildfire prediction capabilities in

data-challenged regions like Alaska. By leveraging the knowl-

edge transferred from the teacher model to the student models,

substantial improvements in accuracy, precision, and overall

performance are achieved. The proposed model contributes

to the advancement of wildfire monitoring and prevention

strategies in challenging geographical locations.

V. CONCLUSION

The results of our study highlight the effectiveness of our

proposed model in improving wildfire prediction capabili-

ties in challenging geographical locations. By leveraging the

teacher-student model and transfer learning techniques, we

have successfully enhanced prediction accuracy by incorpo-

rating knowledge from a teacher model trained on a larger

Canadian dataset. Our research addresses the challenges of

accurate wildfire prediction in diverse environments, with a

specific focus on the unique characteristics of the Alaskan

region. This research significantly contributes to the advance-

ment of wildfire monitoring and prevention strategies by pro-

viding a valuable framework for knowledge transfer and model

adaptation in areas with varying data availability and distinct

geographical features. Furthermore, our Alaskan dataset and

the corresponding results serve as a valuable benchmark for

evaluating wildfire prediction models in diverse environments.

REFERENCES

[1] T. Sanford, R. Wang, and A. Kenwa, “The age of alaskan wildfires,”
Climate Central, Princeton, 2015.

[2] J. Balson, M. Chinchilla, C. Lu, J. Washburn, and N. Lohia, “Identifi-
cation and characterization of forest fire risk zones leveraging machine
learning methods,” SMU Data Science Review, vol. 5, no. 2, p. 3, 2021.

[3] C. F. Waigl, M. Stuefer, A. Prakash, and C. Ichoku, “Detecting high
and low-intensity fires in alaska using viirs i-band data: An improved
operational approach for high latitudes,” Remote Sensing of Environment,
vol. 199, pp. 389–400, 2017.

[4] B. Leblon, L. Bourgeau-Chavez, and J. San-Miguel-Ayanz, “Use of
remote sensing in wildfire management,” Sustainable development-
authoritative and leading edge content for environmental management,
pp. 55–82, 2012.

[5] M. A. Enoh, U. C. Okeke, and N. Y. Narinua, “Identification and
modelling of forest fire severity and risk zones in the cross–niger
transition forest with remotely sensed satellite data,” The Egyptian
Journal of Remote Sensing and Space Science, vol. 24, no. 3, pp. 879–
887, 2021.

[6] M. C. Hansen and T. R. Loveland, “A review of large area monitoring of
land cover change using landsat data,” Remote sensing of Environment,
vol. 122, pp. 66–74, 2012.

[7] M. Gazzea, L. M. Kristensen, F. Pirotti, E. E. Ozguven, and R. Arghan-
deh, “Tree species classification using high-resolution satellite imagery
and weakly supervised learning,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 60, pp. 1–11, 2022.

[8] A. York and R. Jandt, “Opportunities to apply remote sensing in boreal,”
in Arctic Wildfire Management & Science: A Workshop Report www.
frames. gov/catalog/57849 (University of Alaska, Fairbanks, 2019),
2019.

[9] A. Y. Cho, S.-e. Park, D.-j. Kim, J. Kim, C. Li, and J. Song, “Burned area
mapping using unitemporal planetscope imagery with a deep learning
based approach,” IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, vol. 16, pp. 242–253, 2022.

[10] K. Ahmad, K. Pogorelov, M. Riegler, O. Ostroukhova, P. Halvorsen,
N. Conci, and R. Dahyot, “Automatic detection of passable roads after
floods in remote sensed and social media data,” Signal Processing:
Image Communication, vol. 74, pp. 110–118, 2019.

[11] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans-
actions on knowledge and data engineering, vol. 22, no. 10, pp. 1345–
1359, 2009.

[12] J. Yim, D. Joo, J. Bae, and J. Kim, “A gift from knowledge distillation:
Fast optimization, network minimization and transfer learning,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 4133–4141.

[13] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” arXiv preprint arXiv:1503.02531, 2015.

[14] F. Abid, “A survey of machine learning algorithms based forest fires
prediction and detection systems,” Fire technology, vol. 57, no. 2, pp.
559–590, 2021.

[15] P. Jain, S. C. Coogan, S. G. Subramanian, M. Crowley, S. Taylor, and
M. D. Flannigan, “A review of machine learning applications in wildfire
science and management,” Environmental Reviews, vol. 28, no. 4, pp.
478–505, 2020.

[16] O. Ghorbanzadeh, T. Blaschke, K. Gholamnia, and J. Aryal, “Forest fire
susceptibility and risk mapping using social/infrastructural vulnerability
and environmental variables,” Fire, vol. 2, no. 3, p. 50, 2019.

[17] R. Sharma, S. Rani, and I. Memon, “A smart approach for fire prediction
under uncertain conditions using machine learning,” Multimedia Tools
and Applications, vol. 79, pp. 28 155–28 168, 2020.

[18] P. Janiec and S. Gadal, “A comparison of two machine learning
classification methods for remote sensing predictive modeling of the
forest fire in the north-eastern siberia,” Remote Sensing, vol. 12, no. 24,
p. 4157, 2020.

[19] Y. Michael, D. Helman, O. Glickman, D. Gabay, S. Brenner, and
I. M. Lensky, “Forecasting fire risk with machine learning and dynamic
information derived from satellite vegetation index time-series,” Science
of The Total Environment, vol. 764, p. 142844, 2021.

[20] B. Lattimer, J. Hodges, and A. Lattimer, “Using machine learning
in physics-based simulation of fire,” Fire Safety Journal, vol. 114, p.
102991, 2020.

[21] G. Zhang, M. Wang, and K. Liu, “Forest fire susceptibility modeling
using a convolutional neural network for yunnan province of china,”
International Journal of Disaster Risk Science, vol. 10, pp. 386–403,
2019.

[22] K. Muhammad, J. Ahmad, and S. W. Baik, “Early fire detection using
convolutional neural networks during surveillance for effective disaster
management,” Neurocomputing, vol. 288, pp. 30–42, 2018.

[23] J. Sharma, O.-C. Granmo, M. Goodwin, and J. T. Fidje, “Deep convo-
lutional neural networks for fire detection in images,” in Engineering
Applications of Neural Networks: 18th International Conference, EANN
2017, Athens, Greece, August 25–27, 2017, Proceedings. Springer,
2017, pp. 183–193.

[24] L. Wang and K.-J. Yoon, “Knowledge distillation and student-teacher
learning for visual intelligence: A review and new outlooks,” IEEE

534

Authorized licensed use limited to: UAA/APU Consortium Library. Downloaded on August 30,2024 at 19:36:50 UTC from IEEE Xplore.  Restrictions apply. 



transactions on pattern analysis and machine intelligence, vol. 44, no. 6,
pp. 3048–3068, 2021.

[25] C. Hu, X. Li, D. Liu, X. Chen, J. Wang, and X. Liu, “Teacher-
student architecture for knowledge learning: A survey,” arXiv preprint
arXiv:2210.17332, 2022.

[26] X. Jiao, Y. Yin, L. Shang, X. Jiang, X. Chen, L. Li, F. Wang, and
Q. Liu, “Tinybert: Distilling bert for natural language understanding,”
arXiv preprint arXiv:1909.10351, 2019.

[27] Q. Xie, M.-T. Luong, E. Hovy, and Q. V. Le, “Self-training with
noisy student improves imagenet classification,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, 2020,
pp. 10 687–10 698.

[28] A. ABA, “Wildfire prediction dataset,”
https://www.kaggle.com/datasets/abdelghaniaaba/wildfire-prediction-
dataset, accessed [Date Accessed].

[29] Government of Canada, “Wildfire points data for canada,”
https://open.canada.ca/data/en/dataset/9d8f219c-4df0-4481-926f-
8a2a532ca003, accessed [Date Accessed].

[30] “ArcGIS Pro,” https://www.esri.com/en-us/arcgis/products/arcgis-
pro/overview, accessed July 14, 2023.

[31] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[32] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[33] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[34] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for con-
volutional neural networks,” in International conference on machine
learning. PMLR, 2019, pp. 6105–6114.

535

Authorized licensed use limited to: UAA/APU Consortium Library. Downloaded on August 30,2024 at 19:36:50 UTC from IEEE Xplore.  Restrictions apply. 


