Leveraging Large Language Models to Improve REST API Testing

Myeongsoo Kim
Georgia Institute of Technology
Atlanta, Georgia, USA
mkim754@gatech.edu

Saurabh Sinha
IBM Research
Yorktown Heights, New York, USA
sinhas@us.ibm.com

ABSTRACT

The widespread adoption of REST APIs, coupled with their growing
complexity and size, has led to the need for automated REST API
testing tools. Current tools focus on the structured data in REST
API specifications but often neglect valuable insights available in
unstructured natural-language descriptions in the specifications,
which leads to suboptimal test coverage. Recently, to address this
gap, researchers have developed techniques that extract rules from
these human-readable descriptions and query knowledge bases
to derive meaningful input values. However, these techniques are
limited in the types of rules they can extract and prone to produce
inaccurate results. This paper presents RESTGPT, an innovative
approach that leverages the power and intrinsic context-awareness
of Large Language Models (LLMs) to improve REST API testing.
RESTGPT takes as input an API specification, extracts machine-
interpretable rules, and generates example parameter values from
natural-language descriptions in the specification. It then augments
the original specification with these rules and values. Our evalua-
tions indicate that RESTGPT outperforms existing techniques in
both rule extraction and value generation. Given these promising
results, we outline future research directions for advancing REST
API testing through LLMs.

CCS CONCEPTS

« Information systems — RESTful web services; « Software
and its engineering — Software testing and debugging.

KEYWORDS
Large Language Models for Testing, OpenAPI Specification Analysis

ACM Reference Format:

Myeongsoo Kim, Tyler Stennett, Dhruv Shah, Saurabh Sinha, and Alessan-
dro Orso. 2024. Leveraging Large Language Models to Improve REST API
Testing. In New Ideas and Emerging Results (ICSE-NIER’24), April 14-20, 2024,
Lisbon, Portugal. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/
3639476.3639769

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE-NIER 24, April 14-20, 2024, Lisbon, Portugal

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0500-7/24/04.

https://doi.org/10.1145/3639476.3639769

Tyler Stennett
Georgia Institute of Technology
Atlanta, Georgia, USA
tstennett3@gatech.edu

Dhruv Shah
Georgia Institute of Technology
Atlanta, Georgia, USA
dshah374@gatech.edu

Alessandro Orso
Georgia Institute of Technology
Atlanta, Georgia, USA
orso@cc.gatech.edu

1 INTRODUCTION

In today’s digital era, web applications and cloud-based systems
have become ubiquitous, making REpresentational State Transfer
(REST) Application Programming Interfaces (APIs) pivotal elements
in software development [29]. REST APIs enable disparate systems
to communicate and exchange data seamlessly, facilitating the in-
tegration of a wide range of services and functionalities [11]. As
their intricacy and prevalence grow, effective testing of REST APIs
has emerged as a significant challenge [12, 19, 39].

Automated REST API testing tools (e.g., [3, 5, 6, 9, 14-16, 18, 20,
22, 38]) primarily derive test cases from API specifications [2, 23, 25,
33]. Their struggle to achieve high code coverage [19] often stems
from difficulties in comprehending the semantics and constraints
present in parameter names and descriptions [1, 17, 19]. To address
these issues, assistant tools have been developed. These tools lever-
age Natural Language Processing (NLP) to extract constraints from
parameter descriptions [17] and query parameter names against
databases [1], such as DBPedia [7]. However, attaining high accu-
racy remains a significant challenge for these tools. Moreover, they
are limited in the types and complexity of rules they can extract.

This paper introduces RESTGPT, a new approach that harnesses
Large Language Models (LLMs) to enhance REST API specifications
by identifying constraints and generating relevant parameter val-
ues. Given an OpenAPI Specification [25], RESTGPT augments it
by deriving constraints and example values. Existing approaches
such as NLP2REST [17] require a validation process to improve
precision, which involves not just the extraction of constraints
but also executing requests against the APIs to dynamically check
these constraints. Such a process demands significant engineer-
ing effort and a deployed service instance, making it cumbersome
and time-consuming. In contrast, RESTGPT achieves higher accu-
racy without requiring expensive validation. Furthermore, unlike
ARTE [1], RESTGPT excels in understanding the context of a pa-
rameter name based on an analysis of the parameter description,
thus generating more contextually relevant values.

Our preliminary results demonstrate the significant advantage
of our approach over existing tools. Compared to NLP2REST with-
out the validation module, our method improves precision from
50% to 97%. Even when compared to NLP2REST equipped with
its validation module, our approach still increases precision from
79% to 97%. Additionally, RESTGPT successfully generates both
syntactically and semantically valid inputs for 73% of the parame-
ters over the analyzed services and their operations, a considerable

https://doi.org/10.1145/3639476.3639769
https://doi.org/10.1145/3639476.3639769
https://doi.org/10.1145/3639476.3639769

/institutions:

get:
operationld: searchInstitutions
produces:
- application/json
parameters:
- name: filters
in: query
required: false
type: string
description: The filter for the bank search.
Examples:
* Filter by State name
TSTNAME: \"West Virginia\"~
* Filter for any one of multiple State names
TSTNAME: (\"West Virginia\",\"Delaware\")"
- name: sort_order
in: query
required: false
type: string
description: Indicator if ascending (ASC) or descending (
DESC)
responses :
7200’ :
description: successful operation

schema:
type: object

Figure 1: A part of FDIC Bank Data’s OpenAPI specification.

improvement over ARTE, which could generate valid inputs for 17%
of the parameters only. Given these encouraging results, we outline
a number of research directions for leveraging LLMs in other ways
for further enhancing REST API testing.

2 BACKGROUND AND MOTIVATING
EXAMPLE

2.1 REST APIs and OpenAPI Specification

REST APIs are interfaces built on the principles of Representational
State Transfer (REST), a design paradigm for networked applica-
tions [11]. Designed for the web, REST APIs facilitate data exchange
between clients and servers through predefined endpoints primar-
ily using the HTTP protocol [30, 34]. Each client interaction can
include headers and a payload, while the corresponding response
typically contains headers, content, and an HTTP status code indi-
cating the outcome.

OpenAPI Specification (OAS) [25] is arguably the industry stan-
dard for defining RESTful API interfaces. It offers the advantage
of machine-readability, supporting automation processes, while
also presenting information in a clear, human-readable format. Key
features of OAS include the definition of endpoints, the associated
HTTP methods, expected input parameters, and potential responses.
As an example, Figure 1 shows a portion of the FDIC Bank Data’s
API specification. This part of the specification illustrates how one
might query information about institutions. It also details an ex-
pected response, such as the 200 status code, which indicates a
successfully processed scenario.

2.2 REST API Testing and Assistant Tools

Automated REST API testing tools [5, 6, 9, 14-16, 18, 20, 22, 38]
derive test cases from widely-accepted specifications, primarily
OpenAPI [25]. However, these tools often struggle to achieve com-
prehensive coverage [19]. A significant reason for this is their inabil-
ity to interpret human-readable parts of the specification [17, 19].
For parameters such as filters and sort_order shown in Figure 1,

Rule Generator

GPT-3.5 Turbo
Prompts Operation
Constraint
Ia =
| — Q
Parameter
OpenAPI Constraint
Specification Q Specificati Enhanced
pecification ;
Specification N . Building \)Specmcanon
P p

Parsing " | Parameter Type

¢ T A
Human Readable and Format

L

Parameter
Examples

L

Machine Readable

Figure 2: Overview of our approach.

testing tools tend to generate random string values, which are often
not valid inputs for such parameters.

In response to these challenges, assistant tools have been intro-
duced to enhance the capabilities of these testing tools. For instance,
ARTE [1] taps into DBPedia [7] to generate relevant parameter
example values. Similarly, NLP2REST applies natural language pro-
cessing to extract example values and constraints from descriptive
text portions of the specifications [17].

2.3 Large Language Model

Large Language Models (LLMs) [13, 24, 35] represent a transfor-
mative leap in the domains of natural language processing (NLP)
and Machine Learning. Characterized by their massive size, often
containing billions of parameters, these models are trained on vast
text corpora to generate, understand, and manipulate human-like
text [28]. The architecture behind LLMs are primarily transformer-
based designs [36]. Notable models based on this architecture in-
clude GPT (Generative Pre-trained Transformer) [27], designed
mainly for text generation, and BERT (Bidirectional Encoder Repre-
sentations from Transformers) [10], which excels in understanding
context. These models capture intricate linguistic nuances and se-
mantic contexts, making them adept at a wide range of tasks from
text generation to answering questions.

2.4 Motivating Example

The OpenAPI specification for the Federal Deposit Insurance Cor-
poration (FDIC) Bank Data’s API, shown in Figure 1, serves to offer
insights into banking data. Using this example, we highlight the
challenges in parameter value generation faced by current REST
API testing assistant tools and illustrate how RESTGPT addresses
these challenges.

(1) Parameter filters: Although the description provides guid-
ance on how the parameter should be used, ARTE’s de-
pendency on DBPedia results in no relevant value gener-
ation for filters. NLP2REST, with its keyword-driven ex-
traction, identifies examples from the description, notably
aided by the term “example”. Consequently, patterns such
as STNAME: "West Virginia" and STNAME: ("West Virginia",
"Delaware") are accurately captured.

(2) Parameter sort_order: Here, both tools exhibit limitations.
ARTE, while querying DBPedia, fetches unrelated values

such as “List of colonial heads of Portuguese Timor”, high-
lighting its contextual inadequacy. In the absence of identifi-
able keywords, NLP2REST fails to identify “ASC” or “DESC”
as potential values.

In contrast to these tools, RESTGPT is much more effective: with
a deeper semantic understanding, RESTGPT accurately discerned
that the filters parameter was contextualized around state names
tied to bank records, and generated test values such as STNAME:
"California" and multi-state filters such as STNAME: ("California",
"New York"). Also, it successfully identifies the values “ASC” or
“DESC” from the description of the sort_order parameter. This
example illustrates RESTGPT’s superior contextual understanding,
which enable it to outperform the constrained or context-blind
methodologies of existing tools.

3 OUR APPROACH

3.1 Overview

Figure 2 illustrates the RESTGPT workflow, which starts by parsing
the input OpenAPI specification. During this phase, both machine-
readable and human-readable sections of each parameter are iden-
tified. The human-readable sections provide insight into four con-
straint types: operational constraints, parameter constraints, pa-
rameter type and format, and parameter examples [17].

The Rule Generator, using a set of crafted prompts, extracts
these four rules. We selected GPT-3.5 Turbo as the LLM for this
work, given its accuracy and efficiency, as highlighted in a recent
report by OpenAl [24]. The inclusion of few-shot learning further
refines the model’s output. By providing the LLM with concise,
contextually-rich instructions and examples, the few-shot prompts
ensure the generated outputs are both relevant and precise [8, 21].
Finally, RESTGPT combines the generated rules with the original
specification to produce an enhanced specification.

3.2 Rule Generator

To best instruct the model on rule interpretation and output for-
matting, our prompts are designed around four core components:
guidelines, cases, grammar highlights, and output configurations.

Guidelines

1. Identify the parameter using its name and description.
2. Extract logical constraints from the parameter descrip-
tion, adhering strictly to the provided format.

3. Interpret the description in the least constraining way.

The provided guidelines serve as the foundational instructions
for the model, framing its perspective and clarifying its primary
objectives. Using the guidelines as a basis, RESTGPT can then
proceed with more specific prompting.

Case 1: If the description is non-definitive about parameter
requirements: Output "None".

Case 10: For complex relationships between parameters:
Combine rules from the grammar.

The implementation of cases in model prompting plays a pivotal
role in directing the model’s behaviour, ensuring that it adheres
to precise criteria as depicted in the example. Drawing inspiration
from Chain-of-Thought prompting [37], we decompose rule extrac-
tion into specific, manageable pieces to mitigate ambiguity and,
consequently, improve the model’s processing abilities.

Grammar Highlights

Relational Operators: °<’,’>’,’<=’",’>=",’==","! =
S s

Arithmetic Operators: '+, "=, '«’,’/
Dependency Operators: "AllOrNone’, ’ZeroOrOne’, ...

The Grammar Highlights emphasize key operators and vocab-
ulary that the model should recognize and employ during rule
extraction. By providing the model with a fundamental context-
specific language, RESTGPT identifies rules within text.

Output Configurations

Example Parameter Constraint: min [minimum], max
[maximum], default [default]

Example Parameter Format: type [type], items [item
type], format [format], collectionFormat [collectionFor-
mat]

After guiding the model through the rule-extraction process
via specific prompting, we lastly define output formatting to com-
pile the model’s findings into a simple structure for subsequent
processing.

Additionally, the Rule Generator also oversees the value-generation
process, which is executed during the extraction of parameter ex-
ample rules. Our artifact [31] provides details of all the prompts
and their corresponding results.

3.3 Specification Enhancement

The primary objective of RESTGPT is to improve the effectiveness of
REST API testing tools. We accomplish this by producing enhanced
OpenAPI specifications, augmented with rules derived from the
human-readable natural-language descriptions in conjunction with
the machine-readable OpenAPI keywords [32].

As illustrated in Figure 2, the Specification Parsing stage extracts
the machine-readable and human-readable components from the
API specification. After rules from the natural language inputs have
been identified by the Rule Generator, the Specification Building
phase begins. During this phase, the outputs from the model are
processed and combined with the machine-readable components,
ensuring that there is no conflict between restrictions. For example,
the resulting specification must have the style attribute only if
the data type is array or object. The final result is an enriched
API specification that contains constraints, examples, and rules
extracted from the human-readable descriptions.

4 PRELIMINARY RESULTS

4.1 Evaluation Methodology

We collected nine RESTful services from the NLP2REST study. The
motivation behind this selection is the availability of a ground truth

Table 1: Effectiveness of NLP2REST and RESTGPT.

No. of Rules in NLP2REST Without Validation Process NLP2REST With Validation Process RESTGPT
REST Service | Ground Truth | TP | FP | FN | Precision | Recall | F; | TP | FP | EN | Precision | Recall | F; | TP | FP | FN | Precision | Recall | Fy
FDIC 45 42 | 36 | 3 54% 93% | 68% | 42 | 25 | 3 63% 93% | 75% | 44 | 0 | 1 100% 98% | 99%
Genome Nexus 81 79 | 3 | 2 96% 9% | 97% | 79 | 3 | 2 96% 9% | 97% | 75 | 0 | 6 100% 93% | 96%
LanguageTool 20 20 | 12 | 0 63% 100% | 77% | 18 | 2 | 2 90% 90% | 90% | 18 | 0 | 3 100% 86% | 92%
OCVN 17 5] 2 | 2 88% 88% | 88% | 13 | 1 | 4 93% 76% | 84% | 15 | 2 | 1 88% 94% | 91%
OhSome 14 13 66 | 1 16% 93% | 28% | 12 | 11 | 2 52% 80% | 63% | 12 | 3 | 2 80% 86% | 83%
OMDb 2 2 0| o 100% 100% | 100% | 2 | 0 | 0 100% 100% | 100% | 2 | 0 | © 100% 100% | 100%
REST Countries 32 28 | 1 | 4 97% 88% | 92% | 28 | 0 | 4 100% 88% | 93% | 30 | 0 | 2 100% 94% | 97%
Spotify 88 83 | 68 | 5 55% 9% | 69% | 82 | 28 | 6 75% 93% | 83% | 86 | 2 | 4 98% %% | 97%
YouTube 34 30 | 126 | 4 19% 88% | 32% | 28 | 9 | 6 76% 82% | 79% | 24 | 2 | 8 92% 75% | 83%
Total | 333 312|314 21| 50% | 94% | 65% | 304 |79 |29 | 79% | 91% | 85% [306 | 9 |27 | 97% | 92% | 94%

Table 2: Accuracy of ARTE and RESTGPT.

Service Name ARTE RESTGPT
FDIC 25.35% 77.46%
Genome Nexus 9.21% 38.16%
Language-Tool 0% 82.98%
OCVN 33.73% 39.76%
OhSome 4.88% 87.80%
OMDb 36.00% 96.00%
REST-Countries 29.66% 92.41%
Spotify 14.79% 76.06%
Youtube 0% 65.33%
Average 16.93% 72.68%

of extracted rules in the NLP2REST work [17]. Having this data,
we could easily compare our work with NLP2REST.

To establish a comprehensive benchmark, we incorporated a
comparison with ARTE as well. Our approach was guided by the
ARTE paper, from which we extracted the necessary metrics for
comparison. Adhering to ARTE’s categorization of input values as
Syntactically Valid and Semantically Valid [1], two of the authors
meticulously verified the input values generated by RESTGPT and
ARTE. Notably, we emulated ARTE’s approach in scenarios where
more than ten values were generated by randomly selecting ten
from the pool for analysis.

4.2 Results and Discussion

Table 1 presents a comparison of the rule-extraction capabilities
of NLP2REST and RESTGPT. RESTGPT excels in precision, recall,
and the F; score across a majority of the REST services. NLP2REST,
while effective, hinges on a validation process that involves evalu-
ating server responses to filter out unsuccessful rules. This method-
ology demands engineering effort, and its efficacy is constrained
by the validator’s performance.

In contrast, RESTGPT eliminates the need for such validation
entirely with its high precision. Impressively, RESTGPT’s precision
of 97% surpasses even the precision of NLP2REST post-validation,
which stands at 79%. This emphasizes that RESTGPT is able to de-
liver superior results without a validation stage. This result shows
an LLM’s superior ability in nuanced rule detection, unlike conven-
tional NLP techniques that rely heavily on specific keywords.

Furthermore, Table 2 presents data on accuracy of ARTE and
RESTGPT. The data paint a clear picture: RESTGPT consistently
achieves higher accuracy than ARTE across all services. This can
be attributed to the context-awareness capabilities of LLMs, as
discussed in Section 2. For example, in language-tool service, we
found that, for the language parameter, ARTE generates values

such as “Arabic”, “Chinese”, “English”, and “Spanish”. However,
RESTGPT understands the context of the language parameter, and

generates language code such as “en-US” and “de-DE”.

5 FUTURE PLANS

Given our encouraging results on LLM-based rule extraction, we
next outline several research directions that we plan to pursue in
leveraging LLMs for improving REST API testing more broadly.

Model Improvement. There are two ways in which we plan to
create improved models for supporting REST API testing. First, we
will perform task-specific fine-tuning of LLMs using data from APIs-
guru [4] and RapidAPI [26], which contain thousands of real-world
API specifications. We will fine-tune RESTGPT with these datasets,
which should enhance the model’s capability to comprehend di-
verse API contexts and nuances. We believe that this dataset-driven
refinement will help RESTGPT understand a broader spectrum of
specifications and generate even more precise testing suggestions.
Second, we will focus on creating lightweight models for support-
ing REST API testing, such that the models do not require expensive
computational resources and can be deployed on commodity CPUs.
To this end, we will explore approaches for trimming the model,
focusing on retaining the essential neurons and layers crucial for
our task.

Improving fault detection. RESTGPT is currently restricted
to detecting faults that manifest as 500 server response codes. By
leveraging LLMs, we intend to expand the types of bugs that can be
detected, such as bugs related to CRUD semantic errors or discrepan-
cies in producer-consumer relationships. By enhancing RESTGPT’s
fault-finding ability in this way, we aim to make automated REST
API testing more effective and useful in practice.

LLM-based Testing Approach. We aim to develop a REST API
testing tool that leverages server messages. Although server mes-
sages often contain valuable information, current testing tools fail
to leverage this information [17]. For instance, if a server hint sug-
gests crafting a specific valid request, RESTGPT, with its semantic
understanding, could autonomously generate relevant tests. This
would not only enhance the testing process but also ensure that
potential loopholes that the server messages may indicate would
not be overlooked.

ACKNOWLEDGMENTS

This work was partially supported by NSF, under grant CCF-0725202,
DOE, under contract DE-FOA-0002460, and gifts from Facebook,
Google, IBM Research, and Microsoft Research.

REFERENCES

(1]

[10]

[11]

[12]

[15

[16]

[17]

[18]

J. C. Alonso, A. Martin-Lopez, S. Segura, J. Garcia, and A. Ruiz-Cortes. 2023. ARTE:
Automated Generation of Realistic Test Inputs for Web APIs. IEEE Transactions
on Software Engineering 49, 01 (jan 2023), 348-363. https://doi.org/10.1109/TSE.
2022.3150618

API Blueprint. 2023. API Blueprint. https://apiblueprint.org/

Apiary. 2023. Dredd. https://github.com/apiaryio/dredd

APIs.guru. 2023. APIs-guru. https://apis.guru/

Andrea Arcuri. 2019. RESTful API Automated Test Case Generation with Evo-
Master. ACM Transactions on Software Engineering and Methodology (TOSEM) 28,
1, Article 3 (jan 2019), 37 pages. https://doi.org/10.1145/3293455

Vaggelis Atlidakis, Patrice Godefroid, and Marina Polishchuk. 2019. RESTler:
Stateful REST API Fuzzing. In Proceedings of the 41st International Conference on
Software Engineering (Montreal, Quebec, Canada) (ICSE '19). IEEE Press, Piscat-
away, NJ, USA, 748-758. https://doi.org/10.1109/ICSE.2019.00083

Christian Bizer, Jens Lehmann, Georgi Kobilarov, Séren Auer, Christian Becker,
Richard Cyganiak, and Sebastian Hellmann. 2009. Dbpedia-a crystallization point
for the web of data. Journal of web semantics 7, 3 (2009), 154-165.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877-1901.

Davide Corradini, Amedeo Zampieri, Michele Pasqua, Emanuele Viglianisi,
Michael Dallago, and Mariano Ceccato. 2022. Automated black-box testing
of nominal and error scenarios in RESTful APIs. Software Testing, Verification
and Reliability 32 (01 2022). https://doi.org/10.1002/stvr.1808

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
arXiv:1810.04805 [cs.CL]

Roy Thomas Fielding. 2000. Architectural Styles and the Design of Network-Based
Software Architectures. Ph. D. Dissertation. University of California, Irvine.
Amid Golmohammadi, Man Zhang, and Andrea Arcuri. 2023. Testing RESTful
APIs: A Survey. ACM Trans. Softw. Eng. Methodol. 33, 1, Article 27 (nov 2023),
41 pages. https://doi.org/10.1145/3617175

Google. 2023. Google Bard. https://bard.google.com/

Zac Hatfield-Dodds and Dmitry Dygalo. 2022. Deriving Semantics-Aware Fuzzers
from Web API Schemas. In Proceedings of the ACM/IEEE 44th International Confer-
ence on Software Engineering: Companion Proceedings (Pittsburgh, Pennsylvania)
(ICSE °22). Association for Computing Machinery, New York, NY, USA, 345-346.
https://doi.org/10.1145/3510454.3528637

Stefan Karlsson, Adnan Causevic, and Daniel Sundmark. 2020. QuickREST:
Property-based Test Generation of OpenAPI-Described RESTful APIs. In 2020
IEEE 13th International Conference on Software Testing, Validation and Verifica-
tion (ICST). IEEE Press, Piscataway, NJ, USA, 131-141. https://doi.org/10.1109/
ICST46399.2020.00023

Stefan Karlsson, Adnan Causevi¢, and Daniel Sundmark. 2021. Automatic
Property-based Testing of GraphQL APIs. In 2021 IEEE/ACM International Con-
ference on Automation of Software Test (AST). IEEE Press, Piscataway, NJ, USA,
1-10. https://doi.org/10.1109/AST52587.2021.00009

Myeongsoo Kim, Davide Corradini, Saurabh Sinha, Alessandro Orso, Michele
Pasqua, Rachel Tzoref-Brill, and Mariano Ceccato. 2023. Enhancing REST API
Testing with NLP Techniques. In Proceedings of the 32nd ACM SIGSOFT In-
ternational Symposium on Software Testing and Analysis (ISSTA 2023). Asso-
ciation for Computing Machinery, New York, NY, USA, 1232-1243. https:
//doi.org/10.1145/3597926.3598131

Myeongsoo Kim, Saurabh Sinha, and Alessandro Orso. 2023. Adaptive REST
API Testing with Reinforcement Learning. In 2023 38th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE Press, Piscataway, NJ,

[36

(37]

[38

[39]

USA, 446-458. https://doi.org/10.1109/ASE56229.2023.00218

Myeongsoo Kim, Qi Xin, Saurabh Sinha, and Alessandro Orso. 2022. Automated
Test Generation for REST APIs: No Time to Rest Yet. In Proceedings of the 31st
ACM SIGSOFT International Symposium on Software Testing and Analysis (Virtual,
South Korea) (ISSTA 2022). Association for Computing Machinery, New York, NY,
USA, 289-301. https://doi.org/10.1145/3533767.3534401

Kerry Kimbrough. 2023. Tcases. https://github.com/Cornutum/tcases

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and
Graham Neubig. 2023. Pre-train, prompt, and predict: A systematic survey of
prompting methods in natural language processing. Comput. Surveys 55, 9 (2023),
1-35.

Alberto Martin-Lopez, Sergio Segura, and Antonio Ruiz-Cortés. 2021. RESTest:
Automated Black-Box Testing of RESTful Web APIs. In Proceedings of the 30th
ACM SIGSOFT International Symposium on Software Testing and Analysis (Virtual,
Denmark) (ISSTA 2021). Association for Computing Machinery, New York, NY,
USA, 682-685. https://doi.org/10.1145/3460319.3469082

MuleSoft, LLC, a Salesforce company. 2020. RAML. https://raml.org/

OpenAl 2023. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]

OpenAPI 2023. OpenAPI standard. https://www.openapis.org.
R Software Inc. 2023. RapidAPL https://rapidapi.com/terms/

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. 2018.
Improving language understanding by generative pre-training.

Alec Radford, Jeffrey Wu, Dario Amodei, Daniela Amodei, Jack Clark, Miles
Brundage, and Ilya Sutskever. 2019. Better language models and their implica-
tions.

Leonard Richardson, Mike Amundsen, and Sam Ruby. 2013. RESTful Web APIs:
Services for a Changing World. O’Reilly Media, Inc., Sebastopol, CA, USA.

Alex Rodriguez. 2008. Restful web services: The basics. IBM developerWorks 33,
2008 (2008), 18.

SE@GT. 2023. Experiment infrastructure, data, and results for RESTGPT. https:
//github.com/selab- gatech/RESTGPT.

SmartBear Software. 2023. OpenAPI data model.
specification/data-models/keywords/.

SmartBear Software. 2023. Swagger. https://swagger.io/specification/v2/.
Stefan Tilkov. 2007. A brief introduction to REST.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Roziére, Naman Goyal, Eric Hambro,
Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guil-
laume Lample. 2023. LLaMA: Open and Efficient Foundation Language Models.
arXiv:2302.13971 [cs.CL]

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, L ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Processing Systems, I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.),
Vol. 30. Curran Associates, Inc., Red Hook, NY, USA. https://proceedings.neurips.
cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reasoning
in large language models. Advances in Neural Information Processing Systems 35
(2022), 24824-24837.

Huayao Wu, Lixin Xu, Xintao Niu, and Changhai Nie. 2022. Combinatorial
Testing of RESTful APIs. In Proceedings of the 44th International Conference
on Software Engineering (Pittsburgh, Pennsylvania) (ICSE ’22). Association for
Computing Machinery, New York, NY, USA, 426-437. https://doi.org/10.1145/
3510003.3510151

Man Zhang and Andrea Arcuri. 2023. Open Problems in Fuzzing RESTful APIs:
A Comparison of Tools. ACM Trans. Softw. Eng. Methodol. 32, 6, Article 144 (sep
2023), 45 pages. https://doi.org/10.1145/3597205

https://swagger.io/docs/

https://doi.org/10.1109/TSE.2022.3150618
https://doi.org/10.1109/TSE.2022.3150618
https://apiblueprint.org/
https://github.com/apiaryio/dredd
https://apis.guru/
https://doi.org/10.1145/3293455
https://doi.org/10.1109/ICSE.2019.00083
https://doi.org/10.1002/stvr.1808
https://arxiv.org/abs/1810.04805
https://doi.org/10.1145/3617175
https://bard.google.com/
https://doi.org/10.1145/3510454.3528637
https://doi.org/10.1109/ICST46399.2020.00023
https://doi.org/10.1109/ICST46399.2020.00023
https://doi.org/10.1109/AST52587.2021.00009
https://doi.org/10.1145/3597926.3598131
https://doi.org/10.1145/3597926.3598131
https://doi.org/10.1109/ASE56229.2023.00218
https://doi.org/10.1145/3533767.3534401
https://github.com/Cornutum/tcases
https://doi.org/10.1145/3460319.3469082
https://raml.org/
https://arxiv.org/abs/2303.08774
https://www.openapis.org
https://rapidapi.com/terms/
https://github.com/selab-gatech/RESTGPT
https://github.com/selab-gatech/RESTGPT
https://swagger.io/docs/specification/data-models/keywords/
https://swagger.io/docs/specification/data-models/keywords/
https://swagger.io/specification/v2/
https://arxiv.org/abs/2302.13971
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1145/3510003.3510151
https://doi.org/10.1145/3510003.3510151
https://doi.org/10.1145/3597205

	Abstract
	1 Introduction
	2 Background and Motivating Example
	2.1 REST APIs and OpenAPI Specification
	2.2 REST API Testing and Assistant Tools
	2.3 Large Language Model
	2.4 Motivating Example

	3 Our Approach
	3.1 Overview
	3.2 Rule Generator
	3.3 Specification Enhancement

	4 Preliminary Results
	4.1 Evaluation Methodology
	4.2 Results and Discussion

	5 Future Plans
	References

