2024 IEEE International Symposium on Hardware Oriented Security and Trust (HOST) | 979-8-3503-7394-3/24/$31.00 ©2024 IEEE | DOI: 10.1109/HOST55342.2024.10545376

TrustZoneTunnel: A Cross-world Pattern History
Table-based Microarchitectural Side-channel Attack

Tianhong Xu
Northeastern University
xu.tianh @northeastern.edu

Abstract—ARM’s TrustZone is a hardware-based trusted exe-
cution environment (TEE), prevalent in mobile devices, IoT edge
systems, and autonomous systems. Within TrustZone, security-
sensitive applications reside in a hardware-isolated secure world,
protected from the normal-world’s applications, OS, debugger,
peripherals, and memory. However, microarchitectural side-
channel vulnerabilities have been discovered on shared on-chip
resources, such as caches and branch prediction unit (BPU).
In this paper, we propose TrustZoneTunnel, the first Pattern
History Table (PHT)-based side-channel attack on TrustZone,
which is able to reveal the complete control flow of a trusted
application in the secure world. We reverse-engineer the PHT
indexing for ARM processors and develop key primitives for
cross-world attacks, including well-controlled world-switching,
PHT collision construction between two worlds, and precise PHT
state-setting and checking functions. Furthermore, we introduce
a novel model extraction attack against TrustZone based deep
neural network, which can recover model parameters using only
the side-channel leakage of vital branch instructions, obviating
the need for model output or logits while prior research work
requires such knowledge for model extraction.

Index Terms—ARM TrustZone, Side Channel Attack, Branch
Prediction

I. INTRODUCTION

With ever increasing requirements for security and trust
of the running applications, many modern CPUs are com-
panioned with a Trusted Execution Environment (TEE). By
executing security-sensitive applications in an isolated envi-
ronment, called secure enclave or secure world, TEEs dedicate
separate resources to the secure applications and disallow ac-
cess by untrusted applications or even OS from the rest of the
system (usually called host or normal world) [24]. TEEs can
protect the confidentiality of valuable code and data as well
as integrity of the system. Intel’s Software Guard Extensions
(SGX) and ARM’s TrustZone are two common TEEs that are
widely used in modern computing systems, while Intel has
dis-continued the support for SGX on client machines from
its 12th-generation core. ARM TrustZone remains the most
popular TEE found in billions of mobile systems, edge and
IoT devices. In TrustZone, the secure world and normal world
are two software worlds with separate hardware components
and access mechanisms, including debugger, peripherals, and
memory.

However, recent research demonstrated that TEEs are vul-
nerable to microarchitectural side-channel attacks [10], [14],
[16], [18], [23], as many on-chip microarchitectural units are
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shared across the worlds, including caches and branch predic-
tion unit (BPU). Through shared resources, an adversary in the
normal world can glean details of a critical application in the
secure world, breaking the protection provided by the TEE. On
Intel SGX platforms, various microarchitectural side-channel
attacks have been presented that exploit cache, BPU, and page
table [8], [13], [14], [28]. On ARM TrustZone, cache-based
and BPU-based side-channel attacks are also proposed [10],
[16], [17], [23]. In these cross-world/enclave attacks, the OS
is not trusted and the attacker can have kernel-privilege but
still cannot access the secure hardware protected by the TEE.
With the shared microarchitecture for which applications in
both worlds can set the state and also monitor the change, the
attacker in the normal world can bypass the protection of the
secure world and retrieve critical information about the victim
application.

Previous side-channel attacks on Intel BPU target different
microarchitecture components. Branch target buffer (BTB)-
based attacks [2], [3] were first introduced, exploiting the
shared BTB across processes to infer a victim application’s
control flow and confidential data. There are already several
countermeasures against BTB attacks, adopting the principle
of isolation, including a hardware-level mechanism to partition
BTB entries among processes [30] and a complier-assisted
protection in Half&Half [29]. The other BPU component,
Pattern-History-Table (PHT) for predicting the direction of
branches’ execution, has received less attention. The prior
work, including Branchscope [12] and BlueThunder [14],
both target simple PHT architectures with Intel SGX enabled.
Most of the prior attacks and countermeasures primarily target
Intel systems, with very few addressing ARM architectures.
This oversight is significant given the substantial differences
between ARM’s and Intel’s BPU and TEE designs. The only
BPU based attack on ARM’s platforms was hardware-backed
Heist [23] that implements a BTB-based attack, while cur-
rently there is no PHT-based attack targeting ARM TrustZone.

In this paper, we propose TrustZoneTunnel, a cross-world
PHT-based side-channel attack targeting ARM Processors. We
reverse-engineer the PHT indexing mechanism of Cortex-AS53,
one of the most widely used processor for mobile and embed-
ded devices since 2014. We construct collisions on a complex
TAGE PHT, employ the Load-Step mechanism [16], a method
to control the world-switching in TrustZone with adjustable
resolution, and propose a PHT-based microarchitectural side-
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channel attack framework against ARM TrustZone. We further
apply TrustZoneTunnel onto TrustZone based secure deep
neural network implementation for model extraction [19]. The
experimental results show that TrustZoneTunnel can extract
the direction of any single target branch of a secure world
program, and can successfully retrieve the entire DNN model.

II. BACKGROUND

This section provides background on ARM TrustZone, the
vulnerable shared microarchitecture BPU, and cross-world
switching mechanisms to create contention on the shared
microarchitecture.

A. ARM TrustZone

Since its introduction in 2004 with the ARMv6 architecture,
ARM'’s TrustZone technology has been a key security feature
in the ARM processor family. As the most popular TEE,
TrustZone has been adopted in billions of lightweight devices
to protect both confidentiality and integrity of sensitive code
and data. With TrustZone, on the same processor there are
two software worlds: secure and normal, where the secure
world has its dedicated hardware resources and peripherals,
ensuring sensitive data and applications to operate in a trusted
environment, isolated from the regular operation modes in the
normal world.

Starting from the Cortex-A8 architecture, the TrustZone
technology has seen significant advancement. This work
mainly targets Cortex-A53 processor [6], which has been the
most widely adopted processor model in smartphones since
2014 until 2017 [1], and is still commonly used in game
consoles and embedded devices at present. Cortex-AS53 is also
one of the first two ARM processors implementing ARMv8-A
ISA, which pivoted to 64-bit cores from 32-bit. It embodies
TrustZone features including robust isolation for secure data
handling, integrated cryptographic support for enhanced data
protection, and secure boot functionality for verified software
execution.

B. Branch Prediction Unit (BPU)

Modern computer architectures utilize BPU to speed up the
control flow of instruction streams. In a processor pipeline,
when the Instruction Fetch Unit (IFU) fetches a branch in-
struction, the BPU in the processor front-end is looked up
to predict the direction and/or the target address before the
branch is resolved, as there is cycle delay in the branch
instruction execution. The IFU then fills the pipeline with
the predicted instruction and starts speculative execution.
There is a mechanism to detect mis-speculation later and
roll back the execution. The BPU usually comprises several
integral components, each responsible for specific aspects of
branch prediction. The Branch Target Buffer (BTB) predicts
destinations of taken branch instructions. The Conditional
Branch Predictor (CBP) gauges whether a branch will be
taken or untaken (predicting the branch direction), crucial for
performance optimization.

In modern processors, CBP is based on a Pattern History
Table (PHT), a multi-entry table where each entry contains a

saturation counter for the direction prediction. The index func-
tion of a PHT is based on the current branch address and the
processor’s execution context, provided by a Global History
Register (GHR), which is a shift register recording the history
of the previously executed branches. Previous work [29] shows
that a GHR can be implemented in two different ways: a
Direction History Register (DHR) that records the directions
of prior conditional branches, and a Path History Register
(PHR) that stores the address of prior taken branches. In each
PHT entry, a 2-bit saturation counter specifies four states,
00 for strong not-taken (NT), 01 for weak NT, 10 for weak
taken (T) and 11 for strong taken. When making direction
prediction for a conditional branch, the PHT is looked up by
the generated index to hit an entry, and the 2-bit state will
predict the direction of the target branch (actually the upper
bit of the state, 1 for T and O for NT). When the conditional
branch instruction is resolved and finishes its execution, the
real direction will update the counter’s state, following a 4-
state finite machine. Fig 1 shows the mechanism of an example
PHT-based branch direction prediction, where the GHR is a
DHR.

Some advanced BPUs adopt TAGE (TAgged GEometric
history length) structure for branch prediction [22], [25], [26],
where multiple PHTs are included, each is associated with a
different history length. In this way the TAGE architecture
can capture and exploit diverse execution patterns across
various timescales, optimizing its overall prediction accuracy.
By ensuring an appropriate PHT is selected for a given branch
scenario.
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Fig. 1. The mechanism of PHT based branch direction prediction
C. Load-Step World-switching

For high-resolution switching between the adversary and
the target branch execution, we exploit Load-Step [16], a
method to periodically interrupt the secure-world victim pro-
gram by the normal-world adversary program. Load-Step is
implemented as a Linux kernel driver, where all the adver-
sary’s codes are embedded in the context-switching process
by customizing the interrupt handler functions. The interrupt
resolution can be per-instruction.

Fig 2 shows the procedure of the Load-Step world-switching
mechanism adapted for our attack. It involves two cores,
one is the auxiliary control core and the other is the victim
core that runs the victim application in the secure world.
The auxiliary core sets a timer and first receives a time-up
event from the timer. It then controls the Generic interrupt
controller (Arm-GIC) to generate a cross-core interrupt and
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directs the interrupt to the victim core. The host OS is
responsible for handling cross-core interrupts. Once the victim
core receives the interrupt, the secure world is forced to save
its context and the execution switches to the normal world. The
attacker’s malicious functions (PHT_Preset & PHT_Check)
are embedded in the OS interrupt handling routine. When the
interrupt handler finishes execution, a signal is sent to the
auxiliary core to reset the timer for the next attack epoch, and
meanwhile the victim core switches to the secure world to
resume the victim application.

Time up

Auxiliary Interrupt
Core Generator

Restart Timer

Interrupt | Context World World
BB Hondier | Recovery NSRS  Switch Switch —>

Normal World
Interrupt Handling Routine

Cross-core
interrupt

Victim World
Core Victim in Secure World Switch

Fig. 2. Process of Load-Step

III. REVERSE ENGINEERING ARM BPU

To understand the vulnerable microarchitecture so as to
build the side-channel attack, we conduct thorough reverse-
engineering of the CBP of a 64-bit Cortex-A53 processor.
These reverse engineering results facilitate building attack
components, such as collisions on a specific PHT entry and
manipulating the state of PHT entries.

A. An Overview of Cortex-A53’s CBP

We use a Raspberry Pi 3B+ board, a widely-used ARM-
based development board, in our experiments. It has a quad-
core 1.2GHz ARM 64-bit Cortex-AS53 processor and 1 GB
RAM. We install OPTEE [21] on the system, a TEE designed
as a companion to a Linux kernel running on ARM.

The only documented information about the CBP of Cortex-
AS53 is that it uses a Direction History Register (DHR) and
a 3072-entry PHT [5], while other details such as the PHT
indexing, the size of the DHR, and what bits of the branch
address contribute to the index, are all unknown. In our
experiments, we observed that the CBP has a TAGE structure.
A typical TAGE predictor is shown in Fig 3, where there
are three PHT tables: a base one which is only indexed by
the branch addresses (1), and two tagged tables (77 and
T5) which are indexed with different GHR sizes (s1 and ss)
in addition to the branch address, where each entry keeps a
tag for hitting comparison and a usefulness counter (u) for
replacement decisions based on temporal locality.

For TAGE predictors, all the tables are simultaneously
queried during the prediction time, while only one predictor
will be selected to perform the prediction. A tag is generated
by a hash function over the branch address and the respective
GHR for each of the two tagged predictors. If no matches
in either table, i.e., the branch is not executed with the
same histories the predictors have witnessed before, the base
predictor (without tag) is used. When multiple tagged predictor
tables have a matched tag for a branch, certain policy guides
the selection of the appropriate predictor [22], [25], [26]. In
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Fig. 3. The TAGE prediction structure

our experiments, we reverse engineered the predictor selection
mechanism employed by ARM Cortex-A53: by default the
predictor indexed with a shorter GHR (7}) is chosen when
both 77 and 75 have matching tags; however, the predictor
with the longer GHR (75%) is utilized when the recent predic-
tion accuracy of 75 is significantly higher than that of 7.

Next in Section III-B, we first design microbenchmarks to
determine the size of GHR for each tagged predictors (s; and
s2). In Section III-C, we reverse engineer the effective bits in
a branch address for PHT indexing.

B. Measuring the Size of GHR

As the PHT in Cortex-A53 only has 3072 entries, we assume
that the GHR has no more than 16 bits. We first design a
function, shown below in Listing 1, to access the PHT by a
target branch with a pre-set GHR.

| Access_PHT (h, d)

if ((h>>15)

{
&1) {...}
if((h>>14)&1)

{...}

e //Training GHR
if((h>>0)&l) {...}
6 mO0=misprediction_counter();

//read the event counter

8 if(d) {...} //Target branch
9 ml=misprediction_counter();

10 return (ml-mO0);

Listing 1. Function for accessing a PHT entry

The function has two input parameters, h, a 16-bit unsigned
value to set the GHR for a target branch, and d, a one-bit
direction for the target branch where 1 means Taken and 0
means Untaken. In the function, Line 8 is the target branch,
and before it we put 16 conditional branches with pre-set
conditions specified by the h value (Lines 2-6) to set the GHR
value seen by the target branch. During execution, although
each of the 16 branches also updates a respective PHT entry,
it is not likely they index into the same PHT entry as the
target branch, because they all have different addresses and
have seen a different branch global history. Before and after
the target branch execution, the mis-prediction counter is read,
which is an event counter in the Performance Monitor Unit
(PMU) that counts mis-predictions of conditional branches and
indirect branches. The function returns the differential of the
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two readings of the mis-prediction counters, with 1 indicating
the target branch experiences a mis-prediction while 0 meaning
a correct prediction. We hypothesize that the GHR size is
smaller than 16 bits, therefore, the branch history closer to
the the target branch (the lower part of the 16-bit h) is stored
in GHR for the target branch, while the other upper bits do
not contribute to the PHT index for the target branch.

Based on this function, we designed a microbenchmark with
the pseudo-code shown below to measurer the size of GHR,
i.e., how many bits in h contribute to the PHT look-up by the
target branch, and also glean the predictor selection preference.

1 hl=value;
> h2=hl1" (1<<x); //set the x-bit different
3 m=0;

for(i=0:n) //Training loop

{

6 Access_PHT
Access_PHT

8 Access_PHT

(h1, 1
(h1, 1
(h1, 1
9 Access_PHT (h2, 0
(h2, O
(h2, 0

PN

0 Access_PHT
1 Access_PHT

}

m += Access_PHT(hl, 1);
+ m += Access_PHT (hl, 1);

m += Access_PHT(hl, 1);
print (m);

//Testing period

Listing 2. Microbenchmark 1

In this microbenchmark two h values are set, hy and ho,
with only one bit at a chosen position, 2P bit, different. In a
single tagged predictor table, if the =" bit contributes to the
indexing, hi and ho will make the target branch index into
different entries. However, if the 2t bit does not contribute
to PHT indexing, the effective bits in hy and hy (lower than
the 2" bit) that are kept in the GHR for the target branch are
the same, and therefore the target branch will index into the
same entry with h; and hy. There are two main parts in this
microbenchmark, the training loop (Lines 4-12) and the testing
period (Lines 13-15). In the training loop, we have two groups
of Access_PHT functions, setting an entry in the PHT for
the target branch Taken (Lines 6-8) and Untaken (Lines 9-11),
respectively. If h; and hy are indexing into different entries,
the entry indexed with h; is set to strong T and the other entry
with hs to strong NT. However, if h; and ho are indexing into
the same entry, in each iteration, one entry is trained to be
strong T first and then strong NT. In the test period, we test
which situation is currently occurring by checking the state of
the entry indexed with hy. If on different entries, the starting
state of the entry indexed by h; in the testing period would
be strong T, and therefore no mis-prediction will appear and
the microbenchmark returns O for the m value. If on the same
entry, the starting state of the entry would be a strong NT, and
two mis-predictions will appear in the testing period and the
microbenchmark returns 2 for the m value.

We conducted experiments on Microbenchmark 1, observ-
ing the value of m as x varies from O to 15 with different
number of iterations (n) in the training loop. We count the
proportion of hy and ho indexed into different entries, which
is the proportion of m = 2. In Fig 4, we present the changes

in this proportion with respect to « for different values of n. It
is evident that the result can be categorized into three distinct
phases: when 0 < x < 4, hy and ho always index into different
entries, indicating that 0"-4*" bits of GHR always contribute
to PHT indexing no matter which predictor is chosen, and
therefore the shorter size of GHR (s1) is 5; when x > 8, hy
and ho always index into the same entry regardless of which
predictor chosen, indicating that those bits of GHR do not
contribute to PHT indexing, and therefore the longer size of
GHR (s2) is 8; when 5 < o < 7, the proportion exhibits a
progressive increment as n increases, and we speculated that
in this phase two tagged predictors(7; and 75) have different
behaviors/accuracy and the choice between them is not stable.

The change trend in the phase of (5 < z < 7) can help
us understand the selection mechanism between 7 and T5.
When n is small, 7}, which has the shorter GHR, is the
preferred choice, to result in the same entry indexed by h; and
ho. As n gradually increases, the proportion of selecting 75
increases (i.e., indexed into different entries). We speculated
that by default 7 is prioritized for selection, while certain
mechanisms are in place to reduce the priority of 77 when
its accuracy drops significantly, favoring 75 instead. In the
training loop, when 5 < x < 7, if T; is selected, there are
in total 4 mis-predictions in each iteration, causing a low
prediction accuracy of 33%. As n increases, the low accuracy
progressively reduces the priority of 77, and the selection of
the predictor leans toward 75.

Our further experiments show that although it takes thou-
sands of loops to train the target branch prediction to favor 75,
only a few loops of high accuracy pattern will train it back
to select 17. This shows that the default choice of 77 is more
stable. In the following sections we will always train the target
branch to use 7 for prediction.

In summary, we conclude that the CBP of ARM Cortex-
A53 is composed by three components: a base predictor table
which is only indexed by the branch address, a tagged table
that uses 5 bits GHR for indexing, and a tagged table that uses
8 bits GHR for indexing.
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Fig. 4. Percentage of different PHT entries when changing « and n

C. Effective Bits in the Branch Address

When deciding the PHT index for a target branch, not all
the bits in the branch address are involved in the PHT indexing
and tag comparison, i.e., only some bits are effective. Next we
figure out the effective bits in a branch address. We design an
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advanced PHT-accessing function, where we not only set the
GHR, but also select different branch instructions to access
the PHT, as shown below.
Access_PHT_Adv (h, x, d){
if((h>>7)&l) {...}
3 e //Training GHR
4 if ((h>>0)&l) {...}
5 return branch[x] (d);
6 }
branch[0] (d) {
8 mO0=misprediction_counter () ;
9 //read the event counter
10 if(d) {...} //Target branch
1 ml=misprediction_counter();
12 return (ml-mO0);
13 }
14 branch[1](d){...}
16 branch[4095] (d) {...}

Listing 3. Advanced function for specifying a branch instruction
and accessing a PHT entry

In addition to an 8-bit A vector and the branch direction
d value, the function has a third parameter, x. We build an
array of functions, branch[4096], in order to generate different
target branch addresses (one target branch is shown in Line
10). branch[4096] contains 4096 functions, with each simply
executing a conditional branch with the same global branch
history (specified by the h value) and checking if a mis-
prediction occurs for the target branch. All the branch[z] func-
tions have the same code, but would have different addresses
for the target branches. We then perform an experiment shown
below to check if two different target branches with the same
global branch history can index into the same PHT entry.

h=value;

m=0;

for (1=0:100)
4 {
5 m += Access_PHT_Adv(h, x1, 1);
6 m += Access_PHT_Adv(h, x1, 1);
7 m += Access_PHT_Adv(h, x1, 1);
8 m += Access_PHT_Adv (h, x2, 0);
9 m += Access_PHT_Adv (h, x2, 0);
10 m += Access_PHT_Adv (h, x2, 0);

1 }
Listing 4. Identifying the effective bits of a branch address

In the TAGE predictor, although each table uses different
GHR size, all the three tables use the same effective branch
address bits. If the two target branches in the two branch
functions (z; and x5) have the same values on all the effective
bits, they will use the same table entry, no mater which
predictor is used. We define this condition where two different
branches use one PHT entry as a PHT collision. In this
microbenchmark, we can detect whether branches x; and x5
collide on a PHT entry by the value of m. As the PHT only has
3072 entries in total, there must be pairs of branches among
the total 4096 branches that will construct PHT collisions
according to the simple birthday problem.

We keep changing the value of x; and x> to select different
target branches, and save the addresses of the two target
branches if a PHT collision is detected. Fig 5 shows the
average difference between x; and x5 on each bit for PHT

collisions, where the x-axis indicates the bit position. The
results show that the lower 4th to 13th bits of the two
addresses, 1 and z9, are identical when they collide on a
PHT entry, i.e., the effective branch address bits. Note the last
two address bits are always zero as each word is four-byte.
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Fig. 5. Average difference between two colliding addresses on each bit

IV. THE TRUSTZONETUNNEL ATTACK

In this section, we elaborate and propose TrustZoneTun-
nel, a PHT-based side-channel attack framework, where the
attacker in the normal world can extract the direction of a
target branch in the secure world. We describe how to build
a side-channel across the two worlds of TrustZone, and then
implement the attack against an RSA implementation of the
mbedTLS library [20] in the secure world.

A. Threat Model

We assume the common threat model for TrustZone, where
the victim is a trusted application in the secure world and
the normal world applications can only invoke it as service.
The attacker has full control of the normal world, including
the operating system. It can install external kernel modules to
modify the interrupt handlers, has the privilege to access the
PMU, and is able to assign specific cores to run the adversary
program. We also assume that the attacker figures out the
virtual address of a target branch, through knowledge to the
source code and the binary of the victim application.

B. Attack Overview

TrustZoneTunnel aims to extract secrets from a victim appli-
cation running in the secure world, if the conditional branches
are dependent on the secrets. Our reverse engineering results
indicate that with the TAGE predictor architecture, there are
three prediction tables each of which uses a different length
GHR in indexing. To avoid unexpected switching between the
three predictors, we first train the target branch to use the
tagged predictor that uses a 5-bit GHR for indexing, which is
the most reliable predictor.

TrustZoneTunnel consists of three salient parts: the PHT
Preset & Check function, world-switching, and PHT collision
construction.

PHT Preset & Check mechanism: We propose a PHT Preset
& Check mechanism, where we first preset the state of a PHT
entry by executing a collision branch, and then checks the
state update of the entry by the victim target branch. Both the
collision branch in the normal world and the target branch
in the secure world index to the same PHT entry during
execution, i.e., a collision on the PHT occurs.

World-switching: to achieve a fine-grained control on the
switching between the victim and the adversary, we implement
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our attack with the Load-Step framework. As shown in Fig 2,
the victim application is set to run on a victim core (in
the secure world), and the adversary program keeps sending
interrupts to the victim core from an auxiliary core. The
interrupt handler is customized to embed the Preset & Reset
functions to operate on a common PHT entry which the victim
target branch collides with the collision branch on.

PHT collision construction: when constructing a PHT col-
lision between the two worlds, the target branch in the victim
application is already fixed, we then set the collision branch in
the normal world to have the same values for the effective bits
as the target branch, and also set the common branch global
history for them.

C. PHT Preset & Check

We first construct a PHT _Preset() function to set the state
of the 2-bit counter in a PHT entry to a specific value. After
the target branch execution, we then monitor the state update
via the PHT_Check() function, and speculate the direction
of the target branch. The pseudo-code for the two functions
is given below. We use an Activate_T1() function to train
the CPU to use the tagged predictor table that is indexed with
the 5-bit GHR (77). Note that to ensure the CPU consistently
utilizes 77, h needs to be 8 bits instead of 5 bits, otherwise
the other table (7%) might still be selected occasionally.

I PHT_Preset () {

2 Activate_T1 (h, x);
Access_PHT_Adv (h, x, 1
Access_PHT_Adv(h, x, 1
Access_PHT_Adv(h, x, 1);

6 Access_PHT_Adv (h, 0

}

s PHT_Check () {

9 m=0;

10 m+=Access_PHT_Adv (h, x, 0);

11 m+=Access_PHT_Adv (h, x, 0);

12 return m;

Listing 5. PHT Preset & Check Functions

The adversary collision branch instruction is in the
branch function branch[z] (shown in Listing 3). In the
PHT_Preset() function, we use the collision branch to
access a PHT entry with three taken and one non-taken, so as
to train the two-bit counter in the entry to be a weak T (10).
In the PHT _Check() function, we execute the same collision
branch twice with direction of non-taken, and count how
many mis-predictions have occurred. We deliberately control
the victim to run the target branch between the Preset and
Check functions, the m value returned by the PHT _Check()
function will leak the execution direction of the target branch.
Assuming no other branches are having a PHT collision with
the target branch or the collision branch, i.e., no noise, and the
target branch executes at most once in this piece of code. If
m=0, no mis-prediction occurs when executing the two non-
taken, meaning that the state of the two-bit counter at the
beginning of the PHT _Check() is either Strong non-taken
(00) or Weak non-taken (01), so the target branch must have
executed as non-taken. If m=1, we can speculate that the state

of the 2-bit counter start as weak-taken (10), implying that
no target branch is executed between the Preset and Check.
If m=2, the state of the 2-bit counter should be strong-taken
(11), indicating that the target branch has been executed taken.
With this method, we can build a PHT based side-channel, and
extract the direction of the target branch.

D. Implementing TrustZoneTunnel with Load-Step

TrustZoneTunnel is implemented with the Load-Step frame-
work, as shown in Fig 2, where the world-crossing inter-
rupt handler is prefixed with a PHT_Check() function,
to detect the impact of the prior execution of the victim
application (possibly one target branch) in the secure world,
followed by Interrupt Handler and Context Recovery, before a
PHT_Preset() function, to set the target entry in the PHT to
a known state before the victim core resumes the secure-world
application. The Load-Step framework is installed in the Linux
OS as an external kernel module. For the adversary program
on the auxiliary core, it starts a timer once the TEE OS is
activated. When the timer is up (after a fixed time interval),
an interrupt signal is sent to the victim’s core, forcing the
secure-world application to pause and switching to the normal
world for handling the interrupt. When the routine is over, the
adversarial execution returns to the auxiliary core while the
victim core is released to resume the victim application, to
start next epoch. Note the PHT_Check() function will store
its output in a trace file.

E. PHT collision construction

To build a collision branch, we need to first obtain the
address of the target branch, and then select a branch in the
normal world whose lowest 4*"-13%" address bits are the same
as the target branch. Then we need to set the context for the
target branch and the collision branch the same, i.e., setting
a common branch global history (GHR) for both branches’
execution.

For the collision branch in the Preset and Check functions,
the branch global history is easy to set to any specific value
with the method shown in Listing 1. So the important thing
is to figure out the branch history for the target branch and
then align the collision branch with it. We assume that the
attacker can always interrupt the victim right before the target
branch execution, so that the recent branch global history of
the target branch is provided by the World Switching (WS)
function, as shown in Fig 2. We assume these operations have
a fixed branch profile and design an experiment to recover it.

We first write a simple trusted application shown below,
where the directions of the target branch are decided by the
value of the 64-bit secret. We put the trusted application in our
Load-step framework for experiments, and adjust the interrupt
timer to make sure that the 64 iterations (each with one target
branch execution shown on Line 4) can all be monitored by
interrupts (with PHT Preset+Check functions) preceding them.

I uint64_t k = secret; // secret
for (i=0;1<64;1i++)
{

4 if ((k>>1)&l) //target branch
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Listing 6. A simplified victim

As the number of branches in the world switching function
may be less than 5, we need to complement it with more
branch executions to contribute to a full controllable GHR for
the target branch, and the PHT_Preset() function is therefore
extended, as shown below.

I PHT_Preset () {

2 . //same with Listing 5
h2=0;
if ((h2>>7)&l) {...}
if ((h2>>6)&1) {...}

6 ... //Setting target GHR
7 if ((h2>>0)&l) {...}

Listing 7. Extended PHT Preset Function

With this extended function, the value h; sets the GHR
for the collision branch, while the lower part of the value
ho combined with the branch pattern of the WS routine set
the GHR for the target branch. Both h; and hy have 8 bits
to activate the prediction table with the shorter GHR (5-
bit), while only the least significant 5 bits contribute to PHT
indexing. We first set ho as zero, and vary the other vector
hy value from Ob00000000 to 0bO0011111 to find one Ay
value, where PHT collisions between the target branch and
the collision branch can be detected. The results are shown in
Fig 6, where we calculate how many PHT collisions we can
detect on this simplified victim among different h; values.
The result shows that a PHT collision only happens when
h1=0b00000001, and a common GHR has resulted for the
collision branch and the target branch.
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Fig. 6. Detected PHT collisions when varying k1 in the range of 0 and 31

We design another experiment, now with hy fixed at value
of 0b00000001 but varying he, to figure out the composition
of the target branch GHR, i.e.,how many lower bits of GHR
are contributed by the branch profile of the world switching
routine, and how many upper GHR bits are contributed by part
of ho. The result is given in Fig 7, showing that as long as hs is
an even value, PHT collisions can be detected. This indicates
that only the last bit of hy affects collisions, and therefore the
number of branches in the world switching routine must be
four with their directions as 0b0001. Meanwhile, from Fig 7
we can also observe that only when hy=0b00000 or 0b10000
we can detect all the 64 PHT collisions, while when the 27%-
47 bits dismatch the corresponding bits in Ay, we will always
miss several collisions because the selection of the predictor
T is unstable. In our following experiments we still need to

consider eight bits for the GHR, to train towards selecting the
right predictor table, while only the last five bits are used for
PHT indexing.
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Fig. 7.

With this reverse engineering result, in attacks, the
PHT_Preset function only needs to append four conditional
branches, together with the world switching routine, to set the
context GHR for the target branch.

F. TrustZoneTunnel on RSA

We next evaluate TrustZoneTunnel on real world trusted ap-
plications. We chose a sliding-window secure RSA implemen-
tation from the mbedTLS library as the victim, where our goal
is to retrieve the key bits through the PHT-based side-channel.
For any victim application, there are some application-specific
adjustments that need to be made to tailor TrustZoneTunnel.

1) The target branch address: with the source code of the
victim application, the attacker first needs to locate a
conditional branch whose direction is related to sensitive
information, such as key or the sign of a neuron output.
For this RSA implementation, we select a target branch
whose direction is directly decided by a key bit. By
disassembling the binary file, the page offset of the target
branch address can be retrieved so that majority of the
effective bits (4th to 12th) are known.

2) The interrupt time interval: we usually aim at inter-
rupting the victim every 3-10 instructions. To achieve
this resolution, we need to adjust the timer according
to the victim application. As different applications have
different processor resources footprint (including the
registers and live memory), the time for context saving
and recovery is different. We implement a highly effi-
cient software timer based on iterative plain arithmetic
instructions, and the typical interrupt interval is 2000-
4000 instructions. For this RSA implementation, the
time interval is set at 2330 so that our side-channel can
track the target branch execution with high precision.

We exemplify the RSA-4096 decryption process, a partial
result is shown in Fig 8. Each PHT-Check result is presented
by a scatter, showing a detection on the target branch to be
taken (T), non-taken (NT) or not executed (NE). For this RSA
victim, a single run of the TrustZoneTunnel contains about
10,000,000 interrupts to the victim, which takes about 200
seconds to run. Our results shows that we can detect all the
executions of the target branch, and distinct their directions
correctly. With these results we’re able to recovery all 4096
bits in the RSA private key.
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Fig. 8. Partial result of the RSA attack

V. MODEL EXTRACTION ATTACK OF NEURAL NETWORKS

With TrustZoneTunnel, we further propose a model extrac-
tion attack on deep neural networks, where the adversary aims
at stealing a function-equivalent copy of a deployed machine
learning model. Previous works [7], [15] apply software meth-
ods to recover the model, where they need both the model
outputs and the detailed logits when being queried in order
to perform the attack. In contrast, our attack can recover a
high-fidelity model with only the controlled inputs and the
execution information leaked through our PHT-based side-
channel.

A. Attack Overview

We start with a target application of simple multi-layer
perceptron (MLP), which is composed of fully-connected
layers and ReLU activations, with an argmax function in
the last layer. We target at the branch in the ReLU activation
function and the argmax function and observe their directions
through our PHT-based side-channel. We iteratively change the
input and observe the direction of a chosen ReLU, until the
ReLU activation reaches a critical condition, i.e., its input is so
small to be approximated as zero. We call such input a witness
to the ReLU’s critical condition. The attack is conducted in two
steps:

1) Weights recovery: for the layers except for the last layer,
we search for the critical conditions for each neuron, i.e.,
the input to the ReLU function of the neuron is zero.
We recover the input weights of each neuron based on
many witnesses to its critical condition through linear
regression.

2) Last-layer weight recovery: the last layer uses the
argmax function instead of the ReLU function. We
search for another type of critical condition under which
two output logits are equal, and subseugently recover the
weights in the last fully-connected layer.

Next we illustrate the attack with a sample 2 % 2 % 3
MLP model, which consists of two input features, one fully-
connected layer with two neurons each followed by a ReLU
function, and a last-layer with three neurons and an argmax
function, as shown in Fig 9. The model is implemented
with Trusted-DNN [19], a TrustZone-based adaptive isolation
strategy for DNN models.

B. Weight Recovery

Weight recovery relies on searching for witnesses of the
critical condition for each neuron of the hidden layers. Previ-
ous work [7], [15] exploits the gradients on the model output
logits to search for witnesses, while in our attack we only use

inputs

Fig. 9. A simple victim MLP model

hidden-layer last-layer output

the proposed side-channel without using logits, i.e., treating
the model inference execution as a black-box, a more realistic
attack scenario.

The implementation of the ReLU (Rectified Linear Unit)
activation function is presented below, where Line 6 is our
target branch, whose direction is determined by the sign of
the function’s input, essentially the output from the preceding
fully-connected layer. Specifically, the branch direction hinges
on whether this input value exceeds zero.

void relu_op_forward(nonlinear_op =*op)
{

for

3 (int i=0; i< (op->out_units);
. {

i++)

op->output [i1] =
6 op->input [i]1>0 ? op->input[i]: 0;
//Target branch

Listing 8. ReLU activation function

For the hidden fully connected layer of the example DNN
model shown in Fig 9, there are two neurons, ny and no,
with their output calculated by O; = W; x X + B;, where
X is the input vector {x1,x2}, W;j the associated weight
vector {Wy;, Wa; }, and B; the bias for this neuron. The neuron
output will go through the ReLU function to rectify it, where
the ReLU function contains a conditional branch as shown
in Listing 8. By monitoring this branch instruction using our
PHT-based side-channel, the sign of the input to ReLU, O;, is
detected.

We first set the model input at zero, 1 = x5 = 0, to reveal
the sign of the biases B;. Previous work has shown that such
model extraction attack only retrieves a function-equipment
network, with the weights and biases determined relatively,
i.e., with a scalar multiplier [15]. We normalize the weights
and biases according to the biases, assuming B; = 1 if it is
positive; and B; = —1 if negative.

We next search for the witness to the critical condition for
each neuron. That is, taking neuron ny as example, search for
X that makes O; = Wiy x 21 + Way x 20 + B = 0. We
randomly generate inputs until we find two points X, Xo,
such that their corresponding outputs O; have opposite signs.
Then we use binary search iteratively until we find an input
X that makes O; a small positive value, below the preset e.
We need to find multiple witnesses to the critical condition of
neuron 71, so that we can have sufficient linear equations over
the weights {Wi1, Wa1} in order to solve them (note Bj is
already known to be 1 or -1). We apply this method one by one
to other neurons in the first layer. We then apply this weight
recovery process layer by layer. For deeper layers, because the
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weights and biases in previous layers are all recovered, we can
set the input to the current layer to specific values for binary
searching and finding the critical conditions and witnesses in
a similar fashion as the first layer.

C. Last-layer Parameter Recovery

The last layer of a DNN model normally utilizes argmax
instead of ReLU function to pick the highest logit. For
example, for the MLP model we target shown in Fig 9, the
three logits computed by the three neurons in the last layer

are:
= Wi« FO, + W + FO2 + B}

y2:W221*F01+W222*F02+B§
y3:W321*F01+W322*F02+B§

where the F'O; are the feature map outputs from the first
layer, and the superscript 2 indicates it is the second layer (we
will drop it in the following description for simplicity). Since
the classifier outputs the class corresponding to the highest
value among y;, y2 and ys, its classification only depends on
the relative comparisons among the three y;. Therefore, the
network is functionally equivalent when the last layer is re-
parameterized as:

yi =0
y§=V?21*FO1+V?22*FO2+?2
y3 = Wa1 x FO1 + W32 x FO2 + B3

where Wil = WH—WH, Wz‘g = Wig—W12 and BZ = Bi—Bl
for + = 2, 3. This conversion reduces the number of variables
from nine to six. Similar to the weight recovery process shown
in Section V-B, we just need to recover the relative parameters
while assuming B; as 1 or -1.

We look into the argmax function and track conditional
branches used. The source code of argmax function is shown
below.

I void argmax (float =arr, int n,

> |

TEE_Param x temp)

for (int p = 0; p<n; pt++)
5 {

6 if (arr[p] > max) //Target branch
{

8 idx = p;

9 max = arr[pl;

Listing 9. The last-layer argmax function

The source code shows that with n neurons (logits) in the
last layer, there are n comparisons, implemented as conditional
branches (Line 6), to bubble sort the highest logit. The first
execution of the target branch is always taken, while the
second execution compares y, and y;, and the third execution
compares either y3 and y; or ys and y», depending on the
result of the second execution. Assuming the attacker has
already recovered all the previous layers and is able to set
value for FFO; and F'O,, with the critical condition setting
method described in Section V-B, we can find witness to the

critical condition of y;=y» and y1=y3 (or yo=ys3), which can
be represented by:

Wai % FOy + Waz * FO2 + By =0
W31*FO1+W32*FOQ+B3:O

OR

(Wa1 — Wa1) * FO1 + (Waz — Waa) * FOg + (B2 — B3) =0

With witnesses for these critical conditions found,
ie, a set of {FO1, FOs} values, the four parameters,
Wa1, Wa1, Waa, Wag, will be solved. Note in our computation,
we do not rely on knowing the values of logits (y;), as the
previous work did [15] (in a white or grey box fashion), but
just exploit the PHT-based side-channel for weight recovery,
a complete black-box attack model for the victim application.

D. Evaluation

We evaluate the performance of our model extraction attack
on different MLP model sizes and architectures, and also
extend our attack to a CNN model - Lenet-5. We compare
the number of queries needed to recover weights of the whole
network by our attack with the prior cryptanalytic/software
model extraction work [7], [15]. We also give the execution
time of our attack, compared to the original model execution
time. The results are shown in Table I.

TABLE 1
PERFORMANCE OF THE MODEL EXTRACTION ATTACK
#of Prior ‘ Our Model ‘ Our Attack ‘

Architecture Parameters Queries Queries Time Time
784-32-1 25.120 2182 219 0.5s 3.9s
784-128-1 100,480 220-2 221 1.8s 13.65
10-10-10-1 210 216 213 79ms 238ms
10-20-20-1 420 2171 214 86ms 517ms
40-20-10-10-1 1,110 2178 215 95ms 836ms
80-40-20-1 4,020 218:5 217 145ms 1.7s
Lenet-5 44,426 - — 220 265ms 11.6s

Note that in our attack the number of queries is linearly
dependent on the number of neurons, and not related to the
number of layers. So for deeper networks, our attack requires
less queries than cryptanalytic methods. Also, the prior work
does not apply to CNN models like LeNet-5 due to high
complexity, while our attack successfully applies.

The result also shows that our attack increases the total
execution time by about tenfold for all these models, which is
acceptable for performing a feasible model extraction attack.
As shown in Fig 2, this time overhead is due to frequent
interruptions of the attack, including the customized interrupt
handler and the world switching, where each interruption in
the attack of DNN execution causes a delay of about 15 us. As
different victim applications use different amount of registers
and memory resources, the context saving and restoring time
may vary and such interruption delay may also vary, we set
the timer interval as 2130 CPU cycles in the attack of the
sample MLP model. For DNN inference, as the execution of
ReLU activations only takes a small fraction of the time, we do
not need to attack the entire network execution. We can profile
the network execution and only start interruptions near the first
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ReLU layer, to reduce unnecessary interruptions and therefore
reduce the execution overhead. On average, 10 interrupts are
needed for one ReLU iteration.

VI. DISCUSSION
A. Applicability Across Cortex-A Models

We further analyze the BPU structure on other ARM
processors. We choose four models, with distinct micro-
architectures and from different vendors, including STMicro-
electronics, Broadcom (Rasberry Pi), Qualcomm (XIAOMI
10), and Apple. The results are presented in Table II. We
find that on the older ARM Cortex A7, the PHT only uses
the GHR for indexing, without relying on the branch address.
On newer ARM processors including Cortex-A72, Cortex-A76
and Apple M1, the GHR is comprised by the Path History
Register (PHR), consisting of addresses of past taken branches,
instead of Direction History Register (DHR) for the directions
of conditional branches. We reverse-engineered the number of
past branches associated with the Path History Register, as
well as the effective bits in PC used for PHT indexing.

TABLE 11
PHT INDEXING MECHANISM OF OTHER ARM PROCESSORS

Architecture ‘ Platform GHR ‘ PC bits for index ‘
Cortex A7 STM32MP157A 8-bit DHR X
Cortex-A72 Rasberry Pi 4 32-address PHR [14:4]
Cortex-A76 XIAOMI 10 48-address PHR [14:4]
Firestorm(M1) Macbook Air 96-address PHR v

The proposed attack framework can be easily applied to
older ARM models, while the newer ARM processors are
more similar to Intel processors with the use of PHR in
indexing the PHT [14], [29]. We found that the BPUs on
Cortex-A72 and Cortex-A76 are similar to each other, differing
significantly from that of Cortex-A53 and Intel processors:
the PHT table is only for storing branches predicted to be
taken. The PHT is two-way associative. There is still a 2-bit
counter in each PHT entry, set to 11 when a branch is put in.
The counter decrements when the branch is resolved as non-
taken, and increments when taken. A branch will be removed
from the PHT when its counter decreases to 00. For branch
prediction, if the executing branch hits one of the PHT entry,
it is predicted to be taken, and non-taken otherwise on table
miss. Correspondingly, the salient attack gadgets, including the
PHT entry collision construction and the PHT Preset & Check
mechanism would need to adapt for the newer processors.

B. Attack Mitigations

Half&Half [29] introduced a mitigation for BPU-based side-
channel attacks on Intel systems by partitioning conditional
branch addresses between domains with different privileges,
i.e, make their effective bits different to prevent PHT collisions
across these domains. However, this compiler-level solution
may not be effective in a TEE setting, where attackers with
OS-level privileges could circumvent compiler-based defenses.
An alternative strategy is to capture unique features of the
attack for detection, and prior works [9], [27] have suggested

observing frequent interrupts in a victim enclave as an anomaly
- indicator of attacks, which will incur performance degra-
dation. Another common software based mitigation is getting
rid of conditional branches in security-critical applications [4],
[11], while its algorithm-specific nature limits its broad appli-
cability. Other methods, including flushing all the counters in
the PHT entries when the execution switches from the secure
world to the normal world, and using two different BPUs on
a single core for different worlds, are also effective, with non-
negligible implementation and execution overhead.

Specific mitigation tailored to features of TrustZoneTunnel
would be more effective. To create collision on the PHT in
our TrustZoneTunnel, the adversary has to deliberately align
the GHR seen by the collision branch (in the Preset and the
Check functions) with the GHR seen by the target branch (in
the victim function), as described in Section IV-E. We propose
a countermeasure to introduce dummy branch executions
with random directions in the world-switching routine, and
therefore the adversary fails to profile it and align their GHR
for the collision branch with it. For our experimental platform,
we modify OPTEE’s secure world unbanked registers restore
function, which will be called when the execution switches
from the normal world to the secure world. We utilize the
CPU cycle counter to introduce a pseudo-random number to
specify the directions of dummy branches. On Cortext-A53,
we insert eight dummy branches to ensure that the entire GHR
for the target branch is random. Owing to the minimal resource
and time consumption of the branch execution, this mitigation
is light-weight and efficient.

VII. CONCLUSION

In this paper, we propose TrustZoneTunnel, the first PHT-
based side-channel attack framework against ARM TrustZone,
which can extract the directions of any conditional branches
that execute in the secure world from the normal world. We
reverse engineer the PHT indexing mechanism in a Cortex
AS53 processor and several other ARM processors, and design
several important primitives including PHT Preset & Recheck,
Load-Step world-switching method and PHT entry collisions.
We apply TrustZoneTunnel to trusted DNN applications to
evaluate the attack effectiveness and performance, and im-
plement a strong model extraction attack that can recover
model parameters using only the side-channel leakage. Trust-
ZoneTunnel show that although ARM TrustZone provides
considerable hardware-level isolation to protect applications in
the secure world, the shared micro-architecture for speculative
execution becomes the vulnerability and can leak critical in-
formation from the secure world, breaching confidentiality and
privacy and undermining the protection of ARM TrustZone.
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