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Abstract—ARM’s TrustZone is a hardware-based trusted exe-
cution environment (TEE), prevalent in mobile devices, IoT edge
systems, and autonomous systems. Within TrustZone, security-
sensitive applications reside in a hardware-isolated secure world,
protected from the normal-world’s applications, OS, debugger,
peripherals, and memory. However, microarchitectural side-
channel vulnerabilities have been discovered on shared on-chip
resources, such as caches and branch prediction unit (BPU).
In this paper, we propose TrustZoneTunnel, the first Pattern
History Table (PHT)-based side-channel attack on TrustZone,
which is able to reveal the complete control flow of a trusted
application in the secure world. We reverse-engineer the PHT
indexing for ARM processors and develop key primitives for
cross-world attacks, including well-controlled world-switching,
PHT collision construction between two worlds, and precise PHT
state-setting and checking functions. Furthermore, we introduce
a novel model extraction attack against TrustZone based deep
neural network, which can recover model parameters using only
the side-channel leakage of vital branch instructions, obviating
the need for model output or logits while prior research work
requires such knowledge for model extraction.

Index Terms—ARM TrustZone, Side Channel Attack, Branch
Prediction

I. INTRODUCTION

With ever increasing requirements for security and trust

of the running applications, many modern CPUs are com-

panioned with a Trusted Execution Environment (TEE). By

executing security-sensitive applications in an isolated envi-

ronment, called secure enclave or secure world, TEEs dedicate

separate resources to the secure applications and disallow ac-

cess by untrusted applications or even OS from the rest of the

system (usually called host or normal world) [24]. TEEs can

protect the confidentiality of valuable code and data as well

as integrity of the system. Intel’s Software Guard Extensions

(SGX) and ARM’s TrustZone are two common TEEs that are

widely used in modern computing systems, while Intel has

dis-continued the support for SGX on client machines from

its 12th-generation core. ARM TrustZone remains the most

popular TEE found in billions of mobile systems, edge and

IoT devices. In TrustZone, the secure world and normal world

are two software worlds with separate hardware components

and access mechanisms, including debugger, peripherals, and

memory.

However, recent research demonstrated that TEEs are vul-

nerable to microarchitectural side-channel attacks [10], [14],

[16], [18], [23], as many on-chip microarchitectural units are

shared across the worlds, including caches and branch predic-

tion unit (BPU). Through shared resources, an adversary in the

normal world can glean details of a critical application in the

secure world, breaking the protection provided by the TEE. On

Intel SGX platforms, various microarchitectural side-channel

attacks have been presented that exploit cache, BPU, and page

table [8], [13], [14], [28]. On ARM TrustZone, cache-based

and BPU-based side-channel attacks are also proposed [10],

[16], [17], [23]. In these cross-world/enclave attacks, the OS

is not trusted and the attacker can have kernel-privilege but

still cannot access the secure hardware protected by the TEE.

With the shared microarchitecture for which applications in

both worlds can set the state and also monitor the change, the

attacker in the normal world can bypass the protection of the

secure world and retrieve critical information about the victim

application.

Previous side-channel attacks on Intel BPU target different

microarchitecture components. Branch target buffer (BTB)-

based attacks [2], [3] were first introduced, exploiting the

shared BTB across processes to infer a victim application’s

control flow and confidential data. There are already several

countermeasures against BTB attacks, adopting the principle

of isolation, including a hardware-level mechanism to partition

BTB entries among processes [30] and a complier-assisted

protection in Half&Half [29]. The other BPU component,

Pattern-History-Table (PHT) for predicting the direction of

branches’ execution, has received less attention. The prior

work, including Branchscope [12] and BlueThunder [14],

both target simple PHT architectures with Intel SGX enabled.

Most of the prior attacks and countermeasures primarily target

Intel systems, with very few addressing ARM architectures.

This oversight is significant given the substantial differences

between ARM’s and Intel’s BPU and TEE designs. The only

BPU based attack on ARM’s platforms was hardware-backed

Heist [23] that implements a BTB-based attack, while cur-

rently there is no PHT-based attack targeting ARM TrustZone.

In this paper, we propose TrustZoneTunnel, a cross-world

PHT-based side-channel attack targeting ARM Processors. We

reverse-engineer the PHT indexing mechanism of Cortex-A53,

one of the most widely used processor for mobile and embed-

ded devices since 2014. We construct collisions on a complex

TAGE PHT, employ the Load-Step mechanism [16], a method

to control the world-switching in TrustZone with adjustable

resolution, and propose a PHT-based microarchitectural side-
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channel attack framework against ARM TrustZone. We further

apply TrustZoneTunnel onto TrustZone based secure deep

neural network implementation for model extraction [19]. The

experimental results show that TrustZoneTunnel can extract

the direction of any single target branch of a secure world

program, and can successfully retrieve the entire DNN model.

II. BACKGROUND

This section provides background on ARM TrustZone, the

vulnerable shared microarchitecture BPU, and cross-world

switching mechanisms to create contention on the shared

microarchitecture.

A. ARM TrustZone

Since its introduction in 2004 with the ARMv6 architecture,

ARM’s TrustZone technology has been a key security feature

in the ARM processor family. As the most popular TEE,

TrustZone has been adopted in billions of lightweight devices

to protect both confidentiality and integrity of sensitive code

and data. With TrustZone, on the same processor there are

two software worlds: secure and normal, where the secure

world has its dedicated hardware resources and peripherals,

ensuring sensitive data and applications to operate in a trusted

environment, isolated from the regular operation modes in the

normal world.

Starting from the Cortex-A8 architecture, the TrustZone

technology has seen significant advancement. This work

mainly targets Cortex-A53 processor [6], which has been the

most widely adopted processor model in smartphones since

2014 until 2017 [1], and is still commonly used in game

consoles and embedded devices at present. Cortex-A53 is also

one of the first two ARM processors implementing ARMv8-A

ISA, which pivoted to 64-bit cores from 32-bit. It embodies

TrustZone features including robust isolation for secure data

handling, integrated cryptographic support for enhanced data

protection, and secure boot functionality for verified software

execution.

B. Branch Prediction Unit (BPU)

Modern computer architectures utilize BPU to speed up the

control flow of instruction streams. In a processor pipeline,

when the Instruction Fetch Unit (IFU) fetches a branch in-

struction, the BPU in the processor front-end is looked up

to predict the direction and/or the target address before the

branch is resolved, as there is cycle delay in the branch

instruction execution. The IFU then fills the pipeline with

the predicted instruction and starts speculative execution.

There is a mechanism to detect mis-speculation later and

roll back the execution. The BPU usually comprises several

integral components, each responsible for specific aspects of

branch prediction. The Branch Target Buffer (BTB) predicts

destinations of taken branch instructions. The Conditional

Branch Predictor (CBP) gauges whether a branch will be

taken or untaken (predicting the branch direction), crucial for

performance optimization.

In modern processors, CBP is based on a Pattern History

Table (PHT), a multi-entry table where each entry contains a

saturation counter for the direction prediction. The index func-

tion of a PHT is based on the current branch address and the

processor’s execution context, provided by a Global History

Register (GHR), which is a shift register recording the history

of the previously executed branches. Previous work [29] shows

that a GHR can be implemented in two different ways: a

Direction History Register (DHR) that records the directions

of prior conditional branches, and a Path History Register

(PHR) that stores the address of prior taken branches. In each

PHT entry, a 2-bit saturation counter specifies four states,

00 for strong not-taken (NT), 01 for weak NT, 10 for weak

taken (T) and 11 for strong taken. When making direction

prediction for a conditional branch, the PHT is looked up by

the generated index to hit an entry, and the 2-bit state will

predict the direction of the target branch (actually the upper

bit of the state, 1 for T and 0 for NT). When the conditional

branch instruction is resolved and finishes its execution, the

real direction will update the counter’s state, following a 4-

state finite machine. Fig 1 shows the mechanism of an example

PHT-based branch direction prediction, where the GHR is a

DHR.

Some advanced BPUs adopt TAGE (TAgged GEometric

history length) structure for branch prediction [22], [25], [26],

where multiple PHTs are included, each is associated with a

different history length. In this way the TAGE architecture

can capture and exploit diverse execution patterns across

various timescales, optimizing its overall prediction accuracy.

By ensuring an appropriate PHT is selected for a given branch

scenario.

Fig. 1. The mechanism of PHT based branch direction prediction

C. Load-Step World-switching

For high-resolution switching between the adversary and

the target branch execution, we exploit Load-Step [16], a

method to periodically interrupt the secure-world victim pro-

gram by the normal-world adversary program. Load-Step is

implemented as a Linux kernel driver, where all the adver-

sary’s codes are embedded in the context-switching process

by customizing the interrupt handler functions. The interrupt

resolution can be per-instruction.

Fig 2 shows the procedure of the Load-Step world-switching

mechanism adapted for our attack. It involves two cores,

one is the auxiliary control core and the other is the victim

core that runs the victim application in the secure world.

The auxiliary core sets a timer and first receives a time-up

event from the timer. It then controls the Generic interrupt

controller (Arm-GIC) to generate a cross-core interrupt and
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directs the interrupt to the victim core. The host OS is

responsible for handling cross-core interrupts. Once the victim

core receives the interrupt, the secure world is forced to save

its context and the execution switches to the normal world. The

attacker’s malicious functions (PHT Preset & PHT Check)

are embedded in the OS interrupt handling routine. When the

interrupt handler finishes execution, a signal is sent to the

auxiliary core to reset the timer for the next attack epoch, and

meanwhile the victim core switches to the secure world to

resume the victim application.

Fig. 2. Process of Load-Step

III. REVERSE ENGINEERING ARM BPU

To understand the vulnerable microarchitecture so as to

build the side-channel attack, we conduct thorough reverse-

engineering of the CBP of a 64-bit Cortex-A53 processor.

These reverse engineering results facilitate building attack

components, such as collisions on a specific PHT entry and

manipulating the state of PHT entries.

A. An Overview of Cortex-A53’s CBP

We use a Raspberry Pi 3B+ board, a widely-used ARM-

based development board, in our experiments. It has a quad-

core 1.2GHz ARM 64-bit Cortex-A53 processor and 1 GB

RAM. We install OPTEE [21] on the system, a TEE designed

as a companion to a Linux kernel running on ARM.

The only documented information about the CBP of Cortex-

A53 is that it uses a Direction History Register (DHR) and

a 3072-entry PHT [5], while other details such as the PHT

indexing, the size of the DHR, and what bits of the branch

address contribute to the index, are all unknown. In our

experiments, we observed that the CBP has a TAGE structure.

A typical TAGE predictor is shown in Fig 3, where there

are three PHT tables: a base one which is only indexed by

the branch addresses (T0), and two tagged tables (T1 and

T2) which are indexed with different GHR sizes (s1 and s2)

in addition to the branch address, where each entry keeps a

tag for hitting comparison and a usefulness counter (u) for

replacement decisions based on temporal locality.

For TAGE predictors, all the tables are simultaneously

queried during the prediction time, while only one predictor

will be selected to perform the prediction. A tag is generated

by a hash function over the branch address and the respective

GHR for each of the two tagged predictors. If no matches

in either table, i.e., the branch is not executed with the

same histories the predictors have witnessed before, the base

predictor (without tag) is used. When multiple tagged predictor

tables have a matched tag for a branch, certain policy guides

the selection of the appropriate predictor [22], [25], [26]. In

Fig. 3. The TAGE prediction structure

our experiments, we reverse engineered the predictor selection

mechanism employed by ARM Cortex-A53: by default the

predictor indexed with a shorter GHR (T1) is chosen when

both T1 and T2 have matching tags; however, the predictor

with the longer GHR (T2) is utilized when the recent predic-

tion accuracy of T2 is significantly higher than that of T1.

Next in Section III-B, we first design microbenchmarks to

determine the size of GHR for each tagged predictors (s1 and

s2). In Section III-C, we reverse engineer the effective bits in

a branch address for PHT indexing.

B. Measuring the Size of GHR

As the PHT in Cortex-A53 only has 3072 entries, we assume

that the GHR has no more than 16 bits. We first design a

function, shown below in Listing 1, to access the PHT by a

target branch with a pre-set GHR.

1 Access_PHT(h, d){

2 if((h>>15)&1) {...}

3 if((h>>14)&1) {...}

4 ... //Training GHR

5 if((h>>0)&1) {...}

6 m0=misprediction_counter();

7 //read the event counter

8 if(d) {...} //Target branch

9 m1=misprediction_counter();

10 return (m1-m0);

11 }

Listing 1. Function for accessing a PHT entry

The function has two input parameters, h, a 16-bit unsigned

value to set the GHR for a target branch, and d, a one-bit

direction for the target branch where 1 means Taken and 0

means Untaken. In the function, Line 8 is the target branch,

and before it we put 16 conditional branches with pre-set

conditions specified by the h value (Lines 2-6) to set the GHR

value seen by the target branch. During execution, although

each of the 16 branches also updates a respective PHT entry,

it is not likely they index into the same PHT entry as the

target branch, because they all have different addresses and

have seen a different branch global history. Before and after

the target branch execution, the mis-prediction counter is read,

which is an event counter in the Performance Monitor Unit

(PMU) that counts mis-predictions of conditional branches and

indirect branches. The function returns the differential of the
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two readings of the mis-prediction counters, with 1 indicating

the target branch experiences a mis-prediction while 0 meaning

a correct prediction. We hypothesize that the GHR size is

smaller than 16 bits, therefore, the branch history closer to

the the target branch (the lower part of the 16-bit h) is stored

in GHR for the target branch, while the other upper bits do

not contribute to the PHT index for the target branch.

Based on this function, we designed a microbenchmark with

the pseudo-code shown below to measurer the size of GHR,

i.e., how many bits in h contribute to the PHT look-up by the

target branch, and also glean the predictor selection preference.

1 h1=value;

2 h2=h1ˆ(1<<x); //set the x-bit different

3 m=0;

4 for(i=0:n) //Training loop

5 {

6 Access_PHT(h1, 1);

7 Access_PHT(h1, 1);

8 Access_PHT(h1, 1);

9 Access_PHT(h2, 0);

10 Access_PHT(h2, 0);

11 Access_PHT(h2, 0);

12 }

13 m += Access_PHT(h1, 1); //Testing period

14 m += Access_PHT(h1, 1);

15 m += Access_PHT(h1, 1);

16 print(m);

Listing 2. Microbenchmark 1

In this microbenchmark two h values are set, h1 and h2,

with only one bit at a chosen position, xth bit, different. In a

single tagged predictor table, if the xth bit contributes to the

indexing, h1 and h2 will make the target branch index into

different entries. However, if the xth bit does not contribute

to PHT indexing, the effective bits in h1 and h2 (lower than

the xth bit) that are kept in the GHR for the target branch are

the same, and therefore the target branch will index into the

same entry with h1 and h2. There are two main parts in this

microbenchmark, the training loop (Lines 4-12) and the testing

period (Lines 13-15). In the training loop, we have two groups

of Access PHT functions, setting an entry in the PHT for

the target branch Taken (Lines 6-8) and Untaken (Lines 9-11),

respectively. If h1 and h2 are indexing into different entries,

the entry indexed with h1 is set to strong T and the other entry

with h2 to strong NT. However, if h1 and h2 are indexing into

the same entry, in each iteration, one entry is trained to be

strong T first and then strong NT. In the test period, we test

which situation is currently occurring by checking the state of

the entry indexed with h1. If on different entries, the starting

state of the entry indexed by h1 in the testing period would

be strong T, and therefore no mis-prediction will appear and

the microbenchmark returns 0 for the m value. If on the same

entry, the starting state of the entry would be a strong NT, and

two mis-predictions will appear in the testing period and the

microbenchmark returns 2 for the m value.

We conducted experiments on Microbenchmark 1, observ-

ing the value of m as x varies from 0 to 15 with different

number of iterations (n) in the training loop. We count the

proportion of h1 and h2 indexed into different entries, which

is the proportion of m = 2. In Fig 4, we present the changes

in this proportion with respect to x for different values of n. It

is evident that the result can be categorized into three distinct

phases: when 0 ≤ x ≤ 4, h1 and h2 always index into different

entries, indicating that 0th-4th bits of GHR always contribute

to PHT indexing no matter which predictor is chosen, and

therefore the shorter size of GHR (s1) is 5; when x ≥ 8, h1

and h2 always index into the same entry regardless of which

predictor chosen, indicating that those bits of GHR do not

contribute to PHT indexing, and therefore the longer size of

GHR (s2) is 8; when 5 ≤ x ≤ 7, the proportion exhibits a

progressive increment as n increases, and we speculated that

in this phase two tagged predictors(T1 and T2) have different

behaviors/accuracy and the choice between them is not stable.

The change trend in the phase of (5 ≤ x ≤ 7) can help

us understand the selection mechanism between T1 and T2.

When n is small, T1, which has the shorter GHR, is the

preferred choice, to result in the same entry indexed by h1 and

h2. As n gradually increases, the proportion of selecting T2

increases (i.e., indexed into different entries). We speculated

that by default T1 is prioritized for selection, while certain

mechanisms are in place to reduce the priority of T1 when

its accuracy drops significantly, favoring T2 instead. In the

training loop, when 5 ≤ x ≤ 7, if T1 is selected, there are

in total 4 mis-predictions in each iteration, causing a low

prediction accuracy of 33%. As n increases, the low accuracy

progressively reduces the priority of T1, and the selection of

the predictor leans toward T2.

Our further experiments show that although it takes thou-

sands of loops to train the target branch prediction to favor T2,

only a few loops of high accuracy pattern will train it back

to select T1. This shows that the default choice of T1 is more

stable. In the following sections we will always train the target

branch to use T1 for prediction.

In summary, we conclude that the CBP of ARM Cortex-

A53 is composed by three components: a base predictor table

which is only indexed by the branch address, a tagged table

that uses 5 bits GHR for indexing, and a tagged table that uses

8 bits GHR for indexing.

Fig. 4. Percentage of different PHT entries when changing x and n

C. Effective Bits in the Branch Address

When deciding the PHT index for a target branch, not all

the bits in the branch address are involved in the PHT indexing

and tag comparison, i.e., only some bits are effective. Next we

figure out the effective bits in a branch address. We design an
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advanced PHT-accessing function, where we not only set the

GHR, but also select different branch instructions to access

the PHT, as shown below.

1 Access_PHT_Adv(h, x, d){

2 if((h>>7)&1) {...}

3 ... //Training GHR

4 if((h>>0)&1) {...}

5 return branch[x](d);

6 }

7 branch[0](d){

8 m0=misprediction_counter();

9 //read the event counter

10 if(d) {...} //Target branch

11 m1=misprediction_counter();

12 return (m1-m0);

13 }

14 branch[1](d){...}

15 ...

16 branch[4095](d){...}

Listing 3. Advanced function for specifying a branch instruction
and accessing a PHT entry

In addition to an 8-bit h vector and the branch direction

d value, the function has a third parameter, x. We build an

array of functions, branch[4096], in order to generate different

target branch addresses (one target branch is shown in Line

10). branch[4096] contains 4096 functions, with each simply

executing a conditional branch with the same global branch

history (specified by the h value) and checking if a mis-

prediction occurs for the target branch. All the branch[x] func-

tions have the same code, but would have different addresses

for the target branches. We then perform an experiment shown

below to check if two different target branches with the same

global branch history can index into the same PHT entry.

1 h=value;

2 m=0;

3 for(i=0:100)

4 {

5 m += Access_PHT_Adv(h, x1, 1);

6 m += Access_PHT_Adv(h, x1, 1);

7 m += Access_PHT_Adv(h, x1, 1);

8 m += Access_PHT_Adv(h, x2, 0);

9 m += Access_PHT_Adv(h, x2, 0);

10 m += Access_PHT_Adv(h, x2, 0);

11 }

Listing 4. Identifying the effective bits of a branch address

In the TAGE predictor, although each table uses different

GHR size, all the three tables use the same effective branch

address bits. If the two target branches in the two branch

functions (x1 and x2) have the same values on all the effective

bits, they will use the same table entry, no mater which

predictor is used. We define this condition where two different

branches use one PHT entry as a PHT collision. In this

microbenchmark, we can detect whether branches x1 and x2

collide on a PHT entry by the value of m. As the PHT only has

3072 entries in total, there must be pairs of branches among

the total 4096 branches that will construct PHT collisions

according to the simple birthday problem.

We keep changing the value of x1 and x2 to select different

target branches, and save the addresses of the two target

branches if a PHT collision is detected. Fig 5 shows the

average difference between x1 and x2 on each bit for PHT

collisions, where the x-axis indicates the bit position. The

results show that the lower 4th to 13th bits of the two

addresses, x1 and x2, are identical when they collide on a

PHT entry, i.e., the effective branch address bits. Note the last

two address bits are always zero as each word is four-byte.

Fig. 5. Average difference between two colliding addresses on each bit

IV. THE TRUSTZONETUNNEL ATTACK

In this section, we elaborate and propose TrustZoneTun-

nel, a PHT-based side-channel attack framework, where the

attacker in the normal world can extract the direction of a

target branch in the secure world. We describe how to build

a side-channel across the two worlds of TrustZone, and then

implement the attack against an RSA implementation of the

mbedTLS library [20] in the secure world.

A. Threat Model

We assume the common threat model for TrustZone, where

the victim is a trusted application in the secure world and

the normal world applications can only invoke it as service.

The attacker has full control of the normal world, including

the operating system. It can install external kernel modules to

modify the interrupt handlers, has the privilege to access the

PMU, and is able to assign specific cores to run the adversary

program. We also assume that the attacker figures out the

virtual address of a target branch, through knowledge to the

source code and the binary of the victim application.

B. Attack Overview

TrustZoneTunnel aims to extract secrets from a victim appli-

cation running in the secure world, if the conditional branches

are dependent on the secrets. Our reverse engineering results

indicate that with the TAGE predictor architecture, there are

three prediction tables each of which uses a different length

GHR in indexing. To avoid unexpected switching between the

three predictors, we first train the target branch to use the

tagged predictor that uses a 5-bit GHR for indexing, which is

the most reliable predictor.

TrustZoneTunnel consists of three salient parts: the PHT

Preset & Check function, world-switching, and PHT collision

construction.

PHT Preset & Check mechanism: We propose a PHT Preset

& Check mechanism, where we first preset the state of a PHT

entry by executing a collision branch, and then checks the

state update of the entry by the victim target branch. Both the

collision branch in the normal world and the target branch

in the secure world index to the same PHT entry during

execution, i.e., a collision on the PHT occurs.

World-switching: to achieve a fine-grained control on the

switching between the victim and the adversary, we implement
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our attack with the Load-Step framework. As shown in Fig 2,

the victim application is set to run on a victim core (in

the secure world), and the adversary program keeps sending

interrupts to the victim core from an auxiliary core. The

interrupt handler is customized to embed the Preset & Reset

functions to operate on a common PHT entry which the victim

target branch collides with the collision branch on.

PHT collision construction: when constructing a PHT col-

lision between the two worlds, the target branch in the victim

application is already fixed, we then set the collision branch in

the normal world to have the same values for the effective bits

as the target branch, and also set the common branch global

history for them.

C. PHT Preset & Check

We first construct a PHT Preset() function to set the state

of the 2-bit counter in a PHT entry to a specific value. After

the target branch execution, we then monitor the state update

via the PHT Check() function, and speculate the direction

of the target branch. The pseudo-code for the two functions

is given below. We use an Activate T1() function to train

the CPU to use the tagged predictor table that is indexed with

the 5-bit GHR (T1). Note that to ensure the CPU consistently

utilizes T1, h needs to be 8 bits instead of 5 bits, otherwise

the other table (T2) might still be selected occasionally.

1 PHT_Preset(){

2 Activate_T1(h, x);

3 Access_PHT_Adv(h, x, 1);

4 Access_PHT_Adv(h, x, 1);

5 Access_PHT_Adv(h, x, 1);

6 Access_PHT_Adv(h, x, 0);

7 }

8 PHT_Check(){

9 m=0;

10 m+=Access_PHT_Adv(h, x, 0);

11 m+=Access_PHT_Adv(h, x, 0);

12 return m;

13 }

Listing 5. PHT Preset & Check Functions

The adversary collision branch instruction is in the

branch function branch[x] (shown in Listing 3). In the

PHT Preset() function, we use the collision branch to

access a PHT entry with three taken and one non-taken, so as

to train the two-bit counter in the entry to be a weak T (10).

In the PHT Check() function, we execute the same collision

branch twice with direction of non-taken, and count how

many mis-predictions have occurred. We deliberately control

the victim to run the target branch between the Preset and

Check functions, the m value returned by the PHT Check()
function will leak the execution direction of the target branch.

Assuming no other branches are having a PHT collision with

the target branch or the collision branch, i.e., no noise, and the

target branch executes at most once in this piece of code. If

m=0, no mis-prediction occurs when executing the two non-

taken, meaning that the state of the two-bit counter at the

beginning of the PHT Check() is either Strong non-taken

(00) or Weak non-taken (01), so the target branch must have

executed as non-taken. If m=1, we can speculate that the state

of the 2-bit counter start as weak-taken (10), implying that

no target branch is executed between the Preset and Check.

If m=2, the state of the 2-bit counter should be strong-taken

(11), indicating that the target branch has been executed taken.

With this method, we can build a PHT based side-channel, and

extract the direction of the target branch.

D. Implementing TrustZoneTunnel with Load-Step

TrustZoneTunnel is implemented with the Load-Step frame-

work, as shown in Fig 2, where the world-crossing inter-

rupt handler is prefixed with a PHT Check() function,

to detect the impact of the prior execution of the victim

application (possibly one target branch) in the secure world,

followed by Interrupt Handler and Context Recovery, before a

PHT Preset() function, to set the target entry in the PHT to

a known state before the victim core resumes the secure-world

application. The Load-Step framework is installed in the Linux

OS as an external kernel module. For the adversary program

on the auxiliary core, it starts a timer once the TEE OS is

activated. When the timer is up (after a fixed time interval),

an interrupt signal is sent to the victim’s core, forcing the

secure-world application to pause and switching to the normal

world for handling the interrupt. When the routine is over, the

adversarial execution returns to the auxiliary core while the

victim core is released to resume the victim application, to

start next epoch. Note the PHT Check() function will store

its output in a trace file.

E. PHT collision construction

To build a collision branch, we need to first obtain the

address of the target branch, and then select a branch in the

normal world whose lowest 4th-13th address bits are the same

as the target branch. Then we need to set the context for the

target branch and the collision branch the same, i.e., setting

a common branch global history (GHR) for both branches’

execution.

For the collision branch in the Preset and Check functions,

the branch global history is easy to set to any specific value

with the method shown in Listing 1. So the important thing

is to figure out the branch history for the target branch and

then align the collision branch with it. We assume that the

attacker can always interrupt the victim right before the target

branch execution, so that the recent branch global history of

the target branch is provided by the World Switching (WS)

function, as shown in Fig 2. We assume these operations have

a fixed branch profile and design an experiment to recover it.

We first write a simple trusted application shown below,

where the directions of the target branch are decided by the

value of the 64-bit secret. We put the trusted application in our

Load-step framework for experiments, and adjust the interrupt

timer to make sure that the 64 iterations (each with one target

branch execution shown on Line 4) can all be monitored by

interrupts (with PHT Preset+Check functions) preceding them.

1 uint64_t k = secret; // secret

2 for(i=0;i<64;i++)

3 {

4 if((k>>i)&1) //target branch
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5 { ... }

6 }

Listing 6. A simplified victim

As the number of branches in the world switching function

may be less than 5, we need to complement it with more

branch executions to contribute to a full controllable GHR for

the target branch, and the PHT Preset() function is therefore

extended, as shown below.

1 PHT_Preset(){

2 ... //same with Listing 5

3 h2=0;

4 if((h2>>7)&1) {...}

5 if((h2>>6)&1) {...}

6 ... //Setting target GHR

7 if((h2>>0)&1) {...}

8 }

Listing 7. Extended PHT Preset Function

With this extended function, the value h1 sets the GHR

for the collision branch, while the lower part of the value

h2 combined with the branch pattern of the WS routine set

the GHR for the target branch. Both h1 and h2 have 8 bits

to activate the prediction table with the shorter GHR (5-

bit), while only the least significant 5 bits contribute to PHT

indexing. We first set h2 as zero, and vary the other vector

h1 value from 0b00000000 to 0b00011111 to find one h1

value, where PHT collisions between the target branch and

the collision branch can be detected. The results are shown in

Fig 6, where we calculate how many PHT collisions we can

detect on this simplified victim among different h1 values.

The result shows that a PHT collision only happens when

h1=0b00000001, and a common GHR has resulted for the

collision branch and the target branch.

Fig. 6. Detected PHT collisions when varying h1 in the range of 0 and 31

We design another experiment, now with h1 fixed at value

of 0b00000001 but varying h2, to figure out the composition

of the target branch GHR, i.e.,how many lower bits of GHR

are contributed by the branch profile of the world switching

routine, and how many upper GHR bits are contributed by part

of h2. The result is given in Fig 7, showing that as long as h2 is

an even value, PHT collisions can be detected. This indicates

that only the last bit of h2 affects collisions, and therefore the

number of branches in the world switching routine must be

four with their directions as 0b0001. Meanwhile, from Fig 7

we can also observe that only when h2=0b00000 or 0b10000

we can detect all the 64 PHT collisions, while when the 2nd-

4th bits dismatch the corresponding bits in h1, we will always

miss several collisions because the selection of the predictor

T1 is unstable. In our following experiments we still need to

consider eight bits for the GHR, to train towards selecting the

right predictor table, while only the last five bits are used for

PHT indexing.

Fig. 7. Detected PHT collisions when varying h2 in the range of 0 and 31

With this reverse engineering result, in attacks, the

PHT Preset function only needs to append four conditional

branches, together with the world switching routine, to set the

context GHR for the target branch.

F. TrustZoneTunnel on RSA

We next evaluate TrustZoneTunnel on real world trusted ap-

plications. We chose a sliding-window secure RSA implemen-

tation from the mbedTLS library as the victim, where our goal

is to retrieve the key bits through the PHT-based side-channel.

For any victim application, there are some application-specific

adjustments that need to be made to tailor TrustZoneTunnel.

1) The target branch address: with the source code of the

victim application, the attacker first needs to locate a

conditional branch whose direction is related to sensitive

information, such as key or the sign of a neuron output.

For this RSA implementation, we select a target branch

whose direction is directly decided by a key bit. By

disassembling the binary file, the page offset of the target

branch address can be retrieved so that majority of the

effective bits (4th to 12th) are known.

2) The interrupt time interval: we usually aim at inter-

rupting the victim every 3-10 instructions. To achieve

this resolution, we need to adjust the timer according

to the victim application. As different applications have

different processor resources footprint (including the

registers and live memory), the time for context saving

and recovery is different. We implement a highly effi-

cient software timer based on iterative plain arithmetic

instructions, and the typical interrupt interval is 2000-

4000 instructions. For this RSA implementation, the

time interval is set at 2330 so that our side-channel can

track the target branch execution with high precision.

We exemplify the RSA-4096 decryption process, a partial

result is shown in Fig 8. Each PHT-Check result is presented

by a scatter, showing a detection on the target branch to be

taken (T), non-taken (NT) or not executed (NE). For this RSA

victim, a single run of the TrustZoneTunnel contains about

10,000,000 interrupts to the victim, which takes about 200

seconds to run. Our results shows that we can detect all the

executions of the target branch, and distinct their directions

correctly. With these results we’re able to recovery all 4096

bits in the RSA private key.
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Fig. 8. Partial result of the RSA attack

V. MODEL EXTRACTION ATTACK OF NEURAL NETWORKS

With TrustZoneTunnel, we further propose a model extrac-

tion attack on deep neural networks, where the adversary aims

at stealing a function-equivalent copy of a deployed machine

learning model. Previous works [7], [15] apply software meth-

ods to recover the model, where they need both the model

outputs and the detailed logits when being queried in order

to perform the attack. In contrast, our attack can recover a

high-fidelity model with only the controlled inputs and the

execution information leaked through our PHT-based side-

channel.

A. Attack Overview

We start with a target application of simple multi-layer

perceptron (MLP), which is composed of fully-connected

layers and ReLU activations, with an argmax function in

the last layer. We target at the branch in the ReLU activation

function and the argmax function and observe their directions

through our PHT-based side-channel. We iteratively change the

input and observe the direction of a chosen ReLU, until the

ReLU activation reaches a critical condition, i.e., its input is so

small to be approximated as zero. We call such input a witness

to the ReLU’s critical condition. The attack is conducted in two

steps:

1) Weights recovery: for the layers except for the last layer,

we search for the critical conditions for each neuron, i.e.,

the input to the ReLU function of the neuron is zero.

We recover the input weights of each neuron based on

many witnesses to its critical condition through linear

regression.

2) Last-layer weight recovery: the last layer uses the

argmax function instead of the ReLU function. We

search for another type of critical condition under which

two output logits are equal, and subseuqently recover the

weights in the last fully-connected layer.

Next we illustrate the attack with a sample 2 ∗ 2 ∗ 3
MLP model, which consists of two input features, one fully-

connected layer with two neurons each followed by a ReLU

function, and a last-layer with three neurons and an argmax

function, as shown in Fig 9. The model is implemented

with Trusted-DNN [19], a TrustZone-based adaptive isolation

strategy for DNN models.

B. Weight Recovery

Weight recovery relies on searching for witnesses of the

critical condition for each neuron of the hidden layers. Previ-

ous work [7], [15] exploits the gradients on the model output

logits to search for witnesses, while in our attack we only use

Fig. 9. A simple victim MLP model

the proposed side-channel without using logits, i.e., treating

the model inference execution as a black-box, a more realistic

attack scenario.

The implementation of the ReLU (Rectified Linear Unit)

activation function is presented below, where Line 6 is our

target branch, whose direction is determined by the sign of

the function’s input, essentially the output from the preceding

fully-connected layer. Specifically, the branch direction hinges

on whether this input value exceeds zero.

1 void relu_op_forward(nonlinear_op *op)

2 {

3 for (int i=0; i<(op->out_units); i++)

4 {

5 op->output[i] =

6 op->input[i]>0 ? op->input[i]: 0;

7 //Target branch

8 }

9 }

Listing 8. ReLU activation function

For the hidden fully connected layer of the example DNN

model shown in Fig 9, there are two neurons, n1 and n2,

with their output calculated by Oi = Wi ∗ X + Bi, where

X is the input vector {x1, x2}, Wi the associated weight

vector {W1i,W2i}, and Bi the bias for this neuron. The neuron

output will go through the ReLU function to rectify it, where

the ReLU function contains a conditional branch as shown

in Listing 8. By monitoring this branch instruction using our

PHT-based side-channel, the sign of the input to ReLU, Oi, is

detected.

We first set the model input at zero, x1 = x2 = 0, to reveal

the sign of the biases Bi. Previous work has shown that such

model extraction attack only retrieves a function-equipment

network, with the weights and biases determined relatively,

i.e., with a scalar multiplier [15]. We normalize the weights

and biases according to the biases, assuming Bi = 1 if it is

positive; and Bi = −1 if negative.

We next search for the witness to the critical condition for

each neuron. That is, taking neuron n1 as example, search for

X that makes O1 = W11 ∗ x1 + W21 ∗ x2 + B1 = 0. We

randomly generate inputs until we find two points X1,X2,

such that their corresponding outputs O1 have opposite signs.

Then we use binary search iteratively until we find an input

X that makes O1 a small positive value, below the preset ε.

We need to find multiple witnesses to the critical condition of

neuron n1, so that we can have sufficient linear equations over

the weights {W11,W21} in order to solve them (note B1 is

already known to be 1 or -1). We apply this method one by one

to other neurons in the first layer. We then apply this weight

recovery process layer by layer. For deeper layers, because the
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weights and biases in previous layers are all recovered, we can

set the input to the current layer to specific values for binary

searching and finding the critical conditions and witnesses in

a similar fashion as the first layer.

C. Last-layer Parameter Recovery

The last layer of a DNN model normally utilizes argmax

instead of ReLU function to pick the highest logit. For

example, for the MLP model we target shown in Fig 9, the

three logits computed by the three neurons in the last layer

are:






y1 = W 2

11 ∗ FO1 +W 2

12 ∗ FO2 +B2

1

y2 = W 2

21 ∗ FO1 +W 2

22 ∗ FO2 +B2

2

y3 = W 2

31 ∗ FO1 +W 2

32 ∗ FO2 +B2

3

where the FOi are the feature map outputs from the first

layer, and the superscript 2 indicates it is the second layer (we

will drop it in the following description for simplicity). Since

the classifier outputs the class corresponding to the highest

value among y1, y2 and y3, its classification only depends on

the relative comparisons among the three yi. Therefore, the

network is functionally equivalent when the last layer is re-

parameterized as:






y∗

1 = 0

y∗

2 = W̄21 ∗ FO1 + W̄22 ∗ FO2 + B̄2

y∗

3 = W̄31 ∗ FO1 + W̄32 ∗ FO2 + B̄3

where W̄i1 = Wi1−W11, W̄i2 = Wi2−W12 and B̄i = Bi−B1

for i = 2, 3. This conversion reduces the number of variables

from nine to six. Similar to the weight recovery process shown

in Section V-B, we just need to recover the relative parameters

while assuming B̄i as 1 or -1.

We look into the argmax function and track conditional

branches used. The source code of argmax function is shown

below.

1 void argmax(float *arr, int n, TEE_Param * temp)

2 {

3 ...

4 for (int p = 0; p<n; p++)

5 {

6 if (arr[p] > max) //Target branch

7 {

8 idx = p;

9 max = arr[p];

10 }

11 }

12 ...

13 }

Listing 9. The last-layer argmax function

The source code shows that with n neurons (logits) in the

last layer, there are n comparisons, implemented as conditional

branches (Line 6), to bubble sort the highest logit. The first

execution of the target branch is always taken, while the

second execution compares y2 and y1, and the third execution

compares either y3 and y1 or y3 and y2, depending on the

result of the second execution. Assuming the attacker has

already recovered all the previous layers and is able to set

value for FO1 and FO2, with the critical condition setting

method described in Section V-B, we can find witness to the

critical condition of y1=y2 and y1=y3 (or y2=y3), which can

be represented by:














W̄21 ∗ FO1 + W̄22 ∗ FO2 + B̄2 = 0

W̄31 ∗ FO1 + W̄32 ∗ FO2 + B̄3 = 0

OR

(W̄21 − W̄31) ∗ FO1 + (W̄22 − W̄32) ∗ FO2 + (B̄2 − B̄3) = 0

With witnesses for these critical conditions found,

i.e., a set of {FO1, FO2} values, the four parameters,

W̄21, W̄31, W̄22, W̄32, will be solved. Note in our computation,

we do not rely on knowing the values of logits (yi), as the

previous work did [15] (in a white or grey box fashion), but

just exploit the PHT-based side-channel for weight recovery,

a complete black-box attack model for the victim application.

D. Evaluation

We evaluate the performance of our model extraction attack

on different MLP model sizes and architectures, and also

extend our attack to a CNN model - Lenet-5. We compare

the number of queries needed to recover weights of the whole

network by our attack with the prior cryptanalytic/software

model extraction work [7], [15]. We also give the execution

time of our attack, compared to the original model execution

time. The results are shown in Table I.

TABLE I
PERFORMANCE OF THE MODEL EXTRACTION ATTACK

Architecture
#of

Parameters
Prior

Queries
Our

Queries
Model
Time

Our Attack
Time

784-32-1 25,120 2
18.2

2
19 0.5s 3.9s

784-128-1 100,480 2
20.2

2
21 1.8s 13.6s

10-10-10-1 210 2
16

2
13 79ms 238ms

10-20-20-1 420 2
17.1

2
14 86ms 517ms

40-20-10-10-1 1,110 2
17.8

2
15 95ms 836ms

80-40-20-1 4,020 2
18.5

2
17 145ms 1.7s

Lenet-5 44,426 − − −− 2
20 265ms 11.6s

Note that in our attack the number of queries is linearly

dependent on the number of neurons, and not related to the

number of layers. So for deeper networks, our attack requires

less queries than cryptanalytic methods. Also, the prior work

does not apply to CNN models like LeNet-5 due to high

complexity, while our attack successfully applies.

The result also shows that our attack increases the total

execution time by about tenfold for all these models, which is

acceptable for performing a feasible model extraction attack.

As shown in Fig 2, this time overhead is due to frequent

interruptions of the attack, including the customized interrupt

handler and the world switching, where each interruption in

the attack of DNN execution causes a delay of about 15 μs. As

different victim applications use different amount of registers

and memory resources, the context saving and restoring time

may vary and such interruption delay may also vary, we set

the timer interval as 2130 CPU cycles in the attack of the

sample MLP model. For DNN inference, as the execution of

ReLU activations only takes a small fraction of the time, we do

not need to attack the entire network execution. We can profile

the network execution and only start interruptions near the first
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ReLU layer, to reduce unnecessary interruptions and therefore

reduce the execution overhead. On average, 10 interrupts are

needed for one ReLU iteration.

VI. DISCUSSION

A. Applicability Across Cortex-A Models

We further analyze the BPU structure on other ARM

processors. We choose four models, with distinct micro-

architectures and from different vendors, including STMicro-

electronics, Broadcom (Rasberry Pi), Qualcomm (XIAOMI

10), and Apple. The results are presented in Table II. We

find that on the older ARM Cortex A7, the PHT only uses

the GHR for indexing, without relying on the branch address.

On newer ARM processors including Cortex-A72, Cortex-A76

and Apple M1, the GHR is comprised by the Path History

Register (PHR), consisting of addresses of past taken branches,

instead of Direction History Register (DHR) for the directions

of conditional branches. We reverse-engineered the number of

past branches associated with the Path History Register, as

well as the effective bits in PC used for PHT indexing.

TABLE II
PHT INDEXING MECHANISM OF OTHER ARM PROCESSORS

Architecture Platform GHR PC bits for index

Cortex A7 STM32MP157A 8-bit DHR ×

Cortex-A72 Rasberry Pi 4 32-address PHR [14:4]

Cortex-A76 XIAOMI 10 48-address PHR [14:4]

Firestorm(M1) Macbook Air 96-address PHR �

The proposed attack framework can be easily applied to

older ARM models, while the newer ARM processors are

more similar to Intel processors with the use of PHR in

indexing the PHT [14], [29]. We found that the BPUs on

Cortex-A72 and Cortex-A76 are similar to each other, differing

significantly from that of Cortex-A53 and Intel processors:

the PHT table is only for storing branches predicted to be

taken. The PHT is two-way associative. There is still a 2-bit

counter in each PHT entry, set to 11 when a branch is put in.

The counter decrements when the branch is resolved as non-

taken, and increments when taken. A branch will be removed

from the PHT when its counter decreases to 00. For branch

prediction, if the executing branch hits one of the PHT entry,

it is predicted to be taken, and non-taken otherwise on table

miss. Correspondingly, the salient attack gadgets, including the

PHT entry collision construction and the PHT Preset & Check

mechanism would need to adapt for the newer processors.

B. Attack Mitigations

Half&Half [29] introduced a mitigation for BPU-based side-

channel attacks on Intel systems by partitioning conditional

branch addresses between domains with different privileges,

i.e, make their effective bits different to prevent PHT collisions

across these domains. However, this compiler-level solution

may not be effective in a TEE setting, where attackers with

OS-level privileges could circumvent compiler-based defenses.

An alternative strategy is to capture unique features of the

attack for detection, and prior works [9], [27] have suggested

observing frequent interrupts in a victim enclave as an anomaly

- indicator of attacks, which will incur performance degra-

dation. Another common software based mitigation is getting

rid of conditional branches in security-critical applications [4],

[11], while its algorithm-specific nature limits its broad appli-

cability. Other methods, including flushing all the counters in

the PHT entries when the execution switches from the secure

world to the normal world, and using two different BPUs on

a single core for different worlds, are also effective, with non-

negligible implementation and execution overhead.

Specific mitigation tailored to features of TrustZoneTunnel

would be more effective. To create collision on the PHT in

our TrustZoneTunnel, the adversary has to deliberately align

the GHR seen by the collision branch (in the Preset and the

Check functions) with the GHR seen by the target branch (in

the victim function), as described in Section IV-E. We propose

a countermeasure to introduce dummy branch executions

with random directions in the world-switching routine, and

therefore the adversary fails to profile it and align their GHR

for the collision branch with it. For our experimental platform,

we modify OPTEE’s secure world unbanked registers restore

function, which will be called when the execution switches

from the normal world to the secure world. We utilize the

CPU cycle counter to introduce a pseudo-random number to

specify the directions of dummy branches. On Cortext-A53,

we insert eight dummy branches to ensure that the entire GHR

for the target branch is random. Owing to the minimal resource

and time consumption of the branch execution, this mitigation

is light-weight and efficient.

VII. CONCLUSION

In this paper, we propose TrustZoneTunnel, the first PHT-

based side-channel attack framework against ARM TrustZone,

which can extract the directions of any conditional branches

that execute in the secure world from the normal world. We

reverse engineer the PHT indexing mechanism in a Cortex

A53 processor and several other ARM processors, and design

several important primitives including PHT Preset & Recheck,

Load-Step world-switching method and PHT entry collisions.

We apply TrustZoneTunnel to trusted DNN applications to

evaluate the attack effectiveness and performance, and im-

plement a strong model extraction attack that can recover

model parameters using only the side-channel leakage. Trust-

ZoneTunnel show that although ARM TrustZone provides

considerable hardware-level isolation to protect applications in

the secure world, the shared micro-architecture for speculative

execution becomes the vulnerability and can leak critical in-

formation from the secure world, breaching confidentiality and

privacy and undermining the protection of ARM TrustZone.
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