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Abstract—IoT devices and other embedded systems are in-
creasingly equipped with cameras that can sense critical infor-
mation in private spaces. The data security of these cameras,
however, has hardly been scrutinized from the hardware design
perspective. Our paper presents the first attempt to analyze the
attack surface of physical-channel eavesdropping on embedded
cameras. We characterize EM Eye—a vulnerability in the dig-
ital image data transmission interface that allows adversaries
to reconstruct high-quality image streams from the cameras’
unintentional electromagnetic emissions, even from over 2 meters
away in many cases. Our evaluations of 4 popular IoT camera
development platforms and 12 commercial off-the-shelf devices
with cameras show that EM Eye poses threats to a wide range
of devices, from smartphones to dash cams and home security
cameras. By exploiting this vulnerability, adversaries may be able
to visually spy on private activities in an enclosed room from
the other side of a wall. We provide root cause analysis and
modeling that enable system defenders to identify and simulate
mitigation against this vulnerability, such as improving embedded
cameras’ data transmission protocols with minimum costs. We
further discuss EM Eye’s relationship with known computer
display eavesdropping attacks to reveal the gaps that need to be
addressed to protect the data confidentiality of sensing systems.

I. INTRODUCTION

Cameras, being one of the highest-entropy sensors, are be-
coming omnipresent even in private spaces. Recent advances in
the miniaturization of semiconductor electronics have spurred
the wide integration of cameras into various embedded and
mobile systems ranging from smartphones to IoT gadgets such
as smart locks and home monitors. For smart home security
cameras alone, the number of families owning such devices is
predicted to grow from 99 million to 180 million between 2023
and 2027 [37]. Given the near-universal adoption of embedded
cameras and the critical information they could capture such
as the private activities and personnel information in offices
and households, it is imperative to prevent unauthorized access
to camera data. While previous research examined the data
eavesdropping vulnerabilities in networked IP cameras’ soft-
ware stack [3], [15], [23], [38], the hardware design of these
embedded camera devices has not been scrutinized yet. To
understand the threats more thoroughly, our work investigates a
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Fig. 1: Embedded cameras leak EM signals in operation,
allowing eavesdroppers to visually spy on private spaces by
reconstructing camera images.

new dimension of the problem by asking how may adversaries
eavesdrop on camera data by exploiting the side-channel
byproducts generated by the cameras’ physical operations?

Our work draws inspiration from recent works showing
that embedded cameras’ electromagnetic (EM) emissions allow
people to detect the presence of cameras [25], [34], [41]. While
these works simply use the existence of EM emissions as an
on/off indicator of camera operations, essentially extracting
a single bit of information, our work further investigates
how much information of camera data is leaked from such
EM emissions1, and how adversaries can eavesdrop on the
camera image streams by reconstructing synthesized images
from the EM signals. Through experiments with the open-
source Raspberry Pi camera, one of the most used embedded
camera prototyping platforms, we observe highly predictable
correlations between the EM emission patterns and the camera
image contents. Nevertheless, mapping the 1D EM signals
to 2D images is conceptually challenging without further
knowledge of the EM generation process. Our investigations
unveil that the primary EM leakage source is the digital
image data transmission interface between the image sensor
chips and the downstream image processing components. We
carry out a detailed analysis of the physical layer of the
embedded camera’s data transmission interface. We find that
RAW sensor data represented in bits are transmitted in a de-
terministic way following a frame-by-frame, row-by-row, and
column-by-column order. By understanding the serialized data
transmission scheme and reverse-engineering the transmission
parameters, adversaries can directly generate eavesdropped
image streams in real-time using portable equipment including
an antenna, a software-defined radio receiver, and a laptop.

Despite the ability of direct image reconstructions, our
experiments reveal additional challenges that limit adversaries’

1Demo and tutorial are available at https://emeyeattack.github.io/Website/
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Fig. 2: The typical architecture of embedded camera systems.

capability of retrieving intelligible information from the re-
constructions. For example, the eavesdropped images suffer
from loss of colors and incorrect gray-scale values, as well
as significant noise that causes degradation of image quality.
We thus develop a model to characterize the physical leakage
process of digital image transmission and analyze the root
cause of these distortions. Our analysis shows that the limited
EM signal bandwidths that could be afforded by adversaries
in practical settings cause irreversible loss of image data
structures in the EM signals, which then manifests itself as
very structured distortions in the reconstructions. An adversary
aiming to get a high-quality image then faces the challenge
of partially recovering the data structures by leveraging their
prior knowledge of the physical leakage process. To explore
to what extent an adversary can achieve this, we develop
an enhanced eavesdropping pipeline to strategically combine
available EM signals and infer high-quality images using a
supervised image-to-image translation network that learns the
structured mappings between original and distorted images.
We find the pipeline capable of removing most distortions,
recovering authentic gray-scale images, and even producing
colored images that well-approximate the camera scenes.

To examine the scope of EM Eye’s risks, we conducted
experiments with popular IoT camera development platforms
including Raspberry Pi 3B+/4B, Nvidia Jetson Nano, Asus
Tinkerboard 2S, and 12 commercial-off-of-the-shelf (COTS)
devices with embedded cameras. With middle-end EM receiv-
ing equipment, our evaluations show that smartphone camera
EM emissions could be received from up to 30 cm away,
allowing adversaries to install low-profile hidden antennas to
eavesdrop on smartphone photography. Dash cams and smart
home cameras could be eavesdropped on from up to 5 m away,
allowing adversaries to spy on physically-isolated spaces such
as the interiors of cars, households, and offices through doors
and walls as shown in Fig. 1. Our investigation of camera
EM side-channel further uncovers the underlying physical
vulnerability of unprotected image data baseband transmission.
We note that this vulnerability is also shared by the well-
known TEMPEST and acoustic side-channel eavesdropping
attacks against computer displays. Despite the past 40 years
of computer display eavesdropping research, our work shows
that there still exists a semantic gap between the understanding
of TEMPEST vulnerabilities and how modern sensors process
and transmit data. Finally, we analyze how to protect embedded
cameras by improving the data transmission protocols and dis-
cuss how future adversaries may apply the same eavesdropping
methodology to other types of sensor data. We summarize our
main contributions as follows:

• The characterization and modeling of the electro-
magnetic side-channel eavesdropping on embedded
cameras. Our investigation bridges the gap between

image data eavesdropping vulnerabilities and emerging
sensor data transmission mechanisms.

• The analysis of the image distortion problems rooted
in the physics of digital image transmissions and the
design of an image reconstruction pipeline for improv-
ing image quality. The analysis and design methodol-
ogy is reusable by side-channel image eavesdropping
research.

• The evaluation results on 12 COTS devices as well as
the lessons for mitigations gleaned from our evalua-
tions. Our results aim to motivate researchers and man-
ufacturers to systematically examine the side-channel
eavesdropping risk on a wider range of sensor systems.

II. BACKGROUND

A. Prior Work

This work builds upon the main hypothesis that the EM
leakage of cameras is correlated with camera contents and
can be used to infer or even reconstruct camera outputs. This
hypothesis is motivated by recent research discoveries of the
EM characteristics of embedded cameras. Several works have
shown that smartphone cameras and hidden spy cameras pro-
duce EM emissions when they are turned on, allowing people
to detect forbidden malicious operations of these cameras [25],
[34], [41]. Essentially, these works only extract a single bit of
entropy (on/off) from camera EM emissions. It also remains
unclear how the EM emissions are generated by cameras.
In the opposite direction, Jiang et al. [19] demonstrate the
feasibility of injecting EM interference to partially control
CMOS camera’s outputs with an image row-level granularity;
Köhler et al. [20] demonstrate a pixel-level injection granular-
ity with Charge-Coupled Device (CCD) cameras which are less
common in modern consumer electronics. Their results suggest
there is significantly more entropy embedded in camera EM
characteristics that can be harvested. Building upon these in-
sights, our work seeks to characterize the feasibility, causality,
and limits of eavesdropping on pixel-level information from
the EM leakage of cameras in embedded systems.

B. Embedded Cameras

Embedded system devices are increasingly equipped with
camera peripherals. Compared to traditional cameras such as
digital single-lens reflex (DSLR) cameras, embedded cam-
eras often feature open-standard designs that allow them to
interface with a wide range of controllers. Fig. 2 shows
the architecture of a typical embedded camera system. The
camera’s semiconductor image sensors convert photons hitting
the semiconductors into proportional electrical signals. Each
image sensor contains millions of sensing units corresponding
to “pixels” in the digital image domain. The electrical sig-
nals are amplified, conditioned, digitized by analog-to-digital
converters (ADCs), and transmitted to the computation units
such as the image signal processor (ISP) in GPUs. The GPU
then produces the final images after debayering (also known
as demosaicing), image corrections, and miscellaneous post-
processing. Like most sensor peripherals, embedded camera
modules are often supplied by third parties and integrated by
consumer electronics manufacturers.
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RAW Images and Debayering. RAW images refer to
the unprocessed data generated by image sensors. Since each
semiconductor sensing unit only captures a single channel of
RGB color that is selected by a color filter array, each pixel
only has one color in the RAW images. To get a normal color
image that users are familiar with which has all three RGB
color channels, the ISP needs to perform a debayering step to
interpolate the missing RGB channels for each pixel based on
available colors from its neighbors [13].

Pixel Data Transmission. Image sensors and ISPs are
connected by a pixel data transmission interface that transmits
the RAW pixel data. Some examples of such interfaces include
the High-speed Serial Pixel Interface (HiSPi) [5], the Digital
Video Port (DVP) [16], the Low-voltage Differential Signaling
(LVDS) [40], and the MIPI Camera Serial Interface 2 (MIPI
CSI-2) [28]. MIPI CSI-2 has been widely adopted for its
good usability, dedicated EM anti-interference designs, and
capacity to support a variety of camera applications. It has
become the de-facto standard for embedded cameras due to
the rising demand for higher throughput and compatibility
between hardware and software from different vendors. Same
as most digital image transmission interfaces, MIPI CSI-2
transmits videos frame by frame. For each frame which is a 2D
matrix, the camera transmits each row sequentially from top to
bottom; for each row, each column (pixel) is also transmitted
sequentially from left to right as shown by Fig. 3 (a). There
often exists blanking between the transmission of consecutive
frames and rows where the data transmission interface stays
in an idle state without active transmissions. On the physical
layer, MIPI CSI-2 uses high-speed differential signaling wires
with up to four data lanes and a shared clock lane. Fig. 3 (b)
demonstrates a MIPI CSI-2 interface with two data lanes.

III. THREAT MODEL

We characterize the threat of passive eavesdropping on the
confidential camera data of embedded systems by exploiting
the unintentional EM emissions from camera sensors, the im-
age data transmission interfaces, and image signal processors.
The goal of the adversary is to reconstruct an image stream
that approximates the authentic camera output as closely as
possible. We assume the adversary uses a set of readily avail-
able commercial hardware equipment that is able to collect the
EM emissions generated by the cameras. This often includes
an antenna, a low-noise amplifier (LNA), a software-defined
radio (SDR) device such as a USRP [10], and a laptop that
runs the image reconstruction algorithms. We consider various
camera-antenna distances and two corresponding categories of
eavesdropping scenarios, namely the hidden-antenna (HA) and
physical-isolation (PI) scenarios. In the former scenario, we
assume the adversary manages to install a low-profile antenna
near the target camera to receive stronger EM emissions.
In the latter scenario, we assume the camera is located in
a physically isolated space such as a private room and the
adversary’s antenna can only be placed outside the room to
receive EM emissions through walls or doors. In both cases,
the camera scenes contain private information that is supposed
to be visible only to the legitimate camera owner.
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Fig. 3: How embedded cameras’ operations generate EM
signals that leak camera image information. (a) Each video
frame is transmitted row by row and column by column. (b)
The MIPI CSI-2 interface transmits image data with multiple
lanes of differential data wires and clock wires, all generating
EM leakage. (c) EM signals of two consecutive frames. (d) EM
signals of ten consecutive rows. (e) EM signals of transmitting
different frames, rows, and columns, showing clear correlations
with the image contents.

IV. OPTICAL EM SIDE CHANNELS

Adversaries are able to eavesdrop on the camera images by
analyzing the electromagnetic signals that are converted from
the optical signals captured by the camera’s image sensor. This
section investigates the feasibility, model, and characteristics
of these optical EM side channels.

A. Feasibility

We use a Raspberry Pi camera V1 (RPi V1) to record
a computer monitor displaying two simplified black/white
scenes. Fig. 16 shows the experiment setup of our feasibility
tests. The top row of Fig. 3 (e) shows the two scenes recorded
by the camera. Meanwhile, we collect the EM signals around
the camera using a near-field EM probe connected to an
oscilloscope. The camera records with a frame rate of 30 fps.
At various center frequencies including different multiples of
51 MHz, we receive periodic signals at 30 Hz matching the
camera frame rate. Fig. 3 (c) shows such signals at 204 MHz
with two consecutive frames and blanking between them. We
have confirmed that the received signals are from the camera
instead of the computer monitor which has a refresh rate of
120 Hz. When zooming in, we can also see the transmission
of different rows with blanking in between, as shown by
Fig. 3 (d). Inspecting the EM signals corresponding to different
frames, rows, and columns, we found obvious correlations
between the shape of the EM signals and the pixel values of
the camera image, as shown in Fig. 3 (e).

EM Leakage Source. To determine where the EM leakage
comes from, we use a tiny near-field magnetic probe to collect
the EM emissions from each component of the camera device
while shielding the other components. We find that the EM
signals have significantly better signal-to-noise ratios (SNRs)
when the probe is placed near the image data transmission
cable that connects the image sensor and downstream image
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Ground Truth 204M 255M

Fig. 4: Illustrations of EM emission’s spectrum and two
reconstructed images using signals around 204 and 255 MHz.

processing components. We thus conclude that the cable for
image data transmission is the main EM leakage source.

Basic Image Reconstruction. To reconstruct an image,
the adversary needs to map the one-dimension EM signals
received by the antenna within a certain frequency band back
to a two-dimension matrix by associating each segment of
the EM signals to specific pixels of the image. This requires
the adversary to model key parameters including the pixel
transmission rate, row transmission rate, image height and
width, blanking periods, etc. The adversary then needs to
convert 1D vectors of EM signals to scalar pixel values of
the reconstructed image, essentially demodulating the EM
signals that are modulated by the image contents. Since
the EM emission process is an unintentional communication
channel, we believe simpler modulation schemes such as
amplitude and frequency modulation are more appropriate than
other sophisticated man-made schemes. A closer look at the
temporal-spectral variations of the EM signals reveals that only
very wide-band and rapid variations exist in the frequency
components of the emissions, which could require a GHz-level
sampling bandwidth to provide sufficient coverage and is thus
not feasible. We thus hypothesize that amplitude demodulation
is the most appropriate method based on our observations in
Fig. 3 and use the amplitudes of EM signals as the gray-scale
values of the pixels. We denote this reconstruction process
as ĀĀÿĉă and provide further details in Section V-A. With
ĀĀÿĉă, we are able to reconstruct images that share very similar
structures as the camera ground truths in real time. Fig. 4
provides an example of such reconstructed images and the
spectrum of the corresponding EM signals.

B. Digital Image Transmission Leakage Model

To understand why the reconstruction method above can
recover an image similar to the camera ground truth and the
potential ways to further improve the reconstruction perfor-
mance, we analyze the fundamental information leakage model
that unpins the optical EM side channels in embedded cameras.
We use one of the most popular data transmission protocols,
MIPI CSI-2 with RAW10 image data format and two data
lanes, as an example for developing the model. This protocol is
also used by RPi V1. Nevertheless, we note that the modeling
and analysis methodology also applies to other digital image
transmission interfaces.

1) Fundamental Principle: Fig. 5 demonstrates how the
optical information received by a camera sensor is transformed
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Fig. 5: The information flow of camera EM leakage. Optical
signals captured by image sensors are converted to bit streams
shown on the top. The transmission cables act as unintentional
antennas that convert the bits into radiated EM waves.

into EM signals that adversaries can capture. The process
can be divided into two stages. In the first stage, the camera
sensor transmits image data represented by digital bits row
by row. The alternating currents/voltages caused by bit flips
produce EM waves in the camera environment according to
Maxwell’s equation. In the second stage, the cable between
the image sensor and ISP acts as an unintentional transmission
antenna and propagates the EM waves to the adversary’s
receiving antenna. The EM signals are subjected to various
environmental noises. With an off-of-the-shelf USRP device,
the adversary can then sample the EM signals in specific
frequency bands.

Fig. 5 also demonstrates how MIPI CSI-2 of image sensors
transmits RAW10 images in the form of digital bits with two
data lanes. Each pixel/column is represented by 10 ordered
bits B0 to B9 (least significant bit (LSB) to most significant
bit (MSB)) with the least significant bits transmitted first. The
sensors treat a byte as a transmission element, although there
is often no blanking between bytes during transmission. Since
each pixel has 10 bits, RAW10 has to pack four consecutive
pixels into a unit of five bytes where the two LSBs of the
four pixels are packed into the last byte. Two units (8 pixels)
are further grouped together. Using the dual data rate (DDR)
technique, the clock ĄāĂā frequency is twice the frequency of
transmitting a bit ĄĀ. For RPi V1, ĄāĂā is measured to be 204
MHz, which means the byte transmission frequency is 51 MHz.
When more than one data lane is used, consecutive byes are
distributed to the lanes sequentially. It is worth pointing out
that each wire of the transmission system, including the data
and clock wires generate its own EM signals and the final
signal the adversary receives is a mixture of them.

2) Modeling: Based on the understanding of the leakage
process, we develop a mathematical model that can explain
and simulate the physical leakage process’s key characteristics.
Assume the adversary tries to reconstruct an image that
approximates the ground-truth camera image ąăĐ from the
EM signals in the frequency band [ĄĂą, Ąℎÿ] with a function
ĀĀÿĉă{ç}, the EM reconstruction image can be calculated by

ą
[Ă,ℎ]

āĉ
= ĀĀÿĉă

{
Đ + ĀāĂā + ôĄÿĂĊ

[
Ă, ℎ,ôĂÿĊÿ(ąăĐ )

]}
, (1)

where Đ represents the noise, ĀāĂā represents a constant signal
offset produced by the clock wire’s emissions given that
clock amplitudes are stable, ôĄÿĂĊ [Ă, ℎ, ç] represents the EM
energy transfer function in the frequency band [Ă, ℎ], and
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Ground Truth Simulation EM Reconstruction

Fig. 6: The camera ground truth, simulated, and actual EM
reconstruction. Distortions such as the amplification of light
gradients and high-frequency noises appear.

ôĂÿĊÿ(ç) is the digital data transmission function that maps
a 2D ground-truth image to a 1D bit stream transmitted
by the data wires (Appendix B). Although theoretically, all
the non-deterministic functions and variables in Eq. (1) are
dependent on the environment and challenging to measure
and model accurately, we found that simplified approximations
(e.g., setting ôĄÿĂĊ to a constant in the sampled frequency
range) can produce simulated images that have very close
quality and characteristics to the actual EM reconstructions.
Fig. 6 provides some examples of the simulated and actual
reconstructions using ĀĀÿĉă.

3) Key Characteristics: Based on the model, we then in-
vestigate several key observations of the eavesdropped images
and analyze their causalities.

Baseband Leakage Frequency Dependency. The emitted
EM signals are baseband signals of the digital bits instead
of narrow-band signals that are modulated onto certain car-
riers such as clock frequencies of the system, which are
more common for intentional communication systems. Since
the baseband signal is wideband, every frequency band can
contain different information about the ground-truth image.
For example, Fig. 4 shows how 204 MHz and 255 MHz
better capture the edge and gray-scale of the ground truth
respectively. In practice, the adversary can only sample a subset
of the digital wide-band information at a time. Advanced ad-
versaries may thus need to combine information from different
frequency bands. Besides the different information contained,
each frequency band also has its unique EM wave propagation
efficiency (transfer function) that leads to different SNRs
for the adversary’s received signals. We find that frequency
components near the fundamental and harmonic frequencies
of the digital transmission byte frequency (51 MHz) have
the strongest signal strengths and lead to the best-quality
reconstructions. This is because of the strong periodicity of
transmitted bytes, leading to high EM amplitudes at these
frequencies that can tolerate environmental noise better.

Multi-wire Signal Polarity Inversion. Another key phe-
nomenon is that at certain frequency bands that contain ĄāĂā
and its harmonics, the amplitude of the EM signals could be
inverted when the antenna moves relative to the cameras, lead-
ing to inversion of the reconstructed image’s grayscale polarity
(Fig. 17). Based on this observation, we hypothesize that the
inversion of polarity is caused by the superposition of EM
signals emitted by the data and clock wires. We then verified
our hypothesis by measuring emissions from the clock and data
lines separately (see Appendix C for details). Essentially, the
clock emissions can interfere with the EM emissions from data
wires. When the antenna is placed at a position that receives
EM signals as a mixture of the data clock wire signals, the

two signals can cancel each other out, producing an image
that approximates a white image subtracted by the data line
image. This image thus has an inverted polarity compared to
the data line-only reconstructions.

Practical Sampling Distortion. We observe well-
structured distortion patterns in all reconstructions, including:

• Loss of color information. Only gray-scale information
remains in the reconstructions.

• Shuffled gray-scale mapping. The original and re-
constructed images have different but correlated gray
scales.

• Light gradient & high-frequency noise. Light gradients
result in ellipse/contour-like shapes that are not visible
in the original camera images, e.g., in Fig. 6. The
reconstructions also have additional high-frequency
noise.

Such distortion patterns are caused by the imperfect sam-
pling of the EM leakage signals that adversaries could achieve
in practice. The imperfection is two-fold. First, adversaries
often can only sample an EM signal bandwidth on the order
of 10 MHz with common USRPs and laptops while digital
image transmissions have bandwidths on the order of 1 GHz.
This causes the loss of a significant amount of information.
Second, even if a hypothetical adversary can sample the whole
bandwidth, e.g., by using multiple USRPs or sampling multiple
times, it is still impractical for them to recover the original
bit stream transmitted because of the added noise during EM
propagation and the requirement of perfect synchronization for
determining which bit is being transmitted. With these prob-
lems in mind, we can analyze the causality of the distortions
above.

To recover the RGB colors of images using debayering,
the adversary needs to know the original gray-scale value of
each pixel precisely which requires perfect sampling of the
digital bits and is thus impractical. In the original image, the
gray-scale values represent an ordered array of bits; in the
reconstructions, the gray-scale values represent the EM signal
amplitudes which approximately correspond to the numbers
of bit flips in the array. As a result, gray-scale values of the
camera outputs are mapped to different values in the recon-
structions in a shuffled but deterministic way. For example,
bright lights and windows in the original images are often
mapped to dark polygons in the EM reconstructions (see the
first two columns of Fig. 6 for example). This is because
the saturated bright pixels in the original image are mapped
to constant ones in the transmitted digital data and cause
significantly lower EM amplitudes due to the few bit flips.

The high-frequency noise exists everywhere in the recon-
structed images while the light gradient distortions appear
mostly on single-color surfaces in the scene. The culprit of
light gradient and high-frequency noise is the loss of data
structure due to imperfect sampling. Specifically, it is because
the EM emissions of different bits get combined without correct
bit ordering. In the original digital transmission protocol of
cameras, each bit has its own weight and the ground-truth

pixel value is calculated by ČăĐ =
19

ÿ=0
2ÿþÿ. The adversary,

however, can only calculate the pixel values while losing bit-
ordering information in practice, because it is challenging to
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determine the current bit being transmitted. Practically, all bits
are considered equivalent whose EM emissions are added up
without weights assigned. Conceptually, this can be modeled as

Čāĉ =
19

ÿ=0
þÿ which amplifies the light intensity variations

and high-frequency noises that are often embedded in the least
significant bits.

4) Insights: Our investigation reveals several challenges
and opportunities for adversaries to reconstruct higher-quality
images compared to the basic reconstructions presented above.
(a) The frequency dependency problem calls for a method for
integrating information in different frequency bands in order
to harvest more entropy from the original camera outputs.
(b) Although the multi-wire signal polarity inversion does
not affect human visual perception significantly, it can cause
additional noise to automated data processing and pattern
recognition pipelines and thus needs to be mitigated to improve
the eavesdropping performance. (c) The practical sampling
distortions cause obvious degradation of the images’ visual
quality and intelligibility. As a result, the adversaries need to
employ additional techniques for correcting these distortions.
We will introduce the improved eavesdropping design that
supports adversaries to extend their performance limits in the
next section.

C. Relationship with Computer Display Eavesdropping

We discover that the eavesdropping vulnerability of embed-
ded cameras shares the same physical principle as previous
computer display eavesdropping attacks (Section VII) where
the transmitted plain digital image data leaks in the form of EM
waves. Furthermore, we confirm that all the key phenomena
above are also observable when we replicate computer display
eavesdropping attacks following previous research. However,
many of these phenomena such as light gradient amplification
and polarity inversions have not been reported and analyzed
before. We believe this is because computer display eavesdrop-
ping only investigated simple screen contents of uniform texts
on uniform backgrounds (e.g., no light gradients), which do
not suffer significantly from the practical sampling distortions.
In contrast, camera image scenes have more complex and
diverse structures and textures, posing greater challenges for
adversaries to reconstruct intelligible images. In addition, our
survey shows that amplitude demodulation has also been the
state-of-the-art method for mapping 1D EM signals to scalar
pixel values in display eavesdropping attacks, which confirms
our design choice in Section IV-A.

V. EAVESDROPPING SYSTEM DESIGN

To support the evaluation of eavesdropping limits and
factors, we design a system that employs the signal processing
pipeline shown in Fig. 7. The adversary first finds at least one
frequency band that contains the EM leakage of transmitted
digital image data. For each frequency band, the adversary
reconstructs a single-band EM image from the received EM
signals in this band. The adversary then strategically combines
the images from different available frequency bands using a
distortion-guided combination algorithm. The output of this
algorithm, i.e., the multi-band EM image, is then input into an
image-to-image translation network to acquire a final recon-
structed image.

A. Single-band Image Reconstruction

The single-band image reconstruction process ĀĀÿĉă on
each frame can be formulated as

⎧
⎪⎪⎨⎪⎪⎩

ą
[Ă,ℎ]

āĉ
[ÿĈ, ÿā] =

1

ĄĉÿăĆ

1Ą2
Ą=Ą1

ÿ[Ą]

ĄĉÿăĆ = Ą2 − Ą1 + 1, ÿ[Ą] = ôÿăĂ[ă[Ą]]

Ą1 = +Ąĉ(ÿĄĐĄ + ÿĈĐĈ + ÿāĐā),
Ą2 = +Ąĉ(ÿĄĐĄ + ÿĈĐĈ + (ÿā + 1)Đā),,

(2)

where ÿĄ , ÿĈ, ÿā are the frame, row, and column indexes,
ĐĄ , ĐĈ, Đā are the frame, row, and column transmission duration
that needs to be estimated by the adversary through EM
measurements, ă[Ą] is the discrete IQ measurements output of
USRP with a sampling rate Ąĉ, and ôÿăĂ[ç] is the amplitude
demodulation function. Apparently, when Ąĉ is on the order
of 10 MHz in practical settings, Ą1 and Ą2 will be the same
which is also the same for multiple consecutive ÿā . This means
the actual column resolution ēāĉ of the reconstructed image
is smaller than the transmitted image and is determined by
ēāĉ = ĄĉĐĄĂ∕Ąāĉ where Ąāĉ is the row resolution
that remains the same as the original transmitted image and
ĐĄĂ is the actual frame data transmission duration excluding
inter-frame blanking. As a result, Đā degrades to ĐĈ∕ēāĉ

in most cases and does not need to be estimated separately.
Fig. 18 provides more details on how to find the parameters.
To improve the signal quality, we also perform frame averaging
on the consecutive frames of camera outputs, which aims to
mitigate the random noise in the EM wave propagation process
and help the useful signals stand out. It is worth noting that
this reconstruction process is also the current state-of-the-
art (SOTA) used in computer display eavesdropping attacks,
which we use as a building block as well as a baseline for
our enhanced image reconstruction pipeline. We conduct an
additional polarity-correction step that compares single-band
reconstructions with data wire-only simulations and inverts
the polarity if inversion is detected. We then apply histogram
equalization to the image to further reduce the impact of clock
signal offset ĀāĂā (Eq. (1)) on image contrast.

B. Distortion-guided Multi-band Combination

We design a combination criterion based on the heuristic
that the best combination can mitigate the light gradient
distortions on single-color surfaces to the largest degree. As
Section IV-B3 points out, the light gradient distortions arise
because the bit-ordering information is lost. For example, both
B2 and B6 have a periodicity of 8-bit cycles in RAW10
(Fig. 5), producing the same EM frequency that cannot be
separated apart. Nevertheless, we observe that different fre-
quency bands could still contain some inter-bit information.
For example, if the 8-bit cycle frequency is ÿ Hz, then the
frequency of 2ÿ Hz embeds the variation between B2 and
B6. Similarly, we know that different frequency bands embed
different inter-bit information. As a result, we propose that an
adversary who can perform multi-band combination effectively
should be able to minimize the light gradient distortions
to restore the single-color surfaces. In our experiments, we
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Fig. 7: The image eavesdropping pipeline of EM Eye.

empirically formulated this as

�ąāĉ =

Ċ1
ÿ=0

čÿ ç ą
[Ăÿ,ℎÿ]

āĉ
, ĉ.Ċ. [čÿ] = min

[čÿ]
||ā − ď( �ąāĉ )||, (3)

where Ċ is the number of available bands, čÿ is the weight
of band ÿ, ď[ç] is a segmentation function that allows the
adversary to manually select a subarea of the image that is
likely a single-color surface, and ā is a constant that the
adversary can select to represent the color (gray scale) of
the surface. Note that such an operation is possible because
the single-band EM images often contain important structural
information about the scene and experienced adversaries are
able to hypothesize some key objects in the scene such as the
walls of a room (see Fig. 7 for example). When selecting the
frequency bands to combine, we also employ a thresholding
criterion similar to [8] in order to remove components that are
too noisy. Fig. 7 shows an example of this process. Typical
values of Ċ are in the range of 1-3 in our evaluations.

C. Image-to-image Translation

To further mitigate the remaining image distortions, we
employ a supervised image-to-image translation process. This
is inspired by our observation that additional semantic informa-
tion in the image domain can be utilized to reconstruct images
that are closer to the ground-truth image. For example, when
observing the remaining light gradient distortion patterns, ex-
perienced human adversaries are able to understand that these
distorted areas are likely to be single-color surfaces (which
have the strongest light gradients) in the original camera output
and thus manually correct the images. Another example is that
the dark polygons in the EM reconstructions often map to the
bright lights and windows in the original images. Given the
very structured mappings, we hypothesize that it is possible to
automate this process of correcting structured distortions in the
EM reconstructions using machine learning-based approaches.

To verify this hypothesis, we formulate the task as
an image-to-image translation problem from the EM-
reconstructed image space to the original camera output space.
We adopt pix2pix [17], an aligned image translation model
based on a conditional generative adversarial network (GAN)
to reconstruct a higher-quality image ąāĉ from �ąāĉ . Fig. 7
demonstrates an example of the translated reconstruction image
in comparison with the gray-scale ground truth. We find the
translation process capable of removing almost all remaining
distortions when the testing images are within a reasonable
range of variation compared to the training images. Although
the generative model can also recover similar colors (see

Appendix G), color information is often less useful for im-
age pattern recognition tasks. In addition, the color recovery
problem only relies on image semantic information and is
completely detached from the EM leakage physics. We thus
focus on gray-scale images in our following evaluations.

VI. EVALUATION

A. Overview

Our evaluation seeks to measure the limits of the embedded
camera eavesdropping risks under various camera designs and
environmental conditions.

Experimental Setup. To provide reproducibility and scal-
ability over multiple devices, we use the same setup as
Section IV-A where images of different scenes are displayed
by a monitor screen and recorded by the cameras under
test, as shown in Fig. 8. We utilize two existing datasets
to cover the common camera scenes pertinent to the threat
model. The first dataset is a subset of the Face Detection
Data Set and Benchmark [18] and has 3000 randomly selected
images, each containing at least one person in the scene.
The second dataset is a subset of the MIT Indoor Scenes
Benchmark [31] that also has 3000 randomly selected images.
Since the supervised image-to-image translation requires a
training phase, we use 2700 images’ corresponding �ąāĉ from
each dataset for training. In Section VI-B, we calculate the
quantitative metrics over all 600 test images to evaluate the
performance of the eavesdropping pipeline. To support scalable
tests with fine-grained variations in the evaluation of factors
and COTS devices, we also use a randomly-selected test subset
of 35 images for each dataset which provides a confidence level
of 90% at a resolution of 0.5 times the standard deviation of the
test set population’s scores [1]. For the training of the image-
to-image network, we use the default hyper-parameters of the
model [17] with 100 training epochs. We then use the last
epoch’s model as the final network. By default, we use the same
model trained on a base case (Section VI-B) to test various test
sets to examine the generalizability of this supervised network
over different factors. The only exception is the evaluation of
different camera sensors and controllers (Section VI-B) where
we also train models using their own EM reconstructions as a
comparison to investigate the improvement of dedicated image
translation models. In total, we have collected 32400 training
images and 10460 test images. We use an EM sampling rate
(Ąĉ) of 8 MHz in all experiments.

Quantitative Metrics. To quantify the impact of different
factors on the eavesdropped information on both the EM signal
and the image perception levels, we use the following metrics:
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1) Unintentional signal-to-noise ratio (USNR) calculates
the ratio of the unintentional EM emission power to
the background noise power [8].

2) Structural similarity index measure (SSIM) measures
the similarity between the eavesdropped and ground-
truth camera images.

3) Face detection rate (Fdetect) calculates the ratio be-
tween the number of faces detected in the eaves-
dropped and ground-truth face dataset images.

4) Indoor scene captioning rate (Icaption) calculates the
ratio of the longest common subsequence between
the descriptional caption texts generated from the
eavesdropped and ground-truth indoor dataset images.

SSIM, Fdetect, and Icaption range from 0 to 1, with larger
values representing closer replicates of the ground truth. Ap-
parently, the meanings of the absolute values are less intuitive.
We thus also show example images corresponding to different
values in our evaluations. Nevertheless, the variations of these
metrics can still inform us of how different factors affect
the quality of reconstructed images. Different from previous
computer display eavesdropping research whose targets are
simple texts, Fdetect and Icaption are specifically designed
by us to measure how machines/humans perceive the complex
visual information in camera scenes. Appendix E explains how
we calculate these metrics.

B. Sensor and Controller

As pointed out in Section II-B, the camera data trans-
mission interface can connect various camera sensors and
controllers from different manufacturers. Given that different
models of sensors and controllers could change the image data
processed and transmitted, we first evaluate the impact of them
on EM Eye’s performance (Table I). We employ Raspberry Pi
3B+ and Cam V1 (#1) as the base case for collecting �ąāĉ to
train a base model (TrainA). We then change the sensors and
controllers and collect corresponding �ąāĉ to train their own
models (TrainB).

The TrainA results in Table I suggest that sensors have
a larger impact on the EM reconstructions than controllers.
When the sensors change (e.g., [#1, #3, #6]), we observe
larger degrees of variations in the image quality than when
the controllers change (e.g., [#1, #2] and [#3, #4, #5]). This
can be explained by the fact that it is often the sensors that
decide the image data’s format, amount, transmission speed,
etc. The signals that EM Eye eavesdrops on are all pro-
duced by the camera sensors while the downstream processors
mostly perform post-processing of the image data. Besides
sensor hardware that determines the maximum supported im-
age capacity, each camera sensor can also be configured to
have various software/firmware settings such as resolution,
frame rate, and sensor mode. Our tests show that setting the
camera resolution does not change the transmitted data and
EM emissions because the sensor always transmits the full
resolution supported by a certain sensor mode and lets ISPs
to down-sample the images in software. A different frame
rate will change the number of frames transmitted per second
and require the adversary to adjust the eavesdropping frame
rate setting accordingly. Different sensor modes [30], which
are combinations of camera firmware settings that decide the
actual resolutions used by the sensor chips, will change the
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Fig. 8: Experiment setups of using (a) a near-field probe within
10 cm and (b) a directional antenna beyond 10 cm.

width and height of transmitted images and require the change
of eavesdropping parameters.

Fig. 9 compares some examples of direct EM reconstruc-
tions using state-of-the-art (SOTA) techniques and enhanced
reconstructions using the EM Eye pipeline. Overall, obvious
improvements in the visual quality are observed. The only
caveat is that the image-to-image translation network can
sometimes distort certain details of the images such as small
textual objects. In these cases, the adversary may refer to
the untranslated images �ąāĉ to capture such information.
Table I show the percentage of improvement in the quantitative
image quality metrics compared to the SOTA results. On
average, we observe 166.5%, 72.2%, and 52.2% increases in
the SSIM, Fdetect, and Icaption scores for TrainA. The average
values increase to 256.2%, 143.7%, and 88.7% for TrainB.
The comparison between the metrics in TrainA and TrainB
also shows that dedicated image translation models trained
with each sensor-controller combination’s EM data can indeed
improve the quality of the eavesdropped images. The EM
emissions of RPi 4B with Cam V1 are the most similar to
the base case while those of Nvidia Jetson Nano with Cam
V2 are the most dissimilar. The non-trivial metrics of all
cases show that the base case model has a reasonable level
of generalizability to process data from various sensors and
controllers.

Summary. Different sensors and controllers can affect the
EM signals while the EM Eye pipeline is able to reconstruct
images with various sensor and controller settings. It also
provides sufficient generalizability to allow the reconstructed
images to outperform the SOTA results of direct EM recon-
structions in most cases. In addition, resourceful adversaries
may train dedicated models on each target camera system to
further improve the eavesdropping performance.

C. Transmission Cable & Environmental Factors

Next, we measure the limits of EM Eye under various
physical factors of the transmission cable and environment.

Cable EM Shielding. EM shielding uses special cable
shield materials to block or reduce the propagation of EM
waves. We evaluate its impact using 15 cm cables in three
forms, namely the default cable of Raspberry Pi cameras
without shielding, a cable shielded with conductive fabric,
and one with aluminium foil. We use a near-field antenna
to capture the EM emissions at a distance of 1 cm, and
compare the values of USNR, SSIM, Fdetect, and Icaption for
each cable with the same experimental setup. We depict the
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TABLE I: Evaluation Results of EM Eye on 6 Sets of Sensor and Controller.
TrainA(Improvement)∗ TrainB(Improvement)∗

#
Sensor Module

(Reconstruction Parameters)† Controller Module
USNR

(dB)
ēāĉ ×Ąāĉ SSIM Fdetect Icaption SSIM Fdetect Icaption

1 Raspberry 3B+ (Base) 39.68 186 × 1080 0.58(²235.0%) 0.80(²78.2%) 0.33(²21.6%) N/A N/A N/A
2

Cam V1: OV5647
(ĐĄ : 33.31 ms, ĐĈ: 29.58 us) Raspberry 4B 40.30 186 × 1080 0.45(²221.8%) 0.75(²50.7%) 0.29(²19.1%) 0.55(²298.8%) 0.78(²57.7%) 0.32(²30.9%)

3 Raspberry 3B+ 41.34 84 × 1290 0.29(²186.9%) 0.51(²95.5%) 0.23(²80.8%) 0.45(²349.4%) 0.70(²168.3%) 0.27(²115.5%)
4 Nvidia Jetson Nano 42.51 84 × 1080 0.30(²132.4%) 0.35(²102.4%) 0.21(²71.5%) 0.43(²240.1%) 0.69(²298.2%) 0.27(²117.5%)
5

Cam V2: IMX219
(ĐĄ : 33.84 ms, ĐĈ: 18.90 us)

Asus Tinkerboard 2S 40.47 144 × 2466 0.39(²112.5%) 0.60(²79.5%) 0.26(²49.6%) 0.53(²193.0%) 0.76(²129.6%) 0.31(²78.7%)

6
Cam V3: IMX708

(ĐĄ : 33.24 ms, ĐĈ: 26.72 us)
Raspberry 3B+ 43.54 104 × 1080 0.34(²110.4%) 0.52(²27.1%) 0.20(²70.5%) 0.48(²199.6%) 0.68(²65.0%) 0.24(²100.7%)

 The frame duration ĐĄ and row duration ĐĈ need to be estimated to decode the eavesdropped EM emission to reconstruct the images (Appendix D).
∗ EM Eye is evaluated on TrainA (base model) and TrainB (retrained model), and the percentage represents the improvement over the SOTA approach.

Ground Truth V1@RPi 3B+ SOTA V1@RPi 3B+ TrainA V1@RPi  4B SOTA V1@RPi 4B TrainA V1@RPi 4B TrainB V2@Jetson SOTA V2@Jetson TrainA V2@Jetson TrainB
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sink, and refrigerator.=

<A man in a suit is
looking at a machine.=

<A kitchen with a sink,
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<A black and white
photo of a man in a

black and white photo.=
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Fig. 9: Examples of eavesdropped images from three camera-controller systems using the SOTA and EM Eye pipelines, where
A is the camera and B is the controller in A@B. Training dedicated models for each camera-controller combination (TrainB)
provides better results than the base case model (TrainA). The detected faces of the face dataset images and the generated
captions of the indoor dataset images are shown.

w/o Shielding Conductive Fabric Aluminum FoilGround Truth

Fig. 10: Illustrations of (bottom) the impact of different cable
EMI shielding, and (top) the same image reconstructed with
different cable EMI shielding.

results in Fig. 10 (bottom). The cable shielded with conductive
fabric and aluminium foil material significantly reduces the
intensity of the EM emission radiated by the cable. We observe
9.84 dB and 14.33 dB decrease in USNR values respectively.
Nevertheless, it is still possible to reconstruct images with
acceptable SSIM and Fdetect values on these two shielded
cables as shown in Fig. 10 (top).

Antenna-camera Distance and Cable Length. With the
transmission cable acting as an unintentional antenna, the
strength of EM emission attenuates with the antenna-camera
distance. To quantify the impact, we measure the metrics under
different distances with five typical cable lengths, namely 3, 10,
15, 30, and 50 cm. We use a near-field probe in Fig. 8(a) and
a directional antenna in Fig. 8(b) with the same experimental
setup to capture the EM Emission within and beyond 10 cm.
The results are shown in Fig. 11. Notably, USNR, SSIM,
Fdetect, and Icaption values gradually decrease with increasing

distances, and longer cables often have higher values for
these metrics at the same distance in our experiments. As
shown in Fig. 11 (top), we observe almost unanimously better-
quality images with longer cables. This is because the gains
of different cable lengths vary, and longer cables provide a
larger effective area, resulting in greater efficiency in radiating
EM waves [6]. The maximum distances we could achieve for
3 cm, 10 cm, standard 15 cm, 35 cm and 50 cm cables are
50 cm, 200 cm, 270 cm, 400 cm, and 450 cm respectively. We
note that the distance can be further increased by employing
a professional antenna with superior directionality and gain.

Antenna-camera Angle. To examine the impact of
camera-antenna angles, we change the angle from 0 °to
360 °with a step of 30 °(12 angles in total). The angle is
defined as the angle between the centerline of the camera cable
and the antenna. We conduct two sets of experiments using
a near-field probe at a distance of 3 cm and a directional
antenna at 40 cm respectively. Fig. 12 shows the impact of
angles with the quantitative metrics. The angle has a small
impact on EM Eye’s performance at a close distance while
some angles slightly outperform others. Due to the nature of
the directional antenna, the angle has more impact on the
eavesdropped images at a larger antenna-camera distance. As
shown in Fig. 12, when the angle is between 90 °and 270 °at
40 cm, the values of these three metrics are significantly lower
than when the angle is between 0 °to 90 °or 270 °to 360 °.

Interference from Electrical Devices and Background
Noises. (a) Electrical Devices. The interference from displays
of some electrical devices (such as TV, monitor, smartphone,
etc.) is the most likely to affect EM Eye since the EM emission
pattern of these displays is similar to that of the camera.
However, modern displays offer refresh rates of 60, 120, or
even 240 fps [36], whereas embedded cameras’ frame rates are
often limited to 30 fps. Therefore, adversaries can distinguish
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Fig. 11: Illustrations of (bottom) the impact of distances with different cable lengths, and (top) the same image reconstructed at
different distances with different cable lengths, where A is the cable length and B is the distance in A@B.

Ground Truth 180°@1cm 270°@1cm 300°@40cm 270°@40cm 

Fig. 12: Illustrations of (bottom) the impact of angles at 1 cm
and 40 cm, and (top) the same image reconstructed at different
angles at these two distances, where A is the antenna-camera
angle and B is the distance in A@B.

camera emissions from the display’s interference by setting
the center frequency at those frequencies with no repetitions
above 30 Hz to minimize the interference. We have verified this
through experiments which are illustrated in Fig. 19. Besides,
the EM emission pattern of cameras is very different from that
of earbuds [8], recorders [42], wireless eavesdroppers [7], [35],
etc. (b) Background Noises. Since EM Eye works at various
frequencies, adversaries can improve image quality by avoiding
selecting eavesdropping frequencies that conflict with common
communication frequency bands (Table III). It is also effective
to use analog filters to filter out background noises (see Fig. 20
for an example). Appendix F provides more discussions on the
impact of interference.

D. COTS Camera Devices & Case Study

We have evaluated EM Eye on 12 commercial-off-the-
shelf (COTS) camera devices from three different categories to
investigate the common use cases of embedded cameras. These

include 4 smartphones, 6 smart home cameras, and 2 dash
cams. All of these devices are intact with their original pack-
aging. Table II shows the specifications and eavesdropping pa-
rameters of these devices. Besides evaluating the eavesdropped
image quality at 1 cm, we also measured the approximate
maximum eavesdropping distance for each device at which we
can still recover intelligible images. The maximum distances
vary from 1 cm to 500 cm and with significant differences
across devices. While all devices can be eavesdropped on
in hidden-antenna scenarios where the antenna is close to
the camera, we also observe that 8 out of the 12 devices
allow adversaries to perform physical-isolation eavesdropping
through windows, doors, and walls. We believe the variations
in eavesdropping distances are mostly decided by the length
and shielding materials used by these devices. For example,
we found that smartphones often use short cables with better
shielding designs to minimize the EM interference between the
onboard components. Dash cams and home security cameras,
on the other hand, tend to use cheap unshielded cables to
reduce the manufacturing cost and longer cables to support
different form factors of the mechanical structures. Despite
the variations in these devices’ designs, we note that the EM
Eye vulnerability is a shared problem in common embedded
camera devices, and we have reported our findings to the
camera vendors (Appendix A). Based on the results above,
we carry out case studies on three typical attack scenarios that
we envision to be applicable to the threat model.

Smartphone Camera Eavesdropping. Since smartphone
camera emissions only allow adversaries to eavesdrop from a
close distance, we envision a hidden-antenna scenario where
the antenna and EM signal receiver could be installed in
modified power banks. Such power banks may either be
tampered with from the supply chain as distributed products
or provided by shared power bank rentals that are common in
shopping malls. Existing COTS products of miniaturized low-
cost SDR receivers such as the RTL-SDR dongles [33] suggest
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TABLE II: Evaluation Results of EM Eye on 12 COTS Camera Devices.

#
COTS Camera Devices Reconstruction Parameters EM Eye Performance Scenarios

Manu. and Model Year ĐĄ (ms) ĐĈ (us) Freq. USNR ēāĉ ×Ąāĉ SSIM Fdetect Icaption Max. Dist.∗ HA PI

1 Google Pixel 1 2013 33.45 21.49 600,1649 MHz 42.17 dB 168 × 1140 0.30 0.44 0.19 30 cm ! %

2 Google Pixel 3 2018 33.27 10.89 515,680 MHz 41.81 dB 74 × 2840 0.24 0.36 0.19 2 cm ! %

3 Samsung S6 2015 33.32 10.50 527,1054 MHz 38.92 dB 184 × 3000 0.31 0.70 0.19 5 cm ! %

4 ZTE Z557 2019 41.70 17.00 522,1740 MHz 35.09 dB 310 × 1940 0.28 0.68 0.14 1 cm ! %

5 Wyze Cam Pan 2 2019 49.98 29.63 890,1185 MHz 42.39 dB 164 × 1080 0.31 0.43 0.23 350 cm ! !

6 Xiaomi Dafang 2019 66.66 29.63 322,890 MHz 39.06 dB 190 × 1080 0.35 0.67 0.17 500 cm ! !

7 Baidu Xiaodu X9 2023 66.67 53.33 204,1470 MHz 35.86 dB 460 × 1080 0.24 0.23 0.15 200 cm ! !

8 TeGongMao 2023 66.00 44.00 763,1144 MHz 40.58 dB 190 × 720 0.19 0.24 0.14 120 cm ! !

9 Goov V9 2022 33.00 44.00 546,656 MHz 33.79 dB 190 × 720 0.31 0.32 0.18 70 cm ! !

10 QiaoDu 2021 66.48 29.61 293,1191 MHz 38.79 dB 84 × 1080 0.22 0.38 0.17 50 cm ! !

11 360 M320 Dashcam 2020 40.00 22.00 450,1261 MHz 39.71 dB 142 × 1440 0.29 0.17 0.22 250 cm ! !

12 Blackview Dashcam 2022 33.22 27.78 155,1015 MHz 34.38 dB 190 × 1080 0.30 0.21 0.24 300 cm ! !

 We only report two frequencies of the strongest emission.
∗ The maximum distance can be further increased by using higher-end EM receiving equipment such as professional direction antennas and analog filters.

 

Fig. 13: Three case studies of how EM Eye poses eavesdropping threats against smartphones, dash cams, and home security
cameras. For each case, the experimental setup and three examples of ground truths and eavesdropped images are shown.

the possibility of manufacturing such power banks. Fig. 13
(top) showcases an envisioned prototype and three sensitive
images eavesdropped when the victim takes photos of private
documents, including a QR code, a social security card, and a
driver’s license, with a Samsung S6 phone.

In-car Peeking. When victims park their cars with their
interior dash cams on, an adversary may be able to peek at the
inside of the cars using EM Eye eavesdropping from nearby.
Fig. 13 (middle) shows an example setup with a 360 M320
dashcam [2] on the dash board of the car. The adversary sets up
an antenna 50 cm away from the car (100 cm antenna-camera
distance) to capture the EM emissions. Three eavesdropped
images reveal no one in the car, one person in the driver’s
seat using his phone, and one in the back seat. When needed,
the eavesdropping equipment can also be made portable as a
suitcase, as has been demonstrated in previous research [14],
to avoid further drawing the attention of the cars’ owners.

Through-wall Room Spying. Another typical physical-
isolation eavesdropping scenario involves an adversary spy-
ing on a private household or office room through the EM
emissions of the IoT home security camera. The convention
of installing such security cameras near the room’s walls,
windows, and doors could allow the adversary to receive

the camera’s EM emissions from only a few meters away.
Fig. 13 (bottom) demonstrates a case where the antenna is
placed 70 cm away outside an office room (150 cm antenna-
camera distance). The adversary can see a person sleeping on
a couch, two people sitting on the couch, and a confidential
document on a desk by eavesdropping on a Xiaomi Dafang
home camera [11].

VII. RELATED WORK

A. Computer Display Side-channel Eavesdropping

It has been widely acknowledged that computer displays
generate side-channel leakages in operation that allow adver-
saries to eavesdrop on the displayed contents. The most known
research is TEMPEST attacks where EM leakage is used to
reconstruct computer screens. Following the first work by Wim
van Eck in 1985 [39] that proved the feasibility of reconstruct-
ing video display contents using non-military commercial-
grade equipment, extensive research has been carried out over
the last 40 years. Some notable works include Markus Kuhn’s
efforts to develop low-cost techniques to eavesdrop on analog
CRT [21] and digital LCD flat panel displays [22]. While
earlier works only investigated standalone computer display
units which often generate stronger EM emissions, Hayashi et
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al. showed it is possible to eavesdrop on smaller tablet and
laptop screens from 2m away [14]. Recently, Liu et al. [24]
extended this attack to smartphone displays. However, due to
the very weak EM emissions generated by the small smart-
phone circuits, the researchers had to use machine learning
classifiers to recognize the humanly-unintelligible reconstruc-
tions at a distance of 1 cm. Besides EM emissions, Genkin et
al. [12] showed that acoustic side-channel signals generated by
computer display circuits when processing different pixel data
also allow adversaries to detect screen contents using machine
learning classifiers. In all these works, texts on screens have
been the sole target of eavesdropping.

Cameras work in similar ways as computer displays in that
they both have to transmit streams of 2D images in a serialized
manner. Our work shows that a more fundamental analysis
framework for 2D digital image transmission leakage can be
developed to model and generalize these attacks. Compared
to previous works, our research bridges the gap between
such information leakage mechanisms and a broad range of
emerging sensor systems. From the standpoint of technical
advances, this work shows that the camera image contents are
significantly more complex and diverse than those of computer
displays, causing new challenges such as light gradient distor-
tions that increase the difficulty of using existing TEMPEST
techniques to reconstruct high-quality recognizable images. We
thus design and apply new computational techniques to address
these unique challenges.

B. IP Camera Hijacking & Sniffing

With a similar purpose of accessing the outputs of unau-
thorized cameras, several works have found that networked
IP cameras can be hijacked or sniffed by adversaries when
there exist vulnerabilities in the network configurations. For
example, Abdalla et al. showed that many cameras use de-
fault passwords and unencrypted communications [3]. Ling
et al. demonstrated the feasibility of performing an online
brute-force attack to uncover IP camera’s password because
many cameras only have only four-digits long passwords [23].
Herodotou et al. found that a generic camera module used
by many spy camera manufacturers can be controlled by
adversaries over the internet as long as the serial number of
the camera is known [15]. Tekeoglu et al. successfully recon-
structed 253 JPEG images from about 20 hours of video track
by sniffing an IP camera’s unencrypted network traffic [38].
While these works show the feasibility of eavesdropping on
IP cameras when there exist software vulnerabilities, our work
explores the complementary aspect of physical vulnerabilities
of camera designs. This allows an adversary to eavesdrop on
not only networked cameras but also locally-operated cameras
as well as systems with strong software security such as
smartphones and home security devices.

VIII. DISCUSSION

A. Countermeasure

We analyze the possible countermeasures from the stand-
point of camera and system designers.

EM Jamming. Jamming is a common technique used
to disrupt intentional communication systems. However, we

believe jamming is less suitable for mitigating camera eaves-
dropping given that the leaked signals are wide-band, requir-
ing an expensive device to cover such a wide bandwidth.
Furthermore, jamming can easily compromise the legitimate
camera data stream itself as has been demonstrated by [19],
[20]. Jamming devices can either be installed by camera
manufacturers or users. The challenge is it needs to cover a
large space as the EM field distribution can be unpredictable
and varying. This is based on our observations that different
probe positions and orientations will lead to very different
results.

Shorter Cables & Better Shielding. Our evaluation
shows that short cables often produce weaker EM emissions,
especially in the far field. Device manufacturers are thus
encouraged to employ shorter cables in their designs. However,
we note that such changes may also require a complete redesign
of the devices’ mechanical structures since it requires the
camera lens to be very close to the controller boards. Other-
wise, the manufacturers can consider using better-shielded data
transmission cables, which have been shown to be capable of
reducing the EM signal strength by over 10 dB.

Increase and Randomize Transmission Blanking. With
the same frame rate and resolution of the transmitted images,
increasing the blanking between frames and rows will reduce
the effective resolution of the eavesdropped images under a
certain eavesdropping sampling rate (Fig. 18). This requires
the transmission interface to have higher bit rates. Furthermore,
adding intentional jitters to randomize the blanking duration
can prevent adversaries from easily performing frame averag-
ing and thus reduce the leakage USNR they receive.

Grouped Pixel Smoothing Protocol Improvement. We
argue that the current image data transmission protocols are
flawed and can be improved to mitigate EM leakage. Essen-
tially, the EM emissions originate from the periodic bit flips.
Ideally, the order of transmitted rows, columns, and even bits
should be randomized, eliminating all the periodicity. How-
ever, we also realize such randomization requires a complete
hardware redesign and could be expensive for manufacturers.
We thus seek to improve the protocol by keeping the overall
architecture but minimizing the number of periodic bit flips.
We achieve this by simply rearranging the bits. Specifically,
we observe that adjacent pixels (columns) have similar values
in their bits, especially the MSBs. By putting the same bits
from adjacent pixels in a byte as shown in Fig. 15, we can
smooth out many bit transitions and reduce the EM emission
amplitudes. In addition, the more adjacent pixels grouped
together in this way, the fewer emissions there will be. Fig. 14
demonstrates the EM emission spectrum calculated by the
simulation model (Eq. (1)) when there is no such defense and
when 8 and 128 pixels are grouped together for smoothing,
respectively. Most of the strong emission peaks at the multiples
of the byte frequency (51 MHz) are mitigated by over 10
dB. Note that the original protocol already groups 8 pixels
together in transmission, so supposedly 8-pixel smoothing
requires minimal modifications to the interface designs.

B. Other Sensing Devices

We believe the threat of EM side-channel eavesdropping
may be further extended to other sensing devices.
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Fig. 14: The simulated EM emission strengths with no defense
and with the proposed grouped pixel smoothing in the trans-
mission protocol design.

Encoded Video Data Transmission. Although embedded
systems widely use open-standard image data transmission
interfaces that send uncompressed RAW data, many traditional
camera devices such as USB webcams still use proprietary
interfaces that send encoded (e.g., h264) video data. With such
devices, the adversary cannot use the eavesdropping method
of this work to directly reconstruct images. However, it is
possible to use machine-learning-based classifiers to recog-
nize human-unintelligible EM signals because image patterns
can be recognized as long as the corresponding EM signals
have sufficient separability. We experimented with a Logitech
C920x HD Pro webcam which transmits compressed video
data. We tried to classify 100 different face images recorded
by the webcam using its EM emissions. We simply use the
EM signals’ Fast Fourier Transform coefficients processed
by Linear Discriminant Analysis and a self-built three-layer
neural network classifier. Even with the crude features, we
could achieve a test accuracy of 90.12% for the 100-class
classification. This makes us believe the eavesdropping threat
can affect a wider range of cameras even if the adversary
doesn’t understand how data is transmitted.

General Sensors. Every sensor peripheral has to transmit
data to the central processors. Most sensors transmit unen-
coded plain data. Given that the data throughput of most
sensors is much smaller than cameras, we believe the EM
side-channel eavesdropping on other sensors could be achieved
even with less sophisticated equipment and data reconstruc-
tion algorithms. In addition, eavesdropping on sensors used
in industrial settings may not require the adversaries to be
physically isolated from the sensors. For example, an employee
trying to steal the secret specifications of a product that is being
measured by a benchmarking device may physically approach
the automated device to collect EM signals.

C. Limitation & Future Work

Eavesdropping Distance. While many camera devices we
examined could be eavesdropped on from physically-isolated
rooms, some of the cameras still have a limited range of
feasible distances compared to previous computer display
eavesdropping attacks. This is due to the shorter data trans-
mission cables and the lower voltage swings of the cameras.
For example, HDMI has 3.3 V differential signals while MIPI
CSI-2 has less than 500 mV. At large distances where the
reconstructed images get too distorted to be intelligible to hu-
mans, we believe machine learning-based methods can be used
to directly recognize the EM signals, as has been demonstrated
by previous research on smartphone display screen eavesdrop-
ping [24]. Furthermore, we note that dedicated analog band-

pass filters could be utilized to further reduce noise and extend
the eavesdropping distance [22] (Appendix H).

Automated Tests. In our evaluations, it takes 30-60 min to
find the eavesdropping parameters of an unseen camera device.
By manually analyzing 12 COTS devices, our work aims to
present an initiative that motivates stakeholders to examine
how wide the problem is in the real world more thoroughly. In
future large-scale studies, automated test methods may need
to be developed to enable the testing of more devices. We
envision that the main challenge is for the automated algorithm
to robustly determine whether there is an eavesdropped image
in the reconstructions while efficiently sweeping through a
wide range of parameters.

IX. CONCLUSION

This work investigated EM Eye, an EM leakage vulnera-
bility of embedded camera systems that allow eavesdroppers
to reconstruct camera image streams from camera EM emis-
sions. We have identified the cause of this vulnerability to be
the unprotected deterministic digital image data transmissions
between the image sensor and downstream image processing
components. After developing an eavesdropping signal pro-
cessing pipeline, we verified the impact of this vulnerability
on 4 IoT development platforms and 12 COTS camera devices
including smartphones, smart home cameras, and dash cams.
For defenses, we found that dedicated cable shielding, shorter
cables, and proposed improved data transmission protocols can
effectively reduce camera EM leakage. Finally, we pointed out
that EM Eye shares the same underlying physical principle
with computer display eavesdropping attacks, which we believe
could be further generalized to other sensors.
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APPENDIX A
RESPONSIBLE DISCLOSURE

We have reported our findings including a thorough de-
scription of the vulnerability and affected devices to the device
vendors in Table II as well as MIPI Alliance. We provided
detailed instructions1 for replicating a simplified version of
the attack and our suggestions for countermeasures.

APPENDIX B
TWO-LANE RAW10 TRANSMISSION MODEL

We provide the mathematical model for two-lane RAW10,
one of the most common instances of ôĂÿĊÿ(ç) for converting
images to bit streams in MIPI CSI-2. We also introduce
an improved version that aims to mitigate the EM leakage
problems.

The Original Protocol. The original protocol can be found
in Figure 5 and [4]. Assume the transmission of the very first
bit of a frame starts at time 0. Denote the time for transmitting
a byte as Đþ . At the time Ċ, row ÿĈ is being transmitted. Denote
the current column and bit being transmitted by lane 0 and lane
1 as ÿā0, ÿĀ0 and ÿā1, ÿĀ1 respectively. With all indexes starting
from 0, the protocol can be described as:

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

�Ċ = Ċ − ĐĈÿĈ current row working time

ĉā = 8 ç +�Ċ∕5Đþ, column offset of 8-column groups

ąþ = ăąĂ(+�Ċ∕Đþ,, 5) byte position in the 8-column group

ÿā0 = ĉā + ÷{ąþ<2} ç 2ąþ + ÷{ąþ>2} ç (2ąþ − 1)

+÷{ąþ==2} ç ăąĂ(+�Ċ∕2ĐĀĉ,, 4)
ÿā1 = ĉā + ÷{ąþ<2} ç (2ąþ + 1) + ÷{2dąþ<4} ç 2ąþ

+÷{ąþ==4} ç [4 + ăąĂ(+�Ċ∕2ĐĀĉ,, 4)]
ÿĀ0 = ÷{ąþ�2} ç [2 + ăąĂ(+�Ċ∕ĐĀĉ,, 8)]

+÷{ąþ==2} ç ăąĂ(+�Ċ∕ĐĀĉ,, 2)
ÿĀ1 = ÷{ąþ�4} ç [2 + ăąĂ(+�Ċ∕ĐĀĉ,, 8)]

+÷{ąþ==4} ç ăąĂ(+�Ċ∕ĐĀĉ,, 2)

Fig. 15: The defense of grouped pixel smoothing where the
same bits from 8ĊĂ adjacent (similar) pixels are transmitted
together to minimize bit flip-caused EM emissions.

Grouped Pixel Smoothing Protocol Improvement. As-
sume we group ĊĂ(e 1) 8-column groups together, the new
smoothed protocol shown in Fig. 15 can be described as:

Display LNA

Laptop

Raspberry 3B+ USRP B210

Cam V1 Antenna

Fig. 16: The experiment setup for the feasibility tests.
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�Ċ = Ċ − ĐĈÿĈ current row working time

ĉā = 8ĊĂ ç +�Ċ∕5ĊĂĐþ, column offset

ąþ = ăąĂ(+�Ċ∕Đþ,, 5ĊĂ) byte position in the group
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ÿā1 = ÿā0

ÿĀ0 = 2 �ąþ
ÿĀ1 = ÿĀ0 + 1

APPENDIX C
MULTI-WIRE POLARITY INVERSION

Fig. 17 shows the setup and results for investigating our
hypothesis of multi-wire polarity inversion. (a) shows the
setup for measuring emissions from a data transmission clock
and a data wire at the clock frequency. The green/left and
yellow/right cables extend the data and clock wires respectively
to allow the measurement of individual wire’s emissions. (b)
shows the first antenna position. (c) shows the second antenna
position. (d) shows the EM reconstruction when only the data
line is extended, with any antenna positions. (e) shows the
reconstruction when only the clock line is extended, with any
antenna positions. (f) shows the results of subtracting (d) from
(e), demonstrating an inverted polarity. When we connect both
the data and clock wires, (g) shows the reconstruction at the
first antenna position and (h) shows the reconstruction at the
second antenna position which is similar to (f). It demonstrates
that the first antenna position receives most signals from the
clock wire while the second position receives a mixture of the
data and clock wires’ signals.

APPENDIX D
RECONSTRUCTION AND IMAGE PARAMETERS

Fig. 18 (top) demonstrates how the blanking between
frames and rows manifests itself in the domain of reconstructed
images. It also depicts three boxes whose areas represent the
duration of the frame transmission ĐĄ , the actual frame data
transmission time ĐĄĂ , and the row transmission time (ĐĈ).
Fig. 18 (bottom) shows a raw reconstruction that considers the
blanking as part of the reconstructed image. As a result, the
blanking areas corresponding to the background noise during
the transmission idle time appear to be much darker than the

15



 

Fig. 17: Illustrations of (a) the setup for investigating the multi-
wire polarity inversion problem, (b) the first antenna position,
(c) the second antenna position, and the EM reconstructions
when (d) only the data line is extended, and (e) only the clock
line is extended. (f) illustrates the results of subtracting (d)
from (e), (g) and (h) are images reconstructed at antenna po-
sition (b) and (c). To show the real EM amplitudes, histogram
equalization is not applied.

eavesdropped image. In practice, it is often easier to utilize
Eq. (2) to get the blanking-included raw reconstruction first,
and then crop out the blanking areas to get ąāĉ . The procedure
for the adversary to eavesdrop on images of an unseen camera
is as follows. First, the adversary sets the USRP sampling rate
Ąĉ and then finds the ĐĄ of the camera. The adversary gets
Ąĉ×ĐĄ sample points for each frame that need to be mapped to
the width and height of the raw reconstruction. The adversary
then finds the height of the raw reconstruction by estimating
ĐĈ and calculating Ĉÿč_ℎăÿąℎĊ = ĐĄ∕ĐĈ. Accordingly, the
maximum width (setting ĄĉÿăĆ to 1 in Eq. (2)) is Ąĉ × ĐĈ.
Similar to the relationship between ēāĉ and Ąāĉ , the width
of the raw reconstruction is often much smaller than the height.
Fig. 18 and all eavesdropped images that are shown in this
paper resized the reconstructions through image processing
by increasing the widths proportionally in order to get a
more normal visualization of the eavesdropped image. Finally,
Ąāĉ ,ēāĉ , ĐĄĂ can be estimated by comparing the cropped
eavesdropped image with the raw reconstruction. In summary,
the two most important that adversaries need to estimate from
the EM signals are ĐĄ and ĐĈ. The estimation can be done
using a combination of signal auto-correlation tests and trial-
and-errors.

APPENDIX E
METRICS

Fdetect. The Fdetect rate is calculated by Ċāĉ
Ąÿāă

∕ĊăĐ
Ąÿāă

where the numerator and denominator are the numbers of
detected faces in ąāĉ and ąăĐ . For face detection, we use
the Cascade Object Detector provided in MATLAB [26] with
the FrontalFaceCART model.

Icaption. The Fdetect rate is calculated with the rougeE-
valuationScore function in MATLAB [27], where we run the
ROUGE-L metric on the generated captions from ąāĉ and
ąăĐ . We use an existing image captioning model developed by
NLP Connect that uses transformers to generate the texts [29].

Fig. 18: A raw reconstruction that has both the eavesdropped
image and blanking as well as the image reconstruction pa-
rameters shown.

APPENDIX F
INTERFERENCE FROM ELECTRONIC DEVICES AND

BACKGROUND NOISES

The interference from displays of some electrical devices
is the most likely to interfere with EM Eye since the data
transmission pattern of these displays is similar to that of the
camera. However, the display emission patterns can still be
effectively differentiated from camera emissions because of
two reasons. First, the center frequencies of the best-quality
signal bands of display emissions are very unlikely to overlap
with those of cameras. Since the emissions cover a wide range
of frequencies, the likelihood of getting overlaps in every
frequency band is even lower. So the adversary can almost
always find a camera eavesdropping frequency that does not
overlap with the display emissions. Second, the eavesdropping
parameters such as frame rate and image heights are also very
different. As shown in Fig. 19, we can receive EM emissions
from the display in the room around 888 MHz and 1037 MHz
when eavesdropping on the Dafang camera. Since we use the
eavesdropping parameters of the Dafang camera instead of the
display, the reconstructed image shows these diagonal stripes,
which can be easily distinguished from camera emissions.

888 MHz 1037 MHz

Fig. 19: The images show the display emissions received at
two frequencies when eavesdropping on the Dafang camera.
Since we use the eavesdropping parameters of the Dafang
camera instead of the display, the reconstructed image shows
these diagonal stripes, which can be easily distinguished from
camera emissions.
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The frequency bands of some common communication
standards may overlap with the camera emissions (Table III),
producing environmental background noise that can negatively
affect the SNR of camera emissions. To address the problem,
professional analog filters can be employed to filter out the
interference of the background noise. As shown in Fig. 20,
the analog filter has significantly improved the quality of
reconstructed images.

TABLE III: Frequency Bands of Common Communication
Standards.

Protocol Frequency Band Protocol Frequency Band

GSM 880 - 960<MHz Wi-Fi 2.4<GHz and 5<GHz

3G 800 - 2100<MHz ZigBee 915<MHz and 2.4<GHz

LTE 700 - 2600<MHz LoRa 868<MHz and 915<MHz

5G
850<MHz, 1900<MHz

1850 - 1990<MHz
NB-IoT

824 - 849<MHz,

869 - 894<MHz

Bluetooth 2.4<GHz Z-Wave 868.42<MHz and 908.42<MHz

w/o Analog Filter w/ Analog Filter

Fig. 20: Illustrations of filtering the background noises with
an analog filter.

APPENDIX G
COLORED RECONSTRUCTION

Fig. 21 shows some examples of the reconstructed color
images compared with their ground truth and SOTA recon-
structions. The data is from the base case in Section VI-B. As
can be seen from the figures, the eavesdropping pipeline is able
to infer colors in a reasonable deviation range. However, such
recovered colors do not originate from the intrinsic charac-
teristics of the leaked EM signals themselves. As explained in
Section V-C, colors are inferred completely from the semantics
of images. For example, when the image translation network
detects a shape that looks like a tie, it can color the tie area
based on the tie examples in the training set. This, however, can
be different from the actual colors, as demonstrated by the 5th
column of Fig. 21. Given these caveats, this work chooses to
avoid the complications brought by colors to better investigate
the fundamentals of the EM physical channel. Nevertheless,
we believe the added color information could still be useful to
adversaries in many cases. Future research could quantify the
impact of colors on how adversaries perceive the eavesdropped
images.

APPENDIX H
EAVESDROPPING EQUIPMENT

We employed the following equipment to build the middle-
end EM eavesdropping devices in our evaluations. (1) Software
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Fig. 21: Ground truth (top), SOTA reconstruction (middle),
and colored EM Eye reconstruction (bottom).

Defined Ratio (SDR): Ettus USRP B210, a two-channel USRP
device with continuous RF coverage from 70 MHz – 6 GHz
with up to 56 MHz of real-time bandwidth that costs $2100.
(2) Low Noise Amplifier (LNA): Foresight Intelligence FST-
RFAMP06 LNA, which costs $207 and offers a frequency
range of DC to 3.5 GHz with a gain of up to 40 dB.
(3) Directional Antenna: A common outdoor Log-periodic
directional antenna (LPDA), which costs $15 and offers a
frequency range of 700 - 4900 MHz with a gain of up to
15 dBi.

Better Equipment. Our experiments only employed off-of-
the-shelf middle-end eavesdropping equipment. It is possible
to use more advanced devices to increase the eavesdropping
distances and reconstruction quality further. For example, there
are professional antennas with gains higher than 30 dBi. High-
end LNAs can achieve gains up to 50 dB [32]. Furthermore,
analog filters can significantly reduce noise and improve SNR,
as shown in Appendix F. Resourceful adversaries can manufac-
ture dedicated analog band-pass filters for each target camera
or purchase expensive tunable filters. As an example, previous
computer display research has shown that by employing a
45 dBi LPDA antenna, analog band-pass filters, and better
software algorithms, it is possible to increase the maximum
eavesdropping distance from 10 m to 80 m [9].
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