
GME: GPU-based Microarchitectural Extensions to Accelerate
Homomorphic Encryption

Kaustubh Shivdikar1 Yuhui Bao1 Rashmi Agrawal2 Michael Shen1 Gilbert Jonatan3 Evelio Mora4

Alexander Ingare1 Neal Livesay1 José L. Abellán5 John Kim3 Ajay Joshi2 David Kaeli1

1Northeastern University 2Boston University 3KAIST 4UCAM 5Universidad de Murcia
{shivdikar.k, bao.yu, shen.mich, ingare.a, n.livesay, d.kaeli}@northeastern.edu

{rashmi23, joshi}@bu.edu, eamora@ucam.edu, jlabellan@um.es, {gilbertjonatan, jjk12}@kaist.ac.kr

ABSTRACT

Fully Homomorphic Encryption (FHE) enables the processing of
encrypted data without decrypting it. FHE has garnered signi�cant
attention over the past decade as it supports secure outsourcing
of data processing to remote cloud services. Despite its promise
of strong data privacy and security guarantees, FHE introduces a
slowdown of up to �ve orders of magnitude as compared to the
same computation using plaintext data. This overhead is presently
a major barrier to the commercial adoption of FHE.

In this work, we leverage GPUs to accelerate FHE, capitalizing
on a well-established GPU ecosystem available in the cloud. We
propose GME, which combines three key microarchitectural ex-
tensions along with a compile-time optimization to the current
AMD CDNA GPU architecture. First, GME integrates a lightweight
on-chip compute unit (CU)-side hierarchical interconnect to retain
ciphertext in cache across FHE kernels, thus eliminating redundant
memory transactions. Second, to tackle compute bottlenecks, GME
introduces special MOD-units that provide native custom hardware
support for modular reduction operations, one of the most com-
monly executed sets of operations in FHE. Third, by integrating
the MOD-unit with our novel pipelined 64-bit integer arithmetic
cores (WMAC-units), GME further accelerates FHE workloads by
19%. Finally, we propose a Locality-Aware Block Scheduler (LABS)
that exploits the temporal locality available in FHE primitive blocks.
Incorporating these microarchitectural features and compiler op-
timizations, we create a synergistic approach achieving average
speedups of 796×, 14.2×, and 2.3× over Intel Xeon CPU, NVIDIA
V100 GPU, and Xilinx FPGA implementations, respectively.
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1 INTRODUCTION
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Figure 1: FHE o�ers a safeguard against online eavesdrop-

pers as well as untrusted cloud services by allowing direct

computation on encrypted data.

Large-scale machine learning (ML) models, such as OpenAI’s
GPT series and DALL-E, Google AI’s BERT and T5, and Facebook’s
RoBERTA, have made signi�cant advances in recent years. Unfor-
tunately, providing public access for inference on these large-scale
models leaves them susceptible to zero-day exploits [38, 71]. These
exploits expose the user data as well as the ML models to hack-
ers for potential reverse engineering [38], a concerning prospect
as these models are highly valued assets for their respective com-
panies. For example, a recent security vulnerability in the Redis
client library resulted in a data breach on ChatGPT [60], which is
currently regarded as one of the leading machine learning research
platforms.

In the past decade, Fully Homomorphic Encryption (FHE) has
emerged as the “holy grail” of data privacy. Using FHE, one can
perform operations on encrypted data without decrypting it �rst
(see Figure 1). FHE adopters can o�oad their encrypted private data
to third-party cloud service providers while preserving end-to-end
privacy. Speci�cally, the secret key used for encryption by users
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is never disclosed to the cloud providers, thus facilitating privacy-
preserving ML training and inference in an untrusted cloud setting
(whether self-hosted or utilizing public cloud services) [77, 83, 87].

During its early stages, homomorphic encryption was limited by
the number and types of computations, rendering it viable solely
for shallow circuits [30]. In these circuits, the error would propa-
gate and increase with each addition or multiplication operation,
ultimately leading to decryption errors. Following Gentry’s ground-
breaking work [30], this important limitation was resolved by using
bootstrapping [19], resulting in FHE computations that permit an
unlimited number of operations. Although FHE o�ers signi�cant
bene�ts in terms of privacy preservation, it faces the challenge of
being extremely slow (especially the bootstrapping operation), with
performance up to �ve orders of magnitude slower than plaintext
computing [42].

Prior studies have tried to accelerate FHE kernels by developing
CPU extensions [15, 31, 42, 55], GPU libraries [4, 54, 61, 76], FPGA
implementations [1, 66, 88], and custom accelerators [33, 45, 67].
CPU-based solutions inherently face limitations due to their lim-
ited compute throughput [17], while FPGA-based solutions are
constrained by their limited operating frequency and resources
available on the FPGA board. ASIC-based solutions provide the
most acceleration [29], but they cannot be easily adapted to fu-
ture algorithmic changes and can be fairly expensive to use in
practice. Additionally, as the number of diverse domain-speci�c
custom accelerators grows rapidly, it becomes increasingly di�cult
to create high-quality software libraries, compilers, drivers, and
simulation tools for each accelerator in a timely manner, posing
a challenge in terms of time-to-market. Therefore, while previous
work has accelerated FHE workloads, they often fall short in terms
of cost-e�ectiveness or lack the necessary infrastructure to support
large-scale deployment.

Rather than developing domain-speci�c custom accelerators, our
work focuses on enhancing the microarchitecture of GPUs that are
currently deployed in the cloud and can be easily upgraded. This
leads to a practical solution as we can readily exploit the cloud
ecosystem that is built around GPUs. On the upside, GPUs o�er a
large number of vector processing units, so they are a good match
to capitalize on the inherent parallelism associated with FHE work-
loads. However, FHE ciphertexts are large (dozens of MB), require a
massive number of integer arithmetic operations, and exhibit vary-
ing stride memory access patterns. This imposes a true challenge
for existing GPU architectures since GPUs have been historically
designed to excel at executing thousands of threads in parallel (e.g.,
batched machine-learning workloads) featuring uniform memory
access patterns and rich �oating-point computations.

To bridge the wide performance gap between operating on en-
crypted data using FHE and operating on plaintext data in GPUs,
we propose several microarchitectural features to extend the latest
AMD CDNA GPU architecture. Speci�cally, our e�orts are focused
on improving the performance of the Residue Number System (RNS)
version of the CKKS FHE scheme, as it naturally supports numerous
privacy-preserving applications. Similar to results found in earlier
studies [24], our benchmarking of CKKS FHE kernels indicates
they are signi�cantly bottlenecked by the limited main memory
bandwidth. This is because current GPUs su�er from excessive
redundant memory accesses when executing FHE-based workloads.
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Figure 2: The four key contributions of our work (indicated

in green) evaluated within the context of an AMD CDNA

GPU architecture.

Present GPUs are ill-equipped to deal with varying stride FHE
memory access patterns. According to our experiments, this can
lead to a very high degree of compute unit stalls and is a primary
cause of the huge performance slowdown in FHE computations on
GPU-based systems.

To address these challenges, we propose GME, a hardware-
software co-design speci�cally tailored to provide e�cient FHE
execution on the AMD CDNA GPU architecture (illustrated in Fig-
ure 2). First, we present CU-side interconnects that allow ciphertext
to be retained within the on-chip caches, thus eliminating redun-
dant memory transactions in the FHE kernels. Next, we optimize the
most commonly executed operations present in FHE workloads (i.e.,
the modular reduction operations) and propose novel MOD-units.
To complement our MOD-units, we introduce WMAC-units that na-
tively perform 64-bit integer operations, preventing the throttling
of the existing 32-bit arithmetic GPU pipelines. Finally, in order
to fully bene�t from the optimizations applied to FHE kernels, we
develop a Locality-Aware Block Scheduler (LABS) that enhances
the temporal locality of data. LABS is able to retain on-chip cache
data across FHE blocks, utilizing block computation graphs for
assistance.

To faithfully implement and evaluate GME, we employ Nav-
iSim [11], a cycle-accurate GPU architecture simulator that accu-
rately models the CDNA ISA [6]. To further extend our research
to capture inter-kernel optimizations, we extend the implementa-
tion of NaviSim with a block-level directed acyclic compute graph
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simulator called BlockSim. In addition, we conduct ablation studies
on our microarchitectural feature implementations, enabling us to
isolate each microarchitectural component and evaluate its distinct
in�uence on the entire FHE workload.

Our contributions include:

(1) Simulator Infrastructure: We introduce BlockSim, which, to
the best of our knowledge, is among the �rst e�orts to de-
velop a simulator extension for investigating FHE microar-
chitecture on GPUs.

(2) CU-side interconnect (cNoC):We propose an on-chip network
that interconnects on-chip memory, enabling the exploita-
tion of the large on-chip memory capacity and support for
the all-to-all communication pattern commonly found in
FHE workloads.

(3) GPU Microarchitecture: We propose microarchitectural en-
hancements for GPUs, including ISA extensions, modular
reduction operationmicroarchitecture, and awide arithmetic
pipeline to deliver high throughput for FHE workloads.

(4) Locality-Aware Block Scheduler : Utilizing the CU-side inter-
connect (cNoC), we propose a graph-based block scheduler
designed to improve the temporal locality of data shared
across FHE primitives.

Our proposed improvements result in an average speedup of
14.6× over the prior state-of-the-art GPU implementation [41] for
HE-LR and ResNet-20 FHE workloads. Our optimizations collec-
tively reduce redundant computation by 38%, decreasing the mem-
ory pressure on DRAM. Although the proposed optimizations can
be adapted for other architectures (with minor modi�cations), our
work primarily concentrates on AMD’s CDNA microarchitecture
MI100 GPU.

2 BACKGROUND

In this section, we brie�y describe the AMD CDNA architecture
and background of the CKKS FHE scheme.

2.1 AMD CDNA Architecture

Tomeet the growing computation requirements of high-performance
computing (HPC) and machine learning (ML) workloads, AMD in-
troduced a new family of CDNA GPU architectures [8] that are
used in AMD’s Instinct line of accelerators. The CDNA architecture
(see Figure 3) adopts a highly modular design that incorporates
a Command Processor (CP), Shader Engines (including Compute
Units and L1 caches), an interconnect connecting the core-side L1
caches to the memory-side L2 caches and DRAM. The CP receives
requests from the driver on the CPU, including memory copying
and kernel launch requests. The CP sends memory copying requests
to the Direct Memory Access (DMA), which handles the transfer of
data between the GPU and system memory. The CP is also respon-
sible for breaking kernels down into work-groups and wavefronts,
sending these compute tasks to Asynchronous Compute Engines
(ACE), which manage the dispatch of work-groups and wavefronts
on the Compute Units (CUs).

The CDNA architecture employs the CU design from the earlier
GCN architecture but enhances it with new Matrix Core Engines.
A CU (see Figure 3) is responsible for instruction execution and
data processing. Each CU is composed of a scheduler that can fetch

.
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Figure 3: Architecture diagram showing the limitations of

AMD GPU memory hierarchy. Each compute unit has a dedi-

cated L1V cache and an LDS unit that cannot be shared with

neighboring compute units.

and issue instructions for up to 40 wavefronts. Di�erent types of in-
structions are issued to di�erent execution units, including a branch
unit, scalar processing units, and vector processing units. The scalar
processing units are responsible for executing instructions that ma-
nipulate data shared by work-items in a wavefront. The vector pro-
cessing units include a vector memory unit, four Single-Instruction
Multiple-Data (SIMD) units, and a matrix core engine. Each SIMD
unit is equipped with 16 single-precision Arithmetic Logic Units
(ALUs), which are optimized for FP32 operations. The matrix core
engine handles multiply-accumulate operations, supporting vari-
ous datatypes (like 8-bit integers (INT8), 16-bit half-precision FP
(FP16), 16-bit Brain FP (bf16), and 32-bit single-precision FP32). We
cannot leverage these engines for FHE, as they work with INT8
operands that are not well-suited for FHE computations [78] (FHE
workloads bene�t from INT64 arithmetic pipelines). Each CU has
a 64 KB memory space called the Local Data Share (LDS), which
enables low-latency communication between work-items within a
work-group. LDS is analogous to shared memory in CUDA. This
memory is con�gured with 32 banks to achieve low latency and
high bandwidth access. LDS facilitates e�ective data sharing among
work-items and acts as a software cache to minimize global memory
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accesses. However, a signi�cant limitation of LDS is that CUs can
only access its local LDS, and directly accessing remote LDS is not
possible.

The CDNA architecture has a two-level cache hierarchy. Each CU
has a dedicated L1 vector cache. CUs in a Shader Engine (typically
15 CUs) share an L1 scalar cache and an L1 instruction cache. The
second level of cache is composed of memory-side L2 caches. Each
L2 cache interfaces to a DRAM controller (typically implemented
in HBM or GDDR technology). The L2 caches and the DRAM con-
trollers are banked, allowing them to service a part of the address
space.

2.2 CKKS FHE Scheme

In this paper, we focus on the CKKS FHE scheme, as it can support
a wide range of privacy-preserving applications by allowing op-
erations on �oating-point data. We list the parameters that de�ne
the CKKS FHE scheme in Table 1 and the corresponding values
of key parameters in Table 3. The main parameters —i.e., Ċ and
č— de�ne the size of the ciphertext and also govern the size of
the working data set that is required to be present in the on-chip
memory. The ciphertext consists of a pair of elements in the poly-
nomial ring Ďč = Zč [Į]/(ĮĊ + 1). Each element of this ring is

a polynomial
∑Ċ−1
ğ=0 ėğĮ

ğ with “degree-bound” Ċ − 1 and coe�-
cients ėğ in Zč . For a message m ∈ CĤ , we denote its encryption as
JmK = (Am,Bm) where Am and Bm are the two polynomials that
comprise the ciphertext.

For 128-bit security, typical values of Ċ range from 216 to 217

and logč values range from 1700 to 2200 bits for practical pur-
poses. These large sizes of Ċ and logč are required to maintain
the security of the underlying Ring-Learning with Errors assump-
tion [57]. However, there are no commercially available compute
systems that have hundred-bit wide or thousand-bit wide ALUs,
which are necessary to process these large coe�cients. A common
approach for implementing the CKKS scheme on hardware with a
much smaller word length is to chooseč to be a product of distinct
word-sized primes ħ1, . . . , ħℓ . Then Zč can be identi�ed with the

“product ring”
∏Ģ

ğ=1 Zħğ via the Chinese Remainder Theorem [79].
In practice, this means that the elements of Zč can be represented
as an ℓ-tuple (Į1, . . . , Įℓ ) where Įğ ∈ Zħğ for each ğ . This representa-
tion of elements in Zč is referred to as the Residue Number System

(RNS) and is commonly referred to as the limbs of the ciphertext.
In this work, as shown in Table 3, we choose Ċ = 216 and

logč = 1728, meaning that our ciphertext size will be 28.3 MB,
where each polynomial in the ciphertext is ∼14 MB. After RNS
decomposition on these polynomials using a word length of 54 bits,
we get 32 limbs in each polynomial, where each limb is ∼ 0.44 MB
large. The last level cache and the LDS in the AMD MI100 are 8MB
and 7.5 MB, respectively. Thus we cannot accommodate even a
single ciphertext in the on-chip memory. At most, we can �t ∼18
limbs of a ciphertext polynomial, and as a result, we will have to
perform frequent accesses to the main memory to operate on a
single ciphertext. In addition, the large value of Ċ implies that we
need to operate on 216 coe�cients for any given homomorphic op-
eration. The AMD MI100 GPU includes 120 CUs with 4 SIMD units
each. Each SIMD unit can execute 16 threads in parallel. Therefore,
a total of 7680 operations (scalar additions/multiplications) can be

Table 1: CKKS Parameters and descriptions

Param Description

Ċ Polynomial degree-bound
Ĥ Length of the message. Ĥ f Ċ

2
č Polynomial modulus
Ĉ Maximum number of limbs in a ciphertext
C The set {ħ0, ħ1, . . . , ħĈ} of prime factors of č
ℓ Number of limbs, number of factors in č ;

dnum Number of digits in the switching key
Ă Number of limbs that comprise a single digit

in the key-switching decomposition Ă = + Ĉ+1
dnum

,

Č Product of extension limbs added for
raised modulus. Total extension limbs = Ă + 1

�tIter Multiplicative depth of bootstrapping
linear transform

� Scale multiplied during encryption
m A message vector of Ĥ slots

JmK Ciphertext encrypting a message
Am A randomly sampled polynomial from message m
Č Encrypted message as a polynomial
Čģ Polynomial encrypting messageģ
[Č]ħğ ħğ -limb of Č
evk Evaluation key

evk
(Ĩ )
ĨĥĪ Evaluation key for HE-Rotate block with

(Ĩ ) rotations

performed in parallel. However, we need to schedule the operations
on 216 coe�cients in over eight batches (216 / 7680), adding to the
complexity of scheduling operations.

We list all the building blocks in the CKKS scheme in Table 2. All
of the operations that form the building blocks of the CKKS scheme
reduce to 64 bit-wide scalar modular additions and scalar modular
multiplications. The commercially available GPU architectures do
not implement these wide modular arithmetic operations directly,
but can emulate them via multiple arithmetic instructions, which
signi�cantly increases the amount of compute required for these
operations. Therefore, providing native modular arithmetic units is
critical to accelerating FHE computation. To perform modular ad-
dition over operands that are already reduced, we use the standard
approach of conditional subtraction if the addition over�ows the
modulus. For generic modular multiplications, we use the modi�ed
Barrett reduction technique [76].

The ScalarAdd and ScalarMult are the two most basic building
blocks that add and multiply a scalar constant to a ciphertext.
PolyAdd and PolyMult add and multiply a plaintext polynomial
to a ciphertext. We de�ne separate ScalarAdd and ScalarMult op-
erations (in addition to PolyAdd and PolyMult) because the scalar
constant values can be fetched directly from the register �le that can
help save expensive main memory accesses. Note that the PolyMult

is followed by an HERescale operation to restore the scale of a
ciphertext to � from scale �2. The CKKS supports �oating-point
messages, so all encoded messages must include a scaling factor �.
This scaling factor is typically the size of one of the limbs of the
ciphertext. When multiplying messages together, this scaling factor
grows as well. The scaling factor must be shrunk down in order to
avoid over�owing the ciphertext coe�cient modulus.
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Table 2: HE building blocks using CKKS

Block Computation Description

ScalarAdd(JmK, ę) Jm + cK = (Bm + c, Am) Add a scalar ę to a ciphertext where,

c is a length-Ċ vector with every element ę

ScalarMult(JmK, ę) Jm · cK = (Bm · c, Am · c) Multiply a scalar by a ciphertext

PolyAdd(JmK, Pm′ ) Jm +m
′K = (Bm + Pm′ , Am) Add an unencrypted polynomial

to a ciphertext

PolyMult(JmK, Pm′ ) Jm ·m′K = (Bm ∗ Pm′ , Am ∗ Pm′ ) Multiplying an unencrypted polynomial
with a ciphertext

HEAdd(JmK, Jm′K) Jm +m
′K = (Bm + Bm′ , Am + Am′ ) Add two ciphertexts

HEMult(JmK, Jm′K, evkmult) Jm ·m′K = KeySwitch(Am ∗ Am′ , evkmult)+ Multiply two ciphertexts
(Bm ∗ Bm′ , Am ∗ Bm′ + Am′ ∗ Bm)

HERotate(JmK, Ĩ , evk
(r)
rot ) Jm j ĨK = KeySwitch(ćĨ (Am), evk

(r)
rot )+ Circular rotate elements left by Ĩ slots

(ćĨ (Bm), 0) ćĨ is an automorphism performed

HERescale(JmK) J�−1 ·mK = (�−1Bm,�
−1Am) Restore the scale of a ciphertext

from scale �2 back to �

In order to enable fast polynomial multiplication, by default, we
represent polynomials as a series of Ċ evaluations at �xed roots of
unity. This allows polynomial multiplication to occur inċ (Ċ ) time
instead of ċ (Ċ 2) time. We refer to this polynomial representation
as the evaluation representation. There are certain sub-operations
within the building blocks, de�ned in Table 2, that operate over
the polynomial’s coe�cient representation, which is simply a vector
of its coe�cients. Moving between the two polynomial represen-
tations requires a number-theoretic transform (NTT) or inverse
NTT, which is the �nite �eld version of the fast Fourier transform
(FFT). We incorporate a merged-NTT algorithmic optimization [65],
improving spatial locality for twiddle factors as they are read se-
quentially.

The HEAdd operation is straightforward and adds the corre-
sponding polynomials within the two ciphertexts. However, the
HEMult and HERotate operations are computationally expensive
as they perform a KeySwitch operation after the multiplication
and automorph operations, respectively. In both the HEMult and
HERotate implementations, there is an intermediate ciphertext with
a decryption key that di�ers from the decryption key of the input
ciphertexts. In order to change this new decryption key back to the
original decryption key, we perform a key switch operation. This

operation takes in a switching key (either evkmult or evk
(r)
rot ) and a

ciphertext JmKĩ that is decryptable under a secret key ĩ . The output
of the key switch operation is a ciphertext JmKĩ′ that encrypts the
same message but is decryptable under a di�erent key ĩ′.

To incur minimal noise growth during the key switch operation,
the key switch operation requires that we split the polynomial
into dnum digits, then raise the modulus before multiplying with
the switching key followed by a modulus down operation. The
modulus raise and down operations operate on the coe�cient rep-
resentation of the polynomial, requiring us to perform expensive
NTT and iNTT conversions. Moreover, the switching keys are the
same size as the ciphertext itself, requiring us to fetch ∼112 MB of

Table 3: Practical parameters for our FHE operations.

log(ħ) Ċ logč Ĉ ĈĘĥĥĪ dnum fftIter Č

54 216 1728 23 17 3 4 128

data to multiply the switching keys with the ciphertext. Thus, the
key switching operation not only adds to the bulk of the compute
through hundreds of NTT and iNTT operations, but also leads to
memory bandwidth bottlenecks. Finally, there exists an operation
known as bootstrapping [30] that needs to be performed frequently
to de-noise the ciphertext. This bootstrapping operation is a se-
quence of the basic building blocks in the CKKS scheme, meaning
that it su�ers from the same compute and memory bottlenecks that
exist in these building blocks, making it one of the most expensive
operations.

3 GME ARCHITECTURE

The current issue with GPUs while implementing FHE workloads
is the signi�cant disproportion in the usage of various hardware
resources present on the GPUs. As a result, speci�c resources such
as CUs experience underutilization, while others, like HBM and
on-chip caches, pose as signi�cant bottlenecks. In this paper, we
propose to re-architect the current GPU microarchitecture and also
introduce novel microarchitectural extensions that enable optimal
utilization of GPU resources so as to maximize the performance
of the FHE workloads running on the GPU. We propose GME, a
robust set of microarchitectural features targeting AMD’s CDNA
architecture, unlocking the full potential of the GPU to accelerate
FHE workloads over 14.2× as compared to the previous comparable
accelerators [41].

In our work, we pinpoint critical bottlenecks encountered during
FHE workload execution and address them progressively using four
microarchitectural feature extensions. Our on-chip CU-side hier-
archical network (cNoC) and the Locality Aware Block Scheduler
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(LABS) contribute to minimizing the DRAM bandwidth bottleneck.
Simultaneously, our implementation of native modular reduction
(MOD) and wider multiply-accumulate units (WMAC) features
improve the math pipeline throughput, ensuring a streamlined
data �ow with evenly distributed resource utilization. The list and
impact of our contributions can be visualized in Figure 2.

3.1 cNoC: CU-side interconnect

Modern GPUs have a network-on-chip that interconnects the cores
(in the case of AMD GPUs, compute units) together with the mem-
ory partitions or memory banks. In this work, we propose a new
type of on-chip interconnect that we refer to as a CU-side network-
on-chip (cNoC) that interconnects the CUs together – in particular,
all the CU’s LDS are interconnected together with (cNoC) to en-
able a “global” LDS that can be shared between the CUs. By ex-
ploiting the (cNoC), the dedicated on-chip memory can be shared
between cores, thus minimizing main memory accesses. Within
our research, we speci�cally adapted the (cNoC) to serve our FHE
workload. By leveraging the "global" LDS facilitated by the (cNoC),
FHE ciphertexts that reside in the LDS can be e�ortlessly shared
among neighboring compute units. This not only streamlines oper-
ations but, more crucially, eliminates the need to store data in the
main memory and subsequently reload it for sharing across cores.
This approach signi�cantly reduces latency, as direct core-to-core
sharing via the (cNoC) bypasses the often time-consuming main
memory accesses.

We also provide synchronization barriers of varying granularity
to mitigate race conditions. Since the LDS is user-controlled, our
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Figure 5: Proposed hierarchical on-chip network featuring a

concentrated 2D torus topology

approach does not incur the overhead associated with cache co-
herence and avoids redundant cache invalidations, but comes with
some extra programmer e�ort. By implementing a global address
space (GAS) in our GPU, we establish data sharing and form a uni-
�ed GAS by combining all LDSs. The virtual address space is then
mapped onto this uni�ed GAS, with translation using a hash of the
lower address bits.

Current GPUs are designed hierarchically – e.g., MI100 GPU
comprises numerous compute units, with 8 of them combined to
form a Shader Engine (seen in Figure 5). The proposed (cNoC)
takes advantage of this hierarchy, utilizing a hierarchical on-chip
network (illustrated in Figure 5) that features a single router for
each Shader Engine, connecting the eight compute units that make
up a Shader Engine. The MI100 GPU houses 15 Shader Engines,
resulting in a total of 120 compute units. The routers are arranged
in a 3 × 5 2D grid and interconnected through a torus topology.
While this concentrated-torus topology [10, 39] can increase network
complexity, it reduces the number of required routers (from 120
to 15), thereby minimizing the chip area needed for the network.
In a concentrated-torus topology, all routers have the same degree
(number of ports), creating an edge-symmetric topology that is well-
suited for the all-to-all communication patterns of FHE workloads.

Figure 4(a) illustrates the conventional approach of data shar-
ing, where memory transactions must traverse through the full
memory hierarchy to share data between neighboring LDS. In con-
trast, our proposed CU-side interconnect, presented in Figure 4(b),
incorporates on-chip routers that circumvent o�-chip intercon-
nects, improving data reuse. This results in a decrease of redundant
memory operations by 38%, e�ectively supporting the all-to-all
communication pattern commonly seen in FHE workloads.

3.2 Enhancing the Vector ALU

Native modular reduction extension: (MOD) The existing GPU
arithmetic pipeline is highly optimized for data manipulation op-
erations like multiply, add, bit-shift, and compare. A wavefront
executing any of these instructions takes 4 clock cycles in a lock-
step manner in the SIMD units. In a single wavefront consisting
of 64 threads, 16 threads are executed concurrently on the SIMD
units during each clock cycle. Conversely, operations like divide
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Table 4: Cycle counts for 64-bit modulus instructions com-

paring MOD and WMAC features

č-arch. mod-red mod-add mod-mul

Feature (cycles)∗ (cycles)∗ (cycles)∗

Vanilla MI100 46 62 63
MOD� 26 18 38
MOD+WMAC 17 7 23

 Refers to the unmodi�ed CDNA architecture of MI100 GPUs.
∗Cycle count is averaged over 10,000 modulus instructions computed on cached data (using LDS
cache) and rounded to the nearest integer.
�Modular operation is computed with various compile-time prime constants as modulus
incorporating compiler optimizations into the performance.

and modulus are emulated using a series of native instructions,
resulting in considerably slower performance compared to their
native counterparts.

As stated in Section 2.2, the modular reduction operation, used
for determining the remainder of a division, is performed after each
addition and multiplication. As a result, optimizing modular reduc-
tion is crucial for speeding up FHEworkloads. At present, theMI100
GPU executes a modular operation through a sequence of addition,
multiplication, bit shift, and conditional operations, drawing on
the conventional Barrett’s reduction algorithm [48]. This operation
currently takes a considerable amount of time, with the mod-red
operation requiring an average of 46 cycles for execution on the
MI100 GPU. In our study, we suggest enhancing the Vector ALU
pipeline within the CDNA architecture to natively support modu-
lar reduction, which brings it down to an average of 17 cycles for
each mod-red instruction. We augment the CDNA instruction set
architecture (ISA) with a collection of vector instructions designed
to perform modular reduction operations natively after addition
or multiplication operations. The new native modular instructions
proposed include:

• Native modular reduction:
mod-red <v0,s0> | V0 = V0 mod ĩ0

• Native modular addition:
mod-add <v0,v1,s0> | V0 = (V0 + V1) mod ĩ0

• Native modular multiplication:
mod-mult <v0,v1,s0> | V0 = (V0 × V1) mod ĩ0

Modular reduction involves several comparison operations, re-
sulting in branch divergence in GPUs. Our implementation is de-
rived from an improved Barrett’s reduction algorithm [76]. This
approach minimizes the number of comparison operations to one
per modular reduction operation, signi�cantly reducing the number
of branch instructions and enhancing compute utilization.

Wider multiply-accumulate units (WMAC): In the CKKS
FHE scheme, we can choose to perform operations on 32, 64, or 128-
bit wide RNS limbs for a ciphertext. This limb bit width governs
the operand size for the vector ALUs, impacting the number of
modular addition and multiplication operations required. Moreover,
there is an algorithmic-level performance versus precision trade-
o� to consider when deciding on the bit width. If we opt for 32-
bit wide RNS limbs, we will have numerous limbs to work with,
increasing the available levels [2] while simultaneously reducing
the achievable precision for an application. Conversely, if we select
128-bit RNS limbs, we will have fewer limbs to work with, resulting

in a decrease in the number of available levels but result in high
precision for an application. With our chosen parameters, using
128-bit wide RNS limbs would leave us with an insu�cient number
of limbs to perform a single bootstrapping operation. To strike
a balance between performance and precision, we choose to use
64-bit wide RNS limbs in this work.

Most GPUs in the market natively support 16-, 32-, and 64-bit
�oating point computations as well as 4-, 8-, 32-bit integer com-
putations. Unfortunately, they lack dedicated hardware support
for 64-bit integer operations, the most common operation in FHE
workloads. Instructions for processing 64-bit integer operands are
emulated using multiple 32-bit integer instructions, making them
comparatively slower. To complement our native modular reduc-
tion, which relies on 64-bit integer operations, we add support for
hardware-backed 64-bit integer multiplier and accumulator, as well
as widen the register-�le size to accommodate the large ciphertexts.
Table 4 demonstrates the decrease in total cycles for each of our
proposed native modular instructions in comparison to the MI100
GPU-emulated instructions in the baseline (vanilla) con�guration.

Prior studies [28, 84] argued that dedicating resources to special-
ized 64-bit integer cores was not justi�able in terms of opportunity
cost, as workloads at the time did not necessitate INT64 support,
and emulation with 32-bit cores was su�cient. However, in the
context of FHE, wemaintain that the performance improvements at-
tained through using an upgraded vector ALU justify the additional
chip resources allocated.

3.3 LABS: Locality-Aware Block Scheduler

So far, our microarchitectural extensions primarily focused on opti-
mizing individual FHE blocks. To better leverage these new features,
we focus next on inter-block optimization opportunities, target-
ing the workgroup dispatcher within the CDNA architecture. GPU
scheduling is typically managed using streams of blocks that are
scheduled on compute units in a greedy manner [9]. The presence
of large GPU register �les allows the scheduler to oversubscribe
blocks to each compute unit. However, the existing scheduler within
the CDNA architecture is not cognizant of inter-block data depen-
dencies, forcing cache �ushes when transitioning from one block
to the next.

We propose a Locality-Aware Block Scheduler (LABS) designed
to schedule blocks with shared data together, thus avoiding redun-
dant on-chip cache �ushes, speci�cally in the LDS. LABS further
bene�ts from our set of microarchitectural enhancements, which
relax the operational constraints during block scheduling and cre-
ate new opportunities for optimization (for instance, the (cNoC)
feature enables LDS data to be globally accessible across all CUs,
thereby allowing the scheduler to assign blocks to any available
CU). To develop LABS, we employ a well-known graph-based map-
ping solution and frame the problem of block mapping to CUs as a
compile-time Graph Partitioning Problem (GPP) [80, 85].

Graph Partitioning Problem: To develop our locality-aware
block scheduler, we use two graphs. Let ă = ă (Ē , ā) represent a
directed acyclic compute graph with vertices Ē (corresponding to
FHE blocks) and edges ā (indicating the data dependencies of the
blocks). Similarly, let ăė = ăė (Ēė, āė) denote an undirected graph
with vertices Ēė (representing GPU compute units) and edges āė
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(illustrating the communication links between compute units). Both
edge sets, ā and āė , are assumed to be weighted, with edge weights
of ā signifying the size of data transferred between related blocks,
and āė representing the bandwidth of communication between
corresponding compute units. We can then de�ne ÿ : Ē → Ēė as
a mapping of Ē into Ēė disjoint subsets. Our objective is to �nd
a mapping ÿ that minimizes communication overhead between
compute units.

We formulate our Graph Partitioning Problem (GPP) by intro-
ducing a cost function ¨. For a graph ă , if it is partitioned such
that āę denotes the set of edge cuts, then ¨ can be expressed as the
sum of the individual cut-edge weights (with (Ĭ,ĭ) representing
the edge-weight of the edge connecting node Ĭ to nodeĭ ). The cost
function ¨ re�ects the communication overhead associated with
assigning FHE blocks to separate compute units. The goal of the
graph partitioning problem is to discover a partition that evenly
distributes the load across each compute unit while minimizing the
communication cost ¨.

¨ = |āę | =
∑

(Ĭ,ĭ ) ∈āę

| (Ĭ,ĭ) |

In this equation, | (Ĭ,ĭ) | signi�es the data transferred between
FHE blocks. To partition the compute graph and prepare it for
mapping onto the architecture graph, we utilize a multilevel mesh
partitioning technique. For readers interested in gaining further
insights into our graph partitioning implementation of the multi-
level mesh partitioning algorithm, we recommend referring to the
work of Walshaw and Cross [85].

Architecture-aware mapping: In this work, we focus on map-
ping our partitioned subgraphs onto the set of compute units Ēė ,
where communication costs (both latency and bandwidth) are not
uniformly distributed across the network [75]. To uniformly distrib-
ute the communication overheads across the network, we introduce
a network cost function �. Here, � is de�ned as the product of in-
dividual cut-weights and their corresponding edge-weights in the
architecture graph when mapped using a mapping function ÿ . For-
mally, � is described as:

� =

∑

(Ĭ,ĭ ) ∈āę

| (Ĭ,ĭ) |.| (ÿ (Ĭ), ÿ (ĭ)) |

In this equation, ÿ (Ĭ) represents the mapping of block Ĭ to a
compute unit from the set Ēė , after applying the mapping func-
tion ÿ . Additionally, | (ÿ (Ĭ), ÿ (ĭ)) | represents the communication
bandwidth between compute units ÿ (Ĭ) and ÿ (ĭ). Similar to our
analysis with ¨, our goal is to minimize �. To accomplish this, we
use a compile-time optimization by applying simulated annealing,
alongside mesh partitioning, to map FHE blocks onto compute
units e�ciently. The evaluation of performance improvements by
incorporating the LABS is discussed further in Section 4.

4 EVALUATION

In this section, we �rst give a concise overview of the GPU simula-
tor employed to model our microarchitectural extensions. Next, we
outline the evaluation methodology assumed to assess the perfor-
mance of our bootstrapping and other workload implementations.
Finally, we present evaluation results.

Table 5: MI100 GPU Parameters

Parameter Value

GPU Core Freq 1502 MHz
Process Size 7 nm
TFLOPS 23.07
Register File 15 MB
CU count 120
L1 Vector Cache 16 KB per CU
L1 Scalar Cache 16 KB
L1 Inst Cache 32 KB
Shared L2 8 MB
LDS 7.5 MB
GPU Memory 32 GB HBM2
Mem Bandwidth 1229 GB/s
Host CPU AMD EPYC 7002
Host OS Ubuntu 18.04
GPU Driver AMD ROCm 5.2.5

4.1 The NaviSim and BlockSim Simulators

In our work, we leverage NaviSim [11], a cycle-level execution-
driven GPU architecture simulator. NaviSim faithfully models the
CDNA architecture by implementing a CDNA ISA emulator and
a detailed timing simulator of all the computational components
and memory hierarchy. NaviSim utilizes the Akita simulation en-
gine [81] to enable modularity and high-performance parallel sim-
ulation. NaviSim is highly con�gurable and accurate and has been
extensively validated against an AMDMI100 GPU. As an execution-
driven simulator, NaviSim recreates the execution results of GPU
instructions during simulation with the help of an instruction em-
ulator for CDNA ISA [7, 12]. Currently, NaviSim supports ker-
nels written in both OpenCL [43] and the HIP programming lan-
guage [9]. For our experiments, we implement our kernels using
OpenCL. NaviSim can generate a wide range of output data to fa-
cilitate performance analysis. For performance metrics related to
individual components, NaviSim reports instruction counts, aver-
age latency spent accessing each level of cache, transaction counts
for each cache, TLB transaction counts, DRAM transaction counts,
and read/write data sizes. For low-level details, NaviSim can gen-
erate instruction traces and memory traces. Finally, NaviSim can
produce traces using the Daisen format so that users can use Daisen,
a web-based visualization tool [82], to inspect the detailed behavior
of each component.

We enhance NaviSim’s capabilities by incorporating our new
custom kernel-level simulator, BlockSim. BlockSim is designed to
enable us to identify inter-kernel optimization opportunities. With
an adjustable sampling rate for performance metrics, BlockSim
accelerates simulations, facilitating more e�cient design space ex-
ploration. BlockSim generates analytical models of the FHE Blocks
to provide estimates for run times of various GPU con�gurations.
When the best design parameters are identi�ed, NaviSim is then
employed to generate cycle-accurate performance metrics. Besides
supporting FHE workloads, BlockSim serves as an essential com-
ponent of NaviSim by abstracting low-level implementation de-
tails from the user, allowing them to focus on entire workloads

677



GME: GPU-based Microarchitectural Extensions to Accelerate Homomorphic Encryption MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

Table 6: Architecture comparison of various FHE accelerators
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Technology (Ĥģ) 14 12/14 7 12/14 7 16 12 7 7

Word size (bit) 54 32 64 28 64 54 54 32 54

On-chip memory (MB) 6 64 512 256 512 43 6 20.25 15.5

Frequency (GHz) 3.5 1.0 1.2 1.0 1.0 0.3 1.2 1.4 1.5 1.68! 1.63! 1.72!

Area (ģģ2) 122 151.4 373.6 472.3 418.3 - 815 826 700∗ + 186.2 96.82 48.27 41.11

Power (ē ) 91 180.4 163.2 317 281.3 225 250 400 300∗ + 107.5 53.91 31.86 21.73
∗The CDNA architecture-based MI100 GPU chip area and power consumption are not disclosed. We display the publicly available approximated values.

 We compute the chip area and power requirements of our microarchitectural extensions using RTL components and Cadence Synthesis Solutions with the ASAP7 technology library.
!Reported values are of maximum clock frequency ĂģėĮ that the design can sustain without violating timing constraints.

rather than individual kernels. BlockSim enables restructuring of
the wavefront scheduler and integrates compile-time optimizations
obtained from LABS. We utilize AMD’s CDNA architecture-based
MI100 GPU to create a baseline for FHE application evaluations.
We further validate our BlockSim �ndings with the MI100 GPU.

4.2 Experimental Setup

In our experiments, we determine our baseline performance using
an AMD MI100 CDNA GPU (see table 5). We then iteratively intro-
duce microarchitectural extensions and evaluate the performance
bene�ts of each enhancement. We �rst evaluate our three microar-
chitectural extensions (cNoC,MOD,WMAC), then evaluate our
compile-time optimization LABS, and conclude with a memory size
exploration to determine the impact of on-chip memory size on FHE
workloads.We evaluate these microarchitectural enhancements and
compiler optimization using NaviSim and BlockSim. To determine
the power and area overhead of our proposed microarchitectural
components, we implement them in RTL. Utilizing Cadence Genus
Synthesis Solutions, we synthesize these RTL components target-
ing an ASAP7 technology library [22] and determine the area and
power consumption for each proposed microarchitectural element.

We �rst evaluate our bootstrapping implementation performance,
utilizing the amortized mult time per slot metric [41]. This metric
has been used frequently in the past to perform a comparison be-
tween di�erent bootstrapping implementations. We can compute
this metric as follows:

Tý.ď. =
Tboot +

∑Ĉ−Ĉboot
ℓ=1 Tmult (ℓ)

Ĉ − Ĉboot
.
1

Ĥ
(1)

Here, Tboot stands for total bootstrapping runtime, and Lboot stands
for the number of levels that the bootstrapping operation utilizes.
The rest of the parameters are de�ned in Table 1. The parameters
that we have used in our implementation have an Lboot = 17 and
Ĥ = 215. In addition, we analyze the performance of two workloads:
HE-based logistic regression (HELR) [35] and encrypted ResNet-
20 [50] utilizing the CIFAR-10 dataset. For all three workloads, we
evaluate the contributions of each individual FHE building block
(see Table 2) that make up the respective workload. In addition, for

Table 7: Performance of various FHE building blocks
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HyPHEN-CPU [62] (čĩ) 506 202 17300 15500 3900
100x [41] (čĩ) 130 160 2960 2550 490
T-FHE [27] (čĩ) 46 37 1131 1008 77
Baseline MI100 (čĩ) 178 217 4012 3473 681
GME∗ (čĩ) 22 28 464 364 69

Speedup over HyPHEN 23× 7.2× 37.3× 42.6× 56.5×

Speedup over 100x 5.9× 5.7× 6.4× 7× 7.1×

Speedup over T-FHE 2.1× 1.3× 2.4× 2.8× 1.1×

Speedup over Baseline 8.1× 7.8× 8.6× 9.5× 9.9×
∗The values displayed here exclude contributions from the LABS optimization, as LABS is an
inter-block optimization, and the metrics provided are intended for individual blocks.

these workloads, we report the performance bene�ts achieved by
employing each of the proposed microarchitectural enhancements.

We also compare our implementationswith other state-of-the-art
CKKS accelerators, incorporating a diverse selection of CPU [16, 62],
GPU [27, 41, 62], FPGA [1], and ASIC [44, 45, 69, 70] platforms.1

Table 6 presents a detailed comparison of the key architectural
parameters across all the related works. Table 6 also showcases the
distribution of chip area and power requirements for each microar-
chitectural enhancement of GME. Since the maximum operating
frequency ĂģėĮ of our microarchitectural enhancements (1.63GHz)
is greater than the typical operating frequency of the MI100 GPU
(1.5 GHz), we do not expect our extensions to change the critical
path timings of the MI100 design. It is essential to emphasize that
operating frequencies di�er across various designs, a crucial factor
to consider when comparing execution times in absolute terms.
Moreover, the ASIC designs make use of large on-chip memory,
resulting in an expensive solution, and they are also not as �exible
as CPU, GPU, and FPGA.

1In this section, we refer to the CPU implementation as Lattigo, the GPU implemen-
tation as 100x, and the CraterLake ASIC design as CL. For the other accelerators, we
use the full names from the respective papers.
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Figure 6: In�uence of individual proposedmicroarchitectural extension on architectural performancemetrics. Metrics illustrate

a cumulative pro�le where each enhancement builds upon the preceding set of improvements

4.3 Results

Performance of FHE Building Blocks: We begin by comparing
the performance of individual FHE blocks with the previous state-
of-the-art GPU implementation [41]. Since these are individual
FHE blocks, the reported metrics do not account for our inter-block
LABS compiler optimization. We �nd that HEMult and HERotate

are the most expensive operations, as they require key switching
operations that involve the most data transfers from the main mem-
ory. The next most expensive operation is HERescale, where the
runtime is dominated by the compute-intensive NTT operations.

Across the �ve FHE blocks mentioned in Table 7, we achieve
an average speedup of 6.4× compared to the 100x implementation.
In particular, we see a substantial performance improvement in
the most expensive operations, namely HEMult and HERotate, as
our proposed microarchitectural enhancements reduce the data
transfer time by 12× for both blocks. For HERescale, we manage to
decrease the average memory transaction latency by 13× using our
microarchitectural enhancements to the on-chip network, cNoC.
Thus making HERescale the fastest block in comparison to 100x

GPU implementation.
Impact of Microarchitectural Extensions: Figures 6 and 7

highlight the impact of each of our proposed microarchitectural
extensions as well as our compile-time optimizations across three
di�erent workloads, i.e., bootstrapping, HE-LR, and ResNet-20.

First, our proposed concentrated 2D torus network enables ci-
phertexts to be preserved in on-chipmemory across kernels, leading
to a signi�cant increase in compute unit utilization across work-
loads, thereby reducing the average cycles consumed per memory
transaction (see Avg. CPT in Figure 6). In fact, when comparing the
average number of cycles spent per memory transaction (average
CPT), we observe that the ResNet-20 workload consistently displays
a lower average CPT value compared to the HE-LR workload. This
indicates a higher degree of data reuse within the ResNet-20 work-
load across FHE blocks as opposed to the HE-LR workload. With
cNoC enhancement, as the data required from previous kernels is
retained in the on-chip memory, CUs are no longer starved for data
and this also results in a substantial decrease in DRAM bandwidth
utilization and DRAM tra�c (the total amount of data transferred
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Figure 7: Speedup achieved from each microarchitectural

extension. The baseline refers to a vanilla MI100 GPU. The

reported speedup is cumulative, with each microarchitec-

tural enhancement building upon the previous ones

from DRAM). The L1 cache utilization decreases notably across
all three workloads for the cNoC microarchitectural enhancement.
This is due to the fact that the LDS bypasses the L1 cache, and
memory accesses to the LDS are not included in the performance
metrics of the L1 cache.

The proposedMOD extension enhances the CDNA ISA by adding
new instructions. These new instructions are complex instructions
that implement commonly used operations in FHE, like mod-red,
mod-add, and mod-mult. As these instructions are complex (com-
posed of multiple sub-instructions), they consume a higher number
of cycles than comparatively simpler instructions such as mult or
add. This is the reason for the increase in the average cycles per
instruction (CPI) metric shown in Figure 6.

The compile-time LABS optimization in our approach further
removes redundant memory transactions by scheduling blocks that
share data together, thus reducing total DRAM tra�c and enhancing
CU utilization. LABS takes advantage of the on-chip ciphertext
preservation enabled by our cNoCmicroarchitectural enhancement.
Across bootstrapping, HE-LR, and ResNet-20 workloads, LABS
consistently delivers an additional speedup of over 1.5× on top of
cNoC andMOD (See Figure 7).
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FHE workload performance

Performance Comparison:We compare the performance of
GME with 100x implementation of FHE workloads in Table 8. GME
surpasses the previous best GPU-based implementation for boot-
strapping and HE-LR by factors of 15.7× and 14.2×, respectively.
Note that we do not compare the performance of ResNet-20 work-
load with 100x, as they do not implement this workload. With close
to double the on-chip memory (LDS), and similar peak memory
bandwidth, our microarchitectural extensions paired with our com-
piler optimization delivered signi�cant performance improvement
across all three FHE workloads. GME signi�cantly outperforms
the CPU implementation Lattigo by 514×, 1165×, and 427× for
bootstrapping, HE-LR, and ResNet-20 workloads, respectively. We
assessed Lattigo’s performance by executing workloads on an
Intel 8th-generation Xeon Platinum CPU with 128 GB of DDR4
memory.

Table 8: HE workloads execution time comparison of pro-

posed GME extensions with other architectures

Accelerator Arch. Tý.ď. Boot HE-

LR

ResNet

20

(Ĥĩ) (ģĩ) (ģĩ) (ģĩ)

Lattigo [59] CPU 8.8ě4 3.9ě4 23293 -
HyPHEN [62] CPU 2110 2.1ě4 - 3.7ě4

F1 [69] ASIC 2.6ě5 Yes 1024 -
BTS [45] ASIC 45 58.9 28.4 1910
CL [70] ASIC 17 4.5 15.2 321
ARK [44] ASIC 14 3.7 7.42 125

FAB [1] FPGA 470 92.4 103 -

100x [41] V100 740 528 775 -
HyPHEN [62] V100 - 830 - 1400
T-FHE [27] A100 404 157 178 3793
Baseline MI100 863 413 658 9989
GME MI100+ 74.5 33.63 54.5 982

 F1 is limited to a single-slot bootstrapping, while others support packed bootstrapping.

In addition, GME outperforms the FPGA design implementation
of FHEworkloads, called FAB [1], by 2.7× and 1.9× for bootstrapping
and HE-LR workloads, respectively. A primary factor contributing
to this acceleration is the low operating frequency of FPGAs (the
Alveo U280 used in FAB operates at 300MHz, while GME cores can
achieve peak frequencies of 1.5GHz [21]). In their work, FAB scales
their implementation to 8 FPGAs for the HE-LR workload (referred
to as FAB-2). GME surpasses FAB-2 by 1.4×. This occurs because,
when the intended application cannot be accommodated on a single
FPGA device, considerable communication overheads negate the
advantages of scaling out.

However, GME does not outperform all ASIC implementations
shown in Table 8. While it achieves an average speedup of 18.7×
over F1 for the HE-LR workload, it falls short in comparison to
BTS, CL, and ARK due to their large on-chip memory and higher
HBM bandwidths. ASIC implementations are tailored for a single
workload. Their customized designs lack �exibility, so they cannot
easily accommodate multiple workloads across domains. Cutting-
edge implementations such as ARK [44] integrate the latest HBM3
technology, enabling them to utilize nearly twice the memory band-
width available in HBM3, as compared to HBM2 used on MI100
GPUs. CraterLake (CL) [70] incorporates extra physical layers (PHY)
to facilitate communication between DRAM and on-chip memory,
thereby enhancing the available bandwidth for FHE workloads. In
this paper, we limit our focus to an existing HBMmodel compatible
with the CDNA architecture without modi�cations to the physical
communication layers.

On-chip Memory Size Exploration: Finally, we look for the
ideal on-chip memory (LDS) size for the FHE workload, as shown in
Figure 8. By increasing the total LDS size from 7.5MB (which is the
current LDS size on MI100 GPU) to 15.5MB, we achieve speedups of
1.74×, 1.53×, and 1.51× for Bootstrapping, HE-LR, and ResNet-20
workloads, respectively. However, increasing the LDS size beyond
15.5MB does not result in substantial speedup, as DRAM bandwidth
becomes a bottleneck.
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5 DISCUSSION

In the �eld of accelerator design, developing general-purpose hard-
ware is of vital importance. Rather than creating a custom accel-
erator speci�cally for FHE, we focus on extending the capabilities
of existing GPUs to take advantage of the established ecosystems
for GPUs. General-purpose hardware, such as GPUs, reap the bene-
�ts of versatile use of all microarchitectural elements present on
the GPU. In this section, we demonstrate the potential advantages
of the proposed microarchitectural enhancements across various
domains, con�rming the importance of these microarchitectural
features. Our observations are based on prior works, which high-
light the potential bene�ts of similar optimizations across diverse
workloads. We evaluate the in�uence of each optimization by exam-
ining communication overheads, high data reuse, utilizing modular
reduction, or employing integer arithmetic. Table 9 presents an
overview of our �ndings, highlighting the potential advantages of
the proposed microarchitectural extensions across an array of other
workloads.

The recent Hopper architecture by NVIDIA for the H100 GPU
introduced a feature termed DSMEM (Distributed Shared Mem-
ory). This allows the virtual address space of shared memory to
be logically spread out across various SMs (streaming multiproces-
sors) [26]. Such a con�guration promotes data sharing between
SMs, similar to the (cNoC) feature we introduced. However, the
details of the SM-to-SM network for DSMEM are not publicly avail-
able and to the best of our knowledge, the SM-to-SM connectivity
is not global but limited to the Thread Block Cluster comprised of 8
SMs. In contrast, the (cNoC) proposed by us enables global connec-
tivity to all 120 CUs in our MI100 GPU, enabling e�cient all-to-all
communication. For enhancing FHE performance, it’s crucial to
substantially reduce the latency in SM-to-SM communication. We
aim to conduct a detailed analysis comparing the inter-SM com-
munication overheads of the H100 GPU to those of GME in future
work.

6 RELATED WORK

CPU/GPU implementations: Several algorithmic implementa-
tions, such as Lattigo [58], SEAL [73], HEXL [15], HEAAN [20],
HELib [13, 34], and PALISADE [64], have recently been proposed
for FHE using the CKKS scheme. Despite the e�orts put forth by
these libraries, a CPU-based implementation of FHE remains infea-
sible due to the relatively limited computational power of CPUs.

PRIFT [3] and the work by Badawi et al. [5] aims to accelerate
FHE using NVIDIA GPUs. Although they support most HE blocks,
they do not accelerate bootstrapping. 100x [41] speeds up all HE
blocks, including bootstrapping. While 100x optimizes o�-chip
memory transactions through kernel-fusions, their implementation
still results in redundant memory transactions due to partitioned
on-chip memory of V100. Locality-aware block scheduling [51]
has been proposed in GPUs to maximize locality within each core;
however, LABS maximizes locality by exploiting the globally shared
LDS through the proposed (cNoC).

FPGA accelerators: Multiple prior e�orts [46, 47, 66, 68] have
developed designs for FHEworkloads. However, most of them either
do not cover all HE primitives or only support smaller parameter
sets that allow computation up to a multiplicative depth of 10.

Table 9: Potential bene�ts of proposed microarchitectural

extensions across various workloads

Applications NOC MOD WMAC LABS

AES [36, 49] 7 7 7 7

FFT [25] 7 7 7 7

3D Laplace [74, 86] 7 ; 7 7

BFS [18, 56] 7 ; 7 ◆

K-Means [23] 7 ; ; 7

ConvNet2 [53] 7 ; 7 ◆

Transformer [37, 72] 7 ; 7 ◆

Monte Carlo [52] ; ; 7 ;

N-Queens [40] ; ; 7 7

Black-Scholes [32] ; ; 7 ;

Fast Walsh [14] 7 ; 7 7

7 Proposed optimization has the potential to signi�cantly improve workload performance.
; Proposed optimization is unlikely to result in notable performance improvements.
◆ Further experimentation is necessary, as it is uncertain whether the proposed optimization will
lead to performance improvement

HEAX [66] is an FPGA-based accelerator that only speeds up CKKS
encrypted multiplication, with the remainder o�oaded to the host
processor.

FAB demonstrates performance comparable to the previous GPU
implementation, 100x [41], and ASIC designs BTS [45] and F1 [69]
for certain FHE workloads. Although FPGAs show great potential
for accelerating FHE workloads, they are limited by low operating
frequencies and compute resources. Furthermore, the substantial
communication overhead and the time required to program the
FPGA discourages their wide-scale deployment [63].

ASIC accelerators: There exist several recent ASIC designs
including F1 [69], CraterLake [70], BTS [45], and ARK [44] that
accelerate the CKKS FHE scheme. F1 implementation makes use of
small Ċ and č values, implementing only a single-slot bootstrap-
ping. BTS is the �rst ASIC proposal demonstrating the performance
of a fully-packed CKKS bootstrapping. CraterLake and ARK design
further enhance the packed CKKS bootstrapping performance and
demonstrate several orders of performance improvement across
various workloads.

7 CONCLUSION

In this work, we present an ambitious plan for extending existing
GPUs to support FHE. We propose three novel microarchitectural
extensions followed by compiler optimization. We suggest a 2D
torus on-chip network that caters to the all-to-all communication
patterns of FHE workloads. Our native modular reduction ISA ex-
tension reduces the latency of modulus reduction operation by
43%. We enable native support for 64-bit integer arithmetic to mit-
igate math pipeline throttling. Our proposed BlockSim simulator
enhances the capabilities of the open-source GPU simulator, Nav-
iSim, allowing for coarse-grained simulation for faster design space
exploration. Overall, comparing against previous state-of-the-art
GPU implementations [41], we obtain an average speedup of 14.6×
across workloads as well as outperform the CPU, the FPGA, and
some ASIC implementations.
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