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Abstract—100% inverter-based renewable units are becoming
more prevalent, introducing new challenges in the protection of
microgrids that incorporate these resources. This is particularly
due to low fault currents and bidirectional flows. Previous work
has studied the protection of microgrids with high penetration
of inverter-interfaced distributed generators; however, very few
have studied the protection of a 100% inverter-based microgrid.
This work proposes machine learning (ML)–based protection
solutions using local electrical measurements that consider imple-
mentation challenges and effectively combine short-circuit fault
detection and type identification. A decision tree method is used
to analyze a wide range of fault scenarios. PSCAD/EMTDC
simulation environment is used to create a dataset for training
and testing the proposed method. The effectiveness of the
proposed methods is examined under seven distinct fault types,
each featuring varying fault resistance, in a 100% inverter-based
microgrid consisting of four inverters.

Index Terms—Fault identification, inverter-based resources
(IBR), microgrid, protection.

I. INTRODUCTION

With the increasing prevalence of renewable energy re-

sources in the form of inverter-based distributed generation

units, traditional protection strategies for microgrids connect-

ing multiple such resources may become insufficient. The pro-

tection of 100% inverter-based microgrids presents significant

challenges [1], primarily due to the reduced inertia of inverter-

based units [2]. A microgrid with low inertia sources could

experience stability problems if line faults are not quickly

cleared. In inverter-interfaced distributed generators, the cur-

rent contribution is limited during short circuits, resulting in

much lower fault currents. Limited fault current, combined

with the bidirectional power flow and intermittent generation,

presents a challenge for fault protection when employing

traditional high fault current methods.

Reference [3] studies the challenges faced when converting
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an existing distribution feeder to an inverter-based micro-

grid and suggests the use of adaptive settings for relays to

tackle the protection challenges. Protection challenges are

more prominent in isolated microgrids, which have lower

fault levels compared to grid-connected microgrids with infeed

power from the main grid [4]. A protection scheme for

isolated microgrids with high penetration of inverter-interfaced

distributed generators should be fast, adaptable, and accurate

in order to uphold microgrid stability and safeguard critical

loads. However, the research on microgrid protection has not

yet led to a commercially available microgrid relay [5]. This

is because many solutions rely on communication methods or

complex learning-based relay systems [6]. Using communica-

tion makes the power system susceptible to delays and cy-

berattacks, reducing the grid’s resiliency [7]. Communication

delays can affect the dynamic behaviors of communication-

based IBR control during faults, which makes protection more

challenging [8]. Many existing microgrid protection schemes

lack adaptability to diverse topologies and source types, are not

cost-effective, or rely on communication, and have not been

tested under scenarios with extremely high IBR penetration,

which is likely in the near future [6].

Machine learning (ML)–based protection methods have

shown great potential in accurately detecting and identifying

faults. However, they have been mostly employed in trans-

mission and distribution systems protection, and very few

studies have explored the applications of ML in detecting and

identifying faults in microgrids with high renewable resource

penetration [5]. Authors in [5] propose an intelligent fault

diagnosis method based on deep learning, utilizing wavelet

transformation and sequence components. Deep learning mod-

els developed in Pytorch are employed to train and validate

fault detection, classification, and location identification. Au-

thors in [9] present a general-purpose support vector machine

(SVM)-based adaptive scheme to identify normal and fault

conditions in AC microgrids and detect fault types. Refer-

ence [10] develops an ML-based protection method for AC

microgrids that detects and classifies faults. The proposed ML

methods use complex deep learning algorithms or require high

sampling rates.

This paper presents decision tree-based protection solutions

that combine fault detection and fault type classification in a

fully inverter-based microgrid, using local measurements with-
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out any communication. The effectiveness of the protection

solution is studied on a microgrid equipped with four inverters,

where half operate in grid-following mode, and the remaining

two function in grid-forming mode. The proposed method

only uses the root mean square (RMS) value of the three-

phase current, three-phase voltage, active and reactive power

with 1 ms intervals, which reduces the computational process

and memory use. The low computational burden facilitates

practical implementation on a microcontroller. The salient

features of the proposed method are:

• The proposed method, designed for simplicity, integrates

fault detection and identification for efficient implemen-

tation in digital relays.

• The decision tree algorithm trains in less than 9 s makes

it applicable for real-world grid applications.

• The proposed approach can detect faults in less than 5 ms

for both low- and high-impedance faults.

II. TEST SYSTEM

A. Basics of Inverter Control

This subsection discusses the basics of inverter control,

where it can be controlled either in the grid-following or the

grid-forming mode [2].

1) Grid-Following Mode

The inverter receives real power set points Pref and reactive

power set points Qref, and the inverter adjusts its output power

to be as close as possible to the received power set points. A

phase-locked loop (PLL) is used for estimating the voltage

phase angle, helping with converting the current and voltage

form abc-frame to dq-frame and back. Fig.1 shows the grid-

following conventional decoupled current control loop for an

inverter connected to the grid through an RL filter, where

the output real power is Pt, the output reactive power is Qt,

inverter current is it, and Vt and Vs are the terminal and the

grid voltages, respectively [11].

2) Grid-Forming Mode

The voltage and frequency of the grid are subject to dis-

turbances and changes; however, the voltage and frequency

magnitude need to be maintained within nominal ranges. As

a result, Q−V and P−f droop controls are used in grid-

forming inverters. The Q−V droop control updates the voltage

set point of the inverter controller, resulting in adjusting the re-

active power to maintain the voltage as shown in Fig. 2(a). The

P−f droop control updates the voltage angle of the inverter,

resulting in modifying the real power output to maintain the

frequency as shown in Fig. 2(b). The PI controllers are used

in the grid-forming inverter droop control, as shown in Fig. 2.

B. 100% Inverter-Based Microgrid

A 4-bus microgrid is developed in PSCAD/EMTDC as

shown in Fig. 3, where the first and third inverters are grid-

forming, and the rest are grid-following. The microgrid base

power is 1.5 MVA, the low-voltage base voltage is 480 V, and

the medium-voltage base voltage is 12.47 kV. Each inverter

has a DC voltage source where its primary side voltage is

fixed to 1.2 kV. The maximum output power of each inverter
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Fig. 1. Decoupled control scheme of a grid-following inverter for d- and
q-axes.
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Fig. 3. Single-line diagram of the microgrid.

is limited to 1.5 MVA. Each grid-following unit is connected

to a transformer through an RL filter, where its resistance is

1.5 mΩ, and its inductance is 20 µH. kP = 2 and kI = 0.0025
are the gains for the grid following PI blocks. Gains for the

PI block in P−f droop control of grid-forming inverters are

kP = 0.6 and kI = 0.003, and they are kP = 0.6 and

kI = 0.002 for the Q−V droop control. Line 12 resistance is

1.4 Ω, and line 12 inductance equals to 2 Ω. Line 23 resistance

is 2.2 Ω, and line 23 inductance equals to 3.16 Ω. Line 34

resistance is 0.6 Ω, and line 34 inductance is 3.16 Ω. A load

is connected to bus 3 through a breaker, where its real power

can be between 0.1 pu to 0.6 pu, and its reactive power can

vary from 0.01 pu to 0.06 pu. The protection relay R1 is at

bus 1.

III. METHODOLOGY

This work utilizes a decision tree–based method to detect

and identify faults in the microgrid, as elaborated in the

following subsections.
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A. Algorithm Selection

Since the protection algorithm needs to detect a fault within

a few milliseconds it needs to be run every few milliseconds.

Due to this requirement, making algorithm less computational

expensive is preferable. Previous work has utilized deep learn-

ing methods for protection; however, real-time implementa-

tion using off-the-shelf microcontrollers is still a challenge.

Furthermore, microgrids are small grids with a few nodes,

and classification algorithms can show effective results for

protection against short circuit faults. The most basic type

of algorithm is the support vector machine (SVM) model.

However, SVM models scale between either quadratically or

cubically with training data complexity. Due to this scaling

penalty and this projects datasets complexity, SVM was not

a viable option. Therefore, this work uses a decision tree

model since decision tree models scale linearly with the data

complexity.

B. Decision Tree Basics

Decision trees work via a tree like structure in which each

node represents a feature or attribute that has been determined

as important. Branches correspond to a decision based on the

previous feature and lead to the next node. The decision on

when to split in the tree is decided using the Gini impurity

method. During training, the goal is to constantly minimize

the Gini impurity [12]. The Gini impurity of the dataset is

calculated using the equation:

Gini(D) = 1−

J∑

i=1

p2
i
, (1)

where D represents the dataset for the node, J is the number

of classes, and pi is the proportion of samples that belong to

class i in the dataset D.

C. Dataset Preparation and Feature Selection

A dataset is developed by simulating short-circuit faults

using PSCAD/EMTDC. The PSCAD automation Python API

is utilized to run multiple cases and create the dataset [7]. For

each simulation run, a distinct fault type, fault location, fault

resistance, and fault duration are considered. The seven fault

types selected are AG, BG, CG, ABG, ACG, BCG, and

ABCG. The chosen fault resistance values are 100 Ω, 10 Ω,

1 Ω, 0.1 Ω, and 0.001 Ω. The faults are located at buses 1–4.

For the fault duration, 0.05 s, 0.1 s, and 0.2 s are selected.

All faults are introduced at t = 0.05 s, and each simulation is

conducted for a duration of 1 second. As a result, a total of

420 cases are simulated and used for both training and testing

the proposed protection algorithm.

In every simulation, the three-phase current I , three-phase

voltage V , real power P , and reactive power Q data are

recorded with a 1 ms time intervals. Furthermore, a fault

detection signal is added to the dataset, where it becomes 1

during the short-circuited faults and is zero when there is no

fault. Additionally, a column is added for the fault type. A

number is assigned to each fault type as shown in Table I,

where it can be between 0 and 7. Fault type 0 represents no

faults.

TABLE I
FAULT TYPE NUMBER TABLE

Fault Number Description Fault Number Description

0 No faults 4 ABG faults
1 AG faults 5 ACG faults
2 BG faults 6 BCG faults
3 CG faults 7 ABCG faults

TABLE II
TABLE OF THE ACCURACY OF DIFFERENT INPUT FEATURES

Inputs
Fault Prediction

Accuracy

Fault Type Prediction

Accuracy

I 95.58% 95.50%
I ,V 95.92% 95.82%
I ,P ,Q 96.26% 96.05%
I ,V ,P ,Q 96.33% 96.04%

D. Training and Hyperparamters Selection

Table II shows how different selections of the input features

affect the accuracy of the decision tree. Four combinations of

inputs are selected for the R1 relay, where the first one only

uses I . The second one uses both V and I . The third one uses

I , P , and Q. The fourth one uses I , V , P , and Q. In order

to achieve the highest accuracy the fourth feature set are used

in this work, where it shows the best performance for fault

detection compared to other combinations.

Scikit-learn library is used in this work, where the decision

tree model maximum depth is set to 43 and it has a total of

4044 leaves. Training and validation data consisted of 715,959

1 ms time samples. Input variables consisted of the three-phase

current, the three-phase voltage, the real power output, and the

reactive power output of the bus where the relay is located.

The data is split utilizing train-test-split function in

scikit-learn. 80 percent of the data is used for training, and

the remaining 20 percent is used for validation. A shuffle

is applied with a random state setting of 20 being utilized

for repeatability. No further preprocessing is required before

training the decision tree model. True output variables are split

into their respective categories and fed into the model.

IV. SIMULATION RESULTS AND EVALUATION

This section presents the simulation results for different

types of faults at different buses.

1) Case 1: AG Fault on Bus 1.

Figs. 4 shows fault detection and fault type for a phase A to

ground fault with a 0.01 Ω resistance located at bus 1, staring

at t = 50 ms and clearing at t = 150 ms. The decision tree

detects the fault occurrence at t = 50 ms and detects fault

clearance at t = 155 ms, with 5 ms delays. The decision tree

detects the fault type number 1, AG fault. The decision tree

detects the fault type and fault occurrence correctly during the

fault period except for one sample at t = 0.104 s; however, it

quickly corrects its prediction in the next time step.
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Fig. 4. AG fault located at bus 1: (a) fault detection and (b) fault type.

Fig. 5. ACG fault located at bus 2: (a) fault detection and (b) fault type.

Fig. 6. ABCG fault located at bus 3: (a) fault detection and (b) fault type.

2) Case 2: ACG Fault on Bus 2.

Figs. 5 shows fault detection and fault type for phases A

and C to ground fault with a 1 Ω resistance located at bus 2,

starting at t = 50 ms and clearing at t = 100 ms. The

decision tree detects the fault occurrence at t = 50 ms and

fault clearance at t = 100 ms. The decision tree detects the

fault type correctly. The decision tree indicates that the fault

type number is 5, which is equivalent to an ACG fault shown

in Fig. 5(b).

3) Case 3: ABCG Fault on Bus 3.

Figs. 6 shows fault detection and fault type for a three-

phase to ground fault with a 40 Ω impedance located at bus 3,

starting at t = 50 ms and clearing at t = 200 ms. Unlike

Case 1 and Case 2, the decision tree has not been trained for

a 40 Ω fault value, decreasing its accuracy. The decision tree

detects the fault occurrence at t = 50 ms and fault clearance

at t = 210 ms; however, it cannot detect correctly after

the fault occurrence in a few time steps shown in Fig. 6(a).

Furthermore, the decision tree has difficulty identifying the

fault type at the first 40 ms of the simulation; however, it

can detect the fault with certainty after that. The decision tree

detects the fault clearance with a 10 ms delay. The decision

tree indicates that the fault type number is 7 after 40 ms, which

is equivalent to an ABCG fault using shown in Fig. 6(b).

Fig. 6 indicates that the proposed method still works well for

an untrained high-impedance fault.

V. CONCLUSION

Low fault current and bidirectional current are major chal-

lenges in the protection of fully inverter-based microgrids. This

work proposes Decision tree–based protection solutions that

incorporate fault detection and identification. These solutions

are designed for efficient implementation in digital relays

due to their simplicity. The effectiveness of the proposed

method is examined for both low and high-impedance faults

across seven distinct fault types characterized by varying fault

resistance. The analyses are conducted in the context of a

100% inverter-based microgrid equipped with four inverters.

This work indeed facilitates the utilization of a ML-based

method for the protection of fully inverter-based microgrids.

Future work includes investigating the efficacy of the ML-

based methods for a larger microgrid and assessing their

accuracy under various network configurations.
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